summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/Eigen2Support/Geometry
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/Eigen2Support/Geometry')
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/AlignedBox.h159
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/All.h115
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/AngleAxis.h214
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt6
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Hyperplane.h254
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h141
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h495
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h145
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/RotationBase.h123
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Scaling.h167
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Transform.h786
-rw-r--r--eigen/Eigen/src/Eigen2Support/Geometry/Translation.h184
12 files changed, 0 insertions, 2789 deletions
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/AlignedBox.h b/eigen/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
deleted file mode 100644
index 2e4309d..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/AlignedBox.h
+++ /dev/null
@@ -1,159 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- * \nonstableyet
- *
- * \class AlignedBox
- *
- * \brief An axis aligned box
- *
- * \param _Scalar the type of the scalar coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- *
- * This class represents an axis aligned box as a pair of the minimal and maximal corners.
- */
-template <typename _Scalar, int _AmbientDim>
-class AlignedBox
-{
-public:
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor initializing a null box. */
- inline AlignedBox()
- { if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
-
- /** Constructs a null box with \a _dim the dimension of the ambient space. */
- inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
- { setNull(); }
-
- /** Constructs a box with extremities \a _min and \a _max. */
- inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
-
- /** Constructs a box containing a single point \a p. */
- inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
-
- ~AlignedBox() {}
-
- /** \returns the dimension in which the box holds */
- inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
-
- /** \returns true if the box is null, i.e, empty. */
- inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
-
- /** Makes \c *this a null/empty box. */
- inline void setNull()
- {
- m_min.setConstant( (std::numeric_limits<Scalar>::max)());
- m_max.setConstant(-(std::numeric_limits<Scalar>::max)());
- }
-
- /** \returns the minimal corner */
- inline const VectorType& (min)() const { return m_min; }
- /** \returns a non const reference to the minimal corner */
- inline VectorType& (min)() { return m_min; }
- /** \returns the maximal corner */
- inline const VectorType& (max)() const { return m_max; }
- /** \returns a non const reference to the maximal corner */
- inline VectorType& (max)() { return m_max; }
-
- /** \returns true if the point \a p is inside the box \c *this. */
- inline bool contains(const VectorType& p) const
- { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
-
- /** \returns true if the box \a b is entirely inside the box \c *this. */
- inline bool contains(const AlignedBox& b) const
- { return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); }
-
- /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
- inline AlignedBox& extend(const VectorType& p)
- { m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; }
-
- /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
- inline AlignedBox& extend(const AlignedBox& b)
- { m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; }
-
- /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
- inline AlignedBox& clamp(const AlignedBox& b)
- { m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; }
-
- /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
- inline AlignedBox& translate(const VectorType& t)
- { m_min += t; m_max += t; return *this; }
-
- /** \returns the squared distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa exteriorDistance()
- */
- inline Scalar squaredExteriorDistance(const VectorType& p) const;
-
- /** \returns the distance between the point \a p and the box \c *this,
- * and zero if \a p is inside the box.
- * \sa squaredExteriorDistance()
- */
- inline Scalar exteriorDistance(const VectorType& p) const
- { return ei_sqrt(squaredExteriorDistance(p)); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<AlignedBox,
- AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_min = (other.min)().template cast<Scalar>();
- m_max = (other.max)().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
-
-protected:
-
- VectorType m_min, m_max;
-};
-
-template<typename Scalar,int AmbiantDim>
-inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
-{
- Scalar dist2(0);
- Scalar aux;
- for (int k=0; k<dim(); ++k)
- {
- if ((aux = (p[k]-m_min[k]))<Scalar(0))
- dist2 += aux*aux;
- else if ( (aux = (m_max[k]-p[k]))<Scalar(0))
- dist2 += aux*aux;
- }
- return dist2;
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/All.h b/eigen/Eigen/src/Eigen2Support/Geometry/All.h
deleted file mode 100644
index e0b00fc..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/All.h
+++ /dev/null
@@ -1,115 +0,0 @@
-#ifndef EIGEN2_GEOMETRY_MODULE_H
-#define EIGEN2_GEOMETRY_MODULE_H
-
-#include <limits>
-
-#ifndef M_PI
-#define M_PI 3.14159265358979323846
-#endif
-
-#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-#endif
-
-
-#define RotationBase eigen2_RotationBase
-#define Rotation2D eigen2_Rotation2D
-#define Rotation2Df eigen2_Rotation2Df
-#define Rotation2Dd eigen2_Rotation2Dd
-
-#define Quaternion eigen2_Quaternion
-#define Quaternionf eigen2_Quaternionf
-#define Quaterniond eigen2_Quaterniond
-
-#define AngleAxis eigen2_AngleAxis
