summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
blob: bae04fc30c87953c92367533c415aaab6fd0a01d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_DGMRES_H
#define EIGEN_DGMRES_H

#include <Eigen/Eigenvalues>

namespace Eigen { 
  
template< typename _MatrixType,
          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class DGMRES;

namespace internal {

template< typename _MatrixType, typename _Preconditioner>
struct traits<DGMRES<_MatrixType,_Preconditioner> >
{
  typedef _MatrixType MatrixType;
  typedef _Preconditioner Preconditioner;
};

/** \brief Computes a permutation vector to have a sorted sequence
  * \param vec The vector to reorder.
  * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
  * \param ncut Put  the ncut smallest elements at the end of the vector
  * WARNING This is an expensive sort, so should be used only 
  * for small size vectors
  * TODO Use modified QuickSplit or std::nth_element to get the smallest values 
  */
template <typename VectorType, typename IndexType>
void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
{
  eigen_assert(vec.size() == perm.size());
  typedef typename IndexType::Scalar Index; 
  bool flag; 
  for (Index k  = 0; k < ncut; k++)
  {
    flag = false;
    for (Index j = 0; j < vec.size()-1; j++)
    {
      if ( vec(perm(j)) < vec(perm(j+1)) )
      {
        std::swap(perm(j),perm(j+1)); 
        flag = true;
      }
      if (!flag) break; // The vector is in sorted order
    }
  }
}

}
/**
 * \ingroup IterativeLInearSolvers_Module
 * \brief A Restarted GMRES with deflation.
 * This class implements a modification of the GMRES solver for
 * sparse linear systems. The basis is built with modified 
 * Gram-Schmidt. At each restart, a few approximated eigenvectors
 * corresponding to the smallest eigenvalues are used to build a
 * preconditioner for the next cycle. This preconditioner 
 * for deflation can be combined with any other preconditioner, 
 * the IncompleteLUT for instance. The preconditioner is applied 
 * at right of the matrix and the combination is multiplicative.
 * 
 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
 * Typical usage :
 * \code
 * SparseMatrix<double> A;
 * VectorXd x, b; 
 * //Fill A and b ...
 * DGMRES<SparseMatrix<double> > solver;
 * solver.set_restart(30); // Set restarting value
 * solver.setEigenv(1); // Set the number of eigenvalues to deflate
 * solver.compute(A);
 * x = solver.solve(b);
 * \endcode
 * 
 * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
 *
 * References :
 * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
 *  Algebraic Solvers for Linear Systems Arising from Compressible
 *  Flows, Computers and Fluids, In Press,
 *  http://dx.doi.org/10.1016/j.compfluid.2012.03.023   
 * [2] K. Burrage and J. Erhel, On the performance of various 
 * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
 * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES 
 *  preconditioned by deflation,J. Computational and Applied
 *  Mathematics, 69(1996), 303-318. 

 * 
 */
template< typename _MatrixType, typename _Preconditioner>
class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
{
    typedef IterativeSolverBase<DGMRES> Base;
    using Base::matrix;
    using Base::m_error;
    using Base::m_iterations;
    using Base::m_info;
    using Base::m_isInitialized;
    using Base::m_tolerance; 
  public:
    using Base::_solve_impl;
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::StorageIndex StorageIndex;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef _Preconditioner Preconditioner;
    typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 
    typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix; 
    typedef Matrix<Scalar,Dynamic,1> DenseVector;
    typedef Matrix<RealScalar,Dynamic,1> DenseRealVector; 
    typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
 
    
  /** Default constructor. */
  DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  template<typename MatrixDerived>
  explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}

  ~DGMRES() {}
  
  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve_with_guess_impl(const Rhs& b, Dest& x) const
  {    
    bool failed = false;
    for(int j=0; j<b.cols(); ++j)
    {
      m_iterations = Base::maxIterations();
      m_error = Base::m_tolerance;
      
      typename Dest::ColXpr xj(x,j);
      dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
    }
    m_info = failed ? NumericalIssue
           : m_error <= Base::m_tolerance ? Success
           : NoConvergence;
    m_isInitialized = true;
  }

  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
  {
    x = b;
    _solve_with_guess_impl(b,x.derived());
  }
  /** 
   * Get the restart value
    */
  int restart() { return m_restart; }
  
  /** 
   * Set the restart value (default is 30)  
   */
  void set_restart(const int restart) { m_restart=restart; }
  
