summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/geo_hyperplane.cpp
blob: b3a48c58591c78f2bd2d94afa64fe9f3f450673a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>

template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
{
  /* this test covers the following files:
     Hyperplane.h
  */
  using std::abs;
  const Index dim = _plane.dim();
  enum { Options = HyperplaneType::Options };
  typedef typename HyperplaneType::Scalar Scalar;
  typedef typename HyperplaneType::RealScalar RealScalar;
  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
                         HyperplaneType::AmbientDimAtCompileTime> MatrixType;

  VectorType p0 = VectorType::Random(dim);
  VectorType p1 = VectorType::Random(dim);

  VectorType n0 = VectorType::Random(dim).normalized();
  VectorType n1 = VectorType::Random(dim).normalized();

  HyperplaneType pl0(n0, p0);
  HyperplaneType pl1(n1, p1);
  HyperplaneType pl2 = pl1;

  Scalar s0 = internal::random<Scalar>();
  Scalar s1 = internal::random<Scalar>();

  VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );

  VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
  if(numext::abs2(s0)>RealScalar(1e-6))
    VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0);
  else
    VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) );
  VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
  VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );

  // transform
  if (!NumTraits<Scalar>::IsComplex)
  {
    MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
    DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
    Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
    
    while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();

    pl2 = pl1;
    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
    pl2 = pl1;
    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
    pl2 = pl1;
    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
    VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
    pl2 = pl1;
    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
                                  .absDistance((rot*scaling*translation) * p1), Scalar(1) );
    VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
    pl2 = pl1;
    VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
                                 .absDistance((rot*translation) * p1), Scalar(1) );
    VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
  }

  // casting
  const int Dim = HyperplaneType::AmbientDimAtCompileTime;
  typedef typename GetDifferentType<Scalar>::type OtherScalar;
  Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
  Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
}

template<typename Scalar> void lines()
{
  using std::abs;
  typedef Hyperplane<Scalar, 2> HLine;
  typedef ParametrizedLine<Scalar, 2> PLine;
  typedef Matrix<Scalar,2,1> Vector;
  typedef Matrix<Scalar,3,1> CoeffsType;

  for(int i = 0; i < 10; i++)
  {
    Vector center = Vector::Random();
    Vector u = Vector::Random();
    Vector v = Vector::Random();
    Scalar a = internal::random<Scalar>();
    while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>();
    while (u.norm() < Scalar(1e-4)) u = Vector::Random();
    while (v.norm() < Scalar(1e-4)) v = Vector::Random();

    HLine line_u = HLine::Through(center + u, center + a*u);
    HLine line_v = HLine::Through(center + v, center + a*v);

    // the line equations should be normalized so that a^2+b^2=1
    VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
    VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));

    Vector result = line_u.intersection(line_v);

    // the lines should intersect at the point we called "center"
    if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9))
      VERIFY_IS_APPROX(result, center);

    // check conversions between two types of lines
    PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
    HLine line_u2(pl);
    CoeffsType converted_coeffs = line_u2.coeffs();
    if(line_u2.normal().dot(line_u.normal())<Scalar(0))
      converted_coeffs = -line_u2.coeffs();
    VERIFY(line_u.coeffs().isApprox(converted_coeffs));
  }
}

template<typename Scalar> void planes()
{
  using std::abs;
  typedef Hyperplane<Scalar, 3> Plane;
  typedef Matrix<Scalar,3,1> Vector;

  for(int i = 0; i < 10; i++)
  {
    Vector v0 = Vector::Random();
    Vector v1(v0), v2(v0);
    if(internal::random<double>(0,1)>0.25)
      v1 += Vector::Random();
    if(internal::random<double>(0,1)>0.25)
      v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
    if(internal::random<double>(0,1)>0.25)
      v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));

    Plane p0 = Plane::Through(v0, v1, v2);

    VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
    VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
  }
}

template<typename Scalar> void hyperplane_alignment()
{
  typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
  typedef Hyperplane<Scalar,3,DontAlign> Plane3u;

  EIGEN_ALIGN_MAX Scalar array1[4];
  EIGEN_ALIGN_MAX Scalar array2[4];
  EIGEN_ALIGN_MAX Scalar array3[4+1];
  Scalar* array3u = array3+1;

  Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
  Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
  Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
  
  p1->coeffs().setRandom();
  *p2 = *p1;
  *p3 = *p1;

  VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
  VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
  
  #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0
  if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
  #endif
}


void test_geo_hyperplane()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
    CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
    CALL_SUBTEST_2( hyperplane_alignment<float>() );
    CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
    CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
    CALL_SUBTEST_1( lines<float>() );
    CALL_SUBTEST_3( lines<double>() );
    CALL_SUBTEST_2( planes<float>() );
    CALL_SUBTEST_5( planes<double>() );
  }
}