-#define AngleAxisf eigen2_AngleAxisf
-#define AngleAxisd eigen2_AngleAxisd
-
-#define Transform eigen2_Transform
-#define Transform2f eigen2_Transform2f
-#define Transform2d eigen2_Transform2d
-#define Transform3f eigen2_Transform3f
-#define Transform3d eigen2_Transform3d
-
-#define Translation eigen2_Translation
-#define Translation2f eigen2_Translation2f
-#define Translation2d eigen2_Translation2d
-#define Translation3f eigen2_Translation3f
-#define Translation3d eigen2_Translation3d
-
-#define Scaling eigen2_Scaling
-#define Scaling2f eigen2_Scaling2f
-#define Scaling2d eigen2_Scaling2d
-#define Scaling3f eigen2_Scaling3f
-#define Scaling3d eigen2_Scaling3d
-
-#define AlignedBox eigen2_AlignedBox
-
-#define Hyperplane eigen2_Hyperplane
-#define ParametrizedLine eigen2_ParametrizedLine
-
-#define ei_toRotationMatrix eigen2_ei_toRotationMatrix
-#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl
-#define ei_transform_product_impl eigen2_ei_transform_product_impl
-
-#include "RotationBase.h"
-#include "Rotation2D.h"
-#include "Quaternion.h"
-#include "AngleAxis.h"
-#include "Transform.h"
-#include "Translation.h"
-#include "Scaling.h"
-#include "AlignedBox.h"
-#include "Hyperplane.h"
-#include "ParametrizedLine.h"
-
-#undef ei_toRotationMatrix
-#undef ei_quaternion_assign_impl
-#undef ei_transform_product_impl
-
-#undef RotationBase
-#undef Rotation2D
-#undef Rotation2Df
-#undef Rotation2Dd
-
-#undef Quaternion
-#undef Quaternionf
-#undef Quaterniond
-
-#undef AngleAxis
-#undef AngleAxisf
-#undef AngleAxisd
-
-#undef Transform
-#undef Transform2f
-#undef Transform2d
-#undef Transform3f
-#undef Transform3d
-
-#undef Translation
-#undef Translation2f
-#undef Translation2d
-#undef Translation3f
-#undef Translation3d
-
-#undef Scaling
-#undef Scaling2f
-#undef Scaling2d
-#undef Scaling3f
-#undef Scaling3d
-
-#undef AlignedBox
-
-#undef Hyperplane
-#undef ParametrizedLine
-
-#endif // EIGEN2_GEOMETRY_MODULE_H
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/eigen/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
deleted file mode 100644
index af598a4..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
+++ /dev/null
@@ -1,214 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class AngleAxis
- *
- * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * The following two typedefs are provided for convenience:
- * \li \c AngleAxisf for \c float
- * \li \c AngleAxisd for \c double
- *
- * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
- *
- * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
- * mimic Euler-angles. Here is an example:
- * \include AngleAxis_mimic_euler.cpp
- * Output: \verbinclude AngleAxis_mimic_euler.out
- *
- * \note This class is not aimed to be used to store a rotation transformation,
- * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
- * and transformation objects.
- *
- * \sa class Quaternion, class Transform, MatrixBase::UnitX()
- */
-
-template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
-{
- typedef RotationBase<AngleAxis<_Scalar>,3> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 3 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Quaternion<Scalar> QuaternionType;
-
-protected:
-
- Vector3 m_axis;
- Scalar m_angle;
-
-public:
-
- /** Default constructor without initialization. */
- AngleAxis() {}
- /** Constructs and initialize the angle-axis rotation from an \a angle in radian
- * and an \a axis which must be normalized. */
- template<typename Derived>
- inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- inline AngleAxis(const QuaternionType& q) { *this = q; }
- /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
- template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
-
- Scalar angle() const { return m_angle; }
- Scalar& angle() { return m_angle; }
-
- const Vector3& axis() const { return m_axis; }
- Vector3& axis() { return m_axis; }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
- { return QuaternionType(*this) * QuaternionType(other); }
-
- /** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
- { return QuaternionType(*this) * other; }
-
- /** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
- { return a * QuaternionType(b); }
-
- /** Concatenates two rotations */
- inline Matrix3 operator* (const Matrix3& other) const
- { return toRotationMatrix() * other; }
-
- /** Concatenates two rotations */
- inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
- { return a * b.toRotationMatrix(); }
-
- /** Applies rotation to vector */
- inline Vector3 operator* (const Vector3& other) const
- { return toRotationMatrix() * other; }
-
- /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
- { return AngleAxis(-m_angle, m_axis); }
-
- AngleAxis& operator=(const QuaternionType& q);
- template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
-
- template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
- {
- m_axis = other.axis().template cast<Scalar>();
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision angle-axis type */
-typedef AngleAxis<float> AngleAxisf;
-/** \ingroup Geometry_Module
- * double precision angle-axis type */
-typedef AngleAxis<double> AngleAxisd;
-
-/** Set \c *this from a quaternion.
- * The axis is normalized.
- */
-template<typename Scalar>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
-{
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < precision<Scalar>()*precision<Scalar>())
- {
- m_angle = 0;
- m_axis << 1, 0, 0;
- }
- else
- {
- m_angle = 2*std::acos(q.w());
- m_axis = q.vec() / ei_sqrt(n2);
- }
- return *this;
-}
-
-/** Set \c *this from a 3x3 rotation matrix \a mat.
- */
-template<typename Scalar>
-template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
-{
- // Since a direct conversion would not be really faster,
- // let's use the robust Quaternion implementation:
- return *this = QuaternionType(mat);
-}
-
-/** Constructs and \returns an equivalent 3x3 rotation matrix.
