summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/ftnoir_tracker_neuralnet.cpp
blob: 8fd65bc984d036a966ed51fb8a78d17ebdf5745a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/* Copyright (c) 2021 Michael Welter <michael@welter-4d.de>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "ftnoir_tracker_neuralnet.h"
#include "compat/sleep.hpp"
#include "compat/math-imports.hpp"
#include "cv/init.hpp"
#include <opencv2/core.hpp>
#include <opencv2/core/hal/interface.h>
#include <opencv2/core/types.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include "compat/timer.hpp"
#include <omp.h>

#ifdef _MSC_VER
#   pragma warning(disable : 4702)
#endif

#include <QMutexLocker>
#include <QDebug>
#include <QFile>

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <chrono>

// Some demo code for onnx
// https://github.com/microsoft/onnxruntime/blob/master/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
// https://github.com/leimao/ONNX-Runtime-Inference/blob/main/src/inference.cpp

namespace
{

using numeric_types::vec3;
using numeric_types::vec2;
using numeric_types::mat33;

// Minimal difference if at all going from 1 to 2 threads.
static constexpr int num_threads = 1;


#if _MSC_VER
std::wstring convert(const QString &s) { return s.toStdWString(); }
#else
std::string convert(const QString &s) { return s.toStdString(); }
#endif


float sigmoid(float x)
{
    return 1.f/(1.f + std::exp(-x));
}


template<class T>
cv::Rect_<T> squarize(const cv::Rect_<T> &r)
{
    cv::Point_<T> c{r.x + r.width/T(2), r.y + r.height/T(2)};
    const T sz = std::max(r.height, r.width);
    return {c.x - sz/T(2), c.y - sz/T(2), sz, sz};
}


int compute_padding(const cv::Rect &r, int w, int h)
{
    using std::max;
    return max({
        max(-r.x, 0),
        max(-r.y, 0),
        max(r.x+r.width-w, 0),
        max(r.y+r.height-h, 0)
    });
}


cv::Rect2f unnormalize(const cv::Rect2f &r, int h, int w)
{
    auto unnorm = [](float x) -> float { return 0.5*(x+1); };
    auto tl = r.tl();
    auto br = r.br();
    auto x0 = unnorm(tl.x)*w;
    auto y0 = unnorm(tl.y)*h;
    auto x1 = unnorm(br.x)*w;
    auto y1 = unnorm(br.y)*h;
    return {
        x0, y0, x1-x0, y1-y0
    };
}

cv::Point2f normalize(const cv::Point2f &p, int h, int w)
{
    return {
        p.x/w*2.f-1.f,
        p.y/h*2.f-1.f
    };
}


mat33 rotation_from_two_vectors(const vec3 &a, const vec3 &b)
{
    vec3 axis = a.cross(b);
    const float len_a = cv::norm(a);
    const float len_b = cv::norm(b);
    const float len_axis = cv::norm(axis);
    const float sin_angle = std::clamp(len_axis / (len_a * len_b), -1.f, 1.f);
    const float angle = std::asin(sin_angle);
    axis *= angle/(1.e-12 + len_axis);
    mat33 out;
    cv::Rodrigues(axis, out);
    return out;
}


/* Computes correction due to head being off screen center.
    x, y: In screen space, i.e. in [-1,1]
    focal_length_x: In screen space
*/
mat33 compute_rotation_correction(const cv::Point2f &p, float focal_length_x)
{
    return rotation_from_two_vectors(
        {1.f,0.f,0.f}, 
        {focal_length_x, p.y, p.x});
}


mat33 quaternion_to_mat33(const std::array<float,4> quat)
{
    mat33 m;
    const float w = quat[0];
    const float i = quat[1];
    const float j = quat[2];
    const float k = quat[3];
    m(0,0) = 1.f - 2.f*(j*j + k*k);
    m(1,0) =       2.f*(i*j + k*w);
    m(2,0) =       2.f*(i*k - j*w);
    m(0,1) =       2.f*(i*j - k*w);
    m(1,1) = 1.f - 2.f*(i*i + k*k);
    m(2,1) =       2.f*(j*k + i*w);
    m(0,2) =       2.f*(i*k + j*w);
    m(1,2) =       2.f*(j*k - i*w);
    m(2,2) = 1.f - 2.f*(i*i + j*j);
    return m;
}


template<class T>
T iou(const cv::Rect_<T> &a, const cv::Rect_<T> &b)
{
    auto i = a & b;
    return double{i.area()} / (a.area()+b.area()-i.area());
}


