summaryrefslogtreecommitdiffhomepage
path: root/ovr_sdk_win_23.0.0/LibOVRKernel/Src/Kernel/OVR_Alg.h
blob: 6dcd51cd8dc00fb658e55e493ad99ddcf758543d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
/************************************************************************************

Filename    :   OVR_Alg.h
Content     :   Simple general purpose algorithms: Sort, Binary Search, etc.
Created     :   September 19, 2012
Notes       :

Copyright   :   Copyright (c) Facebook Technologies, LLC and its affiliates. All rights reserved.

Licensed under the Oculus Master SDK License Version 1.0 (the "License");
you may not use the Oculus VR Rift SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

https://developer.oculus.com/licenses/oculusmastersdk-1.0

Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#ifndef OVR_Alg_h
#define OVR_Alg_h

#include <string.h>
#include "OVR_Types.h"
#if defined(_MSC_VER)
#include <intrin.h>
#pragma intrinsic(_BitScanForward)
#pragma intrinsic(_BitScanReverse)
#if defined(_M_AMD64)
#pragma intrinsic(_BitScanForward64)
#pragma intrinsic(_BitScanReverse64)
#endif
#elif defined(__GNUC__) || defined(__clang__)
#include <x86intrin.h>
#endif

namespace OVR {
namespace Alg {

inline int CountTrailing0Bits(uint16_t x) {
#if defined(_MSC_VER)
  unsigned long i;
  unsigned char nonZero = _BitScanForward(&i, x);
  return nonZero ? (int)i : 16;

#elif defined(__GNUC__) || defined(__clang__)
  if (x)
    return __builtin_ctz(x);
  return 16;
#else
  if (x) {
    int n = 1;
    if ((x & 0x000000ff) == 0) {
      n += 8;
      x >>= 8;
    }
    if ((x & 0x0000000f) == 0) {
      n += 4;
      x >>= 4;
    }
    if ((x & 0x00000003) == 0) {
      n += 2;
      x >>= 2;
    }
    return n - int(x & 1);
  }
  return 16;
#endif
}

inline int CountTrailing0Bits(uint32_t x) {
#if defined(_MSC_VER)
  unsigned long i;
  unsigned char nonZero = _BitScanForward(&i, x);
  return nonZero ? (int)i : 32;
#elif defined(__GNUC__) || defined(__clang__)
  if (x)
    return __builtin_ctz(x);
  return 32;
#else
  if (x) {
    int n = 1;
    if ((x & 0x0000ffff) == 0) {
      n += 16;
      x >>= 16;
    }
    if ((x & 0x000000ff) == 0) {
      n += 8;
      x >>= 8;
    }
    if ((x & 0x0000000f) == 0) {
      n += 4;
      x >>= 4;
    }
    if ((x & 0x00000003) == 0) {
      n += 2;
      x >>= 2;
    }
    return n - int(x & 1);
  }
  return 32;
#endif
}

inline int CountTrailing0Bits(uint64_t x) {
#if defined(_MSC_VER) && defined(_M_AMD64)
  unsigned long i;
  unsigned char nonZero = _BitScanForward64(&i, x);
  return nonZero ? (int)i : 64;
#elif (defined(__GNUC__) || defined(__clang__)) && defined(__x86_64__)
  if (x)
    return __builtin_ctzll(x);
  return 64;
#else
  if (x) {
    int n = 1;
    if ((x & 0xffffffff) == 0) {
      n += 32;
      x >>= 32;
    }
    if ((x & 0x0000ffff) == 0) {
      n += 16;
      x >>= 16;
    }
    if ((x & 0x000000ff) == 0) {
      n += 8;
      x >>= 8;
    }
    if ((x & 0x0000000f) == 0) {
      n += 4;
      x >>= 4;
    }
    if ((x & 0x00000003) == 0) {
      n += 2;
      x >>= 2;
    }
    return n - (int)(uint32_t)(x & 1);
  }
  return 64;
#endif
}

// Returns the number of leading (contiguous most significant) bits. Returns 32 for an input of 0.
inline int CountLeading0Bits(uint32_t x) {
#if defined(_MSC_VER)
  unsigned long i;
  unsigned char nonZero = _BitScanReverse(&i, x); // Return highest index non-zero bit.
  return nonZero ? (int)(31 - i) : 32; // 31 - i returns the count of the leading zeroes.
#elif (defined(__GNUC__) || defined(__clang__))
  if (x)
    return __builtin_clz(x);
  return 32;
#else
  unsigned n = 0; // This is typically faster than the tricky solution.
  if (x == 0)
    return 32;
  while (1) {
    if (static_cast<int32_t>(x) < 0)
      break;
    n++;
    x <<= 1;
  }
  return n;
#endif
}

