summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/FFT
blob: 2c45b3999e7f93d6fff55dd28734e3a5e86d1401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. 
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_FFT_H
#define EIGEN_FFT_H

#include <complex>
#include <vector>
#include <map>
#include <Eigen/Core>


/**
  * \defgroup FFT_Module Fast Fourier Transform module
  *
  * \code
  * #include <unsupported/Eigen/FFT>
  * \endcode
  *
  * This module provides Fast Fourier transformation, with a configurable backend
  * implementation.
  *
  * The default implementation is based on kissfft. It is a small, free, and
  * reasonably efficient default.
  *
  * There are currently two implementation backend:
  *
  * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
  * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
  *
  * \section FFTDesign Design
  *
  * The following design decisions were made concerning scaling and
  * half-spectrum for real FFT.
  *
  * The intent is to facilitate generic programming and ease migrating code
  * from  Matlab/octave.
  * We think the default behavior of Eigen/FFT should favor correctness and
  * generality over speed. Of course, the caller should be able to "opt-out" from this
  * behavior and get the speed increase if they want it.
  *
  * 1) %Scaling:
  * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there
  * is a constant gain incurred after the forward&inverse transforms , so 
  * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.  
  * The downside is that algorithms that worked correctly in Matlab/octave 
  * don't behave the same way once implemented in C++.
  *
  * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. 
  *
  * 2) Real FFT half-spectrum
  * Other libraries use only half the frequency spectrum (plus one extra 
  * sample for the Nyquist bin) for a real FFT, the other half is the 
  * conjugate-symmetric of the first half.  This saves them a copy and some 
  * memory.  The downside is the caller needs to have special logic for the 
  * number of bins in complex vs real.
  *
  * How Eigen/FFT differs: The full spectrum is returned from the forward 
  * transform.  This facilitates generic template programming by obviating 
  * separate specializations for real vs complex.  On the inverse
  * transform, only half the spectrum is actually used if the output type is real.
  */
 

#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
#  include <fftw3.h>
#  include "src/FFT/ei_fftw_impl.h"
   namespace Eigen {
     //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work
     template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
   }
#elif defined EIGEN_MKL_DEFAULT
// TODO 
// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
#  include "src/FFT/ei_imklfft_impl.h"
   namespace Eigen {
     template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
   }
#else
// internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft
//
# include "src/FFT/ei_kissfft_impl.h"
  namespace Eigen {
     template <typename T> 
       struct default_fft_impl : public internal::kissfft_impl<T> {};
  }
#endif

namespace Eigen {

 
// 
template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;

namespace internal {
template<typename T_SrcMat,typename T_FftIfc>
struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
{
  typedef typename T_SrcMat::PlainObject ReturnType;
};
template<typename T_SrcMat,typename T_FftIfc>
struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
{
  typedef typename T_SrcMat::PlainObject ReturnType;
};
}

template<typename T_SrcMat,typename T_FftIfc> 
struct fft_fwd_proxy
 : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
{
  typedef DenseIndex Index;

  fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}

  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;

  Index rows() const { return m_src.rows(); }
  Index cols() const { return m_src.cols(); }
protected:
  const T_SrcMat & m_src;
  T_FftIfc & m_ifc;
  Index m_nfft;
private:
  fft_fwd_proxy& operator=(const fft_fwd_proxy&);
};

template<typename T_SrcMat,typename T_FftIfc> 
struct fft_inv_proxy
 : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
{
  typedef DenseIndex Index;

  fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}

  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;

  Index rows() const { return m_src.rows(); }
  Index cols() const { return m_src.cols(); }
protected:
  const T_SrcMat & m_src;
  T_FftIfc & m_ifc;
  Index m_nfft;
private:
  fft_inv_proxy& operator=(const fft_inv_proxy&);
};


template <typename T_Scalar,
         typename T_Impl=default_fft_impl<T_Scalar> >
class FFT
{
  public:
    typedef T_Impl impl_type;
    typedef DenseIndex Index;
    typedef typename impl_type::Scalar Scalar;
    typedef typename impl_type::Complex Complex;

    enum Flag {
      Default=0, // goof proof
      Unscaled=1,
      HalfSpectrum=2,
      // SomeOtherSpeedOptimization=4
      Speedy=32767
    };

    FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }

    inline
    bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}

    inline
    void SetFlag(Flag f) { m_flag |= (int)f;}

    inline
    void ClearFlag(Flag f) { m_flag &= (~(int)f);}

    inline
    void fwd( Complex * dst, const Scalar * src, Index nfft)
    {
        m_impl.fwd(dst,src,static_cast<int>(nfft));
        if ( HasFlag(HalfSpectrum) == false)
          ReflectSpectrum(dst,nfft);
    }

    inline
    void fwd( Complex * dst, const Complex * src, Index nfft)
    {
        m_impl.fwd(dst,src,static_cast<int>(nfft));
    }