} // namespace


namespace neuralnet_tracker_ns
{


int enum_to_fps(int value)
{
    switch (value)
    {
        case fps_30:        return 30;
        case fps_60:        return 60;
        default: [[fallthrough]];
        case fps_default:   return 0;
    }
}


Localizer::Localizer(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
    session{std::move(session)},
    scaled_frame(input_img_height, input_img_width, CV_8U),
    input_mat(input_img_height, input_img_width, CV_32F)
{
    // Only works when input_mat does not reallocated memory ...which it should not.
    // Non-owning memory reference to input_mat?
    // Note: shape = (bach x channels x h x w)
    const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
    input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);

    const std::int64_t output_shape[2] = { 1, 5 };
    output_val = Ort::Value::CreateTensor<float>(allocator_info, results.data(), results.size(), output_shape, 2);
}


std::pair<float, cv::Rect2f> Localizer::run(
    const cv::Mat &frame)
{
    auto p = input_mat.ptr(0);

    cv::resize(frame, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);
    scaled_frame.convertTo(input_mat, CV_32F, 1./255., -0.5);

    assert (input_mat.ptr(0) == p);
    assert (!input_mat.empty() && input_mat.isContinuous());
    assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);

    const char* input_names[] = {"x"};
    const char* output_names[] = {"logit_box"};

    Timer t; t.start();

    const auto nt = omp_get_num_threads();
    omp_set_num_threads(num_threads);
    session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, &output_val, 1);
    omp_set_num_threads(nt);

    last_inference_time = t.elapsed_ms();

    const cv::Rect2f roi = unnormalize(cv::Rect2f{
        results[1],
        results[2],
        results[3]-results[1], // Width
        results[4]-results[2] // Height
    }, frame.rows, frame.cols);
    const float score = sigmoid(results[0]);

    return { score, roi };
}


double Localizer::last_inference_time_millis() const
{
    return last_inference_time;
}


PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&session) :
    session{std::move(session)},
    scaled_frame(input_img_height, input_img_width, CV_8U),
    input_mat(input_img_height, input_img_width, CV_32F)
{
    {
        const std::int64_t input_shape[4] = { 1, 1, input_img_height, input_img_width };
        input_val = Ort::Value::CreateTensor<float>(allocator_info, input_mat.ptr<float>(0), input_mat.total(), input_shape, 4);
    }

    {
        const std::int64_t output_shape[2] = { 1, 3 };
        output_val[0] = Ort::Value::CreateTensor<float>(
            allocator_info, &output_coord[0], output_coord.rows, output_shape, 2);
    }

    {
        const std::int64_t output_shape[2] = { 1, 4 };
        output_val[1] = Ort::Value::CreateTensor<float>(
            allocator_info, &output_quat[0], output_quat.rows, output_shape, 2);
    }

    {
        const std::int64_t output_shape[2] = { 1, 4 };
        output_val[2] = Ort::Value::CreateTensor<float>(
            allocator_info, &output_box[0], output_box.rows, output_shape, 2);
    }
}


int PoseEstimator::find_input_intensity_90_pct_quantile() const
{
    const int channels[] = { 0 };
    const int hist_size[] = { 255 };
    float range[] = { 0, 256 };
    const float* ranges[] = { range };
    cv::Mat hist;
    cv::calcHist(&scaled_frame, 1,  channels, cv::Mat(), hist, 1, hist_size, ranges, true, false);
    int gray_level = 0;
    const int num_pixels_quantile = scaled_frame.total()*0.9f;
    int num_pixels_accum = 0;
    for (int i=0; i<hist_size[0]; ++i)
    {
        num_pixels_accum += hist.at<float>(i);
        if (num_pixels_accum > num_pixels_quantile)
        {
            gray_level = i;
            break;
        }
    }
    return gray_level;
}


