1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NUMTRAITS_H
#define EIGEN_NUMTRAITS_H
namespace Eigen {
namespace internal {
// default implementation of digits10(), based on numeric_limits if specialized,
// 0 for integer types, and log10(epsilon()) otherwise.
template< typename T,
bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
bool is_integer = NumTraits<T>::IsInteger>
struct default_digits10_impl
{
static int run() { return std::numeric_limits<T>::digits10; }
};
template<typename T>
struct default_digits10_impl<T,false,false> // Floating point
{
static int run() {
using std::log10;
using std::ceil;
typedef typename NumTraits<T>::Real Real;
return int(ceil(-log10(NumTraits<Real>::epsilon())));
}
};
template<typename T>
struct default_digits10_impl<T,false,true> // Integer
{
static int run() { return 0; }
};
} // end namespace internal
/** \class NumTraits
* \ingroup Core_Module
*
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
*
* \tparam T the numeric type at hand
*
* This class stores enums, typedefs and static methods giving information about a numeric type.
*
* The provided data consists of:
* \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real,
* then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real
* is a typedef to \a U.
* \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values,
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
* only intended as a helper for code that needs to explicitly promote types.
* \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U.
* Of course, this type must be fully compatible with \a T. In doubt, just use \a T here.
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
* this means, just use \a T here.
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
* type, and to 0 otherwise.
* \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
* and to \c 0 otherwise.
* \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
* to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
* Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost.
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
* \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>,
* it returns a \a Real instead of a \a T.
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
* value by the fuzzy comparison operators.
* \li highest() and lowest() functions returning the highest and lowest possible values respectively.
* \li digits10() function returning the number of decimal digits that can be represented without change. This is
* the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
* which is used as the default implementation if specialized.
*/
template<typename T> struct GenericNumTraits
{
enum {
IsInteger = std::numeric_limits<T>::is_integer,
IsSigned = std::numeric_limits<T>::is_signed,
IsComplex = 0,
RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
ReadCost = 1,
AddCost = 1,
MulCost = 1
};
typedef T Real;
typedef typename internal::conditional<
IsInteger,
typename internal::conditional<sizeof(T)<=2, float, double>::type,
T
>::type NonInteger;
typedef T Nested;
typedef T Literal;
EIGEN_DEVICE_FUNC
static inline Real epsilon()
{
return numext::numeric_limits<T>::epsilon();
}
EIGEN_DEVICE_FUNC
static inline int digits10()
{
return internal::default_digits10_impl<T>::run();
}
EIGEN_DEVICE_FUNC
static inline Real dummy_precision()
{
// make sure to override this for floating-point types
return Real(0);
}
EIGEN_DEVICE_FUNC
static inline T highest() {
return (numext::numeric_limits<T>::max)();
}
EIGEN_DEVICE_FUNC
static inline T lowest() {
return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)());
}
EIGEN_DEVICE_FUNC
static inline T infinity() {
return numext::numeric_limits<T>::infinity();
}
EIGEN_DEVICE_FUNC
static inline T quiet_NaN() {
return numext::numeric_limits<T>::quiet_NaN();
}
};
template<typename T> struct NumTraits : GenericNumTraits<T>
{};
template<> struct NumTraits<float>
: GenericNumTraits<float>
{
EIGEN_DEVICE_FUNC
static inline float dummy_precision() { return 1e-5f; }
};
template<> struct NumTraits<double> : GenericNumTraits<double>
{
EIGEN_DEVICE_FUNC
static inline double dummy_precision() { return 1e-12; }
};
template<> struct NumTraits<long double>
: GenericNumTraits<long double>
{
static inline long double dummy_precision() { return 1e-15l; }
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
: GenericNumTraits<std::complex<_Real> >
{
typedef _Real Real;
typedef typename NumTraits<_Real>::Literal Literal;
enum {
IsComplex = 1,
RequireInitialization = NumTraits<_Real>::RequireInitialization,
ReadCost = 2 * NumTraits<_Real>::ReadCost,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
EIGEN_DEVICE_FUNC
static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
EIGEN_DEVICE_FUNC
static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
EIGEN_DEVICE_FUNC
static inline int digits10() { return NumTraits<Real>::digits10(); }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
typedef ArrayType & Nested;
typedef typename NumTraits<Scalar>::Literal Literal;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsInteger = NumTraits<Scalar>::IsInteger,
IsSigned = NumTraits<Scalar>::IsSigned,
RequireInitialization = 1,
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
};
EIGEN_DEVICE_FUNC
static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
EIGEN_DEVICE_FUNC
static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
};
template<> struct NumTraits<std::string>
: GenericNumTraits<std::string>
{
enum {
RequireInitialization = 1,
ReadCost = HugeCost,
AddCost = HugeCost,
MulCost = HugeCost
};
static inline int digits10() { return 0; }
private:
static inline std::string epsilon();
static inline std::string dummy_precision();
static inline std::string lowest();
static inline std::string highest();
static inline std::string infinity();
static inline std::string quiet_NaN();
};
// Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
template<> struct NumTraits<void> {};
} // end namespace Eigen
#endif // EIGEN_NUMTRAITS_H
|