  /** 
   * Set the number of eigenvalues to deflate at each restart 
   */
  void setEigenv(const int neig) 
  {
    m_neig = neig;
    if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
  }
  
  /** 
   * Get the size of the deflation subspace size
   */ 
  int deflSize() {return m_r; }
  
  /**
   * Set the maximum size of the deflation subspace
   */
  void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
  
  protected:
    // DGMRES algorithm 
    template<typename Rhs, typename Dest>
    void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
    // Perform one cycle of GMRES
    template<typename Dest>
    int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const; 
    // Compute data to use for deflation 
    int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
    // Apply deflation to a vector
    template<typename RhsType, typename DestType>
    int dgmresApplyDeflation(const RhsType& In, DestType& Out) const; 
    ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
    ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
    // Init data for deflation
    void dgmresInitDeflation(Index& rows) const; 
    mutable DenseMatrix m_V; // Krylov basis vectors
    mutable DenseMatrix m_H; // Hessenberg matrix 
    mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
    mutable Index m_restart; // Maximum size of the Krylov subspace
    mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace 
    mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
    mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
    mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
    mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
    mutable int m_r; // Current number of deflated eigenvalues, size of m_U
    mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
    mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
    mutable bool m_isDeflAllocated;
    mutable bool m_isDeflInitialized;
    
    //Adaptive strategy 
    mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
    mutable bool m_force; // Force the use of deflation at each restart
    
}; 
/** 
 * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt, 
 * 
 * A right preconditioner is used combined with deflation.
 * 
 */
template< typename _MatrixType, typename _Preconditioner>
template<typename Rhs, typename Dest>
void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
              const Preconditioner& precond) const
{
  //Initialization
  int n = mat.rows(); 
  DenseVector r0(n); 
  int nbIts = 0; 
  m_H.resize(m_restart+1, m_restart);
  m_Hes.resize(m_restart, m_restart);
  m_V.resize(n,m_restart+1);
  //Initial residual vector and intial norm
  x = precond.solve(x);
  r0 = rhs - mat * x; 
  RealScalar beta = r0.norm(); 
  RealScalar normRhs = rhs.norm();
  m_error = beta/normRhs; 
  if(m_error < m_tolerance)
    m_info = Success; 
  else
    m_info = NoConvergence;
  
  // Iterative process
  while (nbIts < m_iterations && m_info == NoConvergence)
  {
    dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts); 
    
    // Compute the new residual vector for the restart 
    if (nbIts < m_iterations && m_info == NoConvergence)
      r0 = rhs - mat * x; 
  }
} 

/**
 * \brief Perform one restart cycle of DGMRES
 * \param mat The coefficient matrix
 * \param precond The preconditioner
 * \param x the new approximated solution
 * \param r0 The initial residual vector
 * \param beta The norm of the residual computed so far
 * \param normRhs The norm of the right hand side vector
 * \param nbIts The number of iterations
 */
template< typename _MatrixType, typename _Preconditioner>
template<typename Dest>
int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
{
  //Initialization 
  DenseVector g(m_restart+1); // Right hand side of the least square problem
  g.setZero();  
  g(0) = Scalar(beta); 
  m_V.col(0) = r0/beta; 
  m_info = NoConvergence; 
  std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
  int it = 0; // Number of inner iterations 
  int n = mat.rows();
  DenseVector tv1(n), tv2(n);  //Temporary vectors
  while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
  {    
    // Apply preconditioner(s) at right
    if (m_isDeflInitialized )
    {
      dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
      tv2 = precond.solve(tv1); 
    }
    else
    {
      tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
    }
    tv1 = mat * tv2; 
   
    // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
    Scalar coef; 
    for (int i = 0; i <= it; ++i)
    { 
      coef = tv1.dot(m_V.col(i));
      tv1 = tv1 - coef * m_V.col(i); 
      m_H(i,it) = coef; 
      m_Hes(i,it) = coef; 
    }
    // Normalize the vector 
    coef = tv1.norm(); 
    m_V.col(it+1) = tv1/coef;
    m_H(it+1, it) = coef;
//     m_Hes(it+1,it) = coef; 
    
    // FIXME Check for happy breakdown 
    
    // Update Hessenberg matrix with Givens rotations
    for (int i = 1; i <= it; ++i) 
    {
      m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
    }
    // Compute the new plane rotation 
    gr[it].makeGivens(m_H(it, it), m_H(it+1,it)); 
    // Apply the new rotation
    m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
    g.applyOnTheLeft(it,it+1, gr[it].adjoint()); 
    
    beta = std::abs(g(it+1));
    m_error = beta/normRhs; 
    // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
    it++; nbIts++; 
    
    if (m_error < m_tolerance)
    {
      // The method has converged
      m_info = Success;
      break;
    }
  }
  