// Returns the number of leading (contiguous most significant) bits. Returns 64 for an input of 0.
inline int CountLeading0Bits(uint64_t x) {
#if defined(_MSC_VER) && defined(_M_AMD64)
  unsigned long i;
  unsigned char nonZero = _BitScanReverse64(&i, x); // Return highest index non-zero bit.
  return nonZero ? (int)(63 - i) : 64; // 63 - i returns the count of the leading zeroes.
#elif (defined(__GNUC__) || defined(__clang__)) && defined(__x86_64__)
  if (x)
    return __builtin_clzll(x);
  return 64;
#else
  unsigned n = 0;
  if (x == 0)
    return 64;
  while (1) {
    if (static_cast<int64_t>(x) < 0)
      break;
    n++;
    x <<= 1;
  }
  return n;
#endif
}

//-----------------------------------------------------------------------------------
// ***** Operator extensions

template <typename T>
OVR_FORCE_INLINE void Swap(T& a, T& b) {
  T temp(a);
  a = b;
  b = temp;
}

// ***** min/max are not implemented in Visual Studio 6 standard STL

template <typename T>
OVR_FORCE_INLINE const T Min(const T a, const T b) {
  return (a < b) ? a : b;
}

template <typename T>
OVR_FORCE_INLINE const T Max(const T a, const T b) {
  return (b < a) ? a : b;
}

template <typename T>
OVR_FORCE_INLINE const T Clamp(const T v, const T minVal, const T maxVal) {
  return Max<T>(minVal, Min<T>(v, maxVal));
}

template <typename T>
OVR_FORCE_INLINE int Chop(T f) {
  return (int)f;
}

template <typename T>
OVR_FORCE_INLINE T Lerp(T a, T b, T f) {
  return (b - a) * f + a;
}

// Smooth transition between 0..1 that has 0 first derivative at 0 and 1.
template <typename T>
OVR_FORCE_INLINE const T SmoothStep(const T s) {
  return s * s * (s * T(-2) + T(3));
}

// Same as SmoothStep but with 0 first and second derivatives at 0 and 1
template <typename T>
OVR_FORCE_INLINE const T SmootherStep(const T s) {
  return s * s * s * (s * (s * T(6) - T(15)) + T(10));
}

// These functions stand to fix a stupid VC++ warning (with /Wp64 on):
// "warning C4267: 'argument' : conversion from 'size_t' to 'const unsigned', possible loss of data"
// Use these functions instead of gmin/gmax if the argument has size
// of the pointer to avoid the warning. Though, functionally they are
// absolutelly the same as regular gmin/gmax.
template <typename T>
OVR_FORCE_INLINE const T PMin(const T a, const T b) {
  OVR_COMPILER_ASSERT(sizeof(T) == sizeof(size_t));
  return (a < b) ? a : b;
}
template <typename T>
OVR_FORCE_INLINE const T PMax(const T a, const T b) {
  OVR_COMPILER_ASSERT(sizeof(T) == sizeof(size_t));
  return (b < a) ? a : b;
}

template <typename T>
OVR_FORCE_INLINE const T Abs(const T v) {
  return (v >= 0) ? v : -v;
}

//-----------------------------------------------------------------------------------
// ***** OperatorLess
//
template <class T>
struct OperatorLess {
  static bool Compare(const T& a, const T& b) {
    return a < b;
  }
};

//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
template <class Array, class Less>
void QuickSortSliced(Array& arr, size_t start, size_t end, Less less) {
  enum { Threshold = 9 };

  if (end - start < 2)
    return;

  intptr_t stack[80];
  intptr_t* top = stack;
  intptr_t base = (intptr_t)start;
  intptr_t limit = (intptr_t)end;

  for (;;) {
    intptr_t len = limit - base;
    intptr_t i, j, pivot;

    if (len > Threshold) {
      // we use base + len/2 as the pivot
      pivot = base + len / 2;
      Swap(arr[base], arr[pivot]);

      i = base + 1;
      j = limit - 1;

      // now ensure that *i <= *base <= *j
      if (less(arr[j], arr[i]))
        Swap(arr[j], arr[i]);
      if (less(arr[base], arr[i]))
        Swap(arr[base], arr[i]);
      if (less(arr[j], arr[base]))
        Swap(arr[j], arr[base]);

      for (;;) {
        do
          i++;
        while (less(arr[i], arr[base]));
        do
          j--;
        while (less(arr[base], arr[j]));

        if (i > j) {
          break;
        }

        Swap(arr[i], arr[j]);
      }

      Swap(arr[base], arr[j]);

