summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/Jacobi/Jacobi.h
blob: c30326e1d95ed3209d832d3c104f730b87b89ac3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_JACOBI_H
#define EIGEN_JACOBI_H

namespace Eigen { 

/** \ingroup Jacobi_Module
  * \jacobi_module
  * \class JacobiRotation
  * \brief Rotation given by a cosine-sine pair.
  *
  * This class represents a Jacobi or Givens rotation.
  * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
  * its cosine \c c and sine \c s as follow:
  * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$
  *
  * You can apply the respective counter-clockwise rotation to a column vector \c v by
  * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
  * \code
  * v.applyOnTheLeft(J.adjoint());
  * \endcode
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar> class JacobiRotation
{
  public:
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** Default constructor without any initialization. */
    JacobiRotation() {}

    /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
    JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}

    Scalar& c() { return m_c; }
    Scalar c() const { return m_c; }
    Scalar& s() { return m_s; }
    Scalar s() const { return m_s; }

    /** Concatenates two planar rotation */
    JacobiRotation operator*(const JacobiRotation& other)
    {
      using numext::conj;
      return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
                            conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
    }

    /** Returns the transposed transformation */
    JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }

    /** Returns the adjoint transformation */
    JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }

    template<typename Derived>
    bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q);
    bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);

    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);

  protected:
    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);

    Scalar m_c, m_s;
};

/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
  * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
  *
  * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
{
  using std::sqrt;
  using std::abs;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  RealScalar deno = RealScalar(2)*abs(y);
  if(deno < (std::numeric_limits<RealScalar>::min)())
  {
    m_c = Scalar(1);
    m_s = Scalar(0);
    return false;
  }
  else
  {
    RealScalar tau = (x-z)/deno;
    RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
    RealScalar t;
    if(tau>RealScalar(0))
    {
      t = RealScalar(1) / (tau + w);
    }
    else
    {
      t = RealScalar(1) / (tau - w);
    }
    RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
    RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
    m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
    m_c = n;
    return true;
  }
}

/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
  * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
  * a diagonal matrix \f$ A = J^* B J \f$
  *
  * Example: \include Jacobi_makeJacobi.cpp
  * Output: \verbinclude Jacobi_makeJacobi.out
  *
  * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
template<typename Derived>
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q)
{
  return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
}

/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
  * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
  * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
  *
  * The value of \a z is returned if \a z is not null (the default is null).
  * Also note that G is built such that the cosine is always real.
  *
  * Example: \include Jacobi_makeGivens.cpp
  * Output: \verbinclude Jacobi_makeGivens.out
  *
  * This function implements the continuous Givens rotation generation algorithm
  * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
  * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
{
  makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
}


// specialization for complexes
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
{
  using std::sqrt;
  using std::abs;
  using numext::conj;
  
  if(q==Scalar(0))
  {
    m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
    m_s = 0;
    if(r) *r = m_c * p;
  }
  else if(p==Scalar(0))
  {
    m_c = 0;
    m_s = -q/abs(q);
    if(r) *r = abs(q);
  }
  else
  {
    RealScalar p1 = numext::norm1(p);
    RealScalar q1 = numext::norm1(q);
    if(p1>=q1)
    {
      Scalar ps = p / p1;
      RealScalar p2 = numext::abs2(ps);
      Scalar qs = q / p1;
      RealScalar q2 = numext::abs2(qs);

      RealScalar u = sqrt(RealScalar(1) + q2/p2);
      if(numext::real(p)<RealScalar(0))
        u = -u;

      m_c = Scalar(1)/u;
      m_s = -qs*conj(ps)*(m_c/p2);
      if(r) *r = p * u;
    }
    else
    {
      Scalar ps = p / q1;
      RealScalar p2 = numext::abs2(ps);
      Scalar qs = q / q1;
      RealScalar q2 = numext::abs2(qs);

      RealScalar u = q1 * sqrt(p2 + q2);
      if(numext::real(p)<RealScalar(0))
        u = -u;

      p1 = abs(p);
      ps = p/p1;
      m_c = p1/u;
      m_s = -conj(ps) * (q/u);
      if(r) *r = ps * u;
    }
  }
}

// specialization for reals
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
{
  using std::sqrt;
  using std::abs;
  if(q==Scalar(0))
  {
    m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
    m_s = Scalar(0);
    if(r) *r = abs(p);
  }
  else if(p==Scalar(0))
  {
    m_c = Scalar(0);
    m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
    if(r) *r = abs(q);
  }
  else if(abs(p) > abs(q))
  {
    Scalar t = q/p;
    Scalar u = sqrt(Scalar(1) + numext::abs2(t));
    if(p<Scalar(0))
      u = -u;
    m_c = Scalar(1)/u;
    m_s = -t * m_c;
    if(r) *r = p * u;
  }
  else
  {
    Scalar t = p/q;
    Scalar u = sqrt(Scalar(1) + numext::abs2(t));
    if(q<Scalar(0))
      u = -u;
    m_s = -Scalar(1)/u;
    m_c = -t * m_s;
    if(r) *r = q * u;
  }

