diff options
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_reduction.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_reduction.cpp | 508 |
1 files changed, 508 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_reduction.cpp b/eigen/unsupported/test/cxx11_tensor_reduction.cpp new file mode 100644 index 0000000..1490ec3 --- /dev/null +++ b/eigen/unsupported/test/cxx11_tensor_reduction.cpp @@ -0,0 +1,508 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <limits> +#include <numeric> +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; + +template <int DataLayout> +static void test_trivial_reductions() { + { + Tensor<float, 0, DataLayout> tensor; + tensor.setRandom(); + array<ptrdiff_t, 0> reduction_axis; + + Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result(), tensor()); + } + + { + Tensor<float, 1, DataLayout> tensor(7); + tensor.setRandom(); + array<ptrdiff_t, 0> reduction_axis; + + Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 7); + for (int i = 0; i < 7; ++i) { + VERIFY_IS_EQUAL(result(i), tensor(i)); + } + } + + { + Tensor<float, 2, DataLayout> tensor(2, 3); + tensor.setRandom(); + array<ptrdiff_t, 0> reduction_axis; + + Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 3); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + VERIFY_IS_EQUAL(result(i, j), tensor(i, j)); + } + } + } +} + +template <int DataLayout> +static void test_simple_reductions() { + Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); + tensor.setRandom(); + array<ptrdiff_t, 2> reduction_axis2; + reduction_axis2[0] = 1; + reduction_axis2[1] = 3; + + Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 5); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 5; ++j) { + float sum = 0.0f; + for (int k = 0; k < 3; ++k) { + for (int l = 0; l < 7; ++l) { + sum += tensor(i, k, j, l); + } + } + VERIFY_IS_APPROX(result(i, j), sum); + } + } + + { + Tensor<float, 0, DataLayout> sum1 = tensor.sum(); + VERIFY_IS_EQUAL(sum1.rank(), 0); + + array<ptrdiff_t, 4> reduction_axis4; + reduction_axis4[0] = 0; + reduction_axis4[1] = 1; + reduction_axis4[2] = 2; + reduction_axis4[3] = 3; + Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4); + VERIFY_IS_EQUAL(sum2.rank(), 0); + + VERIFY_IS_APPROX(sum1(), sum2()); + } + + reduction_axis2[0] = 0; + reduction_axis2[1] = 2; + result = tensor.prod(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 3); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 7; ++j) { + float prod = 1.0f; + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 5; ++l) { + prod *= tensor(k, i, l, j); + } + } + VERIFY_IS_APPROX(result(i, j), prod); + } + } + + { + Tensor<float, 0, DataLayout> prod1 = tensor.prod(); + VERIFY_IS_EQUAL(prod1.rank(), 0); + + array<ptrdiff_t, 4> reduction_axis4; + reduction_axis4[0] = 0; + reduction_axis4[1] = 1; + reduction_axis4[2] = 2; + reduction_axis4[3] = 3; + Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4); + VERIFY_IS_EQUAL(prod2.rank(), 0); + + VERIFY_IS_APPROX(prod1(), prod2()); + } + + reduction_axis2[0] = 0; + reduction_axis2[1] = 2; + result = tensor.maximum(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 3); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 7; ++j) { + float max_val = std::numeric_limits<float>::lowest(); + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 5; ++l) { + max_val = (std::max)(max_val, tensor(k, i, l, j)); + } + } + VERIFY_IS_APPROX(result(i, j), max_val); + } + } + + { + Tensor<float, 0, DataLayout> max1 = tensor.maximum(); + VERIFY_IS_EQUAL(max1.rank(), 0); + + array<ptrdiff_t, 4> reduction_axis4; + reduction_axis4[0] = 0; + reduction_axis4[1] = 1; + reduction_axis4[2] = 2; + reduction_axis4[3] = 3; + Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4); + VERIFY_IS_EQUAL(max2.rank(), 0); + + VERIFY_IS_APPROX(max1(), max2()); + } + + reduction_axis2[0] = 0; + reduction_axis2[1] = 1; + result = tensor.minimum(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 5); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 5; ++i) { + for (int j = 0; j < 7; ++j) { + float min_val = (std::numeric_limits<float>::max)(); + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 3; ++l) { + min_val = (std::min)(min_val, tensor(k, l, i, j)); + } + } + VERIFY_IS_APPROX(result(i, j), min_val); + } + } + + { + Tensor<float, 0, DataLayout> min1 = tensor.minimum(); + VERIFY_IS_EQUAL(min1.rank(), 