- */
-template<typename Scalar>
-typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
-{
- Matrix3 res;
- Vector3 sin_axis = ei_sin(m_angle) * m_axis;
- Scalar c = ei_cos(m_angle);
- Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
-
- Scalar tmp;
- tmp = cos1_axis.x() * m_axis.y();
- res.coeffRef(0,1) = tmp - sin_axis.z();
- res.coeffRef(1,0) = tmp + sin_axis.z();
-
- tmp = cos1_axis.x() * m_axis.z();
- res.coeffRef(0,2) = tmp + sin_axis.y();
- res.coeffRef(2,0) = tmp - sin_axis.y();
-
- tmp = cos1_axis.y() * m_axis.z();
- res.coeffRef(1,2) = tmp - sin_axis.x();
- res.coeffRef(2,1) = tmp + sin_axis.x();
-
- res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
-
- return res;
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt b/eigen/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
deleted file mode 100644
index c347a8f..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Eigen2Support_Geometry_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Eigen2Support_Geometry_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support/Geometry
- )
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Hyperplane.h b/eigen/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
deleted file mode 100644
index b95bf00..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Hyperplane.h
+++ /dev/null
@@ -1,254 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Hyperplane
- *
- * \brief A hyperplane
- *
- * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
- * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- * Notice that the dimension of the hyperplane is _AmbientDim-1.
- *
- * This class represents an hyperplane as the zero set of the implicit equation
- * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
- * and \f$ d \f$ is the distance (offset) to the origin.
- */
-template <typename _Scalar, int _AmbientDim>
-class Hyperplane
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
- ? Dynamic
- : int(AmbientDimAtCompileTime)+1,1> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
-
- /** Default constructor without initialization */
- inline Hyperplane() {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType& e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -e.eigen2_dot(n);
- }
-
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, Scalar d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
-
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -result.normal().eigen2_dot(p0);
- return result;
- }
-
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -normal().eigen2_dot(parametrized.origin());
- }
-
- ~Hyperplane() {}
-
- /** \returns the dimension in which the plane holds */
- inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
-
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
-
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(ei_isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
-
- /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- ei_assert("invalid traits value in Hyperplane::transform()");
- }
- return *this;
- }
-
- /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- * Other kind of transformations are not supported.
- */
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
- TransformTraits traits = Affine)
- {
- transform(t.linear(), traits);
- offset() -= t.translation().eigen2_dot(normal());
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<Hyperplane,
- Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
-
- Coefficients m_coeffs;
-};
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h b/eigen/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
deleted file mode 100644
index 9b57b7e..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
+++ /dev/null
@@ -1,141 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class ParametrizedLine
- *
- * \brief A parametrized line
- *
- * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
- * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
- * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
- */
-template <typename _Scalar, int _AmbientDim>
-class ParametrizedLine
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor without initialization */
- inline ParametrizedLine() {}
-
- /** Constructs a dynamic-size line with \a _dim the dimension
- * of the ambient space */
- inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
-
- /** Initializes a parametrized line of direction \a direction and origin \a origin.
- * \warning the vector direction is assumed to be normalized.
- */
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
- : m_origin(origin), m_direction(direction) {}
-
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
- { return ParametrizedLine(p0, (p1-p0).normalized()); }
-
- ~ParametrizedLine() {}
-
- /** \returns the dimension in which the line holds */
- inline int dim() const { return m_direction.size(); }
-
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
-
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
-
- /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
- * \sa distance()
- */
- RealScalar squaredDistance(const VectorType& p) const
- {
- VectorType diff = p-origin();
- return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
- }
- /** \returns the distance of a point \a p to its projection onto the line \c *this.
- * \sa squaredDistance()
- */
- RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
-
- /** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
- { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
-
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
- {
- return typename internal::cast_return_type<ParametrizedLine,
- ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
- }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
- {
- m_origin = other.origin().template cast<Scalar>();
- m_direction = other.direction().template cast<Scalar>();
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
-
-protected:
-
- VectorType m_origin, m_direction;
-};
-
-/** Constructs a parametrized line from a 2D hyperplane
- *
- * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
- */
-template <typename _Scalar, int _AmbientDim>
-inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
- direction() = hyperplane.normal().unitOrthogonal();
- origin() = -hyperplane.normal()*hyperplane.offset();
-}
-
-/** \returns the parameter value of the intersection between \c *this and the given hyperplane
- */
-template <typename _Scalar, int _AmbientDim>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
-{
- return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
- /(direction().eigen2_dot(hyperplane.normal()));
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h
deleted file mode 100644
index 4b6390c..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h
+++ /dev/null
@@ -1,495 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_quaternion_assign_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Quaternion
- *
- * \brief The quaternion class used to represent 3D orientations and rotations
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other representations
- * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
- * \li \b compact storage (4 scalars)
- * \li \b efficient to compose (28 flops),
- * \li \b stable spherical interpolation
- *
- * The following two typedefs are provided for convenience:
- * \li \c Quaternionf for \c float
- * \li \c Quaterniond for \c double
- *
- * \sa class AngleAxis, class Transform
- */
-
-template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
-{
- typedef RotationBase<Quaternion<_Scalar>,3> Base;
-
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
-
- using Base::operator*;
-
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
-
- /** the type of the Coefficients 4-vector */
- typedef Matrix<Scalar, 4, 1> Coefficients;
- /** the type of a 3D vector */
- typedef Matrix<Scalar,3,1> Vector3;
- /** the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,3> Matrix3;
- /** the equivalent angle-axis type */
- typedef AngleAxis<Scalar> AngleAxisType;
-
- /** \returns the \c x coefficient */
- inline Scalar x() const { return m_coeffs.coeff(0); }
- /** \returns the \c y coefficient */
- inline Scalar y() const { return m_coeffs.coeff(1); }
- /** \returns the \c z coefficient */
- inline Scalar z() const { return m_coeffs.coeff(2); }
- /** \returns the \c w coefficient */
- inline Scalar w() const { return m_coeffs.coeff(3); }
-
- /** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return m_coeffs.coeffRef(0); }
- /** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return m_coeffs.coeffRef(1); }
- /** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return m_coeffs.coeffRef(2); }
- /** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return m_coeffs.coeffRef(3); }
-
- /** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
-
- /** \returns a vector expression of the imaginary part (x,y,z) */
- inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
-
- /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a vector expression of the coefficients (x,y,z,w) */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
-
- /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
- * its four coefficients \a w, \a x, \a y and \a z.