std::optional<PoseEstimator::Face> PoseEstimator::run(
    const cv::Mat &frame, const cv::Rect &box)
{
    cv::Mat cropped;
    
    const int patch_size = std::max(box.width, box.height)*1.05;
    const cv::Point2f patch_center = {
        std::clamp<float>(box.x + 0.5f*box.width, 0.f, frame.cols),
        std::clamp<float>(box.y + 0.5f*box.height, 0.f, frame.rows)
    };
    cv::getRectSubPix(frame, {patch_size, patch_size}, patch_center, cropped);

    // Will get failure if patch_center is outside image boundaries.
    // Have to catch this case.
    if (cropped.rows != patch_size || cropped.cols != patch_size)
        return {};
    
    auto p = input_mat.ptr(0);

    cv::resize(cropped, scaled_frame, { input_img_width, input_img_height }, 0, 0, cv::INTER_AREA);

    // Automatic brightness amplification.
    const int brightness = find_input_intensity_90_pct_quantile();
    const double alpha = brightness<127 ? 0.5/std::max(5,brightness) : 1./255;
    const double beta = -0.5;

    scaled_frame.convertTo(input_mat, CV_32F, alpha, beta);

    assert (input_mat.ptr(0) == p);
    assert (!input_mat.empty() && input_mat.isContinuous());
    assert (input_mat.cols == input_img_width && input_mat.rows == input_img_height);

    const char* input_names[] = {"x"};
    const char* output_names[] = {"pos_size", "quat", "box"};

    Timer t; t.start();

    const auto nt = omp_get_num_threads();
    omp_set_num_threads(num_threads);
    session.Run(Ort::RunOptions{nullptr}, input_names, &input_val, 1, output_names, output_val, 3);
    omp_set_num_threads(nt);

    // FIXME: Execution time fluctuates wildly. 19 to 26 ms. Why???
    //        The instructions are always the same. Maybe a memory allocation
    //        issue. The ONNX api suggests that tensor are allocated in an
    //        arena. Does that matter? Maybe the issue is something else?

    last_inference_time = t.elapsed_ms();

    // Perform coordinate transformation.
    // From patch-local normalized in [-1,1] to
    // frame unnormalized pixel coordinates.

    const cv::Point2f center = patch_center + 
        (0.5f*patch_size)*cv::Point2f{output_coord[0], output_coord[1]};

    const float size = patch_size*0.5f*output_coord[2];

    // Following Eigen which uses quat components in the order w, x, y, z.
    const std::array<float,4> rotation = { 
        output_quat[3], 
        output_quat[0], 
        output_quat[1], 
        output_quat[2] };

    const cv::Rect2f outbox = {
        patch_center.x + (0.5f*patch_size)*output_box[0],
        patch_center.y + (0.5f*patch_size)*output_box[1],
        0.5f*patch_size*(output_box[2]-output_box[0]),
        0.5f*patch_size*(output_box[3]-output_box[1])
    };

    return std::optional<Face>({
        rotation, outbox, center, size
    });
}


cv::Mat PoseEstimator::last_network_input() const
{
    cv::Mat ret;
    if (!input_mat.empty())
    {
        input_mat.convertTo(ret, CV_8U, 255., 127.);
        cv::cvtColor(ret, ret, cv::COLOR_GRAY2RGB);
    }
    return ret;
}


double PoseEstimator::last_inference_time_millis() const
{
    return last_inference_time;
}


bool neuralnet_tracker::detect()
{
    // Note: BGR colors!
    if (!last_localizer_roi || !last_roi ||
        iou(*last_localizer_roi,*last_roi)<0.25)
    {
        auto [p, rect] = localizer->run(grayscale);
        last_inference_time += localizer->last_inference_time_millis();
        if (p > 0.5 || rect.height < 5 || rect.width < 5)
        {
            last_localizer_roi = rect;
            last_roi = rect;
        }
        else
        {
            last_roi.reset();
            last_localizer_roi.reset();
        }
    }

    if (!last_roi)
    {
        draw_gizmos(frame, {}, {});
        return false;
    }

    auto face = poseestimator->run(grayscale, *last_roi);
    last_inference_time += poseestimator->last_inference_time_millis();
    
    if (!face)
    {
        last_roi.reset();
        draw_gizmos(frame, *face, {});
        return false;
    }

    last_roi = face->box;