      // now, push the largest sub-array
      if (j - base > limit - i) {
        top[0] = base;
        top[1] = j;
        base = i;
      } else {
        top[0] = i;
        top[1] = limit;
        limit = j;
      }
      top += 2;
    } else {
      // the sub-array is small, perform insertion sort
      j = base;
      i = j + 1;

      for (; i < limit; j = i, i++) {
        for (; less(arr[j + 1], arr[j]); j--) {
          Swap(arr[j + 1], arr[j]);
          if (j == base) {
            break;
          }
        }
      }
      if (top > stack) {
        top -= 2;
        base = top[0];
        limit = top[1];
      } else {
        break;
      }
    }
  }
}

//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template <class Array>
void QuickSortSliced(Array& arr, size_t start, size_t end) {
  typedef typename Array::ValueType ValueType;
  QuickSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

// Same as corresponding G_QuickSortSliced but with checking array limits to avoid
// crash in the case of wrong comparator functor.
template <class Array, class Less>
bool QuickSortSlicedSafe(Array& arr, size_t start, size_t end, Less less) {
  enum { Threshold = 9 };

  if (end - start < 2)
    return true;

  intptr_t stack[80];
  intptr_t* top = stack;
  intptr_t base = (intptr_t)start;
  intptr_t limit = (intptr_t)end;

  for (;;) {
    intptr_t len = limit - base;
    intptr_t i, j, pivot;

    if (len > Threshold) {
      // we use base + len/2 as the pivot
      pivot = base + len / 2;
      Swap(arr[base], arr[pivot]);

      i = base + 1;
      j = limit - 1;

      // now ensure that *i <= *base <= *j
      if (less(arr[j], arr[i]))
        Swap(arr[j], arr[i]);
      if (less(arr[base], arr[i]))
        Swap(arr[base], arr[i]);
      if (less(arr[j], arr[base]))
        Swap(arr[j], arr[base]);

      for (;;) {
        do {
          i++;
          if (i >= limit)
            return false;
        } while (less(arr[i], arr[base]));
        do {
          j--;
          if (j < 0)
            return false;
        } while (less(arr[base], arr[j]));

        if (i > j) {
          break;
        }

        Swap(arr[i], arr[j]);
      }

      Swap(arr[base], arr[j]);

      // now, push the largest sub-array
      if (j - base > limit - i) {
        top[0] = base;
        top[1] = j;
        base = i;
      } else {
        top[0] = i;
        top[1] = limit;
        limit = j;
      }
      top += 2;
    } else {
      // the sub-array is small, perform insertion sort
      j = base;
      i = j + 1;

      for (; i < limit; j = i, i++) {
        for (; less(arr[j + 1], arr[j]); j--) {
          Swap(arr[j + 1], arr[j]);
          if (j == base) {
            break;
          }
        }
      }
      if (top > stack) {
        top -= 2;
        base = top[0];
        limit = top[1];
      } else {
        break;
      }
    }
  }
  return true;
}

template <class Array>
bool QuickSortSlicedSafe(Array& arr, size_t start, size_t end) {
  typedef typename Array::ValueType ValueType;
  return QuickSortSlicedSafe(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.
template <class Array, class Less>
void QuickSort(Array& arr, Less less) {
  QuickSortSliced(arr, 0, arr.GetSize(), less);
}

// checks for boundaries
template <class Array, class Less>
bool QuickSortSafe(Array& arr, Less less) {
  return QuickSortSlicedSafe(arr, 0, arr.GetSize(), less);
}

//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template <class Array>
void QuickSort(Array& arr) {
  typedef typename Array::ValueType ValueType;
  QuickSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

template <class Array>
bool QuickSortSafe(Array& arr) {
  typedef typename Array::ValueType ValueType;
  return QuickSortSlicedSafe(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
// Unlike Quick Sort, the Insertion Sort works much slower in average,
// but may be much faster on almost sorted arrays. Besides, it guarantees
// that the elements will not be swapped if not necessary. For example,
// an array with all equal elements will remain "untouched", while
// Quick Sort will considerably shuffle the elements in this case.
template <class Array, class Less>
void InsertionSortSliced(Array& arr, size_t start, size_t end, Less less) {
  size_t j = start;
  size_t i = j + 1;
  size_t limit = end;

  for (; i < limit; j = i, i++) {
    for (; less(arr[j + 1], arr[j]); j--) {
      Swap(arr[j + 1], arr[j]);
      if (j <= start) {
        break;
      }
    }
  }
}

//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template <class Array>
void InsertionSortSliced(Array& arr, size_t start, size_t end) {
  typedef typename Array::ValueType ValueType;
  InsertionSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.

