summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
blob: 98f9f647df170b0086437a367ed81bc1fe7611c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_EULERSYSTEM_H
#define EIGEN_EULERSYSTEM_H

namespace Eigen
{
  // Forward declerations
  template <typename _Scalar, class _System>
  class EulerAngles;
  
  namespace internal
  {
    // TODO: Check if already exists on the rest API
    template <int Num, bool IsPositive = (Num > 0)>
    struct Abs
    {
      enum { value = Num };
    };
  
    template <int Num>
    struct Abs<Num, false>
    {
      enum { value = -Num };
    };

    template <int Axis>
    struct IsValidAxis
    {
      enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
    };
  }
  
  #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
  
  /** \brief Representation of a fixed signed rotation axis for EulerSystem.
    *
    * \ingroup EulerAngles_Module
    *
    * Values here represent:
    *  - The axis of the rotation: X, Y or Z.
    *  - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
    *
    * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
    *
    * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
    */
  enum EulerAxis
  {
    EULER_X = 1, /*!< the X axis */
    EULER_Y = 2, /*!< the Y axis */
    EULER_Z = 3  /*!< the Z axis */
  };
  
  /** \class EulerSystem
    *
    * \ingroup EulerAngles_Module
    *
    * \brief Represents a fixed Euler rotation system.
    *
    * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
    *
    * You can use this class to get two things:
    *  - Build an Euler system, and then pass it as a template parameter to EulerAngles.
    *  - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
    *
    * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
    * This meta-class store constantly those signed axes. (see \ref EulerAxis)
    *
    * ### Types of Euler systems ###
    *
    * All and only valid 3 dimension Euler rotation over standard
    *  signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
    *  - all axes X, Y, Z in each valid order (see below what order is valid)
    *  - rotation over the axis is supported both over the positive and negative directions.
    *  - both tait bryan and proper/classic Euler angles (i.e. the opposite).
    *
    * Since EulerSystem support both positive and negative directions,
    *  you may call this rotation distinction in other names:
    *  - _right handed_ or _left handed_
    *  - _counterclockwise_ or _clockwise_
    *
    * Notice all axed combination are valid, and would trigger a static assertion.
    * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
    * This yield two and only two classes:
    *  - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
    *  - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
    *     and the second is different, e.g. {X,Y,X}
    *
    * ### Intrinsic vs extrinsic Euler systems ###
    *
    * Only intrinsic Euler systems are supported for simplicity.
    *  If you want to use extrinsic Euler systems,
    *   just use the equal intrinsic opposite order for axes and angles.
    *  I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
    *
    * ### Convenient user typedefs ###
    *
    * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
    *  in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
    *
    * ### Additional reading ###
    *
    * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
    *
    * \tparam _AlphaAxis the first fixed EulerAxis
    *
    * \tparam _AlphaAxis the second fixed EulerAxis
    *
    * \tparam _AlphaAxis the third fixed EulerAxis
    */
  template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
  class EulerSystem
  {
    public:
    // It's defined this way and not as enum, because I think
    //  that enum is not guerantee to support negative numbers
    
    /** The first rotation axis */
    static const int AlphaAxis = _AlphaAxis;
    
    /** The second rotation axis */
    static const int BetaAxis = _BetaAxis;
    
    /** The third rotation axis */
    static const int GammaAxis = _GammaAxis;

    enum
    {
      AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
      BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
      GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
      
      IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
      IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
      IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
      
      IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
      IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */

      IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
    };
    
    private:
    
    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
      ALPHA_AXIS_IS_INVALID);
      
    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
      BETA_AXIS_IS_INVALID);
      
    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
      GAMMA_AXIS_IS_INVALID);
      
    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
      ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
      
    EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
      BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);

    enum
    {
      // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system. 
      // They are used in this class converters.
      // They are always different from each other, and their possible values are: 0, 1, or 2.
      I = AlphaAxisAbs - 1,
      J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
      K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
    };
    
    // TODO: Get @mat parameter in form that avoids double evaluation.
    template <typename Derived>
    static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
    {
      using std::atan2;
      using std::sin;
      using std::cos;
      
      typedef typename Derived::Scalar Scalar;
      typedef Matrix<Scalar,2,1> Vector2;
      
      res[0] = atan2(mat(J,K), mat(K,K));
      Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
      if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
        if(res[0] > Scalar(0)) {
          res[0] -= Scalar(EIGEN_PI);
        }
        else {
          res[0] += Scalar(EIGEN_PI);
        }
        res[1] = atan2(-mat(I,K), -c2);
      }
      else
        res[1] = atan2(-mat(I,K), c2);
      Scalar s1 = sin(res[0]);
      Scalar c1 = cos(res[0]);
      res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
    }

    template <typename Derived>
    static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
    {
      using std::atan2;
      using std::sin;
      using std::cos;

      typedef typename Derived::Scalar Scalar;
      typedef Matrix<Scalar,2,1> Vector2;
      
      res[0] = atan2(mat(J,I), mat(K,I));
      if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
      {
        if(res[0] > Scalar(0)) {
          res[0] -= Scalar(EIGEN_PI);
        }
        else {
          res[0] += Scalar(EIGEN_PI);
        }
        Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
        res[1] = -atan2(s2, mat(I,I));
      }
      else
      {
        Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
        res[1] = atan2(s2, mat(I,I));
      }

      // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
      // we can compute their respective rotation, and apply its inverse to M. Since the result must
      // be a rotation around x, we have:
      //
      //  c2  s1.s2 c1.s2                   1  0   0 
      //  0   c1    -s1       *    M    =   0  c3  s3
      //  -s2 s1.c2 c1.c2                   0 -s3  c3
      //
      //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3

      Scalar s1 = sin(res[0]);
      Scalar c1 = cos(res[0]);
      res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
    }
    
    template<typename Scalar>
    static void CalcEulerAngles(
      EulerAngles<Scalar, EulerSystem>& res,
      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
    {
      CalcEulerAngles(res, mat, false, false, false);
    }
    
    template<
      bool PositiveRangeAlpha,
      bool PositiveRangeBeta,
      bool PositiveRangeGamma,
      typename Scalar>
    static void CalcEulerAngles(
      EulerAngles<Scalar, EulerSystem>& res,
      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
    {
      CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
    }
    
    template<typename Scalar>
    static void CalcEulerAngles(
      EulerAngles<Scalar, EulerSystem>& res,
      const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
      bool PositiveRangeAlpha,
      bool PositiveRangeBeta,
      bool PositiveRangeGamma)
    {
      CalcEulerAngles_imp(
        res.angles(), mat,
        typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());

      if (IsAlphaOpposite == IsOdd)
        res.alpha() = -res.alpha();
        
      if (IsBetaOpposite == IsOdd)
        res.beta() = -res.beta();
        
      if (IsGammaOpposite == IsOdd)
        res.gamma() = -res.gamma();
      
      // Saturate results to the requested range
      if (PositiveRangeAlpha && (res.alpha() < 0))
        res.alpha() += Scalar(2 * EIGEN_PI);
      
      if (PositiveRangeBeta && (res.beta() < 0))
        res.beta() += Scalar(2 * EIGEN_PI);
      
      if (PositiveRangeGamma && (res.gamma() < 0))
        res.gamma() += Scalar(2 * EIGEN_PI);
    }
    
    template <typename _Scalar, class _System>
    friend class Eigen::EulerAngles;
  };

#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
  /** \ingroup EulerAngles_Module */ \
  typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
  
  EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
  EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
  EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
  EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
  
  EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
  EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
  EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
  EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
  
  EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
  EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
  EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
  EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
}

#endif // EIGEN_EULERSYSTEM_H