1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
: traits<_MatrixType>
{
enum { Flags = 0 };
};
} // end namespace internal
/** \ingroup QR_Module
*
* \class ColPivHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* upper triangular matrix.
*
* This decomposition performs column pivoting in order to be rank-revealing and improve
* numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::colPivHouseholderQr()
*/
template<typename _MatrixType> class ColPivHouseholderQR
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
// FIXME should be int
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
typedef typename MatrixType::PlainObject PlainObject;
private:
typedef typename PermutationType::StorageIndex PermIndexType;
public:
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
*/
ColPivHouseholderQR()
: m_qr(),
m_hCoeffs(),
m_colsPermutation(),
m_colsTranspositions(),
m_temp(),
m_colNormsUpdated(),
m_colNormsDirect(),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa ColPivHouseholderQR()
*/
ColPivHouseholderQR(Index rows, Index cols)
: m_qr(rows, cols),
m_hCoeffs((std::min)(rows,cols)),
m_colsPermutation(PermIndexType(cols)),
m_colsTranspositions(cols),
m_temp(cols),
m_colNormsUpdated(cols),
m_colNormsDirect(cols),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Constructs a QR factorization from a given matrix
*
* This constructor computes the QR factorization of the matrix \a matrix by calling
* the method compute(). It is a short cut for:
*
* \code
* ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
* qr.compute(matrix);
* \endcode
*
* \sa compute()
*/
template<typename InputType>
explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
m_colsPermutation(PermIndexType(matrix.cols())),
m_colsTranspositions(matrix.cols()),
m_temp(matrix.cols()),
m_colNormsUpdated(matrix.cols()),
m_colNormsDirect(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
compute(matrix.derived());
}
/** \brief Constructs a QR factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
*
* \sa ColPivHouseholderQR(const EigenBase&)
*/
template<typename InputType>
explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
: m_qr(matrix.derived()),
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
m_colsPermutation(PermIndexType(matrix.cols())),
m_colsTranspositions(matrix.cols()),
m_temp(matrix.cols()),
m_colNormsUpdated(matrix.cols()),
m_colNormsDirect(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
computeInPlace();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns a solution.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include ColPivHouseholderQR_solve.cpp
* Output: \verbinclude ColPivHouseholderQR_solve.out
*/
template<typename Rhs>
inline const Solve<ColPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived());
}
HouseholderSequenceType householderQ() const;
HouseholderSequenceType matrixQ() const
{
return householderQ();
}
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
/** \returns a reference to the matrix where the result Householder QR is stored
* \warning The strict lower part of this matrix contains internal values.
* Only the upper triangular part should be referenced. To get it, use
* \code matrixR().template triangularView<Upper>() \endcode
* For rank-deficient matrices, use
* \code
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
* \endcode
*/
const MatrixType& matrixR() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
template<typename InputType>
ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
/** \returns a const reference to the column permutation matrix */
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_colsPermutation;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index rank() const
{
using std::abs;
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
Index result = 0;
for(Index i = 0; i < m_nonzero_pivots; ++i)
result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
return result;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index dimensionOfKernel() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return cols() - rank();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInjective() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return rank() == cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isSurjective() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return rank() == rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInvertible() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/
inline const Inverse<ColPivHouseholderQR> inverse() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return Inverse<ColPivHouseholderQR>(*this);
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return m_qr.cols(); }
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
*
* For advanced uses only.
*/
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
* who need to determine when pivots are to be considered nonzero. This is not used for the
* QR decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
* uses a formula to automatically determine a reasonable threshold.
* Once you have called the present method setThreshold(const RealScalar&),
* your value is used instead.
*
* \param threshold The new value to use as the threshold.
*
* A pivot will be considered nonzero if its absolute value is strictly greater than
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
* where maxpivot is the biggest pivot.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
{
m_usePrescribedThreshold = true;
m_prescribedThreshold = threshold;
return *this;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code qr.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
ColPivHouseholderQR& setThreshold(Default_t)
{
m_usePrescribedThreshold = false;
return *this;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar threshold() const
{
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
}
/** \returns the number of nonzero pivots in the QR decomposition.
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
* So that notion isn't really intrinsically interesting, but it is
* still useful when implementing algorithms.
*
* \sa rank()
*/
inline Index nonzeroPivots() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_nonzero_pivots;
}
/** \returns the absolute value of the biggest pivot, i.e. the biggest
* diagonal coefficient of R.