- *
- * \warning Note the order of the arguments: the real \a w coefficient first,
- * while internally the coefficients are stored in the following order:
- * [\c x, \c y, \c z, \c w]
- */
- inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
- { m_coeffs << x, y, z, w; }
-
- /** Copy constructor */
- inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
-
- /** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
-
- /** Constructs and initializes a quaternion from either:
- * - a rotation matrix expression,
- * - a 4D vector expression representing quaternion coefficients.
- * \sa operator=(MatrixBase<Derived>)
- */
- template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
-
- Quaternion& operator=(const Quaternion& other);
- Quaternion& operator=(const AngleAxisType& aa);
- template<typename Derived>
- Quaternion& operator=(const MatrixBase<Derived>& m);
-
- /** \returns a quaternion representing an identity rotation
- * \sa MatrixBase::Identity()
- */
- static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
-
- /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
- */
- inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
-
- /** \returns the squared norm of the quaternion's coefficients
- * \sa Quaternion::norm(), MatrixBase::squaredNorm()
- */
- inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
-
- /** \returns the norm of the quaternion's coefficients
- * \sa Quaternion::squaredNorm(), MatrixBase::norm()
- */
- inline Scalar norm() const { return m_coeffs.norm(); }
-
- /** Normalizes the quaternion \c *this
- * \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { m_coeffs.normalize(); }
- /** \returns a normalized version of \c *this
- * \sa normalize(), MatrixBase::normalized() */
- inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
-
- /** \returns the dot product of \c *this and \a other
- * Geometrically speaking, the dot product of two unit quaternions
- * corresponds to the cosine of half the angle between the two rotations.
- * \sa angularDistance()
- */
- inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
-
- inline Scalar angularDistance(const Quaternion& other) const;
-
- Matrix3 toRotationMatrix(void) const;
-
- template<typename Derived1, typename Derived2>
- Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- inline Quaternion operator* (const Quaternion& q) const;
- inline Quaternion& operator*= (const Quaternion& q);
-
- Quaternion inverse(void) const;
- Quaternion conjugate(void) const;
-
- Quaternion slerp(Scalar t, const Quaternion& other) const;
-
- template<typename Derived>
- Vector3 operator* (const MatrixBase<Derived>& vec) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
- Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * single precision quaternion type */
-typedef Quaternion<float> Quaternionf;
-/** \ingroup Geometry_Module
- * double precision quaternion type */
-typedef Quaternion<double> Quaterniond;
-
-// Generic Quaternion * Quaternion product
-template<typename Scalar> inline Quaternion<Scalar>
-ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
-{
- return Quaternion<Scalar>
- (
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
- );
-}
-
-/** \returns the concatenation of two rotations as a quaternion-quaternion product */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
-{
- return ei_quaternion_product(*this,other);
-}
-
-/** \sa operator*(Quaternion) */
-template <typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
-{
- return (*this = *this * other);
-}
-
-/** Rotation of a vector by a quaternion.
- * \remarks If the quaternion is used to rotate several points (>1)
- * then it is much more efficient to first convert it to a 3x3 Matrix.
- * Comparison of the operation cost for n transformations:
- * - Quaternion: 30n
- * - Via a Matrix3: 24 + 15n
- */
-template <typename Scalar>
-template<typename Derived>
-inline typename Quaternion<Scalar>::Vector3
-Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
-{
- // Note that this algorithm comes from the optimization by hand
- // of the conversion to a Matrix followed by a Matrix/Vector product.
- // It appears to be much faster than the common algorithm found
- // in the litterature (30 versus 39 flops). It also requires two
- // Vector3 as temporaries.
- Vector3 uv;
- uv = 2 * this->vec().cross(v);
- return v + this->w() * uv + this->vec().cross(uv);
-}
-
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
-{
- m_coeffs = other.m_coeffs;
- return *this;
-}
-
-/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
- */
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
-{
- Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
- this->w() = ei_cos(ha);
- this->vec() = ei_sin(ha) * aa.axis();
- return *this;
-}
-
-/** Set \c *this from the expression \a xpr:
- * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
- * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
- * and \a xpr is converted to a quaternion
- */
-template<typename Scalar>
-template<typename Derived>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
-{
- ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
- return *this;
-}
-
-/** Convert the quaternion to a 3x3 rotation matrix */
-template<typename Scalar>
-inline typename Quaternion<Scalar>::Matrix3
-Quaternion<Scalar>::toRotationMatrix(void) const
-{
- // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
- // if not inlined then the cost of the return by value is huge ~ +35%,
- // however, not inlining this function is an order of magnitude slower, so
- // it has to be inlined, and so the return by value is not an issue
- Matrix3 res;
-
- const Scalar tx = Scalar(2)*this->x();
- const Scalar ty = Scalar(2)*this->y();
- const Scalar tz = Scalar(2)*this->z();
- const Scalar twx = tx*this->w();
- const Scalar twy = ty*this->w();
- const Scalar twz = tz*this->w();
- const Scalar txx = tx*this->x();
- const Scalar txy = ty*this->x();
- const Scalar txz = tz*this->x();
- const Scalar tyy = ty*this->y();
- const Scalar tyz = tz*this->y();
- const Scalar tzz = tz*this->z();
-
- res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
- res.coeffRef(0,1) = txy-twz;
- res.coeffRef(0,2) = txz+twy;
- res.coeffRef(1,0) = txy+twz;
- res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
- res.coeffRef(1,2) = tyz-twx;
- res.coeffRef(2,0) = txz-twy;
- res.coeffRef(2,1) = tyz+twx;
- res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
-
- return res;
-}
-
-/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
- *
- * \returns a reference to *this.
