summaryrefslogtreecommitdiffhomepage
path: root/eigen/doc/CoeffwiseMathFunctionsTable.dox
blob: 12a565b166478672f13018c536f5dbe6a5abe815 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
namespace Eigen {

/** \eigenManualPage CoeffwiseMathFunctions Catalog of coefficient-wise math functions


<!-- <span style="font-size:300%; color:red; font-weight: 900;">!WORK IN PROGRESS!</span> -->

This table presents a catalog of the coefficient-wise math functions supported by %Eigen.
In this table, \c a, \c b, refer to Array objects or expressions, and \c m refers to a linear algebra Matrix/Vector object. Standard scalar types are abbreviated as follows:
  - \c int: \c i32
  - \c float: \c f
  - \c double: \c d
  - \c std::complex<float>: \c cf
  - \c std::complex<double>: \c cd

For each row, the first column list the equivalent calls for arrays, and matrices when supported. Of course, all functions are available for matrices by first casting it as an array: \c m.array().

The third column gives some hints in the underlying scalar implementation. In most cases, %Eigen does not implement itself the math function but relies on the STL for standard scalar types, or user-provided functions for custom scalar types.
For instance, some simply calls the respective function of the STL while preserving <a href="http://en.cppreference.com/w/cpp/language/adl">argument-dependent lookup</a> for custom types.
The following:
\code
using std::foo;
foo(a[i]);
\endcode
means that the STL's function \c std::foo will be potentially called if it is compatible with the underlying scalar type. If not, then the user must ensure that an overload of the function foo is available for the given scalar type (usually defined in the same namespace as the given scalar type).
This also means that, unless specified, if the function \c std::foo is available only in some recent c++ versions (e.g., c++11), then the respective %Eigen's function/method will be usable on standard types only if the compiler support the required c++ version.