  // Compute the new coefficients by solving the least square problem
//   it++;
  //FIXME  Check first if the matrix is singular ... zero diagonal
  DenseVector nrs(m_restart); 
  nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it)); 
  
  // Form the new solution
  if (m_isDeflInitialized)
  {
    tv1 = m_V.leftCols(it) * nrs; 
    dgmresApplyDeflation(tv1, tv2); 
    x = x + precond.solve(tv2);
  }
  else
    x = x + precond.solve(m_V.leftCols(it) * nrs); 
  
  // Go for a new cycle and compute data for deflation
  if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
    dgmresComputeDeflationData(mat, precond, it, m_neig); 
  return 0; 
  
}


template< typename _MatrixType, typename _Preconditioner>
void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
{
  m_U.resize(rows, m_maxNeig);
  m_MU.resize(rows, m_maxNeig); 
  m_T.resize(m_maxNeig, m_maxNeig);
  m_lambdaN = 0.0; 
  m_isDeflAllocated = true; 
}

template< typename _MatrixType, typename _Preconditioner>
inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
{
  return schurofH.matrixT().diagonal();
}

template< typename _MatrixType, typename _Preconditioner>
inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
{
  typedef typename MatrixType::Index Index;
  const DenseMatrix& T = schurofH.matrixT();
  Index it = T.rows();
  ComplexVector eig(it);
  Index j = 0;
  while (j < it-1)
  {
    if (T(j+1,j) ==Scalar(0))
    {
      eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); 
      j++; 
    }
    else
    {
      eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j)); 
      eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
      j++;
    }
  }
  if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
  return eig;
}

template< typename _MatrixType, typename _Preconditioner>
int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
{
  // First, find the Schur form of the Hessenberg matrix H
  typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH; 
  bool computeU = true;
  DenseMatrix matrixQ(it,it); 
  matrixQ.setIdentity();
  schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU); 
  
  ComplexVector eig(it);
  Matrix<StorageIndex,Dynamic,1>perm(it);
  eig = this->schurValues(schurofH);
  
  // Reorder the absolute values of Schur values
  DenseRealVector modulEig(it); 
  for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j)); 
  perm.setLinSpaced(it,0,it-1);
  internal::sortWithPermutation(modulEig, perm, neig);
  
  if (!m_lambdaN)
  {
    m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
  }
  //Count the real number of extracted eigenvalues (with complex conjugates)
  int nbrEig = 0; 
  while (nbrEig < neig)
  {
    if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++; 
    else nbrEig += 2; 
  }
  // Extract the  Schur vectors corresponding to the smallest Ritz values
  DenseMatrix Sr(it, nbrEig); 
  Sr.setZero();
  for (int j = 0; j < nbrEig; j++)
  {
    Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
  }
  
  // Form the Schur vectors of the initial matrix using the Krylov basis
  DenseMatrix X; 
  X = m_V.leftCols(it) * Sr;
  if (m_r)
  {
   // Orthogonalize X against m_U using modified Gram-Schmidt
   for (int j = 0; j < nbrEig; j++)
     for (int k =0; k < m_r; k++)
      X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k); 
  }
  
  // Compute m_MX = A * M^-1 * X
  Index m = m_V.rows();
  if (!m_isDeflAllocated) 
    dgmresInitDeflation(m); 
  DenseMatrix MX(m, nbrEig);
  DenseVector tv1(m);
  for (int j = 0; j < nbrEig; j++)
  {
    tv1 = mat * X.col(j);
    MX.col(j) = precond.solve(tv1);
  }
  
  //Update m_T = [U'MU U'MX; X'MU X'MX]
  m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX; 
  if(m_r)
  {
    m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX; 
    m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
  }
  
  // Save X into m_U and m_MX in m_MU
  for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
  for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
  // Increase the size of the invariant subspace
  m_r += nbrEig; 
  
  // Factorize m_T into m_luT
  m_luT.compute(m_T.topLeftCorner(m_r, m_r));
  
  //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
  m_isDeflInitialized = true;
  return 0; 
}
template<typename _MatrixType, typename _Preconditioner>
template<typename RhsType, typename DestType>
int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
{
  DenseVector x1 = m_U.leftCols(m_r).transpose() * x; 
  y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
  return 0; 
}

} // end namespace Eigen
#endif