summaryrefslogtreecommitdiffhomepage
path: root/tracker-pt/point_tracker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tracker-pt/point_tracker.cpp')
-rw-r--r--tracker-pt/point_tracker.cpp185
1 files changed, 100 insertions, 85 deletions
diff --git a/tracker-pt/point_tracker.cpp b/tracker-pt/point_tracker.cpp
index cae68bf3..39e96038 100644
--- a/tracker-pt/point_tracker.cpp
+++ b/tracker-pt/point_tracker.cpp
@@ -6,9 +6,7 @@
*/
#include "point_tracker.h"
-#include "compat/nan.hpp"
-
-using namespace types;
+#include "compat/math-imports.hpp"
#include <vector>
#include <algorithm>
@@ -16,7 +14,9 @@ using namespace types;
#include <QDebug>
-constexpr unsigned PointModel::N_POINTS;
+namespace pt_impl {
+
+using namespace numeric_types;
static void get_row(const mat33& m, int i, vec3& v)
{
@@ -32,12 +32,12 @@ static void set_row(mat33& m, int i, const vec3& v)
m(i,2) = v[2];
}
-PointModel::PointModel(settings_pt& s)
+PointModel::PointModel(const pt_settings& s)
{
set_model(s);
// calculate u
u = M01.cross(M02);
- u /= norm(u);
+ u = cv::normalize(u);
// calculate projection matrix on M01,M02 plane
f s11 = M01.dot(M01);
@@ -46,17 +46,20 @@ PointModel::PointModel(settings_pt& s)
P = 1/(s11*s22-s12*s12) * mat22(s22, -s12, -s12, s11);
}
-void PointModel::set_model(settings_pt& s)
+void PointModel::set_model(const pt_settings& s)
{
switch (s.active_model_panel)
{
+ default:
+ eval_once(qDebug() << "pt: wrong model type selected");
+ [[fallthrough]];
case Clip:
- M01 = vec3(0, static_cast<f>(s.clip_ty), -static_cast<f>(s.clip_tz));
- M02 = vec3(0, -static_cast<f>(s.clip_by), -static_cast<f>(s.clip_bz));
+ M01 = vec3(0, s.clip_ty, -s.clip_tz);
+ M02 = vec3(0, -s.clip_by, -s.clip_bz);
break;
case Cap:
- M01 = vec3(-static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z));
- M02 = vec3(static_cast<f>(s.cap_x), -static_cast<f>(s.cap_y), -static_cast<f>(s.cap_z));
+ M01 = vec3(-s.cap_x, -s.cap_y, -s.cap_z);
+ M02 = vec3(s.cap_x, -s.cap_y, -s.cap_z);
break;
case Custom:
M01 = vec3(s.m01_x, s.m01_y, s.m01_z);
@@ -65,69 +68,62 @@ void PointModel::set_model(settings_pt& s)
}
}
-void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d) const
+void PointModel::get_d_order(const vec2* points, unsigned* d_order, const vec2& d)
{
+ constexpr unsigned cnt = PointModel::N_POINTS;
// fit line to orthographically projected points
using t = std::pair<f,unsigned>;
- t d_vals[3];
+ t d_vals[cnt];
// get sort indices with respect to d scalar product
- for (unsigned i = 0; i < PointModel::N_POINTS; ++i)
- d_vals[i] = t(d.dot(points[i]), i);
+ for (unsigned i = 0; i < cnt; ++i)
+ d_vals[i] = {d.dot(points[i]), i};
- std::sort(d_vals,
- d_vals + 3u,
- [](const t& a, const t& b) { return a.first < b.first; });
+ std::sort(std::begin(d_vals), std::end(d_vals),
+ [](t a, t b) { return a.first < b.first; });
- for (unsigned i = 0; i < PointModel::N_POINTS; ++i)
+ for (unsigned i = 0; i < cnt; ++i)
d_order[i] = d_vals[i].second;
}
-PointTracker::PointTracker() : init_phase(true)
-{
-}
+PointTracker::PointTracker() = default;
PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2* points,
const PointModel& model,
- const CamInfo& info)
+ const pt_camera_info& info)
{
- f fx; info.get_focal_length(fx);
- PointTracker::PointOrder p;
- p[0] = project(vec3(0,0,0), fx);
- p[1] = project(model.M01, fx);
- p[2] = project(model.M02, fx);
+ const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
+ PointTracker::PointOrder p {
+ project(vec3(0,0,0), fx),
+ project(model.M01, fx),
+ project(model.M02, fx)
+ };
- const int diagonal = int(std::sqrt(double(info.res_x*info.res_x + info.res_y*info.res_y)));