*/
RealScalar maxPivot() const { return m_maxpivot; }
/** \brief Reports whether the QR factorization was succesful.
*
* \note This function always returns \c Success. It is provided for compatibility
* with other factorization routines.
* \returns \c Success
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return Success;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
friend class CompleteOrthogonalDecomposition<MatrixType>;
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void computeInPlace();
MatrixType m_qr;
HCoeffsType m_hCoeffs;
PermutationType m_colsPermutation;
IntRowVectorType m_colsTranspositions;
RowVectorType m_temp;
RealRowVectorType m_colNormsUpdated;
RealRowVectorType m_colNormsDirect;
bool m_isInitialized, m_usePrescribedThreshold;
RealScalar m_prescribedThreshold, m_maxpivot;
Index m_nonzero_pivots;
Index m_det_pq;
};
template<typename MatrixType>
typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
{
using std::abs;
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwiseAbs().array().log().sum();
}
/** Performs the QR factorization of the given matrix \a matrix. The result of
* the factorization is stored into \c *this, and a reference to \c *this
* is returned.
*
* \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
*/
template<typename MatrixType>
template<typename InputType>
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
{
m_qr = matrix.derived();
computeInPlace();
return *this;
}
template<typename MatrixType>
void ColPivHouseholderQR<MatrixType>::computeInPlace()
{
check_template_parameters();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
using std::abs;
Index rows = m_qr.rows();
Index cols = m_qr.cols();
Index size = m_qr.diagonalSize();
m_hCoeffs.resize(size);
m_temp.resize(cols);
m_colsTranspositions.resize(m_qr.cols());
Index number_of_transpositions = 0;
m_colNormsUpdated.resize(cols);
m_colNormsDirect.resize(cols);
for (Index k = 0; k < cols; ++k) {
// colNormsDirect(k) caches the most recent directly computed norm of
// column k.
m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
}
RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);
for(Index k = 0; k < size; ++k)
{
// first, we look up in our table m_colNormsUpdated which column has the biggest norm
Index biggest_col_index;
RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
biggest_col_index += k;
// Track the number of meaningful pivots but do not stop the decomposition to make
// sure that the initial matrix is properly reproduced. See bug 941.
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
m_nonzero_pivots = k;
// apply the transposition to the columns
m_colsTranspositions.coeffRef(k) = biggest_col_index;
if(k != biggest_col_index) {
m_qr.col(k).swap(m_qr.col(biggest_col_index));
std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
++number_of_transpositions;
}
// generate the householder vector, store it below the diagonal
RealScalar beta;
m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
// apply the householder transformation to the diagonal coefficient
m_qr.coeffRef(k,k) = beta;
// remember the maximum absolute value of diagonal coefficients
if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
// apply the householder transformation
m_qr.bottomRightCorner(rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
// update our table of norms of the columns
for (Index j = k + 1; j < cols; ++j) {
// The following implements the stable norm downgrade step discussed in
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// and used in LAPACK routines xGEQPF and xGEQP3.
// See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
temp = temp < RealScalar(0) ? RealScalar(0) : temp;
RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
m_colNormsDirect.coeffRef(j));
if (temp2 <= norm_downdate_threshold) {
// The updated norm has become too inaccurate so re-compute the column
// norm directly.
m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
} else {
m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
}
}
}
}
m_colsPermutation.setIdentity(PermIndexType(cols));
for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename RhsType, typename DstType>
void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
eigen_assert(rhs.rows() == rows());
const Index nonzero_pivots = nonzeroPivots();
if(nonzero_pivots == 0)
{
dst.setZero();
return;
}
typename RhsType::PlainObject c(rhs);
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs)
.setLength(nonzero_pivots)
.transpose()
);
m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
.template triangularView<Upper>()
.solveInPlace(c.topRows(nonzero_pivots));
for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
}
#endif
namespace internal {
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
{
typedef ColPivHouseholderQR<MatrixType> QrType;
typedef Inverse<QrType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
} // end namespace internal
/** \returns the matrix Q as a sequence of householder transformations.
* You can extract the meaningful part only by using:
* \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
template<typename MatrixType>
typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
::householderQ() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
}
/** \return the column-pivoting Householder QR decomposition of \c *this.
*
* \sa class ColPivHouseholderQR
*/
template<typename Derived>
const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::colPivHouseholderQr() const
{
return ColPivHouseholderQR<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
|