diff options
Diffstat (limited to 'tracker-neuralnet/deadzone_filter.cpp')
-rw-r--r-- | tracker-neuralnet/deadzone_filter.cpp | 57 |
1 files changed, 34 insertions, 23 deletions
diff --git a/tracker-neuralnet/deadzone_filter.cpp b/tracker-neuralnet/deadzone_filter.cpp index b41afdba..fa96eeb3 100644 --- a/tracker-neuralnet/deadzone_filter.cpp +++ b/tracker-neuralnet/deadzone_filter.cpp @@ -3,6 +3,7 @@ #include "opencv_contrib.h" #include "unscented_trafo.h" +#include <tuple> #include <opencv2/core/base.hpp> #include <opencv2/core/matx.hpp> #include <opencv2/core/quaternion.hpp> @@ -12,19 +13,25 @@ namespace neuralnet_tracker_ns using namespace cvcontrib; -using StateVec = cv::Vec<float,6>; -using StateCov = cv::Matx<float,6,6>; +// Number of degrees of freedom of position and rotation +static constexpr int dofs = 6; -static constexpr int num_sigmas = ukf_cv::MerweScaledSigmaPoints<6>::num_sigmas; +using StateVec = cv::Vec<float,dofs>; +using StateCov = cv::Matx<float,dofs,dofs>; + +static constexpr int num_sigmas = ukf_cv::MerweScaledSigmaPoints<dofs>::num_sigmas; +// Rescaling factor for position/size living in the space of the face crop. +// Applied prior to application of UKF to prevent numerical problems. static constexpr float img_scale = 200.f; +// Similar rescaling factor for position/size that live in world space. static constexpr float world_scale = 1000.f; // mm +// Fills the 6 DoF covariance factor, as in L L^T factorization. +// Covariance is given wrt the tangent space of current predictions StateCov make_tangent_space_uncertainty_tril(const PoseEstimator::Face &face) { StateCov tril = StateCov::eye(); - tril(0,0) = face.center_stddev.x/img_scale; - tril(1,1) = face.center_stddev.y/img_scale; - tril(2,2) = face.size_stddev/img_scale; + set_minor<3,3>(tril, 0, 0, face.center_size_cov_tril / img_scale); set_minor<3,3>(tril, 3, 3, face.rotaxis_cov_tril); return tril; } @@ -41,7 +48,7 @@ QuatPose apply_offset(const QuatPose& pose, const StateVec& offset) } -PoseEstimator::Face apply_offset(const PoseEstimator::Face& face, const StateVec& offset) +std::tuple<cv::Quatf, cv::Point2f, float> apply_offset(const PoseEstimator::Face& face, const StateVec& offset) { const cv::Quatf dr = cv::Quatf::createFromRvec(cv::Vec3f{ offset[3], offset[4], offset[5] }); const auto r = face.rotation * dr; @@ -57,14 +64,10 @@ PoseEstimator::Face apply_offset(const PoseEstimator::Face& face, const StateVec // is designed to handle non-linearities like this. const float sz = std::max(0.1f*face.size, face.size + offset[2]*img_scale); - return PoseEstimator::Face{ + return { r, - {}, - {}, p, - {}, sz, - {} }; } @@ -77,9 +80,9 @@ StateVec relative_to(const QuatPose& reference, const QuatPose& pose) } -ukf_cv::SigmaPoints<6> relative_to(const QuatPose& pose, const std::array<QuatPose,num_sigmas>& sigmas) +ukf_cv::SigmaPoints<dofs> relative_to(const QuatPose& pose, const std::array<QuatPose,num_sigmas>& sigmas) { - ukf_cv::SigmaPoints<6> out; + ukf_cv::SigmaPoints<dofs> out; // Beware, the number of points is != the number of DoFs. std::transform(sigmas.begin(), sigmas.end(), out.begin(), [&pose](const QuatPose& s) { return relative_to(pose, s); }); @@ -87,14 +90,14 @@ ukf_cv::SigmaPoints<6> relative_to(const QuatPose& pose, const std::array<QuatPo } -std::array<QuatPose,num_sigmas> compute_world_pose_from_sigma_point(const PoseEstimator::Face& face, const ukf_cv::SigmaPoints<6>& sigmas, Face2WorldFunction face2world) +std::array<QuatPose,num_sigmas> compute_world_pose_from_sigma_point(const PoseEstimator::Face& face, const ukf_cv::SigmaPoints<dofs>& sigmas, Face2WorldFunction face2world) { std::array<QuatPose,num_sigmas> out; std::transform(sigmas.begin(), sigmas.end(), out.begin(), [face2world=std::move(face2world), &face](const StateVec& sigma_point) { // First unpack the state vector and generate quaternion rotation w.r.t image space. - const auto sigma_face = apply_offset(face, sigma_point); + const auto [rotation, center, size] = apply_offset(face, sigma_point); // Then transform ... - QuatPose pose = face2world(sigma_face.rotation, sigma_face.center, sigma_face.size); + QuatPose pose = face2world(rotation, center, size); pose.pos /= world_scale; return pose; }); @@ -131,24 +134,32 @@ StateVec apply_filter_to_offset(const StateVec& offset, const StateCov& offset_c QuatPose apply_filter(const PoseEstimator::Face &face, const QuatPose& previous_pose_, float dt, Face2WorldFunction face2world, const FiltParams& params) { - ukf_cv::MerweScaledSigmaPoints<6> unscentedtrafo; + ukf_cv::MerweScaledSigmaPoints<dofs> unscentedtrafo; auto previous_pose = previous_pose_; previous_pose.pos /= world_scale; - // Here we have the covariance matrix for the offset from the observed values in `face`. + // Get 6 DoF covariance factor for the predictions in the face crop space. const auto cov_tril = make_tangent_space_uncertainty_tril(face); - // The filter uses an unscented transform to translate that into a distribution for the offset from the previous pose. - const ukf_cv::SigmaPoints<6> sigmas = unscentedtrafo.compute_sigmas(to_vec(StateVec::zeros()), cov_tril, true); + // Compute so called sigma points. These represent the distribution from the covariance matrix in terms of + // sampling points. + const ukf_cv::SigmaPoints<dofs> sigmas = unscentedtrafo.compute_sigmas(to_vec(StateVec::zeros()), cov_tril, true); + // The filter uses an unscented transform to translate that into a distribution for the offset from the previous pose. + // The trick is to transform the sampling points and compute a covariance from them in the output space. // We have many of these sigma points. This is why that callback comes into play here. + // The transform to 3d world space is more than Face2WorldFunction because we also need to apply the sigma point (as + // a relative offset) to the pose in face crop space. const std::array<QuatPose,num_sigmas> pose_sigmas = compute_world_pose_from_sigma_point(face, sigmas, std::move(face2world)); - const ukf_cv::SigmaPoints<6> deltas_sigmas = relative_to(previous_pose, pose_sigmas); + // Compute sigma points relative to the previous pose + const ukf_cv::SigmaPoints<dofs> deltas_sigmas = relative_to(previous_pose, pose_sigmas); + // Compute the mean offset from the last pose and the spread due to the networks uncertainty output. const auto [offset, offset_cov] = unscentedtrafo.compute_statistics(deltas_sigmas); - // Then the deadzone is applied to the offset and finally the previous pose is transformed by the offset to arrive at the final output. + // Then the deadzone is applied to the offset and finally the previous pose is transformed by the offset to arrive + // at the final output. const StateVec scaled_offset = apply_filter_to_offset(offset, offset_cov, dt, params); QuatPose new_pose = apply_offset(previous_pose, scaled_offset); |