- static constexpr int div = 100;
- const int max_dist = diagonal / div; // 8 pixels for 640x480
+ constexpr unsigned sz = PointModel::N_POINTS;
// set correspondences by minimum distance to projected model point
- bool point_taken[PointModel::N_POINTS];
- for (unsigned i=0; i<PointModel::N_POINTS; ++i)
- point_taken[i] = false;
+ bool point_taken[sz] {};
- for (unsigned i=0; i<PointModel::N_POINTS; ++i)
+ for (unsigned i=0; i < sz; ++i)
{
f min_sdist = 0;
unsigned min_idx = 0;
// find closest point to projected model point i
- for (unsigned j=0; j<PointModel::N_POINTS; ++j)
+ for (unsigned j=0; j < sz; ++j)
{
vec2 d = p[i]-points[j];
f sdist = d.dot(d);
- if (sdist < min_sdist || j==0)
+ if (sdist < min_sdist || j == 0)
{
min_idx = j;
min_sdist = sdist;
}
}
- if (min_sdist > max_dist)
- return find_correspondences(points, model);
// if one point is closest to more than one model point, fallback
if (point_taken[min_idx])
{
- init_phase = true;
+ reset_state();
return find_correspondences(points, model);
}
point_taken[min_idx] = true;
@@ -139,55 +135,61 @@ PointTracker::PointOrder PointTracker::find_correspondences_previous(const vec2*
void PointTracker::track(const std::vector<vec2>& points,
const PointModel& model,
- const CamInfo& info,
- int init_phase_timeout)
+ const pt_camera_info& info,
+ int init_phase_timeout,
+ point_filter& filter,
+ f deadzone_amount)
{
- f fx;
- info.get_focal_length(fx);
+ const f fx = pt_camera_info::get_focal_length(info.fov, info.res_x, info.res_y);
PointOrder order;
- if (init_phase_timeout > 0 && t.elapsed_ms() > init_phase_timeout)
+ if (init_phase || init_phase_timeout <= 0 || t.elapsed_ms() > init_phase_timeout)
{
- t.start();
- init_phase = true;
- }
-
- if (!(init_phase_timeout > 0 && !init_phase))
+ reset_state();
order = find_correspondences(points.data(), model);
+ }
else
order = find_correspondences_previous(points.data(), model, info);
- if (POSIT(model, order, fx) != -1)
+ if (POSIT(model, filter(order, deadzone_amount), fx) != -1)
{
init_phase = false;
t.start();
}
+ else
+ reset_state();
}
PointTracker::PointOrder PointTracker::find_correspondences(const vec2* points, const PointModel& model)
{
- static const Affine a(mat33::eye(), vec3(0, 0, 1));
+ constexpr unsigned cnt = PointModel::N_POINTS;
// We do a simple freetrack-like sorting in the init phase...
- unsigned point_d_order[PointModel::N_POINTS];
- unsigned model_d_order[PointModel::N_POINTS];
- // sort points
+ unsigned point_d_order[cnt];
+ unsigned model_d_order[cnt];
+ // calculate d and d_order for simple freetrack-like point correspondence
vec2 d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
+ // sort points
model.get_d_order(points, point_d_order, d);
- // calculate d and d_order for simple freetrack-like point correspondence
- vec2 pts[3] = {
- vec2(0, 0),
- vec2(model.M01[0], model.M01[1]),
- vec2(model.M02[0], model.M02[1])
+ vec2 pts[cnt] {
+ { 0, 0 },
+ { model.M01[0], model.M01[1] },
+ { model.M02[0], model.M02[1] },
};
model.get_d_order(pts, model_d_order, d);
+
// set correspondences
PointOrder p;
- for (unsigned i = 0; i < PointModel::N_POINTS; ++i)
+ for (unsigned i = 0; i < cnt; ++i)
p[model_d_order[i]] = points[point_d_order[i]];
return p;
}
+#ifdef __clang__
+# pragma clang diagnostic push
+# pragma clang diagnostic ignored "-Wfloat-equal"
+#endif
+
int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f focal_length)
{
// POSIT algorithm for coplanar points as presented in
@@ -196,17 +198,16 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
// The expected rotation used for resolving the ambiguity in POSIT:
// In every iteration step the rotation closer to R_expected is taken
- static const mat33 R_expected(mat33::eye());
+ const mat33& R_expected{X_CM_expected.R};
// initial pose = last (predicted) pose
vec3 k;
get_row(R_expected, 2, k);
- f Z0 = f(1000);
+ f Z0 = X_CM.t[2] < f(1e-4) ? f(1000) : X_CM.t[2];
f old_epsilon_1 = 0;
f old_epsilon_2 = 0;
- f epsilon_1 = 1;
- f epsilon_2 = 1;
+ f epsilon_1, epsilon_2;
vec3 I0, J0;
vec2 I0_coeff, J0_coeff;
@@ -215,16 +216,10 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
mat33 R_1, R_2;
mat33* R_current = &R_1;
- static constexpr int max_iter = 100;
-
- using std::sqrt;
- using std::atan;
- using std::cos;
- using std::sin;
- using std::fabs;
+ constexpr int max_iter = 100;
- int i=1;
- for (; i<max_iter; ++i)
+ int i;
+ for (i = 1; i < max_iter; ++i)
{
epsilon_1 = k.dot(model.M01)/Z0;
epsilon_2 = k.dot(model.M02)/Z0;
@@ -249,14 +244,14 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
// CAVEAT don't change to comparison with an epsilon -sh 20160423
if (JJ0 == II0) {
rho = sqrt(fabs(2*IJ0));
- theta = -M_PI/4;
+ theta = -pi/4;
if (IJ0<0) theta *= -1;
}
else {
rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
theta = atan( -2*IJ0 / (JJ0-II0) );
// avoid branch misprediction
- theta += (JJ0 - II0 < 0) * M_PI;
+ theta += (JJ0 - II0 < 0) * pi;
theta *= f(.5);
}
@@ -267,7 +262,7 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
J_1 = J0 + rho*sin(theta)*model.u;
J_2 = J0 - rho*sin(theta)*model.u;
- f norm_const = 1/cv::norm(I_1); // all have the same norm
+ f norm_const = (f)(1/cv::norm(I_1)); // all have the same norm
// create rotation matrices
I_1 *= norm_const; J_1 *= norm_const;
@@ -286,8 +281,8 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
// pick the rotation solution closer to the expected one
// in simple metric d(A,B) = || I - A * B^T ||
- f R_1_deviation = cv::norm(mat33::eye() - R_expected * R_1.t());
- f R_2_deviation = cv::norm(mat33::eye() - R_expected * R_2.t());
+ f R_1_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_1.t()));
+ f R_2_deviation = (f)(cv::norm(mat33::eye() - R_expected * R_2.t()));
if (R_1_deviation < R_2_deviation)
R_current = &R_1;
@@ -299,7 +294,7 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
// check for convergence condition
const f delta = fabs(epsilon_1 - old_epsilon_1) + fabs(epsilon_2 - old_epsilon_2);
- if (!(delta > constants::eps))
+ if (delta < eps)
break;
old_epsilon_1 = epsilon_1;
@@ -315,18 +310,24 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
- if (nanp(r(i, j)))
+ {
+ int ret = std::fpclassify(r(i, j));
+ if (ret == FP_NAN || ret == FP_INFINITE)
{
- qDebug() << "posit nan";
+ qDebug() << "posit nan R";
return -1;
}
+ }
- for (unsigned i = 0; i < 3; i++)
- if (nanp(t[i]))
+ for (unsigned i = 0; i < 3; i++) // NOLINT(modernize-loop-convert)
+ {
+ int ret = std::fpclassify(t[i]);
+ if (ret == FP_NAN || ret == FP_INFINITE)
{
- qDebug() << "posit nan";
+ qDebug() << "posit nan T";
return -1;
}
+ }
// apply results
X_CM.R = r;
@@ -334,11 +335,17 @@ int PointTracker::POSIT(const PointModel& model, const PointOrder& order, f foca
X_CM.t[1] = t[1];
X_CM.t[2] = t[2];
+ X_CM_expected = X_CM;
+
//qDebug() << "iter:" << i;
return i;
}
+#ifdef __clang__
+# pragma clang diagnostic pop
+#endif
+
vec2 PointTracker::project(const vec3& v_M, f focal_length)
{
return project(v_M, focal_length, X_CM);
@@ -349,3 +356,11 @@ vec2 PointTracker::project(const vec3& v_M, f focal_length, const Affine& X_CM)
vec3 v_C = X_CM * v_M;
return vec2(focal_length*v_C[0]/v_C[2], focal_length*v_C[1]/v_C[2]);
}
+
+void PointTracker::reset_state()
+{
+ init_phase = true;
+ X_CM_expected = {};
+}
+
+} // ns pt_impl