- *
- * Note that the two input vectors do \b not have to be normalized.
- */
-template<typename Scalar>
-template<typename Derived1, typename Derived2>
-inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- Vector3 v0 = a.normalized();
- Vector3 v1 = b.normalized();
- Scalar c = v0.eigen2_dot(v1);
-
- // if dot == 1, vectors are the same
- if (ei_isApprox(c,Scalar(1)))
- {
- // set to identity
- this->w() = 1; this->vec().setZero();
- return *this;
- }
- // if dot == -1, vectors are opposites
- if (ei_isApprox(c,Scalar(-1)))
- {
- this->vec() = v0.unitOrthogonal();
- this->w() = 0;
- return *this;
- }
-
- Vector3 axis = v0.cross(v1);
- Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
- Scalar invs = Scalar(1)/s;
- this->vec() = axis * invs;
- this->w() = s * Scalar(0.5);
-
- return *this;
-}
-
-/** \returns the multiplicative inverse of \c *this
- * Note that in most cases, i.e., if you simply want the opposite rotation,
- * and/or the quaternion is normalized, then it is enough to use the conjugate.
- *
- * \sa Quaternion::conjugate()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
-{
- // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
- Scalar n2 = this->squaredNorm();
- if (n2 > 0)
- return Quaternion(conjugate().coeffs() / n2);
- else
- {
- // return an invalid result to flag the error
- return Quaternion(Coefficients::Zero());
- }
-}
-
-/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
- * if the quaternion is normalized.
- * The conjugate of a quaternion represents the opposite rotation.
- *
- * \sa Quaternion::inverse()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
-{
- return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
-}
-
-/** \returns the angle (in radian) between two rotations
- * \sa eigen2_dot()
- */
-template <typename Scalar>
-inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
-{
- double d = ei_abs(this->eigen2_dot(other));
- if (d>=1.0)
- return 0;
- return Scalar(2) * std::acos(d);
-}
-
-/** \returns the spherical linear interpolation between the two quaternions
- * \c *this and \a other at the parameter \a t
- */
-template <typename Scalar>
-Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
-{
- static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
- Scalar d = this->eigen2_dot(other);
- Scalar absD = ei_abs(d);
-
- Scalar scale0;
- Scalar scale1;
-
- if (absD>=one)
- {
- scale0 = Scalar(1) - t;
- scale1 = t;
- }
- else
- {
- // theta is the angle between the 2 quaternions
- Scalar theta = std::acos(absD);
- Scalar sinTheta = ei_sin(theta);
-
- scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
- scale1 = ei_sin( ( t * theta) ) / sinTheta;
- if (d<0)
- scale1 = -scale1;
- }
-
- return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
-}
-
-// set from a rotation matrix
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,3,3>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& mat)
- {
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- Scalar t = mat.trace();
- if (t > 0)
- {
- t = ei_sqrt(t + Scalar(1.0));
- q.w() = Scalar(0.5)*t;
- t = Scalar(0.5)/t;
- q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
- q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
- q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
- }
- else
- {
- int i = 0;
- if (mat.coeff(1,1) > mat.coeff(0,0))
- i = 1;
- if (mat.coeff(2,2) > mat.coeff(i,i))
- i = 2;
- int j = (i+1)%3;
- int k = (j+1)%3;
-
- t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
- q.coeffs().coeffRef(i) = Scalar(0.5) * t;
- t = Scalar(0.5)/t;
- q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
- q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
- q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
- }
- }
-};
-
-// set from a vector of coefficients assumed to be a quaternion
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,4,1>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& vec)
- {
- q.coeffs() = vec;
- }
-};
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h b/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
deleted file mode 100644
index 19b8582..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h
+++ /dev/null
@@ -1,145 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Rotation2D
- *
- * \brief Represents a rotation/orientation in a 2 dimensional space.
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class is equivalent to a single scalar representing a counter clock wise rotation
- * as a single angle in radian. It provides some additional features such as the automatic
- * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
- * interface to Quaternion in order to facilitate the writing of generic algorithms
- * dealing with rotations.
- *
- * \sa class Quaternion, class Transform
- */
-template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
-{
- typedef RotationBase<Rotation2D<_Scalar>,2> Base;
-
-public:
-
- using Base::operator*;
-
- enum { Dim = 2 };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
- typedef Matrix<Scalar,2,2> Matrix2;
-
-protected:
-
- Scalar m_angle;
-
-public:
-
- /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(Scalar a) : m_angle(a) {}
-
- /** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
-
- /** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
-
- /** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
-
- /** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
- { return m_angle += other.m_angle; return *this; }
-
- /** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
- { return toRotationMatrix() * vec; }
-
- template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix(void) const;
-
- /** \returns the spherical interpolation between \c *this and \a other using
- * parameter \a t. It is in fact equivalent to a linear interpolation.