0); + + array<ptrdiff_t, 4> reduction_axis4; + reduction_axis4[0] = 0; + reduction_axis4[1] = 1; + reduction_axis4[2] = 2; + reduction_axis4[3] = 3; + Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4); + VERIFY_IS_EQUAL(min2.rank(), 0); + + VERIFY_IS_APPROX(min1(), min2()); + } + + reduction_axis2[0] = 0; + reduction_axis2[1] = 1; + result = tensor.mean(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 5); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 5; ++i) { + for (int j = 0; j < 7; ++j) { + float sum = 0.0f; + int count = 0; + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 3; ++l) { + sum += tensor(k, l, i, j); + ++count; + } + } + VERIFY_IS_APPROX(result(i, j), sum / count); + } + } + + { + Tensor<float, 0, DataLayout> mean1 = tensor.mean(); + VERIFY_IS_EQUAL(mean1.rank(), 0); + + array<ptrdiff_t, 4> reduction_axis4; + reduction_axis4[0] = 0; + reduction_axis4[1] = 1; + reduction_axis4[2] = 2; + reduction_axis4[3] = 3; + Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4); + VERIFY_IS_EQUAL(mean2.rank(), 0); + + VERIFY_IS_APPROX(mean1(), mean2()); + } + + { + Tensor<int, 1> ints(10); + std::iota(ints.data(), ints.data() + ints.dimension(0), 0); + + TensorFixedSize<bool, Sizes<> > all; + all = ints.all(); + VERIFY(!all()); + all = (ints >= ints.constant(0)).all(); + VERIFY(all()); + + TensorFixedSize<bool, Sizes<> > any; + any = (ints > ints.constant(10)).any(); + VERIFY(!any()); + any = (ints < ints.constant(1)).any(); + VERIFY(any()); + } +} + + +template <int DataLayout> +static void test_reductions_in_expr() { + Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7); + tensor.setRandom(); + array<ptrdiff_t, 2> reduction_axis2; + reduction_axis2[0] = 1; + reduction_axis2[1] = 3; + + Tensor<float, 2, DataLayout> result(2, 5); + result = result.constant(1.0f) - tensor.sum(reduction_axis2); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 5); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 5; ++j) { + float sum = 0.0f; + for (int k = 0; k < 3; ++k) { + for (int l = 0; l < 7; ++l) { + sum += tensor(i, k, j, l); + } + } + VERIFY_IS_APPROX(result(i, j), 1.0f - sum); + } + } +} + + +template <int DataLayout> +static void test_full_reductions() { + Tensor<float, 2, DataLayout> tensor(2, 3); + tensor.setRandom(); + array<ptrdiff_t, 2> reduction_axis; + reduction_axis[0] = 0; + reduction_axis[1] = 1; + + Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result.rank(), 0); + + float sum = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + sum += tensor(i, j); + } + } + VERIFY_IS_APPROX(result(0), sum); + + result = tensor.square().sum(reduction_axis).sqrt(); + VERIFY_IS_EQUAL(result.rank(), 0); + + sum = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + sum += tensor(i, j) * tensor(i, j); + } + } + VERIFY_IS_APPROX(result(), sqrtf(sum)); +} + +struct UserReducer { + static const bool PacketAccess = false; + UserReducer(float offset) : offset_(offset) {} + void reduce(const float val, float* accum) { *accum += val * val; } + float initialize() const { return 0; } + float finalize(const float accum) const { return 1.0f / (accum + offset_); } + + private: + const float offset_; +}; + +template <int DataLayout> +static void test_user_defined_reductions() { + Tensor<float, 2, DataLayout> tensor(5, 7); + tensor.setRandom(); + array<ptrdiff_t, 1> reduction_axis; + reduction_axis[0] = 1; + + UserReducer reducer(10.0f); + Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer); + VERIFY_IS_EQUAL(result.dimension(0), 5); + for (int i = 0; i < 5; ++i) { + float expected = 10.0f; + for (int j = 0; j < 7; ++j) { + expected += tensor(i, j) * tensor(i, j); + } + expected = 1.0f / expected; + VERIFY_IS_APPROX(result(i), expected); + } +} + +template <int DataLayout> +static void test_tensor_maps() { + int inputs[2 * 3 * 5 * 7]; + TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7); + TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5, + 7); + const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const( + inputs, 2, 3, 5, 7); + + tensor_map.setRandom(); + array<ptrdiff_t, 2> reduction_axis; + reduction_axis[0] = 1; + reduction_axis[1] = 3; + + Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis); + Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis); + Tensor<int, 2, DataLayout> result3 = + tensor_map_const_const.sum(reduction_axis); + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 