1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// The computeRoots function included in this is based on materials
// covered by the following copyright and license:
//
// Geometric Tools, LLC
// Copyright (c) 1998-2010
// Distributed under the Boost Software License, Version 1.0.
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <Eigen/Geometry>
#include <bench/BenchTimer.h>
using namespace Eigen;
using namespace std;
template<typename Matrix, typename Roots>
inline void computeRoots(const Matrix& m, Roots& roots)
{
typedef typename Matrix::Scalar Scalar;
const Scalar s_inv3 = 1.0/3.0;
const Scalar s_sqrt3 = std::sqrt(Scalar(3.0));
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
// eigenvalues are the roots to this equation, all guaranteed to be
// real-valued, because the matrix is symmetric.
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
// Construct the parameters used in classifying the roots of the equation
// and in solving the equation for the roots in closed form.
Scalar c2_over_3 = c2*s_inv3;
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
if (a_over_3 > Scalar(0))
a_over_3 = Scalar(0);
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
if (q > Scalar(0))
q = Scalar(0);
// Compute the eigenvalues by solving for the roots of the polynomial.
Scalar rho = std::sqrt(-a_over_3);
Scalar theta = std::atan2(std::sqrt(-q),half_b)*s_inv3;
Scalar cos_theta = std::cos(theta);
Scalar sin_theta = std::sin(theta);
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
}
template<typename Matrix, typename Vector>
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
{
typedef typename Matrix::Scalar Scalar;
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
// only when at least one matrix entry has magnitude larger than 1.
Scalar shift = mat.trace()/3;
Matrix scaledMat = mat;
scaledMat.diagonal().array() -= shift;
Scalar scale = scaledMat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
scale = std::max(scale,Scalar(1));
scaledMat/=scale;
// Compute the eigenvalues
// scaledMat.setZero();
computeRoots(scaledMat,evals);
// compute the eigen vectors
// **here we assume 3 differents eigenvalues**
// "optimized version" which appears to be slower with gcc!
// Vector base;
// Scalar alpha, beta;
// base << scaledMat(1,0) * scaledMat(2,1),
// scaledMat(1,0) * scaledMat(2,0),
// -scaledMat(1,0) * scaledMat(1,0);
// for(int k=0; k<2; ++k)
// {
// alpha = scaledMat(0,0) - evals(k);
// beta = scaledMat(1,1) - evals(k);
// evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
// }
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
// // naive version
// Matrix tmp;
// tmp = scaledMat;
// tmp.diagonal().array() -= evals(0);
// evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
//
// tmp = scaledMat;
// tmp.diagonal().array() -= evals(1);
// evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
//
// tmp = scaledMat;
// tmp.diagonal().array() -= evals(2);
// evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
// a more stable version:
if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
{
evecs.setIdentity();
}
else
{
Matrix tmp;
tmp = scaledMat;
tmp.diagonal ().array () -= evals (2);
evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
tmp = scaledMat;
tmp.diagonal ().array () -= evals (1);
evecs.col(1) = tmp.row (0).cross(tmp.row (1));
Scalar n1 = evecs.col(1).norm();
if(n1<=Eigen::NumTraits<Scalar>::epsilon())
evecs.col(1) = evecs.col(2).unitOrthogonal();
else
evecs.col(1) /= n1;
// make sure that evecs[1] is orthogonal to evecs[2]
evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
evecs.col(0) = evecs.col(2).cross(evecs.col(1));
}
// Rescale back to the original size.
evals *= scale;
evals.array()+=shift;
}
int main()
{
BenchTimer t;
int tries = 10;
int rep = 400000;
typedef Matrix3d Mat;
typedef Vector3d Vec;
Mat A = Mat::Random(3,3);
A = A.adjoint() * A;
// Mat Q = A.householderQr().householderQ();
// A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose();
SelfAdjointEigenSolver<Mat> eig(A);
BENCH(t, tries, rep, eig.compute(A));
std::cout << "Eigen iterative: " << t.best() << "s\n";
BENCH(t, tries, rep, eig.computeDirect(A));
std::cout << "Eigen direct : " << t.best() << "s\n";
Mat evecs;
Vec evals;
BENCH(t, tries, rep, eigen33(A,evecs,evals));
std::cout << "Direct: " << t.best() << "s\n\n";
// std::cerr << "Eigenvalue/eigenvector diffs:\n";
// std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
// for(int k=0;k<3;++k)
// if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
// evecs.col(k) = -evecs.col(k);
// std::cerr << evecs - eig.eigenvectors() << "\n\n";
}
|