<table class="manual-hl">
<tr>
<th>API</th><th>Description</th><th>Default scalar implementation</th><th>SIMD</th>
</tr>
<tr><td colspan="4"></td></tr>
<tr><th colspan="4">Basic operations</th></tr>
<tr>
  <td class="code">
  \anchor cwisetable_abs
  a.\link ArrayBase::abs abs\endlink(); \n
  \link Eigen::abs abs\endlink(a); \n
  m.\link MatrixBase::cwiseAbs cwiseAbs\endlink();
  </td>
  <td>absolute value (\f$ |a_i| \f$) </td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/fabs">std::abs</a>; \n
  abs(a[i]);
  </td>
  <td>SSE2, AVX (i32,f,d)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_inverse
  a.\link ArrayBase::inverse inverse\endlink(); \n
  \link Eigen::inverse inverse\endlink(a); \n
  m.\link MatrixBase::cwiseInverse cwiseInverse\endlink();
  </td>
  <td>inverse value (\f$ 1/a_i \f$) </td>
  <td class="code">
  1/a[i];
  </td>
  <td>All engines (f,d,fc,fd)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_conj
  a.\link ArrayBase::conjugate conjugate\endlink(); \n
  \link Eigen::conj conj\endlink(a); \n
  m.\link MatrixBase::conjugate conjugate\endlink();
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Complex_conjugate">complex conjugate</a> (\f$ \bar{a_i} \f$),\n
  no-op for real </td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/complex/conj">std::conj</a>; \n
  conj(a[i]);
  </td>
  <td>All engines (fc,fd)</td>
</tr>
<tr>
<th colspan="4">Exponential functions</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_exp
  a.\link ArrayBase::exp exp\endlink(); \n
  \link Eigen::exp exp\endlink(a);
  </td>
  <td>\f$ e \f$ raised to the given power (\f$ e^{a_i} \f$) </td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/exp">std::exp</a>; \n
  exp(a[i]);
  </td>
  <td>SSE2, AVX (f,d)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_log
  a.\link ArrayBase::log log\endlink(); \n
  \link Eigen::log log\endlink(a);
  </td>
  <td>natural (base \f$ e \f$) logarithm (\f$ \ln({a_i}) \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/log">std::log</a>; \n
  log(a[i]);
  </td>
  <td>SSE2, AVX (f)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_log1p
  a.\link ArrayBase::log1p log1p\endlink(); \n
  \link Eigen::log1p log1p\endlink(a);
  </td>
  <td>natural (base \f$ e \f$) logarithm of 1 plus \n the given number (\f$ \ln({1+a_i}) \f$)</td>
  <td>built-in generic implementation based on \c log,\n
  plus \c using <a href="http://en.cppreference.com/w/cpp/numeric/math/log1p">\c std::log1p </a>; \cpp11</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_log10
  a.\link ArrayBase::log10 log10\endlink(); \n
  \link Eigen::log10 log10\endlink(a);
  </td>
  <td>base 10 logarithm (\f$ \log_{10}({a_i}) \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/log10">std::log10</a>; \n
  log10(a[i]);
  </td>
  <td></td>
</tr>
<tr>
<th colspan="4">Power functions</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_pow
  a.\link ArrayBase::pow pow\endlink(b); \n
  \link ArrayBase::pow(const Eigen::ArrayBase< Derived > &x, const Eigen::ArrayBase< ExponentDerived > &exponents) pow\endlink(a,b);
  </td>
  <!-- For some reason Doxygen thinks that pow is in ArrayBase namespace -->
  <td>raises a number to the given power (\f$ a_i ^ {b_i} \f$) \n \c a and \c b can be either an array or scalar.</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/pow">std::pow</a>; \n
  pow(a[i],b[i]);\n
  (plus builtin for integer types)</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_sqrt
  a.\link ArrayBase::sqrt sqrt\endlink(); \n
  \link Eigen::sqrt sqrt\endlink(a);\n
  m.\link MatrixBase::cwiseSqrt cwiseSqrt\endlink();
  </td>
  <td>computes square root (\f$ \sqrt a_i \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/sqrt">std::sqrt</a>; \n
  sqrt(a[i]);</td>
  <td>SSE2, AVX (f,d)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_rsqrt
  a.\link ArrayBase::rsqrt rsqrt\endlink(); \n
  \link Eigen::rsqrt rsqrt\endlink(a);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Fast_inverse_square_root">reciprocal square root</a> (\f$ 1/{\sqrt a_i} \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/sqrt">std::sqrt</a>; \n
  1/sqrt(a[i]); \n
  </td>
  <td>SSE2, AVX, AltiVec, ZVector (f,d)\n
  (approx + 1 Newton iteration)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_square
  a.\link ArrayBase::square square\endlink(); \n
  \link Eigen::square square\endlink(a);
  </td>
  <td>computes square power (\f$ a_i^2 \f$)</td>
  <td class="code">
  a[i]*a[i]</td>
  <td>All (i32,f,d,cf,cd)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_cube
  a.\link ArrayBase::cube cube\endlink(); \n
  \link Eigen::cube cube\endlink(a);
  </td>
  <td>computes cubic power (\f$ a_i^3 \f$)</td>
  <td class="code">
  a[i]*a[i]*a[i]</td>
  <td>All (i32,f,d,cf,cd)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_abs2
  a.\link ArrayBase::abs2 abs2\endlink(); \n
  \link Eigen::abs2 abs2\endlink(a);\n
  m.\link MatrixBase::cwiseAbs2 cwiseAbs2\endlink();
  </td>
  <td>computes the squared absolute value (\f$ |a_i|^2 \f$)</td>
  <td class="code">
  real:    a[i]*a[i] \n
  complex:  real(a[i])*real(a[i]) \n
  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; + imag(a[i])*imag(a[i])</td>
  <td>All (i32,f,d)</td>
</tr>
<tr>
<th colspan="4">Trigonometric functions</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_sin
  a.\link ArrayBase::sin sin\endlink(); \n
  \link Eigen::sin sin\endlink(a);
  </td>
  <td>computes sine</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/sin">std::sin</a>; \n
  sin(a[i]);</td>
  <td>SSE2, AVX (f)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_cos
  a.\link ArrayBase::cos cos\endlink(); \n
  \link Eigen::cos cos\endlink(a);
  </td>
  <td>computes cosine</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/cos">std::cos</a>; \n
  cos(a[i]);</td>
  <td>SSE2, AVX (f)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_tan
  a.\link ArrayBase::tan tan\endlink(); \n
  \link Eigen::tan tan\endlink(a);
  </td>
  <td>computes tangent</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/tan">std::tan</a>; \n
  tan(a[i]);</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_asin
  a.\link ArrayBase::asin asin\endlink(); \n
  \link Eigen::asin asin\endlink(a);
  </td>
  <td>computes arc sine (\f$ \sin^{-1} a_i \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/asin">std::asin</a>; \n
  asin(a[i]);</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_acos
  a.\link ArrayBase::acos acos\endlink(); \n
  \link Eigen::acos acos\endlink(a);
  </td>
  <td>computes arc cosine  (\f$ \cos^{-1} a_i \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/acos">std::acos</a>; \n
  acos(a[i]);</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_atan
  a.\link ArrayBase::atan atan\endlink(); \n
  \link Eigen::atan atan\endlink(a);
  </td>
  <td>computes arc tangent (\f$ \tan^{-1} a_i \f$)</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/atan">std::atan</a>; \n
  atan(a[i]);</td>
  <td></td>
</tr>
<tr>
<th colspan="4">Hyperbolic functions</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_sinh
  a.\link ArrayBase::sinh sinh\endlink(); \n
  \link Eigen::sinh sinh\endlink(a);
  </td>
  <td>computes hyperbolic sine</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/sinh">std::sinh</a>; \n
  sinh(a[i]);</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_cosh
  a.\link ArrayBase::cosh cohs\endlink(); \n
  \link Eigen::cosh cosh\endlink(a);
  </td>
  <td>computes hyperbolic cosine</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/cosh">std::cosh</a>; \n
  cosh(a[i]);</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_tanh
  a.\link ArrayBase::tanh tanh\endlink(); \n
  \link Eigen::tanh tanh\endlink(a);
  </td>
  <td>computes hyperbolic tangent</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/tanh">std::tanh</a>; \n
  tanh(a[i]);</td>
  <td></td>
</tr>
<tr>
<th colspan="4">Nearest integer floating point operations</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_ceil
  a.\link ArrayBase::ceil ceil\endlink(); \n
  \link Eigen::ceil ceil\endlink(a);
  </td>
  <td>nearest integer not less than the given value</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/ceil">std::ceil</a>; \n
  ceil(a[i]);</td>
  <td>SSE4,AVX,ZVector (f,d)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_floor
  a.\link ArrayBase::floor floor\endlink(); \n
  \link Eigen::floor floor\endlink(a);
  </td>
  <td>nearest integer not greater than the given value</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/floor">std::floor</a>; \n
  floor(a[i]);</td>
  <td>SSE4,AVX,ZVector (f,d)</td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_round
  a.\link ArrayBase::round round\endlink(); \n
  \link Eigen::round round\endlink(a);
  </td>
  <td>nearest integer, \n rounding away from zero in halfway cases</td>
  <td>built-in generic implementation \n based on \c floor and \c ceil,\n
  plus \c using <a href="http://en.cppreference.com/w/cpp/numeric/math/round">\c std::round </a>; \cpp11</td>
  <td>SSE4,AVX,ZVector (f,d)</td>
</tr>
<tr>
<th colspan="4">Floating point manipulation functions</th>
