diff options
Diffstat (limited to 'eigen/unsupported/test/cxx11_tensor_sycl.cpp')
-rw-r--r-- | eigen/unsupported/test/cxx11_tensor_sycl.cpp | 159 |
1 files changed, 0 insertions, 159 deletions
diff --git a/eigen/unsupported/test/cxx11_tensor_sycl.cpp b/eigen/unsupported/test/cxx11_tensor_sycl.cpp deleted file mode 100644 index 6a9c334..0000000 --- a/eigen/unsupported/test/cxx11_tensor_sycl.cpp +++ /dev/null @@ -1,159 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 -// Mehdi Goli Codeplay Software Ltd. -// Ralph Potter Codeplay Software Ltd. -// Luke Iwanski Codeplay Software Ltd. -// Contact: <eigen@codeplay.com> -// Benoit Steiner <benoit.steiner.goog@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -#define EIGEN_TEST_NO_LONGDOUBLE -#define EIGEN_TEST_NO_COMPLEX -#define EIGEN_TEST_FUNC cxx11_tensor_sycl -#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int -#define EIGEN_USE_SYCL - -#include "main.h" -#include <unsupported/Eigen/CXX11/Tensor> - -using Eigen::array; -using Eigen::SyclDevice; -using Eigen::Tensor; -using Eigen::TensorMap; - -void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) { - - int sizeDim1 = 100; - int sizeDim2 = 100; - int sizeDim3 = 100; - array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; - Tensor<float, 3> in1(tensorRange); - Tensor<float, 3> in2(tensorRange); - Tensor<float, 3> in3(tensorRange); - Tensor<float, 3> out(tensorRange); - - in2 = in2.random(); - in3 = in3.random(); - - float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float))); - float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float))); - float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float))); - float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float))); - - TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange); - TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange); - TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange); - TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange); - - /// a=1.2f - gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); - sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(in1(i,j,k), 1.2f); - } - } - } - printf("a=1.2f Test passed\n"); - - /// a=b*1.2f - gpu_out.device(sycl_device) = gpu_in1 * 1.2f; - sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i,j,k), - in1(i,j,k) * 1.2f); - } - } - } - printf("a=b*1.2f Test Passed\n"); - - /// c=a*b - sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float)); - gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; - sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i,j,k), - in1(i,j,k) * - in2(i,j,k)); - } - } - } - printf("c=a*b Test Passed\n"); - - /// c=a+b - gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; - sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i,j,k), - in1(i,j,k) + - in2(i,j,k)); - } - } - } - printf("c=a+b Test Passed\n"); - - /// c=a*a - gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; - sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i,j,k), - in1(i,j,k) * - in1(i,j,k)); - } - } - } - printf("c= a*a Test Passed\n"); - - //a*3.14f + b*2.7f - gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); - sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i,j,k), - in1(i,j,k) * 3.14f - + in2(i,j,k) * 2.7f); - } - } - } - printf("a*3.14f + b*2.7f Test Passed\n"); - - ///d= (a>0.5? b:c) - sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float)); - gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); - sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); - for (int i = 0; i < sizeDim1; ++i) { - for (int j = 0; j < sizeDim2; ++j) { - for (int k = 0; k < sizeDim3; ++k) { - VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) - ? in2(i, j, k) - : in3(i, j, k)); - } - } - } - printf("d= (a>0.5? b:c) Test Passed\n"); - sycl_device.deallocate(gpu_in1_data); - sycl_device.deallocate(gpu_in2_data); - sycl_device.deallocate(gpu_in3_data); - sycl_device.deallocate(gpu_out_data); -} -void test_cxx11_tensor_sycl() { - cl::sycl::gpu_selector s; - Eigen::SyclDevice sycl_device(s); - CALL_SUBTEST(test_sycl_cpu(sycl_device)); -} |