summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/test/cxx11_tensor_reduction_cuda.cu
blob: ec0669704e0915832d85ddde83fd340fb4256d37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_cuda
#define EIGEN_USE_GPU

#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>


template<typename Type, int DataLayout>
static void test_full_reductions() {

  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);

  const int num_rows = internal::random<int>(1024, 5*1024);
  const int num_cols = internal::random<int>(1024, 5*1024);

  Tensor<Type, 2, DataLayout> in(num_rows, num_cols);
  in.setRandom();

  Tensor<Type, 0, DataLayout> full_redux;
  full_redux = in.sum();

  std::size_t in_bytes = in.size() * sizeof(Type);
  std::size_t out_bytes = full_redux.size() * sizeof(Type);
  Type* gpu_in_ptr = static_cast<Type*>(gpu_device.allocate(in_bytes));
  Type* gpu_out_ptr = static_cast<Type*>(gpu_device.allocate(out_bytes));
  gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);

  TensorMap<Tensor<Type, 2, DataLayout> > in_gpu(gpu_in_ptr, num_rows, num_cols);
  TensorMap<Tensor<Type, 0, DataLayout> > out_gpu(gpu_out_ptr);

  out_gpu.device(gpu_device) = in_gpu.sum();

  Tensor<Type, 0, DataLayout> full_redux_gpu;
  gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
  gpu_device.synchronize();

  // Check that the CPU and GPU reductions return the same result.
  VERIFY_IS_APPROX(full_redux(), full_redux_gpu());

  gpu_device.deallocate(gpu_in_ptr);
  gpu_device.deallocate(gpu_out_ptr);
}

template<typename Type, int DataLayout>
static void test_first_dim_reductions() {
  int dim_x = 33;
  int dim_y = 1;
  int dim_z = 128;

  Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z);
  in.setRandom();

  Eigen::array<int, 1> red_axis;
  red_axis[0] = 0;
  Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);

  // Create device
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice dev(&stream);
  
  // Create data(T)
  Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type));
  Type* out_data = (Type*)dev.allocate(dim_z*dim_y*sizeof(Type));
  Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z);
  Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_y, dim_z);
  
  // Perform operation
  dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type));
  gpu_out.device(dev) = gpu_in.sum(red_axis);
  gpu_out.device(dev) += gpu_in.sum(red_axis);
  Tensor<Type, 2, DataLayout> redux_gpu(dim_y, dim_z);
  dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type));
  dev.synchronize();

  // Check that the CPU and GPU reductions return the same result.
  for (int i = 0; i < gpu_out.size(); ++i) {
    VERIFY_IS_APPROX(2*redux(i), redux_gpu(i));
  }

  dev.deallocate(in_data);
  dev.deallocate(out_data);
}

template<typename Type, int DataLayout>
static void test_last_dim_reductions() {
  int dim_x = 128;
  int dim_y = 1;
  int dim_z = 33;

  Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z);
  in.setRandom();

  Eigen::array<int, 1> red_axis;
  red_axis[0] = 2;
  Tensor<Type, 2, DataLayout> redux = in.sum(red_axis);

  // Create device
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice dev(&stream);
  
  // Create data
  Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type));
  Type* out_data = (Type*)dev.allocate(dim_x*dim_y*sizeof(Type));
  Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z);
  Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_x, dim_y);
  
  // Perform operation
  dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type));
  gpu_out.device(dev) = gpu_in.sum(red_axis);
  gpu_out.device(dev) += gpu_in.sum(red_axis);
  Tensor<Type, 2, DataLayout> redux_gpu(dim_x, dim_y);
  dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type));
  dev.synchronize();

  // Check that the CPU and GPU reductions return the same result.
  for (int i = 0; i < gpu_out.size(); ++i) {
    VERIFY_IS_APPROX(2*redux(i), redux_gpu(i));
  }

  dev.deallocate(in_data);
  dev.deallocate(out_data);
}


void test_cxx11_tensor_reduction_cuda() {
  CALL_SUBTEST_1((test_full_reductions<float, ColMajor>()));
  CALL_SUBTEST_1((test_full_reductions<double, ColMajor>()));
  CALL_SUBTEST_2((test_full_reductions<float, RowMajor>()));
  CALL_SUBTEST_2((test_full_reductions<double, RowMajor>()));
  
  CALL_SUBTEST_3((test_first_dim_reductions<float, ColMajor>()));
  CALL_SUBTEST_3((test_first_dim_reductions<double, ColMajor>()));
  CALL_SUBTEST_4((test_first_dim_reductions<float, RowMajor>()));
// Outer reductions of doubles aren't supported just yet.  					      
//  CALL_SUBTEST_4((test_first_dim_reductions<double, RowMajor>()))

  CALL_SUBTEST_5((test_last_dim_reductions<float, ColMajor>()));
// Outer reductions of doubles aren't supported just yet.  					      
//  CALL_SUBTEST_5((test_last_dim_reductions<double, ColMajor>()));
  CALL_SUBTEST_6((test_last_dim_reductions<float, RowMajor>()));
  CALL_SUBTEST_6((test_last_dim_reductions<double, RowMajor>()));
}