summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h
blob: bc4f2025f65442028b1091d4698d41b1be45b3cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H
#define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H

namespace Eigen {

class DynamicSGroup
{
  public:
    inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { m_elements.push_back(ge(Generator(0, 0, 0))); }
    inline DynamicSGroup(const DynamicSGroup& o) : m_numIndices(o.m_numIndices), m_elements(o.m_elements), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { }
    inline DynamicSGroup(DynamicSGroup&& o) : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { std::swap(m_elements, o.m_elements); }
    inline DynamicSGroup& operator=(const DynamicSGroup& o) { m_numIndices = o.m_numIndices; m_elements = o.m_elements; m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; }
    inline DynamicSGroup& operator=(DynamicSGroup&& o) { m_numIndices = o.m_numIndices; std::swap(m_elements, o.m_elements); m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; }

    void add(int one, int two, int flags = 0);

    template<typename Gen_>
    inline void add(Gen_) { add(Gen_::One, Gen_::Two, Gen_::Flags); }
    inline void addSymmetry(int one, int two) { add(one, two, 0); }
    inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); }
    inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); }
    inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); }

    template<typename Op, typename RV, typename Index, std::size_t N, typename... Args>
    inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const
    {
      eigen_assert(N >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
      for (std::size_t i = 0; i < size(); i++)
        initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, initial, std::forward<Args>(args)...);
      return initial;
    }

    template<typename Op, typename RV, typename Index, typename... Args>
    inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const
    {
      eigen_assert(idx.size() >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
      for (std::size_t i = 0; i < size(); i++)
        initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...);
      return initial;
    }

    inline int globalFlags() const { return m_globalFlags; }
    inline std::size_t size() const { return m_elements.size(); }

    template<typename Tensor_, typename... IndexTypes>
    inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const
    {
      static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}});
    }

    template<typename Tensor_>
    inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const
    {
      return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices);
    }
  private:
    struct GroupElement {
      std::vector<int> representation;
      int flags;
      bool isId() const
      {
        for (std::size_t i = 0; i < representation.size(); i++)
          if (i != (size_t)representation[i])
            return false;
        return true;
      }
    };
    struct Generator {
      int one;
      int two;
      int flags;
      constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {}
    };

    std::size_t m_numIndices;
    std::vector<GroupElement> m_elements;
    std::vector<Generator> m_generators;
    int m_globalFlags;

    template<typename Index, std::size_t N, int... n>
    inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, internal::numeric_list<int, n...>) const
    {
      return std::array<Index, N>{{ idx[n >= m_numIndices ? n : m_elements[which].representation[n]]... }};
    }

    template<typename Index>
    inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const
    {
      std::vector<Index> result;
      result.reserve(idx.size());
      for (auto k : m_elements[which].representation)
        result.push_back(idx[k]);
      for (std::size_t i = m_numIndices; i < idx.size(); i++)
        result.push_back(idx[i]);
      return result;
    }

    inline GroupElement ge(Generator const& g) const
    {
      GroupElement result;
      result.representation.reserve(m_numIndices);
      result.flags = g.flags;
      for (std::size_t k = 0; k < m_numIndices; k++) {
        if (k == (std::size_t)g.one)
          result.representation.push_back(g.two);
        else if (k == (std::size_t)g.two)
          result.representation.push_back(g.one);
        else
          result.representation.push_back(int(k));
      }
      return result;
    }

    GroupElement mul(GroupElement, GroupElement) const;
    inline GroupElement mul(Generator g1, GroupElement g2) const
    {
      return mul(ge(g1), g2);
    }

    inline GroupElement mul(GroupElement g1, Generator g2) const
    {
      return mul(g1, ge(g2));
    }

    inline GroupElement mul(Generator g1, Generator g2) const
    {
      return mul(ge(g1), ge(g2));
    }

    inline int findElement(GroupElement e) const
    {
      for (auto ee : m_elements) {
        if (ee.representation == e.representation)
          return ee.flags ^ e.flags;
      }
      return -1;
    }

    void updateGlobalFlags(int flagDiffOfSameGenerator);
};

