summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h
blob: 942293bd710e6bf68ab8288523dfb494f1eed99e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H
#define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H

namespace Eigen {

namespace internal {

template<typename list> struct tensor_static_symgroup_permutate;

template<int... nn>
struct tensor_static_symgroup_permutate<numeric_list<int, nn...>>
{
  constexpr static std::size_t N = sizeof...(nn);

  template<typename T>
  constexpr static inline std::array<T, N> run(const std::array<T, N>& indices)
  {
    return {{indices[nn]...}};
  }
};

template<typename indices_, int flags_>
struct tensor_static_symgroup_element
{
  typedef indices_ indices;
  constexpr static int flags = flags_;
};

template<typename Gen, int N>
struct tensor_static_symgroup_element_ctor
{
  typedef tensor_static_symgroup_element<
    typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type,
    Gen::Flags
  > type;
};

template<int N>
struct tensor_static_symgroup_identity_ctor
{
  typedef tensor_static_symgroup_element<
    typename gen_numeric_list<int, N>::type,
    0
  > type;
};

template<typename iib>
struct tensor_static_symgroup_multiply_helper
{
  template<int... iia>
  constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) {
    return numeric_list<int, get<iia, iib>::value...>();
  }
};

template<typename A, typename B>
struct tensor_static_symgroup_multiply
{
  private:
    typedef typename A::indices iia;
    typedef typename B::indices iib;
    constexpr static int ffa = A::flags;
    constexpr static int ffb = B::flags;
  
  public:
    static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices.");

    typedef tensor_static_symgroup_element<
      decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())),
      ffa ^ ffb
    > type;
};

template<typename A, typename B>
struct tensor_static_symgroup_equality
{
    typedef typename A::indices iia;
    typedef typename B::indices iib;
    constexpr static int ffa = A::flags;
    constexpr static int ffb = B::flags;
    static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices.");

    constexpr static bool value = is_same<iia, iib>::value;

  private:
    /* this should be zero if they are identical, or else the tensor
     * will be forced to be pure real, pure imaginary or even pure zero
     */
    constexpr static int flags_cmp_ = ffa ^ ffb;

    /* either they are not equal, then we don't care whether the flags
     * match, or they are equal, and then we have to check
     */
    constexpr static bool is_zero      = value && flags_cmp_ == NegationFlag;
    constexpr static bool is_real      = value && flags_cmp_ == ConjugationFlag;
    constexpr static bool is_imag      = value && flags_cmp_ == (NegationFlag | ConjugationFlag);

  public:
    constexpr static int global_flags = 
      (is_real ? GlobalRealFlag : 0) |
      (is_imag ? GlobalImagFlag : 0) |
      (is_zero ? GlobalZeroFlag : 0);
};

template<std::size_t NumIndices, typename... Gen>
struct tensor_static_symgroup
{
  typedef StaticSGroup<Gen...> type;
  constexpr static std::size_t size = type::static_size;
};

template<typename Index, std::size_t N, int... ii, int... jj>
constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>)
{
  return {{ idx[ii]..., idx[jj]... }};
}

template<typename Index, int... ii>
static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>)
{
  std::vector<Index> result{{ idx[ii]... }};
  std::size_t target_size = idx.size();
  for (std::size_t i = result.size(); i < target_size; i++)
    result.push_back(idx[i]);
  return result;
}

template<typename T> struct tensor_static_symgroup_do_apply;

template<typename first, typename... next>
struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>>
{
  template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args>
  static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args)
  {
    static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices.");
    typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices;
    initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...);
    return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...);
  }

  template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args>
  static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args)
  {
    eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
    initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...);
    return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...);
  }
};

template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)>
struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>>
{
  template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args>
  static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...)
  {
    // do nothing
    return initial;
  }

  template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args>
  static inline RV run(const std::vector<Index>&, RV initial, Args&&...)
  {
    // do nothing
    return initial;
  }
};

} // end namespace internal

template<typename... Gen>
class StaticSGroup
{
    constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value;
    typedef internal::group_theory::enumerate_group_elements<
      internal::tensor_static_symgroup_multiply,
      internal::tensor_static_symgroup_equality,
      typename internal::tensor_static_symgroup_identity_ctor<NumIndices>::type,
      internal::type_list<typename internal::tensor_static_symgroup_element_ctor<Gen, NumIndices>::type...>
    > group_elements;
    typedef typename group_elements::type ge;
  public:
    constexpr inline StaticSGroup() {}
    constexpr inline StaticSGroup(const StaticSGroup<Gen...>&) {}
    constexpr inline StaticSGroup(StaticSGroup<Gen...>&&) {}

    template<typename Op, typename RV, typename Index, std::size_t N, typename... Args>
    static inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args)
    {
      return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...);
    }

    template<typename Op, typename RV, typename Index, typename... Args>
    static inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args)
    {
      eigen_assert(idx.size() == NumIndices);
      return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...);
    }

    constexpr static std::size_t static_size = ge::count;

    constexpr static inline std::size_t size() {
      return ge::count;
    }
    constexpr static inline int globalFlags() { return group_elements::global_flags; }

    template<typename Tensor_, typename... IndexTypes>
    inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const
    {
      static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
      return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}});
    }

    template<typename Tensor_>
    inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const
    {
      return internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>>(tensor, *this, indices);
    }
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H

/*
 * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
 */