- */
- inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
- {
- m_angle = Scalar(other.angle());
- }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return ei_isApprox(m_angle,other.m_angle, prec); }
-};
-
-/** \ingroup Geometry_Module
- * single precision 2D rotation type */
-typedef Rotation2D<float> Rotation2Df;
-/** \ingroup Geometry_Module
- * double precision 2D rotation type */
-typedef Rotation2D<double> Rotation2Dd;
-
-/** Set \c *this from a 2x2 rotation matrix \a mat.
- * In other words, this function extract the rotation angle
- * from the rotation matrix.
- */
-template<typename Scalar>
-template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
- return *this;
-}
-
-/** Constructs and \returns an equivalent 2x2 rotation matrix.
- */
-template<typename Scalar>
-typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
-{
- Scalar sinA = ei_sin(m_angle);
- Scalar cosA = ei_cos(m_angle);
- return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/RotationBase.h b/eigen/Eigen/src/Eigen2Support/Geometry/RotationBase.h
deleted file mode 100644
index b1c8f38..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/RotationBase.h
+++ /dev/null
@@ -1,123 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// this file aims to contains the various representations of rotation/orientation
-// in 2D and 3D space excepted Matrix and Quaternion.
-
-/** \class RotationBase
- *
- * \brief Common base class for compact rotation representations
- *
- * \param Derived is the derived type, i.e., a rotation type
- * \param _Dim the dimension of the space
- */
-template<typename Derived, int _Dim>
-class RotationBase
-{
- public:
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef typename ei_traits<Derived>::Scalar Scalar;
-
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
-
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
-
- /** \returns an equivalent rotation matrix */
- inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
-
- /** \returns the inverse rotation */
- inline Derived inverse() const { return derived().inverse(); }
-
- /** \returns the concatenation of the rotation \c *this with a translation \a t */
- inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-
- /** \returns the concatenation of the rotation \c *this with a scaling \a s */
- inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
- { return toRotationMatrix() * s; }
-
- /** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
- inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
- { return toRotationMatrix() * t; }
-};
-
-/** \geometry_module
- *
- * Constructs a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- *this = r.toRotationMatrix();
-}
-
-/** \geometry_module
- *
- * Set a Dim x Dim rotation matrix from the rotation \a r
- */
-template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
-template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
-::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
-{
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
- return *this = r.toRotationMatrix();
-}
-
-/** \internal
- *
- * Helper function to return an arbitrary rotation object to a rotation matrix.
- *
- * \param Scalar the numeric type of the matrix coefficients
- * \param Dim the dimension of the current space
- *
- * It returns a Dim x Dim fixed size matrix.
- *
- * Default specializations are provided for:
- * - any scalar type (2D),
- * - any matrix expression,
- * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
- *
- * Currently ei_toRotationMatrix is only used by Transform.
- *
- * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
- */
-template<typename Scalar, int Dim>
-static inline Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
-{
- EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
- return Rotation2D<Scalar>(s).toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
-{
- return r.toRotationMatrix();
-}
-
-template<typename Scalar, int Dim, typename OtherDerived>
-static inline const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
-{
- EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
- YOU_MADE_A_PROGRAMMING_MISTAKE)
- return mat;
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Scaling.h b/eigen/Eigen/src/Eigen2Support/Geometry/Scaling.h
deleted file mode 100644
index b8fa6cd..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Scaling.h
+++ /dev/null
@@ -1,167 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Scaling
- *
- * \brief Represents a possibly non uniform scaling transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a scaling transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Translation, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Scaling
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Scaling() {}
- /** Constructs and initialize a uniform scaling transformation */
- explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
- /** 2D only */
- inline Scaling(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** 3D only */
- inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
-
- const VectorType& coeffs() const { return m_coeffs; }
- VectorType& coeffs() { return m_coeffs; }
-
- /** Concatenates two scaling */
- inline Scaling operator* (const Scaling& other) const
- { return Scaling(coeffs().cwise() * other.coeffs()); }
-
- /** Concatenates a scaling and a translation */
- inline TransformType operator* (const TranslationType& t) const;
-
- /** Concatenates a scaling and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Concatenates a scaling and a linear transformation matrix */
- // TODO returns an expression
- inline LinearMatrixType operator* (const LinearMatrixType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** Concatenates a linear transformation matrix and a scaling */
- // TODO returns an expression
- friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
- { return other * s.coeffs().asDiagonal(); }
-
- template<typename Derived>
- inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Applies scaling to vector */
- inline VectorType operator* (const VectorType& other) const
- { return coeffs().asDiagonal() * other; }
-
- /** \returns the inverse scaling */
- inline Scaling inverse() const
- { return Scaling(coeffs().cwise().inverse()); }
-
- inline Scaling& operator=(const Scaling& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Scaling<float, 2> Scaling2f;
-typedef Scaling<double,2> Scaling2d;
-typedef Scaling<float, 3> Scaling3f;
-typedef Scaling<double,3> Scaling3d;
-//@}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = coeffs();
- res.translation() = m_coeffs.cwise() * t.vector();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Scaling<Scalar,Dim>::TransformType
-Scaling<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.prescale(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h b/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h
deleted file mode 100644
index fab60b2..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Transform.h
+++ /dev/null
@@ -1,786 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-// Note that we have to pass Dim and HDim because it is not allowed to use a template
-// parameter to define a template specialization. To be more precise, in the following
-// specializations, it is not allowed to use Dim+1 instead of HDim.
