summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
blob: a1f54ed359b037f4fd99a2cf134306ae77fc104f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Guillaume Saupin <guillaume.saupin@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SKYLINEINPLACELU_H
#define EIGEN_SKYLINEINPLACELU_H

namespace Eigen { 

/** \ingroup Skyline_Module
 *
 * \class SkylineInplaceLU
 *
 * \brief Inplace LU decomposition of a skyline matrix and associated features
 *
 * \param MatrixType the type of the matrix of which we are computing the LU factorization
 *
 */
template<typename MatrixType>
class SkylineInplaceLU {
protected:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;

public:

    /** Creates a LU object and compute the respective factorization of \a matrix using
     * flags \a flags. */
    SkylineInplaceLU(MatrixType& matrix, int flags = 0)
    : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0), m_lu(matrix) {
        m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
        m_lu.IsRowMajor ? computeRowMajor() : compute();
    }

    /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
     *
     * Setting a value greater than zero speeds up computation, and yields to an imcomplete
     * factorization with fewer non zero coefficients. Such approximate factors are especially
     * useful to initialize an iterative solver.
     *
     * Note that the exact meaning of this parameter might depends on the actual
     * backend. Moreover, not all backends support this feature.
     *
     * \sa precision() */
    void setPrecision(RealScalar v) {
        m_precision = v;
    }

    /** \returns the current precision.
     *
     * \sa setPrecision() */
    RealScalar precision() const {
        return m_precision;
    }

    /** Sets the flags. Possible values are:
     *  - CompleteFactorization
     *  - IncompleteFactorization
     *  - MemoryEfficient
     *  - one of the ordering methods
     *  - etc...
     *
     * \sa flags() */
    void setFlags(int f) {
        m_flags = f;
    }

    /** \returns the current flags */
    int flags() const {
        return m_flags;
    }

    void setOrderingMethod(int m) {
        m_flags = m;
    }

    int orderingMethod() const {
        return m_flags;
    }

    /** Computes/re-computes the LU factorization */
    void compute();
    void computeRowMajor();

    /** \returns the lower triangular matrix L */
    //inline const MatrixType& matrixL() const { return m_matrixL; }

    /** \returns the upper triangular matrix U */
    //inline const MatrixType& matrixU() const { return m_matrixU; }

    template<typename BDerived, typename XDerived>
    bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
            const int transposed = 0) const;

    /** \returns true if the factorization succeeded */
    inline bool succeeded(void) const {
        return m_succeeded;
    }

protected:
    RealScalar m_precision;
    int m_flags;
    mutable int m_status;
    bool m_succeeded;
    MatrixType& m_lu;
};

/** Computes / recomputes the in place LU decomposition of the SkylineInplaceLU.
 * using the default algorithm.
 */
template<typename MatrixType>
//template<typename _Scalar>
void SkylineInplaceLU<MatrixType>::compute() {
    const size_t rows = m_lu.rows();
    const size_t cols = m_lu.cols();

    eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
    eigen_assert(!m_lu.IsRowMajor && "LU decomposition does not work with rowMajor Storage");

    for (Index row = 0; row < rows; row++) {
        const double pivot = m_lu.coeffDiag(row);

        //Lower matrix Columns update
        const Index& col = row;
        for (typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
            lIt.valueRef() /= pivot;
        }

        //Upper matrix update -> contiguous memory access
        typename MatrixType::InnerLowerIterator lIt(m_lu, col);
        for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
            typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
            typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
            const double coef = lIt.value();

            uItPivot += (rrow - row - 1);

            //update upper part  -> contiguous memory access
            for (++uItPivot; uIt && uItPivot;) {
                uIt.valueRef() -= uItPivot.value() * coef;

                ++uIt;
                ++uItPivot;
            }
            ++lIt;
        }

        //Upper matrix update -> non contiguous memory access
        typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
        for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
            typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
            const double coef = lIt3.value();