template <class Array, class Less>
void InsertionSort(Array& arr, Less less) {
  InsertionSortSliced(arr, 0, arr.GetSize(), less);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template <class Array>
void InsertionSort(Array& arr) {
  typedef typename Array::ValueType ValueType;
  InsertionSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** Median
// Returns a median value of the input array.
// Caveats: partially sorts the array, returns a reference to the array element
// TBD: This needs to be optimized and generalized
//
template <class Array>
typename Array::ValueType& Median(Array& arr) {
  size_t count = arr.GetSize();
  size_t mid = (count - 1) / 2;
  OVR_ASSERT(count > 0);

  for (size_t j = 0; j <= mid; j++) {
    size_t min = j;
    for (size_t k = j + 1; k < count; k++)
      if (arr[k] < arr[min])
        min = k;
    Swap(arr[j], arr[min]);
  }
  return arr[mid];
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template <class Array, class Value, class Less>
size_t LowerBoundSliced(const Array& arr, size_t start, size_t end, const Value& val, Less less) {
  intptr_t first = (intptr_t)start;
  intptr_t len = (intptr_t)(end - start);
  intptr_t half;
  intptr_t middle;

  while (len > 0) {
    half = len >> 1;
    middle = first + half;
    if (less(arr[middle], val)) {
      first = middle + 1;
      len = len - half - 1;
    } else {
      len = half;
    }
  }
  return (size_t)first;
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template <class Array, class Value>
size_t LowerBoundSliced(const Array& arr, size_t start, size_t end, const Value& val) {
  return LowerBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSized
//
template <class Array, class Value>
size_t LowerBoundSized(const Array& arr, size_t size, const Value& val) {
  return LowerBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template <class Array, class Value, class Less>
size_t LowerBound(const Array& arr, const Value& val, Less less) {
  return LowerBoundSliced(arr, 0, arr.GetSize(), val, less);
}

//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template <class Array, class Value>
size_t LowerBound(const Array& arr, const Value& val) {
  return LowerBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template <class Array, class Value, class Less>
size_t UpperBoundSliced(const Array& arr, size_t start, size_t end, const Value& val, Less less) {
  intptr_t first = (intptr_t)start;
  intptr_t len = (intptr_t)(end - start);
  intptr_t half;
  intptr_t middle;

  while (len > 0) {
    half = len >> 1;
    middle = first + half;
    if (less(val, arr[middle])) {
      len = half;
    } else {
      first = middle + 1;
      len = len - half - 1;
    }
  }
  return (size_t)first;
}

//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template <class Array, class Value>
size_t UpperBoundSliced(const Array& arr, size_t start, size_t end, const Value& val) {
  return UpperBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** UpperBoundSized
//
template <class Array, class Value>
size_t UpperBoundSized(const Array& arr, size_t size, const Value& val) {
  return UpperBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template <class Array, class Value, class Less>
size_t UpperBound(const Array& arr, const Value& val, Less less) {
  return UpperBoundSliced(arr, 0, arr.GetSize(), val, less);
}

//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template <class Array, class Value>
size_t UpperBound(const Array& arr, const Value& val) {
  return UpperBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** ReverseArray
//
template <class Array>
void ReverseArray(Array& arr) {
  intptr_t from = 0;
  intptr_t to = arr.GetSize() - 1;
  while (from < to) {
    Swap(arr[from], arr[to]);
    ++from;
    --to;
  }
}

// ***** AppendArray
//
template <class CDst, class CSrc>
void AppendArray(CDst& dst, const CSrc& src) {
  size_t i;
  for (i = 0; i < src.GetSize(); i++)
    dst.PushBack(src[i]);
}

//-----------------------------------------------------------------------------------
// ***** ArrayAdaptor
//
// A simple adapter that provides the GetSize() method and overloads
// operator []. Used to wrap plain arrays in QuickSort and such.
template <class T>
class ArrayAdaptor {
 public:
  typedef T ValueType;
  ArrayAdaptor() : Data(0), Size(0) {}
  ArrayAdaptor(T* ptr, size_t size) : Data(ptr), Size(size) {}
  size_t GetSize() const {
    return Size;
  }
  int GetSizeI() const {
    return (int)GetSize();
  }
  const T& operator[](size_t i) const {
    return Data[i];
  }
  T& operator[](size_t i) {
    return Data[i];
  }

 private:
  T* Data;
  size_t Size;
};

//-----------------------------------------------------------------------------------
// ***** GConstArrayAdaptor
//
// A simple const adapter that provides the GetSize() method and overloads
// operator []. Used to wrap plain arrays in LowerBound and such.
template <class T>
class ConstArrayAdaptor {
 public:
  typedef T ValueType;
  ConstArrayAdaptor() : Data(0), Size(0) {}
  ConstArrayAdaptor(const T* ptr, size_t size) : Data(ptr), Size(size) {}
  size_t GetSize() const {
    return Size;
  }
  int GetSizeI() const {
    return (int)GetSize();
  }
  const T& operator[](size_t i) const {
    return Data[i];
  }

 private:
  const T* Data;
  size_t Size;
};

//-----------------------------------------------------------------------------------
extern const uint8_t UpperBitTable[256];
extern const uint8_t LowerBitTable[256];

