1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_XPRHELPER_H
#define EIGEN_XPRHELPER_H
// just a workaround because GCC seems to not really like empty structs
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
// so currently we simply disable this optimization for gcc 4.3
#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
#define EIGEN_EMPTY_STRUCT_CTOR(X) \
EIGEN_STRONG_INLINE X() {} \
EIGEN_STRONG_INLINE X(const X& ) {}
#else
#define EIGEN_EMPTY_STRUCT_CTOR(X)
#endif
namespace Eigen {
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
namespace internal {
//classes inheriting no_assignment_operator don't generate a default operator=.
class no_assignment_operator
{
private:
no_assignment_operator& operator=(const no_assignment_operator&);
};
/** \internal return the index type with the largest number of bits */
template<typename I1, typename I2>
struct promote_index_type
{
typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
};
/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
* can be accessed using value() and setValue().
* Otherwise, this class is an empty structure and value() just returns the template parameter Value.
*/
template<typename T, int Value> class variable_if_dynamic
{
public:
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
static T value() { return T(Value); }
void setValue(T) {}
};
template<typename T> class variable_if_dynamic<T, Dynamic>
{
T m_value;
variable_if_dynamic() { assert(false); }
public:
explicit variable_if_dynamic(T value) : m_value(value) {}
T value() const { return m_value; }
void setValue(T value) { m_value = value; }
};
/** \internal like variable_if_dynamic but for DynamicIndex
*/
template<typename T, int Value> class variable_if_dynamicindex
{
public:
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex)
explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
static T value() { return T(Value); }
void setValue(T) {}
};
template<typename T> class variable_if_dynamicindex<T, DynamicIndex>
{
T m_value;
variable_if_dynamicindex() { assert(false); }
public:
explicit variable_if_dynamicindex(T value) : m_value(value) {}
T value() const { return m_value; }
void setValue(T value) { m_value = value; }
};
template<typename T> struct functor_traits
{
enum
{
Cost = 10,
PacketAccess = false,
IsRepeatable = false
};
};
template<typename T> struct packet_traits;
template<typename T> struct unpacket_traits
{
typedef T type;
enum {size=1};
};
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
int _MaxRows = _Rows,
int _MaxCols = _Cols
> class make_proper_matrix_type
{
enum {
IsColVector = _Cols==1 && _Rows!=1,
IsRowVector = _Rows==1 && _Cols!=1,
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
: _Options
};
public:
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
enum {
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
aligned_bit =
(
((Options&DontAlign)==0)
&& (
#if EIGEN_ALIGN_STATICALLY
((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
#else
0
#endif
||
#if EIGEN_ALIGN
is_dynamic_size_storage
#else
0
#endif
)
) ? AlignedBit : 0,
packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
};
public:
enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
};
template<int _Rows, int _Cols> struct size_at_compile_time
{
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
* whereas eval is a const reference in the case of a matrix
*/
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
template<typename T> struct plain_matrix_type<T,Dense>
{
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
};
template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
{
typedef Matrix<typename traits<T>::Scalar,
traits<T>::RowsAtCompileTime,
traits<T>::ColsAtCompileTime,
AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
traits<T>::MaxRowsAtCompileTime,
traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
{
typedef Array<typename traits<T>::Scalar,
traits<T>::RowsAtCompileTime,
traits<T>::ColsAtCompileTime,
AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
traits<T>::MaxRowsAtCompileTime,
traits<T>::MaxColsAtCompileTime
> type;
};
/* eval : the return type of eval(). For matrices, this is just a const reference
* in order to avoid a useless copy
*/
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
template<typename T> struct eval<T,Dense>
{
typedef typename plain_matrix_type<T>::type type;
// typedef typename T::PlainObject type;
// typedef T::Matrix<typename traits<T>::Scalar,
// traits<T>::RowsAtCompileTime,
// traits<T>::ColsAtCompileTime,
// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
// traits<T>::MaxRowsAtCompileTime,
// traits<T>::MaxColsAtCompileTime
// > type;
};
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
{
typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
};
/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
*/
template<typename T> struct plain_matrix_type_column_major
{
enum { Rows = traits<T>::RowsAtCompileTime,
Cols = traits<T>::ColsAtCompileTime,
MaxRows = traits<T>::MaxRowsAtCompileTime,
MaxCols = traits<T>::MaxColsAtCompileTime
};
typedef Matrix<typename traits<T>::Scalar,
Rows,
Cols,
(MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
MaxRows,
MaxCols
> type;
};
/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
*/
template<typename T> struct plain_matrix_type_row_major
{
