diff options
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_broadcasting.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_broadcasting.cpp | 194 |
1 files changed, 194 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_broadcasting.cpp b/eigen/unsupported/test/cxx11_tensor_broadcasting.cpp new file mode 100644 index 0000000..5c0ea58 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_broadcasting.cpp @@ -0,0 +1,194 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; + +template <int DataLayout> +static void test_simple_broadcasting() +{ + Tensor<float, 4, DataLayout> tensor(2,3,5,7); + tensor.setRandom(); + array<ptrdiff_t, 4> broadcasts; + broadcasts[0] = 1; + broadcasts[1] = 1; + broadcasts[2] = 1; + broadcasts[3] = 1; + + Tensor<float, 4, DataLayout> no_broadcast; + no_broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(no_broadcast.dimension(0), 2); + VERIFY_IS_EQUAL(no_broadcast.dimension(1), 3); + VERIFY_IS_EQUAL(no_broadcast.dimension(2), 5); + VERIFY_IS_EQUAL(no_broadcast.dimension(3), 7); + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 7; ++l) { + VERIFY_IS_EQUAL(tensor(i,j,k,l), no_broadcast(i,j,k,l)); + } + } + } + } + + broadcasts[0] = 2; + broadcasts[1] = 3; + broadcasts[2] = 1; + broadcasts[3] = 4; + Tensor<float, 4, DataLayout> broadcast; + broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(broadcast.dimension(0), 4); + VERIFY_IS_EQUAL(broadcast.dimension(1), 9); + VERIFY_IS_EQUAL(broadcast.dimension(2), 5); + VERIFY_IS_EQUAL(broadcast.dimension(3), 28); + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 9; ++j) { + for (int k = 0; k < 5; ++k) { + for (int l = 0; l < 28; ++l) { + VERIFY_IS_EQUAL(tensor(i%2,j%3,k%5,l%7), broadcast(i,j,k,l)); + } + } + } + } +} + + +template <int DataLayout> +static void test_vectorized_broadcasting() +{ + Tensor<float, 3, DataLayout> tensor(8,3,5); + tensor.setRandom(); + array<ptrdiff_t, 3> broadcasts; + broadcasts[0] = 2; + broadcasts[1] = 3; + broadcasts[2] = 4; + + Tensor<float, 3, DataLayout> broadcast; + broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(broadcast.dimension(0), 16); + VERIFY_IS_EQUAL(broadcast.dimension(1), 9); + VERIFY_IS_EQUAL(broadcast.dimension(2), 20); + + for (int i = 0; i < 16; ++i) { + for (int j = 0; j < 9; ++j) { + for (int k = 0; k < 20; ++k) { + VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); + } + } + } + + tensor.resize(11,3,5); + tensor.setRandom(); + broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(broadcast.dimension(0), 22); + VERIFY_IS_EQUAL(broadcast.dimension(1), 9); + VERIFY_IS_EQUAL(broadcast.dimension(2), 20); + + for (int i = 0; i < 22; ++i) { + for (int j = 0; j < 9; ++j) { + for (int k = 0; k < 20; ++k) { + VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); + } + } + } +} + + +template <int DataLayout> +static void test_static_broadcasting() +{ + Tensor<float, 3, DataLayout> tensor(8,3,5); + tensor.setRandom(); + +#if EIGEN_HAS_CONSTEXPR + Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>, Eigen::type2index<4>> broadcasts; +#else + Eigen::array<int, 3> broadcasts; + broadcasts[0] = 2; + broadcasts[1] = 3; + broadcasts[2] = 4; +#endif + + Tensor<float, 3, DataLayout> broadcast; + broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(broadcast.dimension(0), 16); + VERIFY_IS_EQUAL(broadcast.dimension(1), 9); + VERIFY_IS_EQUAL(broadcast.dimension(2), 20); + + for (int i = 0; i < 16; ++i) { + for (int j = 0; j < 9; ++j) { + for (int k = 0; k < 20; ++k) { + VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); + } + } + } + + tensor.resize(11,3,5); + tensor.setRandom(); + broadcast = tensor.broadcast(broadcasts); + + VERIFY_IS_EQUAL(broadcast.dimension(0), 22); + VERIFY_IS_EQUAL(broadcast.dimension(1), 9); + VERIFY_IS_EQUAL(broadcast.dimension(2), 20); + + for (int i = 0; i < 22; ++i) { + for (int j = 0; j < 9; ++j) { + for (int k = 0; k < 20; ++k) { + VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); + } + } + } +} + + +template <int DataLayout> +static void test_fixed_size_broadcasting() +{ + // Need to add a [] operator to the Size class for this to work +#if 0 + Tensor<float, 1, DataLayout> t1(10); + t1.setRandom(); + TensorFixedSize<float, Sizes<1>, DataLayout> t2; + t2 = t2.constant(20.0f); + + Tensor<float, 1, DataLayout> t3 = t1 + t2.broadcast(Eigen::array<int, 1>{{10}}); + for (int i = 0; i < 10; ++i) { + VERIFY_IS_APPROX(t3(i), t1(i) + t2(0)); + } + + TensorMap<TensorFixedSize<float, Sizes<1>, DataLayout> > t4(t2.data(), {{1}}); + Tensor<float, 1, DataLayout> t5 = t1 + t4.broadcast(Eigen::array<int, 1>{{10}}); + for (int i = 0; i < 10; ++i) { + VERIFY_IS_APPROX(t5(i), t1(i) + t2(0)); + } +#endif +} + + +void test_cxx11_tensor_broadcasting() +{ + CALL_SUBTEST(test_simple_broadcasting<ColMajor>()); + CALL_SUBTEST(test_simple_broadcasting<RowMajor>()); + CALL_SUBTEST(test_vectorized_broadcasting<ColMajor>()); + CALL_SUBTEST(test_vectorized_broadcasting<RowMajor>()); + CALL_SUBTEST(test_static_broadcasting<ColMajor>()); + CALL_SUBTEST(test_static_broadcasting<RowMajor>()); + CALL_SUBTEST(test_fixed_size_broadcasting<ColMajor>()); + CALL_SUBTEST(test_fixed_size_broadcasting<RowMajor>()); +} |