-template< typename Other,
- int Dim,
- int HDim,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_transform_product_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Transform
- *
- * \brief Represents an homogeneous transformation in a N dimensional space
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _Dim the dimension of the space
- *
- * The homography is internally represented and stored as a (Dim+1)^2 matrix which
- * is available through the matrix() method.
- *
- * Conversion methods from/to Qt's QMatrix and QTransform are available if the
- * preprocessor token EIGEN_QT_SUPPORT is defined.
- *
- * \sa class Matrix, class Quaternion
- */
-template<typename _Scalar, int _Dim>
-class Transform
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
- enum {
- Dim = _Dim, ///< space dimension in which the transformation holds
- HDim = _Dim+1 ///< size of a respective homogeneous vector
- };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** type of the matrix used to represent the transformation */
- typedef Matrix<Scalar,HDim,HDim> MatrixType;
- /** type of the matrix used to represent the linear part of the transformation */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** type of read/write reference to the linear part of the transformation */
- typedef Block<MatrixType,Dim,Dim> LinearPart;
- /** type of read/write reference to the linear part of the transformation */
- typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
- /** type of a vector */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** type of a read/write reference to the translation part of the rotation */
- typedef Block<MatrixType,Dim,1> TranslationPart;
- /** type of a read/write reference to the translation part of the rotation */
- typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
- /** corresponding translation type */
- typedef Translation<Scalar,Dim> TranslationType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
-
-protected:
-
- MatrixType m_matrix;
-
-public:
-
- /** Default constructor without initialization of the coefficients. */
- inline Transform() { }
-
- inline Transform(const Transform& other)
- {
- m_matrix = other.m_matrix;
- }
-
- inline explicit Transform(const TranslationType& t) { *this = t; }
- inline explicit Transform(const ScalingType& s) { *this = s; }
- template<typename Derived>
- inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
-
- inline Transform& operator=(const Transform& other)
- { m_matrix = other.m_matrix; return *this; }
-
- template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
- struct construct_from_matrix
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->matrix() = other;
- }
- };
-
- template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
- {
- static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
- {
- transform->linear() = other;
- transform->translation().setZero();
- transform->matrix()(Dim,Dim) = Scalar(1);
- transform->matrix().template block<1,Dim>(Dim,0).setZero();
- }
- };
-
- /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline explicit Transform(const MatrixBase<OtherDerived>& other)
- {
- construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
- }
-
- /** Set \c *this from a (Dim+1)^2 matrix. */
- template<typename OtherDerived>
- inline Transform& operator=(const MatrixBase<OtherDerived>& other)
- { m_matrix = other; return *this; }
-
- #ifdef EIGEN_QT_SUPPORT
- inline Transform(const QMatrix& other);
- inline Transform& operator=(const QMatrix& other);
- inline QMatrix toQMatrix(void) const;
- inline Transform(const QTransform& other);
- inline Transform& operator=(const QTransform& other);
- inline QTransform toQTransform(void) const;
- #endif
-
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) const */
- inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
- /** shortcut for m_matrix(row,col);
- * \sa MatrixBase::operaror(int,int) */
- inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
-
- /** \returns a read-only expression of the transformation matrix */
- inline const MatrixType& matrix() const { return m_matrix; }
- /** \returns a writable expression of the transformation matrix */
- inline MatrixType& matrix() { return m_matrix; }
-
- /** \returns a read-only expression of the linear (linear) part of the transformation */
- inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
- /** \returns a writable expression of the linear (linear) part of the transformation */
- inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
-
- /** \returns a read-only expression of the translation vector of the transformation */
- inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
- /** \returns a writable expression of the translation vector of the transformation */
- inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
-
- /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
- *
- * The right hand side \a other might be either:
- * \li a vector of size Dim,
- * \li an homogeneous vector of size Dim+1,
- * \li a transformation matrix of size Dim+1 x Dim+1.
