summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
blob: 1f3c060d028da0c113489ef344e245d7126fd777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_BASIC_PRECONDITIONERS_H
#define EIGEN_BASIC_PRECONDITIONERS_H

namespace Eigen { 

/** \ingroup IterativeLinearSolvers_Module
  * \brief A preconditioner based on the digonal entries
  *
  * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
  * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
  * \code
  * A.diagonal().asDiagonal() . x = b
  * \endcode
  *
  * \tparam _Scalar the type of the scalar.
  *
  * This preconditioner is suitable for both selfadjoint and general problems.
  * The diagonal entries are pre-inverted and stored into a dense vector.
  *
  * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
  *
  */
template <typename _Scalar>
class DiagonalPreconditioner
{
    typedef _Scalar Scalar;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef typename Vector::Index Index;

  public:
    // this typedef is only to export the scalar type and compile-time dimensions to solve_retval
    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;

    DiagonalPreconditioner() : m_isInitialized(false) {}

    template<typename MatType>
    DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
    {
      compute(mat);
    }

    Index rows() const { return m_invdiag.size(); }
    Index cols() const { return m_invdiag.size(); }
    
    template<typename MatType>
    DiagonalPreconditioner& analyzePattern(const MatType& )
    {
      return *this;
    }
    
    template<typename MatType>
    DiagonalPreconditioner& factorize(const MatType& mat)
    {
      m_invdiag.resize(mat.cols());
      for(int j=0; j<mat.outerSize(); ++j)
      {
        typename MatType::InnerIterator it(mat,j);
        while(it && it.index()!=j) ++it;
        if(it && it.index()==j && it.value()!=Scalar(0))
          m_invdiag(j) = Scalar(1)/it.value();
        else
          m_invdiag(j) = Scalar(1);
      }
      m_isInitialized = true;
      return *this;
    }
    
    template<typename MatType>
    DiagonalPreconditioner& compute(const MatType& mat)
    {
      return factorize(mat);
    }

    template<typename Rhs, typename Dest>
    void _solve(const Rhs& b, Dest& x) const
    {
      x = m_invdiag.array() * b.array() ;
    }

    template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
      eigen_assert(m_invdiag.size()==b.rows()
                && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
    }

  protected:
    Vector m_invdiag;
    bool m_isInitialized;
};

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
  : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
{
  typedef DiagonalPreconditioner<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

}

/** \ingroup IterativeLinearSolvers_Module
  * \brief A naive preconditioner which approximates any matrix as the identity matrix
  *
  * \sa class DiagonalPreconditioner
  */
class IdentityPreconditioner
{
  public:

    IdentityPreconditioner() {}

    template<typename MatrixType>
    IdentityPreconditioner(const MatrixType& ) {}
    
    template<typename MatrixType>
    IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
    
    template<typename MatrixType>
    IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }

    template<typename MatrixType>
    IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
    
    template<typename Rhs>
    inline const Rhs& solve(const Rhs& b) const { return b; }
};

} // end namespace Eigen

#endif // EIGEN_BASIC_PRECONDITIONERS_H