}

/****************************************************************************************
*   Implementation of MatrixBase methods
****************************************************************************************/

namespace internal {
/** \jacobi_module
  * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
  * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
  *
  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
  */
template<typename VectorX, typename VectorY, typename OtherScalar>
void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j);
}

/** \jacobi_module
  * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
  * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
  *
  * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
  */
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
  RowXpr x(this->row(p));
  RowXpr y(this->row(q));
  internal::apply_rotation_in_the_plane(x, y, j);
}

/** \ingroup Jacobi_Module
  * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
  * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
  *
  * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
  */
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
  ColXpr x(this->col(p));
  ColXpr y(this->col(q));
  internal::apply_rotation_in_the_plane(x, y, j.transpose());
}

namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j)
{
  typedef typename VectorX::Scalar Scalar;
  enum {
    PacketSize = packet_traits<Scalar>::size,
    OtherPacketSize = packet_traits<OtherScalar>::size
  };
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename packet_traits<OtherScalar>::type OtherPacket;
  eigen_assert(xpr_x.size() == xpr_y.size());
  Index size = xpr_x.size();
  Index incrx = xpr_x.derived().innerStride();
  Index incry = xpr_y.derived().innerStride();

  Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0);
  Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0);
  
  OtherScalar c = j.c();
  OtherScalar s = j.s();
  if (c==OtherScalar(1) && s==OtherScalar(0))
    return;

  /*** dynamic-size vectorized paths ***/

  if(VectorX::SizeAtCompileTime == Dynamic &&
    (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
    (PacketSize == OtherPacketSize) &&
    ((incrx==1 && incry==1) || PacketSize == 1))
  {
    // both vectors are sequentially stored in memory => vectorization
    enum { Peeling = 2 };

    Index alignedStart = internal::first_default_aligned(y, size);
    Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;

    const OtherPacket pc = pset1<OtherPacket>(c);
    const OtherPacket ps = pset1<OtherPacket>(s);
    conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj;
    conj_helper<OtherPacket,Packet,false,false> pm;

    for(Index i=0; i<alignedStart; ++i)
    {
      Scalar xi = x[i];
      Scalar yi = y[i];
      x[i] =  c * xi + numext::conj(s) * yi;
      y[i] = -s * xi + numext::conj(c) * yi;
    }

    Scalar* EIGEN_RESTRICT px = x + alignedStart;
    Scalar* EIGEN_RESTRICT py = y + alignedStart;

    if(internal::first_default_aligned(x, size)==alignedStart)
    {
      for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
      {
        Packet xi = pload<Packet>(px);
        Packet yi = pload<Packet>(py);
        pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
        pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
        px += PacketSize;
        py += PacketSize;
      }
    }
    else
    {
      Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
      for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
      {
        Packet xi   = ploadu<Packet>(px);
        Packet xi1  = ploadu<Packet>(px+PacketSize);
        Packet yi   = pload <Packet>(py);
        Packet yi1  = pload <Packet>(py+PacketSize);
        pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
        pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
        pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
        pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
        px += Peeling*PacketSize;
        py += Peeling*PacketSize;
      }
      if(alignedEnd!=peelingEnd)
      {
        Packet xi = ploadu<Packet>(x+peelingEnd);
        Packet yi = pload <Packet>(y+peelingEnd);
        pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
        pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
      }
    }

    for(Index i=alignedEnd; i<size; ++i)
    {
      Scalar xi = x[i];
      Scalar yi = y[i];
      x[i] =  c * xi + numext::conj(s) * yi;
      y[i] = -s * xi + numext::conj(c) * yi;
    }
  }

  /*** fixed-size vectorized path ***/
  else if(VectorX::SizeAtCompileTime != Dynamic &&
          (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
          (PacketSize == OtherPacketSize) &&
          (EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment)>0)) // FIXME should be compared to the required alignment
  {
    const OtherPacket pc = pset1<OtherPacket>(c);
    const OtherPacket ps = pset1<OtherPacket>(s);
    conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj;
    conj_helper<OtherPacket,Packet,false,false> pm;
    Scalar* EIGEN_RESTRICT px = x;
    Scalar* EIGEN_RESTRICT py = y;
    for(Index i=0; i<size; i+=PacketSize)
    {
      Packet xi = pload<Packet>(px);
      Packet yi = pload<Packet>(py);
      pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
      pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
      px += PacketSize;
      py += PacketSize;
    }
  }

  /*** non-vectorized path ***/
  else
  {
    for(Index i=0; i<size; ++i)
    {
      Scalar xi = *x;
      Scalar yi = *y;
      *x =  c * xi + numext::conj(s) * yi;
      *y = -s * xi + numext::conj(c) * yi;
      x += incrx;
      y += incry;
    }
  }
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_JACOBI_H