1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_MARKET_IO_H
#define EIGEN_SPARSE_MARKET_IO_H
#include <iostream>
namespace Eigen {
namespace internal
{
template <typename Scalar>
inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, Scalar& value)
{
line >> i >> j >> value;
i--;
j--;
if(i>=0 && j>=0 && i<M && j<N)
{
return true;
}
else
return false;
}
template <typename Scalar>
inline bool GetMarketLine (std::stringstream& line, Index& M, Index& N, Index& i, Index& j, std::complex<Scalar>& value)
{
Scalar valR, valI;
line >> i >> j >> valR >> valI;
i--;
j--;
if(i>=0 && j>=0 && i<M && j<N)
{
value = std::complex<Scalar>(valR, valI);
return true;
}
else
return false;
}
template <typename RealScalar>
inline void GetVectorElt (const std::string& line, RealScalar& val)
{
std::istringstream newline(line);
newline >> val;
}
template <typename RealScalar>
inline void GetVectorElt (const std::string& line, std::complex<RealScalar>& val)
{
RealScalar valR, valI;
std::istringstream newline(line);
newline >> valR >> valI;
val = std::complex<RealScalar>(valR, valI);
}
template<typename Scalar>
inline void putMarketHeader(std::string& header,int sym)
{
header= "%%MatrixMarket matrix coordinate ";
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
{
header += " complex";
if(sym == Symmetric) header += " symmetric";
else if (sym == SelfAdjoint) header += " Hermitian";
else header += " general";
}
else
{
header += " real";
if(sym == Symmetric) header += " symmetric";
else header += " general";
}
}
template<typename Scalar>
inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
{
out << row << " "<< col << " " << value << "\n";
}
template<typename Scalar>
inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
{
out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
}
template<typename Scalar>
inline void putVectorElt(Scalar value, std::ofstream& out)
{
out << value << "\n";
}
template<typename Scalar>
inline void putVectorElt(std::complex<Scalar> value, std::ofstream& out)
{
out << value.real << " " << value.imag()<< "\n";
}
} // end namepsace internal
inline bool getMarketHeader(const std::string& filename, int& sym, bool& iscomplex, bool& isvector)
{
sym = 0;
isvector = false;
std::ifstream in(filename.c_str(),std::ios::in);
if(!in)
return false;
std::string line;
// The matrix header is always the first line in the file
std::getline(in, line); eigen_assert(in.good());
std::stringstream fmtline(line);
std::string substr[5];
fmtline>> substr[0] >> substr[1] >> substr[2] >> substr[3] >> substr[4];
if(substr[2].compare("array") == 0) isvector = true;
if(substr[3].compare("complex") == 0) iscomplex = true;
if(substr[4].compare("symmetric") == 0) sym = Symmetric;
else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
return true;
}
template<typename SparseMatrixType>
bool loadMarket(SparseMatrixType& mat, const std::string& filename)
{
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::Index Index;
std::ifstream input(filename.c_str(),std::ios::in);
if(!input)
return false;
const int maxBuffersize = 2048;
char buffer[maxBuffersize];
bool readsizes = false;
typedef Triplet<Scalar,Index> T;
std::vector<T> elements;
Index M(-1), N(-1), NNZ(-1);
Index count = 0;
while(input.getline(buffer, maxBuffersize))
{
// skip comments
//NOTE An appropriate test should be done on the header to get the symmetry
if(buffer[0]=='%')
continue;
std::stringstream line(buffer);
if(!readsizes)
{
line >> M >> N >> NNZ;
if(M > 0 && N > 0 && NNZ > 0)
{
readsizes = true;
//std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
mat.resize(M,N);
mat.reserve(NNZ);
}
}
else
{
Index i(-1), j(-1);
Scalar value;
if( internal::GetMarketLine(line, M, N, i, j, value) )
{
++ count;
elements.push_back(T(i,j,value));
}
else
std::cerr << "Invalid read: " << i << "," << j << "\n";
}
}
mat.setFromTriplets(elements.begin(), elements.end());
if(count!=NNZ)
std::cerr << count << "!=" << NNZ << "\n";
input.close();
return true;
}
template<typename VectorType>
bool loadMarketVector(VectorType& vec, const std::string& filename)
{
typedef typename VectorType::Scalar Scalar;
std::ifstream in(filename.c_str(), std::ios::in);
if(!in)
return false;
std::string line;
int n(0), col(0);
do
{ // Skip comments
std::getline(in, line); eigen_assert(in.good());
} while (line[0] == '%');
std::istringstream newline(line);
newline >> n >> col;
eigen_assert(n>0 && col>0);
vec.resize(n);
int i = 0;
Scalar value;
while ( std::getline(in, line) && (i < n) ){
internal::GetVectorElt(line, value);
vec(i++) = value;
}
in.close();
if (i!=n){
std::cerr<< "Unable to read all elements from file " << filename << "\n";
return false;
}
return true;
}
template<typename SparseMatrixType>
bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
{
typedef typename SparseMatrixType::Scalar Scalar;
std::ofstream out(filename.c_str(),std::ios::out);
if(!out)
return false;
out.flags(std::ios_base::scientific);
out.precision(64);
std::string header;
internal::putMarketHeader<Scalar>(header, sym);
out << header << std::endl;
out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
int count = 0;
for(int j=0; j<mat.outerSize(); ++j)
for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
{
++ count;
internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
// out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
}
out.close();
return true;
}
template<typename VectorType>
bool saveMarketVector (const VectorType& vec, const std::string& filename)
{
typedef typename VectorType::Scalar Scalar;
std::ofstream out(filename.c_str(),std::ios::out);
if(!out)
return false;
out.flags(std::ios_base::scientific);
out.precision(64);
if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
out << "%%MatrixMarket matrix array complex general\n";
else
out << "%%MatrixMarket matrix array real general\n";
out << vec.size() << " "<< 1 << "\n";
for (int i=0; i < vec.size(); i++){
internal::putVectorElt(vec(i), out);
}
out.close();
return true;
}
} // end namespace Eigen
#endif // EIGEN_SPARSE_MARKET_IO_H
|