//-----------------------------------------------------------------------------------
inline uint8_t UpperBit(size_t val) {
#ifndef OVR_64BIT_POINTERS

  if (val & 0xFFFF0000) {
    return (val & 0xFF000000) ? UpperBitTable[(val >> 24)] + 24
                              : UpperBitTable[(val >> 16) & 0xFF] + 16;
  }
  return (val & 0xFF00) ? UpperBitTable[(val >> 8) & 0xFF] + 8 : UpperBitTable[(val)&0xFF];

#else

  if (val & 0xFFFFFFFF00000000) {
    if (val & 0xFFFF000000000000) {
      return (val & 0xFF00000000000000) ? UpperBitTable[(val >> 56)] + 56
                                        : UpperBitTable[(val >> 48) & 0xFF] + 48;
    }
    return (val & 0xFF0000000000) ? UpperBitTable[(val >> 40) & 0xFF] + 40
                                  : UpperBitTable[(val >> 32) & 0xFF] + 32;
  } else {
    if (val & 0xFFFF0000) {
      return (val & 0xFF000000) ? UpperBitTable[(val >> 24)] + 24
                                : UpperBitTable[(val >> 16) & 0xFF] + 16;
    }
    return (val & 0xFF00) ? UpperBitTable[(val >> 8) & 0xFF] + 8 : UpperBitTable[(val)&0xFF];
  }

#endif
}

//-----------------------------------------------------------------------------------
inline uint8_t LowerBit(size_t val) {
#ifndef OVR_64BIT_POINTERS

  if (val & 0xFFFF) {
    return (val & 0xFF) ? LowerBitTable[val & 0xFF] : LowerBitTable[(val >> 8) & 0xFF] + 8;
  }
  return (val & 0xFF0000) ? LowerBitTable[(val >> 16) & 0xFF] + 16
                          : LowerBitTable[(val >> 24) & 0xFF] + 24;

#else

  if (val & 0xFFFFFFFF) {
    if (val & 0xFFFF) {
      return (val & 0xFF) ? LowerBitTable[val & 0xFF] : LowerBitTable[(val >> 8) & 0xFF] + 8;
    }
    return (val & 0xFF0000) ? LowerBitTable[(val >> 16) & 0xFF] + 16
                            : LowerBitTable[(val >> 24) & 0xFF] + 24;
  } else {
    if (val & 0xFFFF00000000) {
      return (val & 0xFF00000000) ? LowerBitTable[(val >> 32) & 0xFF] + 32
                                  : LowerBitTable[(val >> 40) & 0xFF] + 40;
    }
    return (val & 0xFF000000000000) ? LowerBitTable[(val >> 48) & 0xFF] + 48
                                    : LowerBitTable[(val >> 56) & 0xFF] + 56;
  }

#endif
}

// ******* Special (optimized) memory routines
// Note: null (bad) pointer is not tested
class MemUtil {
 public:
  // Memory compare
  static int Cmp(const void* p1, const void* p2, size_t byteCount) {
    return memcmp(p1, p2, byteCount);
  }
  static int Cmp16(const void* p1, const void* p2, size_t int16Count);
  static int Cmp32(const void* p1, const void* p2, size_t int32Count);
  static int Cmp64(const void* p1, const void* p2, size_t int64Count);
};

// ** Inline Implementation

inline int MemUtil::Cmp16(const void* p1, const void* p2, size_t int16Count) {
  int16_t* pa = (int16_t*)p1;
  int16_t* pb = (int16_t*)p2;
  unsigned ic = 0;
  if (int16Count == 0)
    return 0;
  while (pa[ic] == pb[ic])
    if (++ic == int16Count)
      return 0;
  return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp32(const void* p1, const void* p2, size_t int32Count) {
  int32_t* pa = (int32_t*)p1;
  int32_t* pb = (int32_t*)p2;
  unsigned ic = 0;
  if (int32Count == 0)
    return 0;
  while (pa[ic] == pb[ic])
    if (++ic == int32Count)
      return 0;
  return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp64(const void* p1, const void* p2, size_t int64Count) {
  int64_t* pa = (int64_t*)p1;
  int64_t* pb = (int64_t*)p2;
  unsigned ic = 0;
  if (int64Count == 0)
    return 0;
  while (pa[ic] == pb[ic])
    if (++ic == int64Count)
      return 0;
  return pa[ic] > pb[ic] ? 1 : -1;
}

// ** End Inline Implementation

//-----------------------------------------------------------------------------------
// ******* Byte Order Conversions
namespace ByteUtil {

// *** Swap Byte Order

// Swap the byte order of a byte array
inline void SwapOrder(void* pv, int size) {
  uint8_t* pb = (uint8_t*)pv;
  uint8_t temp;
  for (int i = 0; i < (size / 2); i++) {
    temp = pb[size - 1 - i];
    pb[size - 1 - i] = pb[i];
    pb[i] = temp;
  }
}

