summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp')
-rw-r--r--eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp119
1 files changed, 119 insertions, 0 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp
new file mode 100644
index 0000000..c88db7c
--- /dev/null
+++ b/eigen/unsupported/test/cxx11_tensor_shuffling_sycl.cpp
@@ -0,0 +1,119 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+#define EIGEN_TEST_FUNC cxx11_tensor_shuffling_sycl
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_simple_shuffling_sycl(const Eigen::SyclDevice& sycl_device)
+{
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
+ Tensor<DataType, 4, DataLayout,IndexType> tensor(tensorRange);
+ Tensor<DataType, 4, DataLayout,IndexType> no_shuffle(tensorRange);
+ tensor.setRandom();
+
+ const size_t buffSize =tensor.size()*sizeof(DataType);
+ array<IndexType, 4> shuffles;
+ shuffles[0] = 0;
+ shuffles[1] = 1;
+ shuffles[2] = 2;
+ shuffles[3] = 3;
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(buffSize));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(buffSize));
+
+
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu2(gpu_data2, tensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), buffSize);
+
+ gpu2.device(sycl_device)=gpu1.shuffle(shuffles);
+ sycl_device.memcpyDeviceToHost(no_shuffle.data(), gpu_data2, buffSize);
+ sycl_device.synchronize();
+
+ VERIFY_IS_EQUAL(no_shuffle.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(no_shuffle.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(no_shuffle.dimension(2), sizeDim3);
+ VERIFY_IS_EQUAL(no_shuffle.dimension(3), sizeDim4);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim4; ++l) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l), no_shuffle(i,j,k,l));
+ }
+ }
+ }
+ }
+
+ shuffles[0] = 2;
+ shuffles[1] = 3;
+ shuffles[2] = 1;
+ shuffles[3] = 0;
+ array<IndexType, 4> tensorrangeShuffle = {{sizeDim3, sizeDim4, sizeDim2, sizeDim1}};
+ Tensor<DataType, 4, DataLayout,IndexType> shuffle(tensorrangeShuffle);
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(buffSize));
+ TensorMap<Tensor<DataType, 4,DataLayout,IndexType>> gpu3(gpu_data3, tensorrangeShuffle);
+
+ gpu3.device(sycl_device)=gpu1.shuffle(shuffles);
+ sycl_device.memcpyDeviceToHost(shuffle.data(), gpu_data3, buffSize);
+ sycl_device.synchronize();
+
+ VERIFY_IS_EQUAL(shuffle.dimension(0), sizeDim3);
+ VERIFY_IS_EQUAL(shuffle.dimension(1), sizeDim4);
+ VERIFY_IS_EQUAL(shuffle.dimension(2), sizeDim2);
+ VERIFY_IS_EQUAL(shuffle.dimension(3), sizeDim1);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim4; ++l) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i));
+ }
+ }
+ }
+ }
+}
+
+
+template<typename DataType, typename dev_Selector> void sycl_shuffling_test_per_device(dev_Selector s){
+ QueueInterface queueInterface(s);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ test_simple_shuffling_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ test_simple_shuffling_sycl<DataType, ColMajor, int64_t>(sycl_device);
+
+}
+void test_cxx11_tensor_shuffling_sycl()
+{
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(sycl_shuffling_test_per_device<float>(device));
+ }
+}