</tr>
<tr>
<th colspan="4">Classification and comparison</th>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_isfinite
  a.\link ArrayBase::isFinite isFinite\endlink(); \n
  \link Eigen::isfinite isfinite\endlink(a);
  </td>
  <td>checks if the given number has finite value</td>
  <td>built-in generic implementation,\n
  plus \c using <a href="http://en.cppreference.com/w/cpp/numeric/math/isfinite">\c std::isfinite </a>; \cpp11</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_isinf
  a.\link ArrayBase::isInf isInf\endlink(); \n
  \link Eigen::isinf isinf\endlink(a);
  </td>
  <td>checks if the given number is infinite</td>
  <td>built-in generic implementation,\n
  plus \c using <a href="http://en.cppreference.com/w/cpp/numeric/math/isinf">\c std::isinf </a>; \cpp11</td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_isnan
  a.\link ArrayBase::isNaN isNaN\endlink(); \n
  \link Eigen::isnan isnan\endlink(a);
  </td>
  <td>checks if the given number is not a number</td>
  <td>built-in generic implementation,\n
  plus \c using <a href="http://en.cppreference.com/w/cpp/numeric/math/isnan">\c std::isnan </a>; \cpp11</td>
  <td></td>
</tr>
<tr>
<th colspan="4">Error and gamma functions</th>
</tr>
<tr> <td colspan="4">  Require \c \#include \c <unsupported/Eigen/SpecialFunctions> </td></tr>
<tr>
  <td class="code">
  \anchor cwisetable_erf
  a.\link ArrayBase::erf erf\endlink(); \n
  \link Eigen::erf erf\endlink(a);
  </td>
  <td>error function</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/erf">std::erf</a>; \cpp11 \n
  erf(a[i]);
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_erfc
  a.\link ArrayBase::erfc erfc\endlink(); \n
  \link Eigen::erfc erfc\endlink(a);
  </td>
  <td>complementary error function</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/erfc">std::erfc</a>; \cpp11 \n
  erfc(a[i]);
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_lgamma
  a.\link ArrayBase::lgamma lgamma\endlink(); \n
  \link Eigen::lgamma lgamma\endlink(a);
  </td>
  <td>natural logarithm of the gamma function</td>
  <td class="code">
  using <a href="http://en.cppreference.com/w/cpp/numeric/math/lgamma">std::lgamma</a>; \cpp11 \n
  lgamma(a[i]);
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_digamma
  a.\link ArrayBase::digamma digamma\endlink(); \n
  \link Eigen::digamma digamma\endlink(a);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Digamma_function">logarithmic derivative of the gamma function</a></td>
  <td>
  built-in for float and double
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_igamma
  \link Eigen::igamma igamma\endlink(a,x);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Incomplete_gamma_function">lower incomplete gamma integral</a>
  \n \f$ \gamma(a_i,x_i)= \frac{1}{|a_i|} \int_{0}^{x_i}e^{\text{-}t} t^{a_i-1} \mathrm{d} t \f$</td>
  <td>
  built-in for float and double,\n but requires \cpp11
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_igammac
  \link Eigen::igammac igammac\endlink(a,x);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Incomplete_gamma_function">upper incomplete gamma integral</a>
  \n \f$ \Gamma(a_i,x_i) = \frac{1}{|a_i|} \int_{x_i}^{\infty}e^{\text{-}t} t^{a_i-1} \mathrm{d} t \f$</td>
  <td>
  built-in for float and double,\n but requires \cpp11
  </td>
  <td></td>
</tr>
<tr>
<th colspan="4">Special functions</th>
</tr>
<tr> <td colspan="4">  Require \c \#include \c <unsupported/Eigen/SpecialFunctions> </td></tr>
<tr>
  <td class="code">
  \anchor cwisetable_polygamma
  \link Eigen::polygamma polygamma\endlink(n,x);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Polygamma_function">n-th derivative of digamma at x</a></td>
  <td>
  built-in generic based on\n <a href="#cwisetable_lgamma">\c lgamma </a>,
  <a href="#cwisetable_digamma"> \c digamma </a>
  and <a href="#cwisetable_zeta">\c zeta </a>.
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_betainc
  \link Eigen::betainc betainc\endlink(a,b,x);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function">Incomplete beta function</a></td>
  <td>
  built-in for float and double,\n but requires \cpp11
  </td>
  <td></td>
</tr>
<tr>
  <td class="code">
  \anchor cwisetable_zeta
  \link Eigen::zeta zeta\endlink(a,b);
  </td>
  <td><a href="https://en.wikipedia.org/wiki/Hurwitz_zeta_function">Hurwitz zeta function</a>
  \n \f$ \zeta(a_i,b_i)=\sum_{k=0}^{\infty}(b_i+k)^{\text{-}a_i} \f$</td>
  <td>
  built-in for float and double
  </td>
  <td></td>
</tr>
<tr><td colspan="4"></td></tr>
</table>

\n

*/

}