diff options
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_device.cu')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_device.cu | 387 |
1 files changed, 0 insertions, 387 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_device.cu b/eigen/unsupported/test/cxx11_tensor_device.cu deleted file mode 100644 index cbb43e2..0000000 --- a/eigen/unsupported/test/cxx11_tensor_device.cu +++ /dev/null @@ -1,387 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#define EIGEN_TEST_NO_LONGDOUBLE -#define EIGEN_TEST_NO_COMPLEX -#define EIGEN_TEST_FUNC cxx11_tensor_device -#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int -#define EIGEN_USE_GPU - -#include "main.h" -#include <unsupported/Eigen/CXX11/Tensor> - -using Eigen::Tensor; -using Eigen::RowMajor; - -// Context for evaluation on cpu -struct CPUContext { - CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2,2), kernel_3d_(2,2,2) { - kernel_1d_(0) = 3.14f; - kernel_1d_(1) = 2.7f; - - kernel_2d_(0,0) = 3.14f; - kernel_2d_(1,0) = 2.7f; - kernel_2d_(0,1) = 0.2f; - kernel_2d_(1,1) = 7.0f; - - kernel_3d_(0,0,0) = 3.14f; - kernel_3d_(0,1,0) = 2.7f; - kernel_3d_(0,0,1) = 0.2f; - kernel_3d_(0,1,1) = 7.0f; - kernel_3d_(1,0,0) = -1.0f; - kernel_3d_(1,1,0) = -0.3f; - kernel_3d_(1,0,1) = -0.7f; - kernel_3d_(1,1,1) = -0.5f; - } - - const Eigen::DefaultDevice& device() const { return cpu_device_; } - - const Eigen::Tensor<float, 3>& in1() const { return in1_; } - const Eigen::Tensor<float, 3>& in2() const { return in2_; } - Eigen::Tensor<float, 3>& out() { return out_; } - const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; } - const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; } - const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; } - - private: - const Eigen::Tensor<float, 3>& in1_; - const Eigen::Tensor<float, 3>& in2_; - Eigen::Tensor<float, 3>& out_; - - Eigen::Tensor<float, 1> kernel_1d_; - Eigen::Tensor<float, 2> kernel_2d_; - Eigen::Tensor<float, 3> kernel_3d_; - - Eigen::DefaultDevice cpu_device_; -}; - - -// Context for evaluation on GPU -struct GPUContext { - GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1, Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2, Eigen::TensorMap<Eigen::Tensor<float, 3> >& out) : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) { - assert(cudaMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == cudaSuccess); - float kernel_1d_val[] = {3.14f, 2.7f}; - assert(cudaMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess); - - assert(cudaMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == cudaSuccess); - float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f}; - assert(cudaMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess); - - assert(cudaMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == cudaSuccess); - float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f}; - assert(cudaMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess); - } - ~GPUContext() { - assert(cudaFree(kernel_1d_) == cudaSuccess); - assert(cudaFree(kernel_2d_) == cudaSuccess); - assert(cudaFree(kernel_3d_) == cudaSuccess); - } - - const Eigen::GpuDevice& device() const { return gpu_device_; } - - const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1() const { return in1_; } - const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2() const { return in2_; } - Eigen::TensorMap<Eigen::Tensor<float, 3> >& out() { return out_; } - Eigen::TensorMap<Eigen::Tensor<float, 1> > kernel1d() const { return Eigen::TensorMap<Eigen::Tensor<float, 1> >(kernel_1d_, 2); } - Eigen::TensorMap<Eigen::Tensor<float, 2> > kernel2d() const { return Eigen::TensorMap<Eigen::Tensor<float, 2> >(kernel_2d_, 2, 2); } - Eigen::TensorMap<Eigen::Tensor<float, 3> > kernel3d() const { return Eigen::TensorMap<Eigen::Tensor<float, 3> >(kernel_3d_, 2, 2, 2); } - - private: - const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1_; - const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2_; - Eigen::TensorMap<Eigen::Tensor<float, 3> >& out_; - - float* kernel_1d_; - float* kernel_2d_; - float* kernel_3d_; - - Eigen::CudaStreamDevice stream_; - Eigen::GpuDevice gpu_device_; -}; - - -// The actual expression to evaluate -template <typename Context> -void test_contextual_eval(Context* context) -{ - context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f); -} - -template <typename Context> -void test_forced_contextual_eval(Context* context) -{ - context->out().device(context->device()) = (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f); -} - -template <typename Context> -void test_compound_assignment(Context* context) -{ - context->out().device(context->device()) = context->in1().constant(2.718f); - context->out().device(context->device()) += context->in1() + context->in2() * 3.14f; -} - - -template <typename Context> -void test_contraction(Context* context) -{ - Eigen::array<std::pair<int, int>, 2> dims; - dims[0] = std::make_pair(1, 1); - dims[1] = std::make_pair(2, 2); - - Eigen::array<int, 2> shape(40, 50*70); - - Eigen::DSizes<int, 2> indices(0,0); - Eigen::DSizes<int, 2> sizes(40,40); - - context->out().reshape(shape).slice(indices, sizes).device(context->device()) = context->in1().contract(context->in2(), dims); -} - - -template <typename Context> -void test_1d_convolution(Context* context) -{ - Eigen::DSizes<int, 3> indices(0,0,0); - Eigen::DSizes<int, 3> sizes(40,49,70); - - Eigen::array<int, 1> dims(1); - context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims); -} - -template <typename Context> -void test_2d_convolution(Context* context) -{ - Eigen::DSizes<int, 3> indices(0,0,0); - Eigen::DSizes<int, 3> sizes(40,49,69); - - Eigen::array<int, 2> dims(1,2); - context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims); -} - -template <typename Context> -void test_3d_convolution(Context* context) -{ - Eigen::DSizes<int, 3> indices(0,0,0); - Eigen::DSizes<int, 3> sizes(39,49,69); - - Eigen::array<int, 3> dims(0,1,2); - context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims); -} - - -void test_cpu() { - Eigen::Tensor<float, 3> in1(40,50,70); - Eigen::Tensor<float, 3> in2(40,50,70); - Eigen::Tensor<float, 3> out(40,50,70); - - in1 = in1.random() + in1.constant(10.0f); - in2 = in2.random() + in2.constant(10.0f); - - CPUContext context(in1, in2, out); - test_contextual_eval(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f); - } - } - } - - test_forced_contextual_eval(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f); - } - } - } - - test_compound_assignment(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f); - } - } - } - - test_contraction(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 40; ++j) { - const float result = out(i,j,0); - float expected = 0; - for (int k = 0; k < 50; ++k) { - for (int l = 0; l < 70; ++l) { - expected += in1(i, k, l) * in2(j, k, l); - } - } - VERIFY_IS_APPROX(expected, result); - } - } - - test_1d_convolution(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f)); - } - } - } - - test_2d_convolution(&context); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 69; ++k) { - const float result = out(i,j,k); - const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f) + - (in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f); - if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { - continue; - } - VERIFY_IS_APPROX(expected, result); - } - } - } - - test_3d_convolution(&context); - for (int i = 0; i < 39; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 69; ++k) { - const float result = out(i,j,k); - const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f + - in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f) + - (in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f + - in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f); - if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { - continue; - } - VERIFY_IS_APPROX(expected, result); - } - } - } -} - -void test_gpu() { - Eigen::Tensor<float, 3> in1(40,50,70); - Eigen::Tensor<float, 3> in2(40,50,70); - Eigen::Tensor<float, 3> out(40,50,70); - in1 = in1.random() + in1.constant(10.0f); - in2 = in2.random() + in2.constant(10.0f); - - std::size_t in1_bytes = in1.size() * sizeof(float); - std::size_t in2_bytes = in2.size() * sizeof(float); - std::size_t out_bytes = out.size() * sizeof(float); - - float* d_in1; - float* d_in2; - float* d_out; - cudaMalloc((void**)(&d_in1), in1_bytes); - cudaMalloc((void**)(&d_in2), in2_bytes); - cudaMalloc((void**)(&d_out), out_bytes); - - cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); - cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); - - Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, 40,50,70); - Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, 40,50,70); - Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, 40,50,70); - - GPUContext context(gpu_in1, gpu_in2, gpu_out); - test_contextual_eval(&context); - assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f); - } - } - } - - test_forced_contextual_eval(&context); - assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f); - } - } - } - - test_compound_assignment(&context); - assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 50; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f); - } - } - } - - test_contraction(&context); - assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 40; ++j) { - const float result = out(i,j,0); - float expected = 0; - for (int k = 0; k < 50; ++k) { - for (int l = 0; l < 70; ++l) { - expected += in1(i, k, l) * in2(j, k, l); - } - } - VERIFY_IS_APPROX(expected, result); - } - } - - test_1d_convolution(&context); - assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess); - assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 70; ++k) { - VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f)); - } - } - } - - test_2d_convolution(&context); - assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess); - assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess); - for (int i = 0; i < 40; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 69; ++k) { - const float result = out(i,j,k); - const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f + - in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f); - VERIFY_IS_APPROX(expected, result); - } - } - } - - test_3d_convolution(&context); - assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess); - assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess); - for (int i = 0; i < 39; ++i) { - for (int j = 0; j < 49; ++j) { - for (int k = 0; k < 69; ++k) { - const float result = out(i,j,k); - const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f + - in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f + - in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f + - in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f); - VERIFY_IS_APPROX(expected, result); - } - } - } -} - - -void test_cxx11_tensor_device() -{ - CALL_SUBTEST_1(test_cpu()); - CALL_SUBTEST_2(test_gpu()); -} |