    Affine pose = compute_pose(*face);

    draw_gizmos(frame, *face, pose);

    {
        QMutexLocker lck(&mtx);
        this->pose_ = pose;
    }

    return true;
}


Affine neuralnet_tracker::compute_pose(const PoseEstimator::Face &face) const
{
    const mat33 rot_correction = compute_rotation_correction(
        normalize(face.center, frame.rows, frame.cols),
        intrinsics.focal_length_w);

    const mat33 m = rot_correction * quaternion_to_mat33(face.rotation);

    /*
         
       hhhhhh  <- head size (meters)
      \      | -----------------------
       \     |                         \
        \    |                          |
         \   |                          |- tz (meters)
          ____ <- face.size / width     |
           \ |  |                       |
            \|  |- focal length        /
               ------------------------
    */

    // Compute the location the network outputs in 3d space.
    const vec3 face_world_pos = image_to_world(face.center.x, face.center.y, face.size, head_size_mm);

    // But this is in general not the location of the rotation joint in the neck.
    // So we need an extra offset. Which we determine by solving
    // z,y,z-pos = head_joint_loc + R_face * offset

    const vec3 pos = face_world_pos
        + m * vec3{
            static_cast<float>(s.offset_fwd), 
            static_cast<float>(s.offset_up),
            static_cast<float>(s.offset_right)};

    return { m, pos };
}


void neuralnet_tracker::draw_gizmos(
    cv::Mat frame,
    const std::optional<PoseEstimator::Face> &face,
    const Affine& pose) const
{
    if (last_roi) 
    {
        const int col = 255;
        cv::rectangle(frame, *last_roi, cv::Scalar(0, col, 0), /*thickness=*/1);
    }
    if (last_localizer_roi)
    {
        const int col = 255;
        cv::rectangle(frame, *last_localizer_roi, cv::Scalar(col, 0, 255-col), /*thickness=*/1);
    }

    if (face)
    {
        if (face->size>=1.f)
            cv::circle(frame, static_cast<cv::Point>(face->center), int(face->size), cv::Scalar(255,255,255), 2);
        cv::circle(frame, static_cast<cv::Point>(face->center), 3, cv::Scalar(255,255,255), -1);

        auto draw_coord_line = [&](int i, const cv::Scalar& color)
        {
            const float vx = -pose.R(2,i);
            const float vy = -pose.R(1,i);
            static constexpr float len = 100.f;
            cv::Point q = face->center + len*cv::Point2f{vx, vy};
            cv::line(frame, static_cast<cv::Point>(face->center), static_cast<cv::Point>(q), color, 2);
        };
        draw_coord_line(0, {0, 0, 255});
        draw_coord_line(1, {0, 255, 0});
        draw_coord_line(2, {255, 0, 0});

        // Draw the computed joint position
        auto xy = world_to_image(pose.t);
        cv::circle(frame, cv::Point(xy[0],xy[1]), 5, cv::Scalar(0,0,255), -1);
    }

    if (s.show_network_input)
    {
        cv::Mat netinput = poseestimator->last_network_input();
        if (!netinput.empty())
        {
            const int w = std::min(netinput.cols, frame.cols);
            const int h = std::min(netinput.rows, frame.rows);
            cv::Rect roi(0, 0, w, h);
            netinput(roi).copyTo(frame(roi));
        }
    }

    char buf[128];
    ::snprintf(buf, sizeof(buf), "%d Hz, pose inference: %d ms", clamp(int(fps), 0, 9999), int(last_inference_time));
    cv::putText(frame, buf, cv::Point(10, frame.rows-10), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1);
}


neuralnet_tracker::neuralnet_tracker()
{
    opencv_init();
    cv::setNumThreads(num_threads);
}


neuralnet_tracker::~neuralnet_tracker()
{
    requestInterruption();
    wait();
    // fast start/stop causes breakage
    portable::sleep(1000);
}


module_status neuralnet_tracker::start_tracker(QFrame* videoframe)
{
    videoframe->show();
    videoWidget = std::make_unique<cv_video_widget>(videoframe);
    layout = std::make_unique<QHBoxLayout>();
    layout->setContentsMargins(0, 0, 0, 0);
    layout->addWidget(videoWidget.get());
    videoframe->setLayout(layout.get());
    videoWidget->show();
    start();
    return status_ok();
}


bool neuralnet_tracker::load_and_initialize_model()
{
    const QString localizer_model_path_enc =
        OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-localizer.onnx";
    const QString poseestimator_model_path_enc =
        OPENTRACK_BASE_PATH+"/" OPENTRACK_LIBRARY_PATH "/models/head-pose.onnx";

    try
    {
        env = Ort::Env{
            OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR,
            "tracker-neuralnet"
        };
        auto opts = Ort::SessionOptions{};
        // Do thread settings here do anything?
        // There is a warning which says to control number of threads via
        // openmp settings. Which is what we do. omp_set_num_threads directly
        // before running the inference pass.
        opts.SetIntraOpNumThreads(num_threads);
        opts.SetInterOpNumThreads(num_threads);
        opts.SetGraphOptimizationLevel(
            GraphOptimizationLevel::ORT_ENABLE_EXTENDED);

        opts.EnableCpuMemArena();
        allocator_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);

        localizer.emplace(
            allocator_info, 
            Ort::Session{env, convert(localizer_model_path_enc).c_str(), opts});
        
        poseestimator.emplace(
            allocator_info,
            Ort::Session{env, convert(poseestimator_model_path_enc).c_str(), opts});
    }
    catch (const Ort::Exception &e)
    {
        qDebug() << "Failed to initialize the neural network models. ONNX error message: " 
            << e.what();
        return false;
    }
    return true;
}


bool neuralnet_tracker::open_camera()
{
    int fps = enum_to_fps(s.force_fps);

    QMutexLocker l(&camera_mtx);

    camera = video::make_camera(s.camera_name);

    if (!camera)
        return false;

    video::impl::camera::info args {};

    args.width = 320;
    args.height = 240;

    if (fps)
        args.fps = fps;

    if (!camera->start(args))
    {
        qDebug() << "neuralnet tracker: can't open camera";
        return false;
    }
    return true;
}


void neuralnet_tracker::set_intrinsics()
{
    const int w = grayscale.cols, h = grayscale.rows;
    const double diag_fov = s.fov * M_PI / 180.;
    const double fov_w = 2.*atan(tan(diag_fov/2.)/sqrt(1. + h/(double)w * h/(double)w));
    const double fov_h = 2.*atan(tan(diag_fov/2.)/sqrt(1. + w/(double)h * w/(double)h));
    const double focal_length_w = 1. / tan(.5 * fov_w);
    const double focal_length_h = 1. / tan(.5 * fov_h);

    intrinsics.fov_h = fov_h;
    intrinsics.fov_w = fov_w;
    intrinsics.focal_length_w = focal_length_w;
    intrinsics.focal_length_h = focal_length_h;
}


vec3 neuralnet_tracker::image_to_world(float x, float y, float size, float real_size) const
{
    // Compute the location the network outputs in 3d space.
    const float xpos = -(intrinsics.focal_length_w * frame.cols * 0.5f) / size * real_size;
    const float zpos = (x / frame.cols * 2.f - 1.f) * xpos / intrinsics.focal_length_w;
    const float ypos = (y / frame.rows * 2.f - 1.f) * xpos / intrinsics.focal_length_h;
    return {xpos, ypos, zpos};
}


vec2 neuralnet_tracker::world_to_image(const vec3& pos) const
{
    const float xscr = pos[2] / pos[0] * intrinsics.focal_length_w;
    const float yscr = pos[1] / pos[0] * intrinsics.focal_length_h;
    const float x = (xscr+1.)*0.5f*frame.cols;
    const float y = (yscr+1.)*0.5f*frame.rows;
    return {x, y};
}


void neuralnet_tracker::run()
{
    if (!open_camera())
        return;

    if (!load_and_initialize_model())
        return;

    std::chrono::high_resolution_clock clk;

    while (!isInterruptionRequested())
    {
        last_inference_time = 0;
        auto t = clk.now();
        {
            QMutexLocker l(&camera_mtx);

            auto [ img, res ] = camera->get_frame();

            if (!res)
            {
                l.unlock();
                portable::sleep(100);
                continue;
            }

            auto color = cv::Mat(img.height, img.width, CV_8UC(img.channels), (void*)img.data, img.stride);
            color.copyTo(frame);

            switch (img.channels)
            {
            case 1:
                grayscale.create(img.height, img.width, CV_8UC1);
                color.copyTo(grayscale);
                break;
            case 3:
                cv::cvtColor(color, grayscale, cv::COLOR_BGR2GRAY);
                break;
            default:
                qDebug() << "Can't handle" << img.channels << "color channels";
                return;
            }
        }

        set_intrinsics();

        detect();

        if (frame.rows > 0)
            videoWidget->update_image(frame);
        
        update_fps(
            std::chrono::duration_cast<std::chrono::milliseconds>(
                clk.now() - t).count()*1.e-3);
    }
}


void neuralnet_tracker::update_fps(double dt)
{
    const double alpha = dt/(dt + RC);

    if (dt > 1e-6)
    {
        fps *= 1 - alpha;
        fps += alpha * 1./dt;
    }
}


void neuralnet_tracker::data(double *data)
{
    Affine tmp = [&]()
    {
        QMutexLocker lck(&mtx);
        return pose_;
    }();

    const auto& mx = tmp.R.col(0);
    const auto& my = tmp.R.col(1);
    const auto& mz = -tmp.R.col(2);

    const float yaw = std::atan2(mx(2), mx(0));
    const float pitch = -std::atan2(-mx(1), std::sqrt(mx(2)*mx(2)+mx(0)*mx(0)));
    const float roll = std::atan2(-my(2), mz(2));
    {
        constexpr double rad2deg = 180/M_PI;
        data[Yaw]   = rad2deg * yaw;
        data[Pitch] = rad2deg * pitch;
        data[Roll]  = rad2deg * roll;

        // convert to cm
        data[TX] = -tmp.t[2] * 0.1;
        data[TY] = tmp.t[1] * 0.1;
        data[TZ] = -tmp.t[0] * 0.1;
    }
}


Affine neuralnet_tracker::pose()
{
    QMutexLocker lck(&mtx);
    return pose_;
}


void neuralnet_dialog::make_fps_combobox()
{
    for (int k = 0; k < fps_MAX; k++)
    {
        const int hz = enum_to_fps(k);
        const QString name = (hz == 0) ? tr("Default") : QString::number(hz);
        ui.cameraFPS->addItem(name, k);
    }
}


neuralnet_dialog::neuralnet_dialog() :
    trans_calib(1, 2)
{
    ui.setupUi(this);

    make_fps_combobox();
    tie_setting(s.force_fps, ui.cameraFPS);

    for (const auto& str : video::camera_names())
        ui.cameraName->addItem(str);

    tie_setting(s.camera_name, ui.cameraName);
    tie_setting(s.fov, ui.cameraFOV);
    tie_setting(s.offset_fwd, ui.tx_spin);
    tie_setting(s.offset_up, ui.ty_spin);
    tie_setting(s.offset_right, ui.tz_spin);
    tie_setting(s.show_network_input, ui.showNetworkInput);

    connect(ui.buttonBox, SIGNAL(accepted()), this, SLOT(doOK()));
    connect(ui.buttonBox, SIGNAL(rejected()), this, SLOT(doCancel()));
    connect(ui.camera_settings, SIGNAL(clicked()), this, SLOT(camera_settings()));

    connect(&s.camera_name, value_::value_changed<QString>(), this, &neuralnet_dialog::update_camera_settings_state);

    update_camera_settings_state(s.camera_name);

    connect(&calib_timer, &QTimer::timeout, this, &neuralnet_dialog::trans_calib_step);
    calib_timer.setInterval(35);
    connect(ui.tcalib_button,SIGNAL(toggled(bool)), this, SLOT(startstop_trans_calib(bool)));
}


void neuralnet_dialog::doOK()
{
    s.b->save();
    close();
}


void neuralnet_dialog::doCancel()
{
    close();
}


void neuralnet_dialog::camera_settings()
{
    if (tracker)
    {
        QMutexLocker l(&tracker->camera_mtx);
        (void)tracker->camera->show_dialog();
    }
    else
        (void)video::show_dialog(s.camera_name);
}


void neuralnet_dialog::update_camera_settings_state(const QString& name)
{
    (void)name;
    ui.camera_settings->setEnabled(true);
}


void neuralnet_dialog::register_tracker(ITracker * x)
{
    tracker = static_cast<neuralnet_tracker*>(x);
    ui.tcalib_button->setEnabled(true);
}


void neuralnet_dialog::unregister_tracker()
{
    tracker = nullptr;
    ui.tcalib_button->setEnabled(false);
}


void neuralnet_dialog::trans_calib_step()
{
    if (tracker)
    {
        const Affine X_CM = [&]() { 
            QMutexLocker l(&calibrator_mutex);
            return tracker->pose();
        }();
        trans_calib.update(X_CM.R, X_CM.t);
        auto [_, nsamples] = trans_calib.get_estimate();

        constexpr int min_yaw_samples = 15;
        constexpr int min_pitch_samples = 12;
        constexpr int min_samples = min_yaw_samples+min_pitch_samples;

        // Don't bother counting roll samples. Roll calibration is hard enough
        // that it's a hidden unsupported feature anyway.

        QString sample_feedback;
        if (nsamples[0] < min_yaw_samples)
            sample_feedback = tr("%1 yaw samples. Yaw more to %2 samples for stable calibration.").arg(nsamples[0]).arg(min_yaw_samples);
        else if (nsamples[1] < min_pitch_samples)
            sample_feedback = tr("%1 pitch samples. Pitch more to %2 samples for stable calibration.").arg(nsamples[1]).arg(min_pitch_samples);
        else
        {
            const int nsamples_total = nsamples[0] + nsamples[1];
            sample_feedback = tr("%1 samples. Over %2, good!").arg(nsamples_total).arg(min_samples);
        }
        ui.sample_count_display->setText(sample_feedback);
    }
    else
        startstop_trans_calib(false);
}


void neuralnet_dialog::startstop_trans_calib(bool start)
{
    QMutexLocker l(&calibrator_mutex);
    // FIXME: does not work ...  
    if (start)
    {
        qDebug() << "pt: starting translation calibration";
        calib_timer.start();
        trans_calib.reset();
        ui.sample_count_display->setText(QString());
        // Tracker must run with zero'ed offset for calibration.
        s.offset_fwd = 0;
        s.offset_up = 0;
        s.offset_right = 0;
    }
    else
    {
        calib_timer.stop();
        qDebug() << "pt: stopping translation calibration";
        {
            auto [tmp, nsamples] = trans_calib.get_estimate();
            s.offset_fwd = int(tmp[0]);
            s.offset_up = int(tmp[1]);
            s.offset_right = int(tmp[2]);
        }
    }
    ui.tx_spin->setEnabled(!start);
    ui.ty_spin->setEnabled(!start);
    ui.tz_spin->setEnabled(!start);

    if (start)
        ui.tcalib_button->setText(tr("Stop calibration"));
    else
        ui.tcalib_button->setText(tr("Start calibration"));
}


settings::settings() : opts("neuralnet-tracker") {}

} // neuralnet_tracker_ns

OPENTRACK_DECLARE_TRACKER(neuralnet_tracker, neuralnet_dialog, neuralnet_metadata)