1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_USE_THREADS
#include "main.h"
#include <Eigen/CXX11/ThreadPool>
// Visual studio doesn't implement a rand_r() function since its
// implementation of rand() is already thread safe
int rand_reentrant(unsigned int* s) {
#ifdef EIGEN_COMP_MSVC_STRICT
EIGEN_UNUSED_VARIABLE(s);
return rand();
#else
return rand_r(s);
#endif
}
static void test_basic_eventcount()
{
MaxSizeVector<EventCount::Waiter> waiters(1);
waiters.resize(1);
EventCount ec(waiters);
EventCount::Waiter& w = waiters[0];
ec.Notify(false);
ec.Prewait(&w);
ec.Notify(true);
ec.CommitWait(&w);
ec.Prewait(&w);
ec.CancelWait(&w);
}
// Fake bounded counter-based queue.
struct TestQueue {
std::atomic<int> val_;
static const int kQueueSize = 10;
TestQueue() : val_() {}
~TestQueue() { VERIFY_IS_EQUAL(val_.load(), 0); }
bool Push() {
int val = val_.load(std::memory_order_relaxed);
for (;;) {
VERIFY_GE(val, 0);
VERIFY_LE(val, kQueueSize);
if (val == kQueueSize) return false;
if (val_.compare_exchange_weak(val, val + 1, std::memory_order_relaxed))
return true;
}
}
bool Pop() {
int val = val_.load(std::memory_order_relaxed);
for (;;) {
VERIFY_GE(val, 0);
VERIFY_LE(val, kQueueSize);
if (val == 0) return false;
if (val_.compare_exchange_weak(val, val - 1, std::memory_order_relaxed))
return true;
}
}
bool Empty() { return val_.load(std::memory_order_relaxed) == 0; }
};
const int TestQueue::kQueueSize;
// A number of producers send messages to a set of consumers using a set of
// fake queues. Ensure that it does not crash, consumers don't deadlock and
// number of blocked and unblocked threads match.
static void test_stress_eventcount()
{
const int kThreads = std::thread::hardware_concurrency();
static const int kEvents = 1 << 16;
static const int kQueues = 10;
MaxSizeVector<EventCount::Waiter> waiters(kThreads);
waiters.resize(kThreads);
EventCount ec(waiters);
TestQueue queues[kQueues];
std::vector<std::unique_ptr<std::thread>> producers;
for (int i = 0; i < kThreads; i++) {
producers.emplace_back(new std::thread([&ec, &queues]() {
unsigned int rnd = static_cast<unsigned int>(std::hash<std::thread::id>()(std::this_thread::get_id()));
for (int j = 0; j < kEvents; j++) {
unsigned idx = rand_reentrant(&rnd) % kQueues;
if (queues[idx].Push()) {
ec.Notify(false);
continue;
}
EIGEN_THREAD_YIELD();
j--;
}
}));
}
std::vector<std::unique_ptr<std::thread>> consumers;
for (int i = 0; i < kThreads; i++) {
consumers.emplace_back(new std::thread([&ec, &queues, &waiters, i]() {
EventCount::Waiter& w = waiters[i];
unsigned int rnd = static_cast<unsigned int>(std::hash<std::thread::id>()(std::this_thread::get_id()));
for (int j = 0; j < kEvents; j++) {
unsigned idx = rand_reentrant(&rnd) % kQueues;
if (queues[idx].Pop()) continue;
j--;
ec.Prewait(&w);
bool empty = true;
for (int q = 0; q < kQueues; q++) {
if (!queues[q].Empty()) {
empty = false;
break;
}
}
if (!empty) {
ec.CancelWait(&w);
continue;
}
ec.CommitWait(&w);
}
}));
}
for (int i = 0; i < kThreads; i++) {
producers[i]->join();
consumers[i]->join();
}
}
void test_cxx11_eventcount()
{
CALL_SUBTEST(test_basic_eventcount());
CALL_SUBTEST(test_stress_eventcount());
}
|