enum { Rows = traits<T>::RowsAtCompileTime,
Cols = traits<T>::ColsAtCompileTime,
MaxRows = traits<T>::MaxRowsAtCompileTime,
MaxCols = traits<T>::MaxColsAtCompileTime
};
typedef Matrix<typename traits<T>::Scalar,
Rows,
Cols,
(MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
MaxRows,
MaxCols
> type;
};
// we should be able to get rid of this one too
template<typename T> struct must_nest_by_value { enum { ret = false }; };
/** \internal The reference selector for template expressions. The idea is that we don't
* need to use references for expressions since they are light weight proxy
* objects which should generate no copying overhead. */
template <typename T>
struct ref_selector
{
typedef typename conditional<
bool(traits<T>::Flags & NestByRefBit),
T const&,
const T
>::type type;
};
/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
template<typename T1, typename T2>
struct transfer_constness
{
typedef typename conditional<
bool(internal::is_const<T1>::value),
typename internal::add_const_on_value_type<T2>::type,
T2
>::type type;
};
/** \internal Determines how a given expression should be nested into another one.
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
* nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
* \param T the type of the expression being nested
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
*
* Note that if no evaluation occur, then the constness of T is preserved.
*
* Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
* b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
* the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
* nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
* since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
* const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
* in copying it into another matrix.
*/
template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
{
enum {
// for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
// the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
// in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
// (poor choice of temporaries).
// it's important that this value can still be squared without integer overflowing.
DynamicAsInteger = 10000,
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
CoeffReadCost = traits<T>::CoeffReadCost,
CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
};
typedef typename conditional<
( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
),
PlainObject,
typename ref_selector<T>::type
>::type type;
};
template<typename T>
inline T* const_cast_ptr(const T* ptr)
{
return const_cast<T*>(ptr);
}
template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
struct dense_xpr_base
{
/* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
};
template<typename Derived>
struct dense_xpr_base<Derived, MatrixXpr>
{
typedef MatrixBase<Derived> type;
};
template<typename Derived>
struct dense_xpr_base<Derived, ArrayXpr>
{
typedef ArrayBase<Derived> type;
};
/** \internal Helper base class to add a scalar multiple operator
* overloads for complex types */
template<typename Derived, typename Scalar, typename OtherScalar, typename BaseType,
bool EnableIt = !is_same<Scalar,OtherScalar>::value >
struct special_scalar_op_base : public BaseType
{
// dummy operator* so that the
// "using special_scalar_op_base::operator*" compiles
void operator*() const;
};
template<typename Derived,typename Scalar,typename OtherScalar, typename BaseType>
struct special_scalar_op_base<Derived,Scalar,OtherScalar,BaseType,true> : public BaseType
{
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar) const
{
return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
(*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
}
inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar, const Derived& matrix)
{ return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
};
template<typename XprType, typename CastType> struct cast_return_type
{
typedef typename XprType::Scalar CurrentScalarType;
typedef typename remove_all<CastType>::type _CastType;
typedef typename _CastType::Scalar NewScalarType;
typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
const XprType&,CastType>::type type;
};
template <typename A, typename B> struct promote_storage_type;
template <typename A> struct promote_storage_type<A,A>
{
typedef A ret;
};
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
* \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
*/
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_row_type
{
typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixRowType,
ArrayRowType
>::type type;
};
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_col_type
{
typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixColType,
ArrayColType
>::type type;
};
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
struct plain_diag_type
{
enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
};
typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
typedef typename conditional<
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
MatrixDiagType,
ArrayDiagType
>::type type;
};
template<typename ExpressionType>
struct is_lvalue
{
enum { value = !bool(is_const<ExpressionType>::value) &&
bool(traits<ExpressionType>::Flags & LvalueBit) };
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_XPRHELPER_H
|