    /*
    inline 
    void fwd2(Complex * dst, const Complex * src, int n0,int n1)
    {
      m_impl.fwd2(dst,src,n0,n1);
    }
    */

    template <typename _Input>
    inline
    void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) 
    {
      if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
        dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
      else
        dst.resize(src.size());
      fwd(&dst[0],&src[0],src.size());
    }

    template<typename InputDerived, typename ComplexDerived>
    inline
    void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      typedef typename ComplexDerived::Scalar dst_type;
      typedef typename InputDerived::Scalar src_type;
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
      EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)

      if (nfft<1)
        nfft = src.size();

      if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
        dst.derived().resize( (nfft>>1)+1);
      else
        dst.derived().resize(nfft);

      if ( src.innerStride() != 1 || src.size() < nfft ) {
        Matrix<src_type,1,Dynamic> tmp;
        if (src.size()<nfft) {
          tmp.setZero(nfft);
          tmp.block(0,0,src.size(),1 ) = src;
        }else{
          tmp = src;
        }
        fwd( &dst[0],&tmp[0],nfft );
      }else{
        fwd( &dst[0],&src[0],nfft );
      }
    }
 
    template<typename InputDerived>
    inline
    fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
    fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
    }

    template<typename InputDerived>
    inline
    fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
    inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
    }

    inline
    void inv( Complex * dst, const Complex * src, Index nfft)
    {
      m_impl.inv( dst,src,static_cast<int>(nfft) );
      if ( HasFlag( Unscaled ) == false)
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
    }

    inline
    void inv( Scalar * dst, const Complex * src, Index nfft)
    {
      m_impl.inv( dst,src,static_cast<int>(nfft) );
      if ( HasFlag( Unscaled ) == false)
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
    }

    template<typename OutputDerived, typename ComplexDerived>
    inline
    void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
    {
      typedef typename ComplexDerived::Scalar src_type;
      typedef typename OutputDerived::Scalar dst_type;
      const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
      EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)

      if (nfft<1) { //automatic FFT size determination
        if ( realfft && HasFlag(HalfSpectrum) ) 
          nfft = 2*(src.size()-1); //assume even fft size
        else
          nfft = src.size();
      }
      dst.derived().resize( nfft );

      // check for nfft that does not fit the input data size
      Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
        ? ( (nfft/2+1) - src.size() )
        : ( nfft - src.size() );

      if ( src.innerStride() != 1 || resize_input ) {
        // if the vector is strided, then we need to copy it to a packed temporary
        Matrix<src_type,1,Dynamic> tmp;
        if ( resize_input ) {
          size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
          tmp.setZero(src.size() + resize_input);
          if ( realfft && HasFlag(HalfSpectrum) ) {
            // pad at the Nyquist bin
            tmp.head(ncopy) = src.head(ncopy);
            tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
          }else{
            size_t nhead,ntail;
            nhead = 1+ncopy/2-1; // range  [0:pi)
            ntail = ncopy/2-1;   // range (-pi:0)
            tmp.head(nhead) = src.head(nhead);
            tmp.tail(ntail) = src.tail(ntail);
            if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
              tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5);
            }else{ // expanding -- split the old Nyquist bin into two halves
              tmp(nhead) = src(nhead) * src_type(.5);
              tmp(tmp.size()-nhead) = tmp(nhead);
            }
          }
        }else{
          tmp = src;
        }
        inv( &dst[0],&tmp[0], nfft);
      }else{
        inv( &dst[0],&src[0], nfft);
      }
    }

    template <typename _Output>
    inline
    void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
    {
      if (nfft<1)
        nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
      dst.resize( nfft );
      inv( &dst[0],&src[0],nfft);
    }


    /*
    // TODO: multi-dimensional FFTs
    inline 
    void inv2(Complex * dst, const Complex * src, int n0,int n1)
    {
      m_impl.inv2(dst,src,n0,n1);
      if ( HasFlag( Unscaled ) == false)
          scale(dst,1./(n0*n1),n0*n1);
    }
  */

    inline
    impl_type & impl() {return m_impl;}
  private:

    template <typename T_Data>
    inline
    void scale(T_Data * x,Scalar s,Index nx)
    {
#if 1
      for (int k=0;k<nx;++k)
        *x++ *= s;
#else
      if ( ((ptrdiff_t)x) & 15 )
        Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
      else
        Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
         //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
#endif  
    }

    inline
    void ReflectSpectrum(Complex * freq, Index nfft)
    {
      // create the implicit right-half spectrum (conjugate-mirror of the left-half)
      Index nhbins=(nfft>>1)+1;
      for (Index k=nhbins;k < nfft; ++k )
        freq[k] = conj(freq[nfft-k]);
    }

    impl_type m_impl;
    int m_flag;
};

template<typename T_SrcMat,typename T_FftIfc> 
template<typename T_DestMat> inline 
void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
{
    m_ifc.fwd( dst, m_src, m_nfft);
}

template<typename T_SrcMat,typename T_FftIfc> 
template<typename T_DestMat> inline 
void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
{
    m_ifc.inv( dst, m_src, m_nfft);
}

}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */