diff options
author | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 07:37:12 +0200 |
---|---|---|
committer | Stanislaw Halik <sthalik@misaki.pl> | 2018-07-03 08:13:09 +0200 |
commit | 88534ba623421c956d8ffcda2d27f41d704d15ef (patch) | |
tree | fccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/Eigen/src/EulerAngles | |
parent | 3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff) |
update eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src/EulerAngles')
-rw-r--r-- | eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h | 257 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h | 184 |
2 files changed, 246 insertions, 195 deletions
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h index a5d034d..13a0da1 100644 --- a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h @@ -12,6 +12,11 @@ namespace Eigen { + /*template<typename Other, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> + struct ei_eulerangles_assign_impl;*/ + /** \class EulerAngles * * \ingroup EulerAngles_Module @@ -31,7 +36,7 @@ namespace Eigen * ### Rotation representation and conversions ### * * It has been proved(see Wikipedia link below) that every rotation can be represented - * by Euler angles, but there is no single representation (e.g. unlike rotation matrices). + * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices). * Therefore, you can convert from Eigen rotation and to them * (including rotation matrices, which is not called "rotations" by Eigen design). * @@ -50,27 +55,33 @@ namespace Eigen * Additionally, some axes related computation is done in compile time. * * #### Euler angles ranges in conversions #### - * Rotations representation as EulerAngles are not single (unlike matrices), - * and even have infinite EulerAngles representations.<BR> - * For example, add or subtract 2*PI from either angle of EulerAngles - * and you'll get the same rotation. - * This is the general reason for infinite representation, - * but it's not the only general reason for not having a single representation. * - * When converting rotation to EulerAngles, this class convert it to specific ranges - * When converting some rotation to EulerAngles, the rules for ranges are as follow: - * - If the rotation we converting from is an EulerAngles - * (even when it represented as RotationBase explicitly), angles ranges are __undefined__. - * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> - * As for Beta angle: - * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. - * - otherwise: - * - If the beta axis is positive, the beta angle will be in the range [0, PI] - * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] + * When converting some rotation to Euler angles, there are some ways you can guarantee + * the Euler angles ranges. * + * #### implicit ranges #### + * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI], + * unless you convert from some other Euler angles. + * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI). * \sa EulerAngles(const MatrixBase<Derived>&) * \sa EulerAngles(const RotationBase<Derived, 3>&) * + * #### explicit ranges #### + * When using explicit ranges, all angles are guarantee to be in the range you choose. + * In the range Boolean parameter, you're been ask whether you prefer the positive range or not: + * - _true_ - force the range between [0, +2*PI] + * - _false_ - force the range between [-PI, +PI] + * + * ##### compile time ranges ##### + * This is when you have compile time ranges and you prefer to + * use template parameter. (e.g. for performance) + * \sa FromRotation() + * + * ##### run-time time ranges ##### + * Run-time ranges are also supported. + * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool) + * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool) + * * ### Convenient user typedefs ### * * Convenient typedefs for EulerAngles exist for float and double scalar, @@ -92,7 +103,7 @@ namespace Eigen * * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles * - * \tparam _Scalar the scalar type, i.e. the type of the angles. + * \tparam _Scalar the scalar type, i.e., the type of the angles. * * \tparam _System the EulerSystem to use, which represents the axes of rotation. */ @@ -100,11 +111,8 @@ namespace Eigen class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3> { public: - typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base; - /** the scalar type of the angles */ typedef _Scalar Scalar; - typedef typename NumTraits<Scalar>::Real RealScalar; /** the EulerSystem to use, which represents the axes of rotation. */ typedef _System System; @@ -138,56 +146,67 @@ namespace Eigen public: /** Default constructor without initialization. */ EulerAngles() {} - /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */ + /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */ EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : m_angles(alpha, beta, gamma) {} - // TODO: Test this constructor - /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */ - explicit EulerAngles(const Scalar* data) : m_angles(data) {} + /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m. + * + * \note All angles will be in the range [-PI, PI]. + */ + template<typename Derived> + EulerAngles(const MatrixBase<Derived>& m) { *this = m; } - /** Constructs and initializes an EulerAngles from either: - * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), - * - a 3D vector expression representing Euler angles. + /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m, + * with options to choose for each angle the requested range. + * + * If positive range is true, then the specified angle will be in the range [0, +2*PI]. + * Otherwise, the specified angle will be in the range [-PI, +PI]. * - * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR> - * Alpha and gamma angles will be in the range [-PI, PI].<BR> - * As for Beta angle: - * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. - * - otherwise: - * - If the beta axis is positive, the beta angle will be in the range [0, PI] - * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] - */ + * \param m The 3x3 rotation matrix to convert + * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + */ template<typename Derived> - explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; } + EulerAngles( + const MatrixBase<Derived>& m, + bool positiveRangeAlpha, + bool positiveRangeBeta, + bool positiveRangeGamma) { + + System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma); + } /** Constructs and initialize Euler angles from a rotation \p rot. * - * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly), - * angles ranges are __undefined__. - * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> - * As for Beta angle: - * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. - * - otherwise: - * - If the beta axis is positive, the beta angle will be in the range [0, PI] - * - If the beta axis is negative, the beta angle will be in the range [-PI, 0] + * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles. + * If rot is an EulerAngles, expected EulerAngles range is __undefined__. + * (Use other functions here for enforcing range if this effect is desired) */ template<typename Derived> - EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); } + EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; } - /*EulerAngles(const QuaternionType& q) - { - // TODO: Implement it in a faster way for quaternions - // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ - // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) - // Currently we compute all matrix cells from quaternion. - - // Special case only for ZYX - //Scalar y2 = q.y() * q.y(); - //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); - //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); - //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); - }*/ + /** Constructs and initialize Euler angles from a rotation \p rot, + * with options to choose for each angle the requested range. + * + * If positive range is true, then the specified angle will be in the range [0, +2*PI]. + * Otherwise, the specified angle will be in the range [-PI, +PI]. + * + * \param rot The 3x3 rotation matrix to convert + * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + */ + template<typename Derived> + EulerAngles( + const RotationBase<Derived, 3>& rot, + bool positiveRangeAlpha, + bool positiveRangeBeta, + bool positiveRangeGamma) { + + System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma); + } /** \returns The angle values stored in a vector (alpha, beta, gamma). */ const Vector3& angles() const { return m_angles; } @@ -227,48 +246,90 @@ namespace Eigen return inverse(); } - /** Set \c *this from either: - * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), - * - a 3D vector expression representing Euler angles. + /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m, + * with options to choose for each angle the requested range (__only in compile time__). * - * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about - * angles ranges output. + * If positive range is true, then the specified angle will be in the range [0, +2*PI]. + * Otherwise, the specified angle will be in the range [-PI, +PI]. + * + * \param m The 3x3 rotation matrix to convert + * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + */ + template< + bool PositiveRangeAlpha, + bool PositiveRangeBeta, + bool PositiveRangeGamma, + typename Derived> + static EulerAngles FromRotation(const MatrixBase<Derived>& m) + { + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) + + EulerAngles e; + System::template CalcEulerAngles< + PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m); + return e; + } + + /** Constructs and initialize Euler angles from a rotation \p rot, + * with options to choose for each angle the requested range (__only in compile time__). + * + * If positive range is true, then the specified angle will be in the range [0, +2*PI]. + * Otherwise, the specified angle will be in the range [-PI, +PI]. + * + * \param rot The 3x3 rotation matrix to convert + * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. + * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI]. */ - template<class Derived> - EulerAngles& operator=(const MatrixBase<Derived>& other) + template< + bool PositiveRangeAlpha, + bool PositiveRangeBeta, + bool PositiveRangeGamma, + typename Derived> + static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot) + { + return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix()); + } + + /*EulerAngles& fromQuaternion(const QuaternionType& q) { - EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + // TODO: Implement it in a faster way for quaternions + // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ + // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) + // Currently we compute all matrix cells from quaternion. + + // Special case only for ZYX + //Scalar y2 = q.y() * q.y(); + //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); + //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); + //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); + }*/ + + /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */ + template<typename Derived> + EulerAngles& operator=(const MatrixBase<Derived>& m) { + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) - internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived()); + System::CalcEulerAngles(*this, m); return *this; } // TODO: Assign and construct from another EulerAngles (with different system) - /** Set \c *this from a rotation. - * - * See EulerAngles(const RotationBase<Derived, 3>&) for more information about - * angles ranges output. - */ + /** Set \c *this from a rotation. */ template<typename Derived> EulerAngles& operator=(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); return *this; } - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const EulerAngles& other, - const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const - { return angles().isApprox(other.angles(), prec); } + // TODO: Support isApprox function /** \returns an equivalent 3x3 rotation matrix. */ Matrix3 toRotationMatrix() const { - // TODO: Calc it faster return static_cast<QuaternionType>(*this).toRotationMatrix(); } @@ -286,15 +347,6 @@ namespace Eigen s << eulerAngles.angles().transpose(); return s; } - - /** \returns \c *this with scalar type casted to \a NewScalarType */ - template <typename NewScalarType> - EulerAngles<NewScalarType, System> cast() const - { - EulerAngles<NewScalarType, System> e; - e.angles() = angles().template cast<NewScalarType>(); - return e; - } }; #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \ @@ -327,29 +379,8 @@ EIGEN_EULER_ANGLES_TYPEDEFS(double, d) { typedef _Scalar Scalar; }; - - // set from a rotation matrix - template<class System, class Other> - struct eulerangles_assign_impl<System,Other,3,3> - { - typedef typename Other::Scalar Scalar; - static void run(EulerAngles<Scalar, System>& e, const Other& m) - { - System::CalcEulerAngles(e, m); - } - }; - - // set from a vector of Euler angles - template<class System, class Other> - struct eulerangles_assign_impl<System,Other,4,1> - { - typedef typename Other::Scalar Scalar; - static void run(EulerAngles<Scalar, System>& e, const Other& vec) - { - e.angles() = vec; - } - }; } + } #endif // EIGEN_EULERANGLESCLASS_H diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h index 28f52da..98f9f64 100644 --- a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h @@ -18,7 +18,7 @@ namespace Eigen namespace internal { - // TODO: Add this trait to the Eigen internal API? + // TODO: Check if already exists on the rest API template <int Num, bool IsPositive = (Num > 0)> struct Abs { @@ -36,12 +36,6 @@ namespace Eigen { enum { value = Axis != 0 && Abs<Axis>::value <= 3 }; }; - - template<typename System, - typename Other, - int OtherRows=Other::RowsAtCompileTime, - int OtherCols=Other::ColsAtCompileTime> - struct eulerangles_assign_impl; } #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1] @@ -75,7 +69,7 @@ namespace Eigen * * You can use this class to get two things: * - Build an Euler system, and then pass it as a template parameter to EulerAngles. - * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan) + * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan) * * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles) * This meta-class store constantly those signed axes. (see \ref EulerAxis) @@ -86,7 +80,7 @@ namespace Eigen * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported: * - all axes X, Y, Z in each valid order (see below what order is valid) * - rotation over the axis is supported both over the positive and negative directions. - * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite). + * - both tait bryan and proper/classic Euler angles (i.e. the opposite). * * Since EulerSystem support both positive and negative directions, * you may call this rotation distinction in other names: @@ -96,7 +90,7 @@ namespace Eigen * Notice all axed combination are valid, and would trigger a static assertion. * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. * This yield two and only two classes: - * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} + * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal, * and the second is different, e.g. {X,Y,X} * @@ -118,9 +112,9 @@ namespace Eigen * * \tparam _AlphaAxis the first fixed EulerAxis * - * \tparam _BetaAxis the second fixed EulerAxis + * \tparam _AlphaAxis the second fixed EulerAxis * - * \tparam _GammaAxis the third fixed EulerAxis + * \tparam _AlphaAxis the third fixed EulerAxis */ template <int _AlphaAxis, int _BetaAxis, int _GammaAxis> class EulerSystem @@ -144,16 +138,14 @@ namespace Eigen BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */ GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */ - IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */ - IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */ - IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */ - - // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed - // by Z, or Z is followed by X; otherwise it is odd. - IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */ - IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */ + IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */ + IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */ + IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */ + + IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */ + IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */ - IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */ + IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */ }; private: @@ -188,70 +180,71 @@ namespace Eigen static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/) { using std::atan2; - using std::sqrt; + using std::sin; + using std::cos; typedef typename Derived::Scalar Scalar; - - const Scalar plusMinus = IsEven? 1 : -1; - const Scalar minusPlus = IsOdd? 1 : -1; - - const Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2); - res[1] = atan2(plusMinus * mat(I,K), Rsum); - - // There is a singularity when cos(beta) == 0 - if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0 - res[0] = atan2(minusPlus * mat(J, K), mat(K, K)); - res[2] = atan2(minusPlus * mat(I, J), mat(I, I)); - } - else if(plusMinus * mat(I, K) > 0) {// cos(beta) == 0 and sin(beta) == 1 - Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma - Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma) - Scalar alphaPlusMinusGamma = atan2(spos, cpos); - res[0] = alphaPlusMinusGamma; - res[2] = 0; - } - else {// cos(beta) == 0 and sin(beta) == -1 - Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma) - Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma) - Scalar alphaMinusPlusBeta = atan2(sneg, cneg); - res[0] = alphaMinusPlusBeta; - res[2] = 0; + typedef Matrix<Scalar,2,1> Vector2; + + res[0] = atan2(mat(J,K), mat(K,K)); + Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm(); + if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) { + if(res[0] > Scalar(0)) { + res[0] -= Scalar(EIGEN_PI); + } + else { + res[0] += Scalar(EIGEN_PI); + } + res[1] = atan2(-mat(I,K), -c2); } + else + res[1] = atan2(-mat(I,K), c2); + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J)); } template <typename Derived> - static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, - const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) + static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) { using std::atan2; - using std::sqrt; + using std::sin; + using std::cos; typedef typename Derived::Scalar Scalar; - - const Scalar plusMinus = IsEven? 1 : -1; - const Scalar minusPlus = IsOdd? 1 : -1; - - const Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2); - - res[1] = atan2(Rsum, mat(I, I)); - - // There is a singularity when sin(beta) == 0 - if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0 - res[0] = atan2(mat(J, I), minusPlus * mat(K, I)); - res[2] = atan2(mat(I, J), plusMinus * mat(I, K)); - } - else if(mat(I, I) > 0) {// sin(beta) == 0 and cos(beta) == 1 - Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma) - Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma) - res[0] = atan2(spos, cpos); - res[2] = 0; + typedef Matrix<Scalar,2,1> Vector2; + + res[0] = atan2(mat(J,I), mat(K,I)); + if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) + { + if(res[0] > Scalar(0)) { + res[0] -= Scalar(EIGEN_PI); + } + else { + res[0] += Scalar(EIGEN_PI); + } + Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm(); + res[1] = -atan2(s2, mat(I,I)); } - else {// sin(beta) == 0 and cos(beta) == -1 - Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma) - Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma) - res[0] = atan2(sneg, cneg); - res[2] = 0; + else + { + Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm(); + res[1] = atan2(s2, mat(I,I)); } + + // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, + // we can compute their respective rotation, and apply its inverse to M. Since the result must + // be a rotation around x, we have: + // + // c2 s1.s2 c1.s2 1 0 0 + // 0 c1 -s1 * M = 0 c3 s3 + // -s2 s1.c2 c1.c2 0 -s3 c3 + // + // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 + + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J)); } template<typename Scalar> @@ -259,28 +252,55 @@ namespace Eigen EulerAngles<Scalar, EulerSystem>& res, const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) { + CalcEulerAngles(res, mat, false, false, false); + } + + template< + bool PositiveRangeAlpha, + bool PositiveRangeBeta, + bool PositiveRangeGamma, + typename Scalar> + static void CalcEulerAngles( + EulerAngles<Scalar, EulerSystem>& res, + const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) + { + CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma); + } + + template<typename Scalar> + static void CalcEulerAngles( + EulerAngles<Scalar, EulerSystem>& res, + const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat, + bool PositiveRangeAlpha, + bool PositiveRangeBeta, + bool PositiveRangeGamma) + { CalcEulerAngles_imp( res.angles(), mat, typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type()); - if (IsAlphaOpposite) + if (IsAlphaOpposite == IsOdd) res.alpha() = -res.alpha(); - if (IsBetaOpposite) + if (IsBetaOpposite == IsOdd) res.beta() = -res.beta(); - if (IsGammaOpposite) + if (IsGammaOpposite == IsOdd) res.gamma() = -res.gamma(); + + // Saturate results to the requested range + if (PositiveRangeAlpha && (res.alpha() < 0)) + res.alpha() += Scalar(2 * EIGEN_PI); + + if (PositiveRangeBeta && (res.beta() < 0)) + res.beta() += Scalar(2 * EIGEN_PI); + + if (PositiveRangeGamma && (res.gamma() < 0)) + res.gamma() += Scalar(2 * EIGEN_PI); } template <typename _Scalar, class _System> friend class Eigen::EulerAngles; - - template<typename System, - typename Other, - int OtherRows, - int OtherCols> - friend struct internal::eulerangles_assign_impl; }; #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \ |