1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void product_extra(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
typedef Matrix<Scalar, Dynamic, Dynamic,
MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = MatrixType::Identity(rows, rows),
square = MatrixType::Random(rows, rows),
res = MatrixType::Random(rows, rows),
square2 = MatrixType::Random(cols, cols),
res2 = MatrixType::Random(cols, cols);
RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
OtherMajorMatrixType tm1 = m1;
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>(),
s3 = internal::random<Scalar>();
VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval());
VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval());
VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2);
VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2);
VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2);
VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval());
VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2);
VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval());
// a very tricky case where a scale factor has to be automatically conjugated:
VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
// test all possible conjugate combinations for the four matrix-vector product cases:
VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
(-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
(-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
(-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
(s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
(s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
(s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
(-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
(-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
(s1 * v1).eval() * (-m1.conjugate()*s2).eval());
VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
(s1 * v1.conjugate()).eval() * (-m1*s2).eval());
VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
(s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
// test the vector-matrix product with non aligned starts
Index i = internal::random<Index>(0,m1.rows()-2);
Index j = internal::random<Index>(0,m1.cols()-2);
Index r = internal::random<Index>(1,m1.rows()-i);
Index c = internal::random<Index>(1,m1.cols()-j);
Index i2 = internal::random<Index>(0,m1.rows()-1);
Index j2 = internal::random<Index>(0,m1.cols()-1);
VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
// regression test
MatrixType tmp = m1 * m1.adjoint() * s1;
VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
// regression test for bug 1343, assignment to arrays
Array<Scalar,Dynamic,1> a1 = m1 * vc2;
VERIFY_IS_APPROX(a1.matrix(),m1*vc2);
Array<Scalar,Dynamic,1> a2 = s1 * (m1 * vc2);
VERIFY_IS_APPROX(a2.matrix(),s1*m1*vc2);
Array<Scalar,1,Dynamic> a3 = v1 * m1;
VERIFY_IS_APPROX(a3.matrix(),v1*m1);
Array<Scalar,Dynamic,Dynamic> a4 = m1 * m2.adjoint();
VERIFY_IS_APPROX(a4.matrix(),m1*m2.adjoint());
}
// Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
void mat_mat_scalar_scalar_product()
{
Eigen::Matrix2Xd dNdxy(2, 3);
dNdxy << -0.5, 0.5, 0,
-0.3, 0, 0.3;
double det = 6.0, wt = 0.5;
VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
}
template <typename MatrixType>
void zero_sized_objects(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
const int PacketSize = internal::packet_traits<Scalar>::size;
const int PacketSize1 = PacketSize>1 ? PacketSize-1 : 1;
Index rows = m.rows();
Index cols = m.cols();
{
MatrixType res, a(rows,0), b(0,cols);
VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) );
VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) );
VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) );
VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) );
}
{
MatrixType res, a(rows,cols), b(cols,0);
res = a*b;
VERIFY(res.rows()==rows && res.cols()==0);
b.resize(0,rows);
res = b*a;
VERIFY(res.rows()==0 && res.cols()==cols);
}
{
Matrix<Scalar,PacketSize,0> a;
Matrix<Scalar,0,1> b;
Matrix<Scalar,PacketSize,1> res;
VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
}
{
Matrix<Scalar,PacketSize1,0> a;
Matrix<Scalar,0,1> b;
Matrix<Scalar,PacketSize1,1> res;
VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
}
{
Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0);
Matrix<Scalar,Dynamic,1> b(0,1);
Matrix<Scalar,PacketSize,1> res;
VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
}
{
Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0);
Matrix<Scalar,Dynamic,1> b(0,1);
Matrix<Scalar,PacketSize1,1> res;
VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
}
}
template<int>
void bug_127()
{
// Bug 127
//
// a product of the form lhs*rhs with
//
// lhs:
// rows = 1, cols = 4
// RowsAtCompileTime = 1, ColsAtCompileTime = -1
// MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
//
// rhs:
// rows = 4, cols = 0
// RowsAtCompileTime = -1, ColsAtCompileTime = -1
// MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
//
// was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
// max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
a*b;
}
template<int> void bug_817()
{
ArrayXXf B = ArrayXXf::Random(10,10), C;
VectorXf x = VectorXf::Random(10);
C = (x.transpose()*B.matrix());
B = (x.transpose()*B.matrix());
VERIFY_IS_APPROX(B,C);
}
template<int>
void unaligned_objects()
{
// Regression test for the bug reported here:
// http://forum.kde.org/viewtopic.php?f=74&t=107541
// Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
// There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
// memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
for(int m=450;m<460;++m)
{
for(int n=8;n<12;++n)
{
MatrixXf M(m, n);
VectorXf v1(n), r1(500);
RowVectorXf v2(m), r2(16);
M.setRandom();
v1.setRandom();
v2.setRandom();
for(int o=0; o<4; ++o)
{
r1.segment(o,m).noalias() = M * v1;
VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
r2.segment(o,n).noalias() = v2 * M;
VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
}
}
}
}
template<typename T>
EIGEN_DONT_INLINE
Index test_compute_block_size(Index m, Index n, Index k)
{
Index mc(m), nc(n), kc(k);
internal::computeProductBlockingSizes<T,T>(kc, mc, nc);
return kc+mc+nc;
}
template<typename T>
Index compute_block_size()
{
Index ret = 0;
ret += test_compute_block_size<T>(0,1,1);
ret += test_compute_block_size<T>(1,0,1);
ret += test_compute_block_size<T>(1,1,0);
ret += test_compute_block_size<T>(0,0,1);
ret += test_compute_block_size<T>(0,1,0);
ret += test_compute_block_size<T>(1,0,0);
ret += test_compute_block_size<T>(0,0,0);
return ret;
}
template<typename>
void aliasing_with_resize()
{
Index m = internal::random<Index>(10,50);
Index n = internal::random<Index>(10,50);
MatrixXd A, B, C(m,n), D(m,m);
VectorXd a, b, c(n);
C.setRandom();
D.setRandom();
c.setRandom();
double s = internal::random<double>(1,10);
A = C;
B = A * A.transpose();
A = A * A.transpose();
VERIFY_IS_APPROX(A,B);
A = C;
B = (A * A.transpose())/s;
A = (A * A.transpose())/s;
VERIFY_IS_APPROX(A,B);
A = C;
B = (A * A.transpose()) + D;
A = (A * A.transpose()) + D;
VERIFY_IS_APPROX(A,B);
A = C;
B = D + (A * A.transpose());
A = D + (A * A.transpose());
VERIFY_IS_APPROX(A,B);
A = C;
B = s * (A * A.transpose());
A = s * (A * A.transpose());
VERIFY_IS_APPROX(A,B);
A = C;
a = c;
b = (A * a)/s;
a = (A * a)/s;
VERIFY_IS_APPROX(a,b);
}
template<int>
void bug_1308()
{
int n = 10;
MatrixXd r(n,n);
VectorXd v = VectorXd::Random(n);
r = v * RowVectorXd::Ones(n);
VERIFY_IS_APPROX(r, v.rowwise().replicate(n));
r = VectorXd::Ones(n) * v.transpose();
VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose());
Matrix4d ones44 = Matrix4d::Ones();
Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones();
VERIFY_IS_APPROX(m44,Matrix4d::Constant(4));
VERIFY_IS_APPROX(m44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(m44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
typedef Matrix<double,4,4,RowMajor> RMatrix4d;
RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones();
VERIFY_IS_APPROX(r44,Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=ones44*RMatrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*RMatrix4d::Ones(), Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44, Matrix4d::Constant(4));
VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
// RowVector4d r4;
m44.setOnes();
r44.setZero();
VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44);
r44.setZero();
VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44);
r44.setZero();
VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44);
r44.setZero();
VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44);
}
void test_product_extra()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
CALL_SUBTEST_5( bug_127<0>() );
CALL_SUBTEST_5( bug_817<0>() );
CALL_SUBTEST_5( bug_1308<0>() );
CALL_SUBTEST_6( unaligned_objects<0>() );
CALL_SUBTEST_7( compute_block_size<float>() );
CALL_SUBTEST_7( compute_block_size<double>() );
CALL_SUBTEST_7( compute_block_size<std::complex<double> >() );
CALL_SUBTEST_8( aliasing_with_resize<void>() );
}
|