// Swap the byte order of primitive types
inline uint8_t SwapOrder(uint8_t v) {
  return v;
}
inline int8_t SwapOrder(int8_t v) {
  return v;
}
inline uint16_t SwapOrder(uint16_t v) {
  return uint16_t(v >> 8) | uint16_t(v << 8);
}
inline int16_t SwapOrder(int16_t v) {
  return int16_t((uint16_t(v) >> 8) | (v << 8));
}
inline uint32_t SwapOrder(uint32_t v) {
  return (v >> 24) | ((v & 0x00FF0000) >> 8) | ((v & 0x0000FF00) << 8) | (v << 24);
}
inline int32_t SwapOrder(int32_t p) {
  return (int32_t)SwapOrder(uint32_t(p));
}
inline uint64_t SwapOrder(uint64_t v) {
  return (v >> 56) | ((v & uint64_t(0x00FF000000000000ULL)) >> 40) |
      ((v & uint64_t(0x0000FF0000000000ULL)) >> 24) | ((v & uint64_t(0x000000FF00000000ULL)) >> 8) |
      ((v & uint64_t(0x00000000FF000000ULL)) << 8) | ((v & uint64_t(0x0000000000FF0000ULL)) << 24) |
      ((v & uint64_t(0x000000000000FF00ULL)) << 40) | (v << 56);
}
inline int64_t SwapOrder(int64_t v) {
  return (int64_t)SwapOrder(uint64_t(v));
}
inline float SwapOrder(float p) {
  union {
    float p;
    uint32_t v;
  } u;
  u.p = p;
  u.v = SwapOrder(u.v);
  return u.p;
}

inline double SwapOrder(double p) {
  union {
    double p;
    uint64_t v;
  } u;
  u.p = p;
  u.v = SwapOrder(u.v);
  return u.p;
}

// *** Byte-order conversion

#if (OVR_BYTE_ORDER == OVR_LITTLE_ENDIAN)
// Little Endian to System (LE)
inline uint8_t LEToSystem(uint8_t v) {
  return v;
}
inline int8_t LEToSystem(int8_t v) {
  return v;
}
inline uint16_t LEToSystem(uint16_t v) {
  return v;
}
inline int16_t LEToSystem(int16_t v) {
  return v;
}
inline uint32_t LEToSystem(uint32_t v) {
  return v;
}
inline int32_t LEToSystem(int32_t v) {
  return v;
}
inline uint64_t LEToSystem(uint64_t v) {
  return v;
}
inline int64_t LEToSystem(int64_t v) {
  return v;
}
inline float LEToSystem(float v) {
  return v;
}
inline double LEToSystem(double v) {
  return v;
}

// Big Endian to System (LE)
inline uint8_t BEToSystem(uint8_t v) {
  return SwapOrder(v);
}
inline int8_t BEToSystem(int8_t v) {
  return SwapOrder(v);
}
inline uint16_t BEToSystem(uint16_t v) {
  return SwapOrder(v);
}
inline int16_t BEToSystem(int16_t v) {
  return SwapOrder(v);
}
inline uint32_t BEToSystem(uint32_t v) {
  return SwapOrder(v);
}
inline int32_t BEToSystem(int32_t v) {
  return SwapOrder(v);
}
inline uint64_t BEToSystem(uint64_t v) {
  return SwapOrder(v);
}
inline int64_t BEToSystem(int64_t v) {
  return SwapOrder(v);
}
inline float BEToSystem(float v) {
  return SwapOrder(v);
}
inline double BEToSystem(double v) {
  return SwapOrder(v);
}

// System (LE) to Little Endian
inline uint8_t SystemToLE(uint8_t v) {
  return v;
}
inline int8_t SystemToLE(int8_t v) {
  return v;
}
inline uint16_t SystemToLE(uint16_t v) {
  return v;
}
inline int16_t SystemToLE(int16_t v) {
  return v;
}
inline uint32_t SystemToLE(uint32_t v) {
  return v;
}
inline int32_t SystemToLE(int32_t v) {
  return v;
}
inline uint64_t SystemToLE(uint64_t v) {
  return v;
}
inline int64_t SystemToLE(int64_t v) {
  return v;
}
inline float SystemToLE(float v) {
  return v;
}
inline double SystemToLE(double v) {
  return v;
}

// System (LE) to Big Endian
inline uint8_t SystemToBE(uint8_t v) {
  return SwapOrder(v);
}
inline int8_t SystemToBE(int8_t v) {
  return SwapOrder(v);
}
inline uint16_t SystemToBE(uint16_t v) {
  return SwapOrder(v);
}
inline int16_t SystemToBE(int16_t v) {
  return SwapOrder(v);
}
inline uint32_t SystemToBE(uint32_t v) {
  return SwapOrder(v);
}
inline int32_t SystemToBE(int32_t v) {
  return SwapOrder(v);
}
inline uint64_t SystemToBE(uint64_t v) {
  return SwapOrder(v);
}
inline int64_t SystemToBE(int64_t v) {
  return SwapOrder(v);
}
inline float SystemToBE(float v) {
  return SwapOrder(v);
}
inline double SystemToBE(double v) {
  return SwapOrder(v);
}

#elif (OVR_BYTE_ORDER == OVR_BIG_ENDIAN)
// Little Endian to System (BE)
inline uint8_t LEToSystem(uint8_t v) {
  return SwapOrder(v);
}
inline int8_t LEToSystem(int8_t v) {
  return SwapOrder(v);
}
inline uint16_t LEToSystem(uint16_t v) {
  return SwapOrder(v);
}
inline int16_t LEToSystem(int16_t v) {
  return SwapOrder(v);
}
inline uint32_t LEToSystem(uint32_t v) {
  return SwapOrder(v);
}
inline int32_t LEToSystem(int32_t v) {
  return SwapOrder(v);
}
inline uint64_t LEToSystem(uint64_t v) {
  return SwapOrder(v);
}
inline int64_t LEToSystem(int64_t v) {
  return SwapOrder(v);
}
inline float LEToSystem(float v) {
  return SwapOrder(v);
}
inline double LEToSystem(double v) {
  return SwapOrder(v);
}

// Big Endian to System (BE)
inline uint8_t BEToSystem(uint8_t v) {
  return v;
}
inline int8_t BEToSystem(int8_t v) {
  return v;
}
inline uint16_t BEToSystem(uint16_t v) {
  return v;
}
inline int16_t BEToSystem(int16_t v) {
  return v;
}
inline uint32_t BEToSystem(uint32_t v) {
  return v;
}
inline int32_t BEToSystem(int32_t v) {
  return v;
}
inline uint64_t BEToSystem(uint64_t v) {
  return v;
}
inline int64_t BEToSystem(int64_t v) {
  return v;
}
inline float BEToSystem(float v) {
  return v;
}
inline double BEToSystem(double v) {
  return v;
}

// System (BE) to Little Endian
inline uint8_t SystemToLE(uint8_t v) {
  return SwapOrder(v);
}
inline int8_t SystemToLE(int8_t v) {
  return SwapOrder(v);
}
inline uint16_t SystemToLE(uint16_t v) {
  return SwapOrder(v);
}
inline int16_t SystemToLE(int16_t v) {
  return SwapOrder(v);
}
inline uint32_t SystemToLE(uint32_t v) {
  return SwapOrder(v);
}
inline int32_t SystemToLE(int32_t v) {
  return SwapOrder(v);
}
inline uint64_t SystemToLE(uint64_t v) {
  return SwapOrder(v);
}
inline int64_t SystemToLE(int64_t v) {
  return SwapOrder(v);
}
inline float SystemToLE(float v) {
  return SwapOrder(v);
}
inline double SystemToLE(double v) {
  return SwapOrder(v);
}

// System (BE) to Big Endian
inline uint8_t SystemToBE(uint8_t v) {
  return v;
}
inline int8_t SystemToBE(int8_t v) {
  return v;
}
inline uint16_t SystemToBE(uint16_t v) {
  return v;
}
inline int16_t SystemToBE(int16_t v) {
  return v;
}
inline uint32_t SystemToBE(uint32_t v) {
  return v;
}
inline int32_t SystemToBE(int32_t v) {
  return v;
}
inline uint64_t SystemToBE(uint64_t v) {
  return v;
}
inline int64_t SystemToBE(int64_t v) {
  return v;
}
inline float SystemToBE(float v) {
  return v;
}
inline double SystemToBE(double v) {
  return v;
}

#else
#error "OVR_BYTE_ORDER must be defined to OVR_LITTLE_ENDIAN or OVR_BIG_ENDIAN"
#endif

} // namespace ByteUtil

// Used primarily for hardware interfacing such as sensor reports, firmware, etc.
// Reported data is all little-endian.
inline uint16_t DecodeUInt16(const uint8_t* buffer) {
  return ByteUtil::LEToSystem(*(const uint16_t*)buffer);
}

inline int16_t DecodeSInt16(const uint8_t* buffer) {
  return ByteUtil::LEToSystem(*(const int16_t*)buffer);
}

inline uint32_t DecodeUInt32(const uint8_t* buffer) {
  return ByteUtil::LEToSystem(*(const uint32_t*)buffer);
}

inline int32_t DecodeSInt32(const uint8_t* buffer) {
  return ByteUtil::LEToSystem(*(const int32_t*)buffer);
}

inline float DecodeFloat(const uint8_t* buffer) {
  union {
    uint32_t U;
    float F;
  };

