diff options
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_convolution.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_convolution.cpp | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_convolution.cpp b/eigen/unsupported/test/cxx11_tensor_convolution.cpp new file mode 100644 index 0000000..e3d4675 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_convolution.cpp @@ -0,0 +1,149 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; +using Eigen::DefaultDevice; + +template <int DataLayout> +static void test_evals() +{ + Tensor<float, 2, DataLayout> input(3, 3); + Tensor<float, 1, DataLayout> kernel(2); + + input.setRandom(); + kernel.setRandom(); + + Tensor<float, 2, DataLayout> result(2,3); + result.setZero(); + Eigen::array<Tensor<float, 2>::Index, 1> dims3{{0}}; + + typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator; + Evaluator eval(input.convolve(kernel, dims3), DefaultDevice()); + eval.evalTo(result.data()); + EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval.dimensions()[1], 3); + + VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0 + VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2 + VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4 + VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1 + VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3 + VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5 +} + +template <int DataLayout> +static void test_expr() +{ + Tensor<float, 2, DataLayout> input(3, 3); + Tensor<float, 2, DataLayout> kernel(2, 2); + input.setRandom(); + kernel.setRandom(); + + Tensor<float, 2, DataLayout> result(2,2); + Eigen::array<ptrdiff_t, 2> dims; + dims[0] = 0; + dims[1] = 1; + result = input.convolve(kernel, dims); + + VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) + + input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1)); + VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) + + input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1)); + VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) + + input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1)); + VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) + + input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1)); +} + +template <int DataLayout> +static void test_modes() { + Tensor<float, 1, DataLayout> input(3); + Tensor<float, 1, DataLayout> kernel(3); + input(0) = 1.0f; + input(1) = 2.0f; + input(2) = 3.0f; + kernel(0) = 0.5f; + kernel(1) = 1.0f; + kernel(2) = 0.0f; + + Eigen::array<ptrdiff_t, 1> dims; + dims[0] = 0; + Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding; + + // Emulate VALID mode (as defined in + // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). + padding[0] = std::make_pair(0, 0); + Tensor<float, 1, DataLayout> valid(1); + valid = input.pad(padding).convolve(kernel, dims); + VERIFY_IS_EQUAL(valid.dimension(0), 1); + VERIFY_IS_APPROX(valid(0), 2.5f); + + // Emulate SAME mode (as defined in + // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). + padding[0] = std::make_pair(1, 1); + Tensor<float, 1, DataLayout> same(3); + same = input.pad(padding).convolve(kernel, dims); + VERIFY_IS_EQUAL(same.dimension(0), 3); + VERIFY_IS_APPROX(same(0), 1.0f); + VERIFY_IS_APPROX(same(1), 2.5f); + VERIFY_IS_APPROX(same(2), 4.0f); + + // Emulate FULL mode (as defined in + // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). + padding[0] = std::make_pair(2, 2); + Tensor<float, 1, DataLayout> full(5); + full = input.pad(padding).convolve(kernel, dims); + VERIFY_IS_EQUAL(full.dimension(0), 5); + VERIFY_IS_APPROX(full(0), 0.0f); + VERIFY_IS_APPROX(full(1), 1.0f); + VERIFY_IS_APPROX(full(2), 2.5f); + VERIFY_IS_APPROX(full(3), 4.0f); + VERIFY_IS_APPROX(full(4), 1.5f); +} + +template <int DataLayout> +static void test_strides() { + Tensor<float, 1, DataLayout> input(13); + Tensor<float, 1, DataLayout> kernel(3); + input.setRandom(); + kernel.setRandom(); + + Eigen::array<ptrdiff_t, 1> dims; + dims[0] = 0; + Eigen::array<ptrdiff_t, 1> stride_of_3; + stride_of_3[0] = 3; + Eigen::array<ptrdiff_t, 1> stride_of_2; + stride_of_2[0] = 2; + + Tensor<float, 1, DataLayout> result; + result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2); + + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) + + input(6)*kernel(2))); + VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) + + input(12)*kernel(2))); +} + +void test_cxx11_tensor_convolution() +{ + CALL_SUBTEST(test_evals<ColMajor>()); + CALL_SUBTEST(test_evals<RowMajor>()); + CALL_SUBTEST(test_expr<ColMajor>()); + CALL_SUBTEST(test_expr<RowMajor>()); + CALL_SUBTEST(test_modes<ColMajor>()); + CALL_SUBTEST(test_modes<RowMajor>()); + CALL_SUBTEST(test_strides<ColMajor>()); + CALL_SUBTEST(test_strides<RowMajor>()); +} |