            //update lower part ->  non contiguous memory access
            for (Index i = 0; i < rrow - row - 1; i++) {
                m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
                ++uItPivot;
            }
            ++lIt3;
        }
        //update diag -> contiguous
        typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
        for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {

            typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
            typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
            const double coef = lIt2.value();

            uItPivot += (rrow - row - 1);
            m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
            ++lIt2;
        }
    }
}

template<typename MatrixType>
void SkylineInplaceLU<MatrixType>::computeRowMajor() {
    const size_t rows = m_lu.rows();
    const size_t cols = m_lu.cols();

    eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
    eigen_assert(m_lu.IsRowMajor && "You're trying to apply rowMajor decomposition on a ColMajor matrix !");

    for (Index row = 0; row < rows; row++) {
        typename MatrixType::InnerLowerIterator llIt(m_lu, row);


        for (Index col = llIt.col(); col < row; col++) {
            if (m_lu.coeffExistLower(row, col)) {
                const double diag = m_lu.coeffDiag(col);

                typename MatrixType::InnerLowerIterator lIt(m_lu, row);
                typename MatrixType::InnerUpperIterator uIt(m_lu, col);


                const Index offset = lIt.col() - uIt.row();


                Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();

                //#define VECTORIZE
#ifdef VECTORIZE
                Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
                Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);


                Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
#else
                if (offset > 0) //Skip zero value of lIt
                    uIt += offset;
                else //Skip zero values of uIt
                    lIt += -offset;
                Scalar newCoeff = m_lu.coeffLower(row, col);

                for (Index k = 0; k < stop; ++k) {
                    const Scalar tmp = newCoeff;
                    newCoeff = tmp - lIt.value() * uIt.value();
                    ++lIt;
                    ++uIt;
                }
#endif

                m_lu.coeffRefLower(row, col) = newCoeff / diag;
            }
        }

        //Upper matrix update
        const Index col = row;
        typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
        for (Index rrow = uuIt.row(); rrow < col; rrow++) {

            typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
            typename MatrixType::InnerUpperIterator uIt(m_lu, col);
            const Index offset = lIt.col() - uIt.row();

            Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();

#ifdef VECTORIZE
            Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
            Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);

            Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
#else
            if (offset > 0) //Skip zero value of lIt
                uIt += offset;
            else //Skip zero values of uIt
                lIt += -offset;
            Scalar newCoeff = m_lu.coeffUpper(rrow, col);
            for (Index k = 0; k < stop; ++k) {
                const Scalar tmp = newCoeff;
                newCoeff = tmp - lIt.value() * uIt.value();

                ++lIt;
                ++uIt;
            }
#endif
            m_lu.coeffRefUpper(rrow, col) = newCoeff;
        }


        //Diag matrix update
        typename MatrixType::InnerLowerIterator lIt(m_lu, row);
        typename MatrixType::InnerUpperIterator uIt(m_lu, row);

        const Index offset = lIt.col() - uIt.row();


        Index stop = offset > 0 ? lIt.size() : uIt.size();
#ifdef VECTORIZE
        Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
        Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
        Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
#else
        if (offset > 0) //Skip zero value of lIt
            uIt += offset;
        else //Skip zero values of uIt
            lIt += -offset;
        Scalar newCoeff = m_lu.coeffDiag(row);
        for (Index k = 0; k < stop; ++k) {
            const Scalar tmp = newCoeff;
            newCoeff = tmp - lIt.value() * uIt.value();
            ++lIt;
            ++uIt;
        }
#endif
        m_lu.coeffRefDiag(row) = newCoeff;
    }
}

/** Computes *x = U^-1 L^-1 b
 *
 * If \a transpose is set to SvTranspose or SvAdjoint, the solution
 * of the transposed/adjoint system is computed instead.
 *
 * Not all backends implement the solution of the transposed or
 * adjoint system.
 */
template<typename MatrixType>
template<typename BDerived, typename XDerived>
bool SkylineInplaceLU<MatrixType>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const {
    const size_t rows = m_lu.rows();
    const size_t cols = m_lu.cols();


    for (Index row = 0; row < rows; row++) {
        x->coeffRef(row) = b.coeff(row);
        Scalar newVal = x->coeff(row);
        typename MatrixType::InnerLowerIterator lIt(m_lu, row);

        Index col = lIt.col();
        while (lIt.col() < row) {

            newVal -= x->coeff(col++) * lIt.value();
            ++lIt;
        }

        x->coeffRef(row) = newVal;
    }


    for (Index col = rows - 1; col > 0; col--) {
        x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);

        const Scalar x_col = x->coeff(col);

        typename MatrixType::InnerUpperIterator uIt(m_lu, col);
        uIt += uIt.size()-1;


        while (uIt) {
            x->coeffRef(uIt.row()) -= x_col * uIt.value();
            //TODO : introduce --operator
            uIt += -1;
        }


    }
    x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);

    return true;
}

} // end namespace Eigen

#endif // EIGEN_SKYLINELU_H