// dynamic symmetry group that auto-adds the template parameters in the constructor
template<typename... Gen>
class DynamicSGroupFromTemplateArgs : public DynamicSGroup
{
  public:
    inline DynamicSGroupFromTemplateArgs() : DynamicSGroup()
    {
      add_all(internal::type_list<Gen...>());
    }
    inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) { }
    inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) { }
    inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { DynamicSGroup::operator=(o); return *this; }
    inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { DynamicSGroup::operator=(o); return *this; }
  
  private:
    template<typename Gen1, typename... GenNext>
    inline void add_all(internal::type_list<Gen1, GenNext...>)
    {
      add(Gen1());
      add_all(internal::type_list<GenNext...>());
    }

    inline void add_all(internal::type_list<>)
    {
    }
};

inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const
{
  eigen_internal_assert(g1.representation.size() == m_numIndices);
  eigen_internal_assert(g2.representation.size() == m_numIndices);

  GroupElement result;
  result.representation.reserve(m_numIndices);
  for (std::size_t i = 0; i < m_numIndices; i++) {
    int v = g2.representation[g1.representation[i]];
    eigen_assert(v >= 0);
    result.representation.push_back(v);
  }
  result.flags = g1.flags ^ g2.flags;
  return result;
}

inline void DynamicSGroup::add(int one, int two, int flags)
{
  eigen_assert(one >= 0);
  eigen_assert(two >= 0);
  eigen_assert(one != two);

  if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) {
    std::size_t newNumIndices = (one > two) ? one : two + 1;
    for (auto& gelem : m_elements) {
      gelem.representation.reserve(newNumIndices);
      for (std::size_t i = m_numIndices; i < newNumIndices; i++)
        gelem.representation.push_back(i);
    }
    m_numIndices = newNumIndices;
  }

  Generator g{one, two, flags};
  GroupElement e = ge(g);

  /* special case for first generator */
  if (m_elements.size() == 1) {
    while (!e.isId()) {
      m_elements.push_back(e);
      e = mul(e, g);
    }

    if (e.flags > 0)
      updateGlobalFlags(e.flags);

    // only add in case we didn't have identity
    if (m_elements.size() > 1)
      m_generators.push_back(g);
    return;
  }

  int p = findElement(e);
  if (p >= 0) {
    updateGlobalFlags(p);
    return;
  }

  std::size_t coset_order = m_elements.size();
  m_elements.push_back(e);
  for (std::size_t i = 1; i < coset_order; i++)
    m_elements.push_back(mul(m_elements[i], e));
  m_generators.push_back(g);

  std::size_t coset_rep = coset_order;
  do {
    for (auto g : m_generators) {
      e = mul(m_elements[coset_rep], g);
      p = findElement(e);
      if (p < 0) {
        // element not yet in group
        m_elements.push_back(e);
        for (std::size_t i = 1; i < coset_order; i++)
          m_elements.push_back(mul(m_elements[i], e));
      } else if (p > 0) {
        updateGlobalFlags(p);
      }
    }
    coset_rep += coset_order;
  } while (coset_rep < m_elements.size());
}

inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator)
{
    switch (flagDiffOfSameGenerator) {
      case 0:
      default:
        // nothing happened
        break;
      case NegationFlag:
        // every element is it's own negative => whole tensor is zero
        m_globalFlags |= GlobalZeroFlag;
        break;
      case ConjugationFlag:
        // every element is it's own conjugate => whole tensor is real
        m_globalFlags |= GlobalRealFlag;
        break;
      case (NegationFlag | ConjugationFlag):
        // every element is it's own negative conjugate => whole tensor is imaginary
        m_globalFlags |= GlobalImagFlag;
        break;
      /* NOTE:
       *   since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator
       *   causes the tensor to be real and the next one to be imaginary, this will
       *   trivially give the correct result
       */
    }
}

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H

/*
 * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
 */