5; ++j) { + int sum = 0; + for (int k = 0; k < 3; ++k) { + for (int l = 0; l < 7; ++l) { + sum += tensor_map(i, k, j, l); + } + } + VERIFY_IS_EQUAL(result(i, j), sum); + VERIFY_IS_EQUAL(result2(i, j), sum); + VERIFY_IS_EQUAL(result3(i, j), sum); + } + } +} + +template <int DataLayout> +static void test_static_dims() { + Tensor<float, 4, DataLayout> in(72, 53, 97, 113); + Tensor<float, 2, DataLayout> out(72, 97); + in.setRandom(); + +#if !EIGEN_HAS_CONSTEXPR + array<int, 2> reduction_axis; + reduction_axis[0] = 1; + reduction_axis[1] = 3; +#else + Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis; +#endif + + out = in.maximum(reduction_axis); + + for (int i = 0; i < 72; ++i) { + for (int j = 0; j < 97; ++j) { + float expected = -1e10f; + for (int k = 0; k < 53; ++k) { + for (int l = 0; l < 113; ++l) { + expected = (std::max)(expected, in(i, k, j, l)); + } + } + VERIFY_IS_APPROX(out(i, j), expected); + } + } +} + +template <int DataLayout> +static void test_innermost_last_dims() { + Tensor<float, 4, DataLayout> in(72, 53, 97, 113); + Tensor<float, 2, DataLayout> out(97, 113); + in.setRandom(); + +// Reduce on the innermost dimensions. +#if !EIGEN_HAS_CONSTEXPR + array<int, 2> reduction_axis; + reduction_axis[0] = 0; + reduction_axis[1] = 1; +#else + // This triggers the use of packets for ColMajor. + Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis; +#endif + + out = in.maximum(reduction_axis); + + for (int i = 0; i < 97; ++i) { + for (int j = 0; j < 113; ++j) { + float expected = -1e10f; + for (int k = 0; k < 53; ++k) { + for (int l = 0; l < 72; ++l) { + expected = (std::max)(expected, in(l, k, i, j)); + } + } + VERIFY_IS_APPROX(out(i, j), expected); + } + } +} + +template <int DataLayout> +static void test_innermost_first_dims() { + Tensor<float, 4, DataLayout> in(72, 53, 97, 113); + Tensor<float, 2, DataLayout> out(72, 53); + in.setRandom(); + +// Reduce on the innermost dimensions. +#if !EIGEN_HAS_CONSTEXPR + array<int, 2> reduction_axis; + reduction_axis[0] = 2; + reduction_axis[1] = 3; +#else + // This triggers the use of packets for RowMajor. + Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis; +#endif + + out = in.maximum(reduction_axis); + + for (int i = 0; i < 72; ++i) { + for (int j = 0; j < 53; ++j) { + float expected = -1e10f; + for (int k = 0; k < 97; ++k) { + for (int l = 0; l < 113; ++l) { + expected = (std::max)(expected, in(i, j, k, l)); + } + } + VERIFY_IS_APPROX(out(i, j), expected); + } + } +} + +template <int DataLayout> +static void test_reduce_middle_dims() { + Tensor<float, 4, DataLayout> in(72, 53, 97, 113); + Tensor<float, 2, DataLayout> out(72, 53); + in.setRandom(); + +// Reduce on the innermost dimensions. +#if !EIGEN_HAS_CONSTEXPR + array<int, 2> reduction_axis; + reduction_axis[0] = 1; + reduction_axis[1] = 2; +#else + // This triggers the use of packets for RowMajor. + Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis; +#endif + + out = in.maximum(reduction_axis); + + for (int i = 0; i < 72; ++i) { + for (int j = 0; j < 113; ++j) { + float expected = -1e10f; + for (int k = 0; k < 53; ++k) { + for (int l = 0; l < 97; ++l) { + expected = (std::max)(expected, in(i, k, l, j)); + } + } + VERIFY_IS_APPROX(out(i, j), expected); + } + } +} + +void test_cxx11_tensor_reduction() { + CALL_SUBTEST(test_trivial_reductions<ColMajor>()); + CALL_SUBTEST(test_trivial_reductions<RowMajor>()); + CALL_SUBTEST(test_simple_reductions<ColMajor>()); + CALL_SUBTEST(test_simple_reductions<RowMajor>()); + CALL_SUBTEST(test_reductions_in_expr<ColMajor>()); + CALL_SUBTEST(test_reductions_in_expr<RowMajor>()); + CALL_SUBTEST(test_full_reductions<ColMajor>()); + CALL_SUBTEST(test_full_reductions<RowMajor>()); + CALL_SUBTEST(test_user_defined_reductions<ColMajor>()); + CALL_SUBTEST(test_user_defined_reductions<RowMajor>()); + CALL_SUBTEST(test_tensor_maps<ColMajor>()); + CALL_SUBTEST(test_tensor_maps<RowMajor>()); + CALL_SUBTEST(test_static_dims<ColMajor>()); + CALL_SUBTEST(test_static_dims<RowMajor>()); + CALL_SUBTEST(test_innermost_last_dims<ColMajor>()); + CALL_SUBTEST(test_innermost_last_dims<RowMajor>()); + CALL_SUBTEST(test_innermost_first_dims<ColMajor>()); + CALL_SUBTEST(test_innermost_first_dims<RowMajor>()); + CALL_SUBTEST(test_reduce_middle_dims<ColMajor>()); + CALL_SUBTEST(test_reduce_middle_dims<RowMajor>()); +} |