summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/nomalloc.cpp
blob: 50756c2fb4390a97793ffae4997351a483fdba29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// heap allocation will raise an assert if enabled at runtime
#define EIGEN_RUNTIME_NO_MALLOC

#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>

template<typename MatrixType> void nomalloc(const MatrixType& m)
{
  /* this test check no dynamic memory allocation are issued with fixed-size matrices
  */
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);

  Scalar s1 = internal::random<Scalar>();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
  
  m2.col(0).noalias() = m1 * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
  m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1;
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
  m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1);
  m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2

  // The following fancy matrix-matrix products are not safe yet regarding static allocation
  m2.template selfadjointView<Lower>().rankUpdate(m1);
  m2 += m2.template triangularView<Upper>() * m1;
  m2.template triangularView<Upper>() = m2 * m2;
  m1 += m1.template selfadjointView<Lower>() * m2;
  VERIFY_IS_APPROX(m2,m2);
}

template<typename Scalar>
void ctms_decompositions()
{
  const int maxSize = 16;
  const int size    = 12;

  typedef Eigen::Matrix<Scalar,
                        Eigen::Dynamic, Eigen::Dynamic,
                        0,
                        maxSize, maxSize> Matrix;

  typedef Eigen::Matrix<Scalar,
                        Eigen::Dynamic, 1,
                        0,
                        maxSize, 1> Vector;

  typedef Eigen::Matrix<std::complex<Scalar>,
                        Eigen::Dynamic, Eigen::Dynamic,
                        0,
                        maxSize, maxSize> ComplexMatrix;

  const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
  Matrix X(size,size);
  const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
  const Matrix saA = A.adjoint() * A;
  const Vector b(Vector::Random(size));
  Vector x(size);

  // Cholesky module
  Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
  X = LLT.solve(B);
  x = LLT.solve(b);
  Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
  X = LDLT.solve(B);
  x = LDLT.solve(b);

  // Eigenvalues module
  Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
  Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
  Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
  Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
  Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
  Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);

  // LU module
  Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
  X = ppLU.solve(B);
  x = ppLU.solve(b);
  Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
  X = fpLU.solve(B);
  x = fpLU.solve(b);

  // QR module
  Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
  X = hQR.solve(B);
  x = hQR.solve(b);
  Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
  X = cpQR.solve(B);
  x = cpQR.solve(b);
  Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
  // FIXME X = fpQR.solve(B);
  x = fpQR.solve(b);

  // SVD module
  Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
}

void test_zerosized() {
  // default constructors:
  Eigen::MatrixXd A;
  Eigen::VectorXd v;
  // explicit zero-sized:
  Eigen::ArrayXXd A0(0,0);
  Eigen::ArrayXd v0(0);

  // assigning empty objects to each other:
  A=A0;
  v=v0;
}

template<typename MatrixType> void test_reference(const MatrixType& m) {
  typedef typename MatrixType::Scalar Scalar;
  enum { Flag          =  MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
  enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
  typename MatrixType::Index rows = m.rows(), cols=m.cols();
  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag         > MatrixX;
  typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
  // Dynamic reference:
  typedef Eigen::Ref<const MatrixX  > Ref;
  typedef Eigen::Ref<const MatrixXT > RefT;

  Ref r1(m);
  Ref r2(m.block(rows/3, cols/4, rows/2, cols/2));
  RefT r3(m.transpose());
  RefT r4(m.topLeftCorner(rows/2, cols/2).transpose());

  VERIFY_RAISES_ASSERT(RefT r5(m));
  VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
  VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));

  // Copy constructors shall also never malloc
  Ref r8 = r1;
  RefT r9 = r3;

  // Initializing from a compatible Ref shall also never malloc
  Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m;

  // Initializing from an incompatible Ref will malloc:
  typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
  VERIFY_RAISES_ASSERT(RefAligned r12=r10);
  VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides

}

void test_nomalloc()
{
  // create some dynamic objects
  Eigen::MatrixXd M1 = MatrixXd::Random(3,3);
  Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary

  // from here on prohibit malloc:
  Eigen::internal::set_is_malloc_allowed(false);

  // check that our operator new is indeed called:
  VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
  CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
  CALL_SUBTEST_2(nomalloc(Matrix4d()) );
  CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
  
  // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
  CALL_SUBTEST_4(ctms_decompositions<float>());

  CALL_SUBTEST_5(test_zerosized());

  CALL_SUBTEST_6(test_reference(Matrix<float,32,32>()));
  CALL_SUBTEST_7(test_reference(R1));
  CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
}