1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include "app.hpp"
namespace floormat {
chunk app::make_test_chunk()
{
constexpr auto N = TILE_MAX_DIM;
chunk c;
for (auto [x, k, pt] : c) {
const auto& atlas = pt.x > N/2 && pt.y >= N/2 ? floor2 : floor1;
x.ground_image = { atlas, (std::uint8_t)(k % atlas->num_tiles().product()) };
}
constexpr auto K = N/2;
c[{K, K }].wall_north = { wall1, 0 };
c[{K, K }].wall_west = { wall2, 0 };
c[{K, K+1}].wall_north = { wall1, 0 };
c[{K+1, K }].wall_west = { wall2, 0 };
return c;
}
void app::do_mouse_click(const Vector2 pos, int button)
{
_editor.click_at_tile(pos, button);
}
void app::update(float dt)
{
do_camera(dt);
do_menu();
if (keys[key::quit])
Platform::Sdl2Application::exit(0);
}
Vector2 app::pixel_to_tile(Vector2 position) const
{
const auto px = position - Vector2{windowSize()}*.5f - camera_offset;
return unproject(px) / Vector2{TILE_SIZE[0]*.5f, TILE_SIZE[1]*.5f} + Vector2{.5f, .5f};
}
void app::draw_cursor_tile()
{
if (_cursor_pos)
{
const auto tile = pixel_to_tile(Vector2(*_cursor_pos));
if (std::min(tile[0], tile[1]) >= 0 && std::max(tile[0], tile[1]) < (int)TILE_MAX_DIM)
{
const auto x = std::uint8_t(tile[0]), y = std::uint8_t(tile[1]);
draw_wireframe_quad({x, y});
}
}
}
} // namespace floormat
|