1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
#include "hamilton-tools.h"
#include <cmath>
double VectorLength(const tVector v)
{
return(sqrt(v.v[0]*v.v[0] + v.v[1]*v.v[1] + v.v[2]*v.v[2]));
}
double sqr(const double v) { return(v*v); }
double VectorDistance(const double v1[], const tVector v2)
{
return(sqrt(sqr(v2.v[0]-v1[0])+sqr(v2.v[1]-v1[1])+sqr(v2.v[2]-v1[2])));
}
tVector Lerp(const tVector s, const double d[], const double alpha)
{
tVector V;
V.v[0] = s.v[0] + (d[0] - s.v[0]) * alpha;
V.v[1] = s.v[1] + (d[1] - s.v[1]) * alpha;
V.v[2] = s.v[2] + (d[2] - s.v[2]) * alpha;
return(V);
}
tQuat QuatFromAngleAxe(const double angle, const tVector axe)
{
double a = TO_RAD * 0.5 * angle;
double d = sin(a) / VectorLength(axe);
return ( tQuat (
axe.v[0] * d,
axe.v[1] * d,
axe.v[2] * d,
cos(a)
)
);
}
tQuat QuatMultiply(const tQuat qL, const tQuat qR)
{
tQuat Q;
Q.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
Q.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
Q.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
Q.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
return(Q);
}
double AngleBetween(const tQuat S, const tQuat D)
{
return( TO_DEG * 2*acos(fabs(S.x*D.x + S.y*D.y + S.z*D.z + S.w*D.w)) );
}
tQuat QuatFromYPR(const double YPR[])
{
tQuat Q, Qp, Qy;
Q = QuatFromAngleAxe( -YPR[2], {0, 0, 1} ); //Roll, Z axe
Qp = QuatFromAngleAxe( -YPR[1], {1, 0, 0} ); //Pitch, X axe
Qy = QuatFromAngleAxe( -YPR[0], {0, 1, 0} ); //Yaw, Y axe
Q = QuatMultiply(Qp, Q);
return(QuatMultiply(Qy, Q));
}
void Normalize(tQuat Q)
{
double m = sqrt(Q.x*Q.x + Q.y*Q.y + Q.z*Q.z + Q.w*Q.w);
if (m > EPSILON)
{
m = 1 / m;
Q.x = Q.x * m;
Q.y = Q.y * m;
Q.z = Q.z * m;
Q.w = Q.w * m;
}
else Q = tQuat(0, 0, 0, 1);
}
tQuat Slerp(const tQuat S, const tQuat D, const double alpha)
{
// calc cosine of half angle
double cosin = S.x*D.x + S.y*D.y + S.z*D.z + S.w*D.w;
// select nearest rotation direction
tQuat Q;
if (cosin < 0)
{
cosin = - cosin;
Q.x = - D.x;
Q.y = - D.y;
Q.z = - D.z;
Q.w = - D.w;
}
else Q = D;
// calculate coefficients
double scale0, scale1;
if ((1.0 - cosin) > EPSILON)
{
double omega = acos(cosin);
double sinus = 1 / sin(omega);
scale0 = sin((1.0 - alpha) * omega) * sinus;
scale1 = sin(alpha * omega)* sinus;
}
else
{
scale0 = 1.0 - alpha;
scale1 = alpha;
}
Q.x = scale0 * S.x + scale1 * Q.x;
Q.y = scale0 * S.y + scale1 * Q.y;
Q.z = scale0 * S.z + scale1 * Q.z;
Q.w = scale0 * S.w + scale1 * Q.w;
Normalize(Q);
return( Q );
}
void QuatToYPR(const tQuat Q, double YPR[])
{
const double xx = Q.x * Q.x;
const double xy = Q.x * Q.y;
const double xz = Q.x * Q.z;
const double xw = Q.x * Q.w;
const double yy = Q.y * Q.y;
const double yz = Q.y * Q.z;
const double yw = Q.y * Q.w;
const double zz = Q.z * Q.z;
const double zw = Q.z * Q.w;
YPR[0] = TO_DEG * ( -atan2( 2 * ( xz + yw ), 1 - 2 * ( xx + yy ) ));
YPR[1] = TO_DEG * ( asin ( 2 * ( yz - xw ) ));
YPR[2] = TO_DEG * ( -atan2( 2 * ( xy + zw ), 1 - 2 * ( xx + zz ) ));
}
|