1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/* Copyright (c) 2016 Michael Welter <mw.pub@welter-4d.de>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*/
#include "kalman.h"
#include <cmath>
#include <QDebug>
void KalmanFilter::init()
{
// allocate and initialize matrices
measurement_noise_cov = MeasureMatrix::Zero();
process_noise_cov = StateMatrix::Zero();
state_cov = StateMatrix::Zero();
state_cov_prior = StateMatrix::Zero();
transition_matrix = StateMatrix::Zero();
measurement_matrix = StateToMeasureMatrix::Zero();
kalman_gain = MeasureToStateMatrix::Zero();
// initialize state variables
state = StateVector::Zero();
state_prior = StateVector::Zero();
innovation = PoseVector::Zero();
}
void KalmanFilter::time_update()
{
state_prior = transition_matrix * state;
state_cov_prior = transition_matrix * state_cov * transition_matrix.transpose() + process_noise_cov;
}
void KalmanFilter::measurement_update(const PoseVector &measurement)
{
MeasureMatrix tmp = measurement_matrix * state_cov_prior * measurement_matrix.transpose() + measurement_noise_cov;
MeasureMatrix tmp_inv = tmp.inverse();
kalman_gain = state_cov_prior * measurement_matrix.transpose() * tmp_inv;
innovation = measurement - measurement_matrix * state_prior;
state = state_prior + kalman_gain * innovation;
state_cov = state_cov_prior - kalman_gain * measurement_matrix * state_cov_prior;
}
void KalmanProcessNoiseScaler::init()
{
base_cov = StateMatrix::Zero(NUM_STATE_DOF, NUM_STATE_DOF);
innovation_cov_estimate = MeasureMatrix::Zero(NUM_MEASUREMENT_DOF, NUM_MEASUREMENT_DOF);
}
/* Uses
innovation, measurement_matrix, measurement_noise_cov, and state_cov_prior
found in KalmanFilter. It sets
process_noise_cov
*/
void KalmanProcessNoiseScaler::update(KalmanFilter &kf, double dt)
{
MeasureMatrix ddT = kf.innovation * kf.innovation.transpose();
double f = dt / (dt + settings::adaptivity_window_length);
innovation_cov_estimate =
f * ddT + (1. - f) * innovation_cov_estimate;
double T1 = (innovation_cov_estimate - kf.measurement_noise_cov).trace();
double T2 = (kf.measurement_matrix * kf.state_cov_prior * kf.measurement_matrix.transpose()).trace();
double alpha = 0.001;
if (T2 > 0. && T1 > 0.)
{
alpha = T1 / T2;
alpha = std::sqrt(alpha);
alpha = std::fmin(1000., std::fmax(0.001, alpha));
}
kf.process_noise_cov = alpha * base_cov;
//qDebug() << "alpha = " << alpha;
}
void DeadzoneFilter::reset()
{
last_output = PoseVector::Zero();
}
PoseVector DeadzoneFilter::filter(const PoseVector &input)
{
PoseVector out;
for (int i = 0; i < input.rows(); ++i)
{
const double dz = dz_size[i];
if (dz > 0.)
{
const double delta = input[i] - last_output[i];
const double f = std::pow(std::fabs(delta) / dz, settings::deadzone_exponent);
const double response = f / (f + 1.) * delta;
out[i] = last_output[i] + response;
}
else
out[i] = input[i];
last_output[i] = out[i];
}
return out;
}
void kalman::fill_transition_matrix(double dt)
{
for (int i = 0; i < 6; ++i)
{
kf.transition_matrix(i, i + 6) = dt;
}
}
void kalman::fill_process_noise_cov_matrix(StateMatrix &target, double dt) const
{
// This model is like movement at fixed velocity plus superimposed
// brownian motion. Unlike standard models for tracking of objects
// with a very well predictable trajectory (e.g.
// https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical)
double sigma_pos = settings::process_sigma_pos;
double sigma_angle = settings::process_sigma_rot;
double a_pos = sigma_pos * sigma_pos * dt;
double a_ang = sigma_angle * sigma_angle * dt;
constexpr double b = 20;
constexpr double c = 1.;
for (int i = 0; i < 3; ++i)
{
target(i, i) = a_pos;
target(i, i + 6) = a_pos * c;
target(i + 6, i) = a_pos * c;
target(i + 6, i + 6) = a_pos * b;
}
for (int i = 3; i < 6; ++i)
{
target(i, i) = a_ang;
target(i, i + 6) = a_ang * c;
target(i + 6, i) = a_ang * c;
target(i + 6, i + 6) = a_ang * b;
}
}
PoseVector kalman::do_kalman_filter(const PoseVector &input, double dt, bool new_input)
{
if (new_input)
{
dt = dt_since_last_input;
fill_transition_matrix(dt);
fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, dt);
kf_adaptive_process_noise_cov.update(kf, dt);
kf.time_update();
kf.measurement_update(input);
}
return kf.state.head(6);
}
kalman::kalman()
{
reset();
}
// The original code was written by Donovan Baarda <abo@minkirri.apana.org.au>
// https://sourceforge.net/p/facetracknoir/discussion/1150909/thread/418615e1/?limit=25#af75/084b
void kalman::reset()
{
kf.init();
kf_adaptive_process_noise_cov.init();
for (int i = 0; i < 6; ++i)
{
// initialize part of the transition matrix that do not change.
kf.transition_matrix(i, i) = 1.;
kf.transition_matrix(i + 6, i + 6) = 1.;
// "extract" positions, i.e. the first 6 state dof.
kf.measurement_matrix(i, i) = 1.;
}
double noise_variance_position = settings::map_slider_value(s.noise_pos_slider_value);
double noise_variance_angle = settings::map_slider_value(s.noise_rot_slider_value);
for (int i = 0; i < 3; ++i)
{
kf.measurement_noise_cov(i , i ) = noise_variance_position;
kf.measurement_noise_cov(i + 3, i + 3) = noise_variance_angle;
}
fill_transition_matrix(0.03);
fill_process_noise_cov_matrix(kf_adaptive_process_noise_cov.base_cov, 0.03);
kf.process_noise_cov = kf_adaptive_process_noise_cov.base_cov;
kf.state_cov = kf.process_noise_cov;
for (int i = 0; i < 6; i++) {
last_input[i] = 0;
}
dt_since_last_input = 0;
prev_slider_pos[0] = s.noise_pos_slider_value;
prev_slider_pos[1] = s.noise_rot_slider_value;
dz_filter.reset();
}
void kalman::filter(const double* input_, double *output_)
{
// almost non-existent cost, so might as well ...
Eigen::Map<const PoseVector> input(input_, PoseVector::RowsAtCompileTime, 1);
Eigen::Map<PoseVector> output(output_, PoseVector::RowsAtCompileTime, 1);
if (!(prev_slider_pos[0] == s.noise_pos_slider_value &&
prev_slider_pos[1] == s.noise_rot_slider_value))
{
reset();
}
// Start the timer on first filter evaluation.
if (first_run)
{
timer.start();
first_run = false;
return;
}
// Note this is a terrible way to detect when there is a new
// frame of tracker input, but it is the best we have.
bool new_input = input.cwiseNotEqual(last_input).any();
// Get the time in seconds since last run and restart the timer.
const double dt = timer.elapsed_seconds();
dt_since_last_input += dt;
timer.start();
output = do_kalman_filter(input, dt, new_input);
{
// Compute deadzone size base on estimated state variance.
// Given a constant input plus measurement noise, KF should converge to the true input.
// This works well. That is the output pose becomes very still afte some time.
// The QScaling adaptive filter makes the state cov vary depending on the estimated noise
// and the measured noise of the innovation sequence. After a sudden movement it peaks
// and then decays asymptotically to some constant value taken in stationary state.
// We can use this to calculate the size of the deadzone, so that in the stationary state the
// deadzone size is small. Thus the tracking error due to the dz-filter becomes also small.
PoseVector variance = kf.state_cov.diagonal().head(6);
dz_filter.dz_size = variance.cwiseSqrt() * settings::deadzone_scale;
}
output = dz_filter.filter(output);
if (new_input)
{
dt_since_last_input = 0;
last_input = input;
}
}
dialog_kalman::dialog_kalman()
: filter(nullptr)
{
ui.setupUi(this);
connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
tie_setting(s.noise_rot_slider_value, ui.noiseRotSlider);
tie_setting(s.noise_pos_slider_value, ui.noisePosSlider);
connect(&s.noise_rot_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
connect(&s.noise_pos_slider_value, SIGNAL(valueChanged(const slider_value&)), this, SLOT(updateLabels(const slider_value&)));
updateLabels(slider_value());
}
void dialog_kalman::updateLabels(const slider_value&)
{
this->ui.noiseRotLabel->setText(
QString::number(settings::map_slider_value(s.noise_rot_slider_value), 'f', 3) + "°");
this->ui.noisePosLabel->setText(
QString::number(settings::map_slider_value(s.noise_pos_slider_value), 'f', 3) + " cm");
}
void dialog_kalman::doOK() {
s.b->save();
close();
}
void dialog_kalman::doCancel()
{
close();
}
double settings::map_slider_value(const slider_value& v_)
{
const double v = v_;
#if 0
//return std::pow(10., v * 4. - 3.);
#else
constexpr int min_log10 = -3;
constexpr int max_log10 = 1;
constexpr int num_divisions = max_log10 - min_log10;
/* ascii art representation of slider
// ----- // ------// ------// ------- // 4 divisions
-3 - 2 -1 0 1 power of 10
| |
| f + left_side_log10
|
left_side_log10
*/
const int k = int(v * num_divisions); // in which division are we?!
const double f = v * num_divisions - k; // where in the division are we?!
const double ff = f * 9. + 1.;
const double multiplier = int(ff * 10.) / 10.;
const int left_side_log10 = min_log10 + k;
const double val = std::pow(10., left_side_log10) * multiplier;
return val;
#endif
}
OPENTRACK_DECLARE_FILTER(kalman, dialog_kalman, kalmanDll)
|