  U = DecodeUInt32(buffer);
  return F;
}

inline void EncodeUInt16(uint8_t* buffer, uint16_t val) {
  *(uint16_t*)buffer = ByteUtil::SystemToLE(val);
}

inline void EncodeSInt16(uint8_t* buffer, int16_t val) {
  *(int16_t*)buffer = ByteUtil::SystemToLE(val);
}

inline void EncodeUInt32(uint8_t* buffer, uint32_t val) {
  *(uint32_t*)buffer = ByteUtil::SystemToLE(val);
}

inline void EncodeSInt32(uint8_t* buffer, int32_t val) {
  *(int32_t*)buffer = ByteUtil::SystemToLE(val);
}

inline void EncodeFloat(uint8_t* buffer, float val) {
  union {
    uint32_t U;
    float F;
  };

  F = val;
  EncodeUInt32(buffer, U);
}

// Converts an 8-bit binary-coded decimal
inline int8_t DecodeBCD(uint8_t byte) {
  uint8_t digit1 = (byte >> 4) & 0x0f;
  uint8_t digit2 = byte & 0x0f;
  int decimal = digit1 * 10 + digit2; // maximum value = 99
  return (int8_t)decimal;
}

// Updates the previousCount uint_64t with the new value from the bitCount wrap-around counter
// newCount32
// Returns the delta as uint32_t
// 0 < bitCount <= 32
template <const unsigned bitCount>
uint32_t inline UpdateWraparoundCounter(uint64_t* previousCount, uint32_t newCount32) {
  OVR_ASSERT(bitCount <= 32);

  const uint64_t mask = ((uint64_t)1u << bitCount) - 1;
  OVR_ASSERT((newCount32 & ~mask) == 0);

  // Do int64_t subtraction to avoid invoking what is technically undefined behavior
  int64_t delta = ((int64_t)newCount32 - (int64_t)(*previousCount & mask));
  if (delta < 0)
    delta += ((uint64_t)1u << bitCount);

  *previousCount += delta;
  // We know that delta >=0 and < (1u << bitCount), and thus fits in a uint32_t
  return (uint32_t)delta;
}

// Returns true if T is a signed built in type and (x + y) would overflow or underflow the storage
// maximum or minimum of type T.
template <typename T>
inline bool SignedAdditionWouldOverflow(T x, T y) {
  const T temp = (T)(x + y);
  return ((~(x ^ y)) & (x ^ temp)) < 0;
}

// Returns true if T is a signed type and (x - y) would overflow or underflow the storage maximum or
// minimum of type T.
template <typename T>
inline bool SignedSubtractionWouldOverflow(T x, T y) {
  y = -y;
  const T temp = (T)(x + y);
  return ((temp ^ x) & (temp ^ y)) < 0;
}

// Returns true if T is an unsigned type and (x + y) would overflow the storage maximum of type T.
template <typename T>
inline bool UnsignedAdditionWouldOverflow(T x, T y) {
  return (T)(x + y) < x;
}

// Returns true if T is an unsigned type and (x - y) would underflow the storage minimum of type T.
template <typename T>
inline bool UnsignedSubtractionWouldOverflow(T x, T y) {
  return y > x;
}

// Returns true if T is an unsigned type and (x * y) would overflow the storage maximum of type T.
template <typename T>
inline bool UnsignedMultiplyWouldOverflow(T x, T y) {
  if (y)
    return (((T)(x * y) / y) != x);
  return false;
}

// Returns true if (x * y) would overflow or underflow the storage maximum or minimum of type
// int32_t.
inline bool SignedMultiplyWouldOverflow(int32_t x, int32_t y) {
  if ((y < 0) && (x == (int32_t)INT32_C(0x80000000)))
    return true;
  if (y)
    return (((x * y) / y) != x);
  return false;
}

// Returns true if (x * y) would overflow or underflow the storage maximum or minimum of type
// int64_t.
inline bool SignedMultiplyWouldOverflow(int64_t x, int64_t y) {
  if ((y < 0) && (x == (int64_t)INT64_C(0x8000000000000000)))
    return true;
  if (y)
    return (((x * y) / y) != x);
  return false;
}

// Returns true if (x / y) would overflow the maximum of type T.
template <typename T>
inline bool UnsignedDivisionWouldOverflow(T /*x*/, T y) {
  return y == 0;
}

// Returns true if (x / y) would overflow or underflow the maximum or mimumum of type T.
template <typename T>
inline bool SignedDivisionWouldOverflow(T x, T y) {
  return (y == 0) || ((x == (T)((T)1 << ((sizeof(T) * 8) - 1))) && (y == -1));
}
} // namespace Alg
} // namespace OVR

#endif