- */
- // note: this function is defined here because some compilers cannot find the respective declaration
- template<typename OtherDerived>
- inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
- operator * (const MatrixBase<OtherDerived> &other) const
- { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
-
- /** \returns the product expression of a transformation matrix \a a times a transform \a b
- * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
- template<typename OtherDerived>
- friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
- operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
- { return a.derived() * b.matrix(); }
-
- /** Contatenates two transformations */
- inline const Transform
- operator * (const Transform& other) const
- { return Transform(m_matrix * other.matrix()); }
-
- /** \sa MatrixBase::setIdentity() */
- void setIdentity() { m_matrix.setIdentity(); }
- static const typename MatrixType::IdentityReturnType Identity()
- {
- return MatrixType::Identity();
- }
-
- template<typename OtherDerived>
- inline Transform& scale(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& prescale(const MatrixBase<OtherDerived> &other);
-
- inline Transform& scale(Scalar s);
- inline Transform& prescale(Scalar s);
-
- template<typename OtherDerived>
- inline Transform& translate(const MatrixBase<OtherDerived> &other);
-
- template<typename OtherDerived>
- inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
-
- template<typename RotationType>
- inline Transform& rotate(const RotationType& rotation);
-
- template<typename RotationType>
- inline Transform& prerotate(const RotationType& rotation);
-
- Transform& shear(Scalar sx, Scalar sy);
- Transform& preshear(Scalar sx, Scalar sy);
-
- inline Transform& operator=(const TranslationType& t);
- inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
- inline Transform operator*(const TranslationType& t) const;
-
- inline Transform& operator=(const ScalingType& t);
- inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
- inline Transform operator*(const ScalingType& s) const;
- friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
- {
- Transform res = t;
- res.matrix().row(Dim) = t.matrix().row(Dim);
- res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
- return res;
- }
-
- template<typename Derived>
- inline Transform& operator=(const RotationBase<Derived,Dim>& r);
- template<typename Derived>
- inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
- template<typename Derived>
- inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
-
- LinearMatrixType rotation() const;
- template<typename RotationMatrixType, typename ScalingMatrixType>
- void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
- template<typename ScalingMatrixType, typename RotationMatrixType>
- void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
-
- template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
- Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
-
- inline const MatrixType inverse(TransformTraits traits = Affine) const;
-
- /** \returns a const pointer to the column major internal matrix */
- const Scalar* data() const { return m_matrix.data(); }
- /** \returns a non-const pointer to the column major internal matrix */
- Scalar* data() { return m_matrix.data(); }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
- { m_matrix = other.matrix().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_matrix.isApprox(other.m_matrix, prec); }
-
- #ifdef EIGEN_TRANSFORM_PLUGIN
- #include EIGEN_TRANSFORM_PLUGIN
- #endif
-
-protected:
-
-};
-
-/** \ingroup Geometry_Module */
-typedef Transform<float,2> Transform2f;
-/** \ingroup Geometry_Module */
-typedef Transform<float,3> Transform3f;
-/** \ingroup Geometry_Module */
-typedef Transform<double,2> Transform2d;
-/** \ingroup Geometry_Module */
-typedef Transform<double,3> Transform3d;
-
-/**************************
-*** Optional QT support ***
-**************************/
-
-#ifdef EIGEN_QT_SUPPORT
-/** Initialises \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QMatrix& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QMatrix assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- 0, 0, 1;
- return *this;
-}
-
-/** \returns a QMatrix from \c *this assuming the dimension is 2.
- *
- * \warning this convertion might loss data if \c *this is not affine
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2));
-}
-
-/** Initialises \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>::Transform(const QTransform& other)
-{
- *this = other;
-}
-
-/** Set \c *this from a QTransform assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- other.m13(), other.m23(), other.m33();
- return *this;
-}
-
-/** \returns a QTransform from \c *this assuming the dimension is 2.
- *
- * This function is available only if the token EIGEN_QT_SUPPORT is defined.
- */
-template<typename Scalar, int Dim>
-QTransform Transform<Scalar,Dim>::toQTransform(void) const
-{
- EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
- m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
- m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
-}
-#endif
-
-/*********************
-*** Procedural API ***
-*********************/
-
-/** Applies on the right the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa prescale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- linear() = (linear() * other.asDiagonal()).lazy();
- return *this;
-}
-
-/** Applies on the right a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa prescale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
-{
- linear() *= s;
- return *this;
-}
-
-/** Applies on the left the non uniform scale transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \sa scale()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
- return *this;
-}
-
-/** Applies on the left a uniform scale of a factor \a c to \c *this
- * and returns a reference to \c *this.
- * \sa scale(Scalar)
- */
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
-{
- m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
- return *this;
-}
-
-/** Applies on the right the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa pretranslate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += linear() * other;
- return *this;
-}
-
-/** Applies on the left the translation matrix represented by the vector \a other
- * to \c *this and returns a reference to \c *this.
- * \sa translate()
- */
-template<typename Scalar, int Dim>
-template<typename OtherDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
-{
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- translation() += other;
- return *this;
-}
-
-/** Applies on the right the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * The template parameter \a RotationType is the type of the rotation which
- * must be known by ei_toRotationMatrix<>.
- *
- * Natively supported types includes:
- * - any scalar (2D),
- * - a Dim x Dim matrix expression,
- * - a Quaternion (3D),
- * - a AngleAxis (3D)
- *
- * This mechanism is easily extendable to support user types such as Euler angles,
- * or a pair of Quaternion for 4D rotations.
- *
- * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::rotate(const RotationType& rotation)
-{
- linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
- return *this;
-}
-
-/** Applies on the left the rotation represented by the rotation \a rotation
- * to \c *this and returns a reference to \c *this.
- *
- * See rotate() for further details.
- *
- * \sa rotate()
- */
-template<typename Scalar, int Dim>
-template<typename RotationType>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
-{
- m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
- * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/** Applies on the right the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa preshear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- VectorType tmp = linear().col(0)*sy + linear().col(1);
- linear() << linear().col(0) + linear().col(1)*sx, tmp;
- return *this;
-}
-
-/** Applies on the left the shear transformation represented
- * by the vector \a other to \c *this and returns a reference to \c *this.
- * \warning 2D only.
- * \sa shear()
- */
-template<typename Scalar, int Dim>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
-{
- EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
- return *this;
-}
-
-/******************************************************
-*** Scaling, Translation and Rotation compatibility ***
-******************************************************/
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
-{
- linear().setIdentity();
- translation() = t.vector();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
-{
- Transform res = *this;
- res.translate(t.vector());
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
-{
- m_matrix.setZero();
- linear().diagonal() = s.coeffs();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
-{
- Transform res = *this;
- res.scale(s.coeffs());
- return res;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(r);
- translation().setZero();
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix.coeffRef(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-template<typename Scalar, int Dim>
-template<typename Derived>
-inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
-{
- Transform res = *this;
- res.rotate(r.derived());
- return res;
-}
-
-/************************
-*** Special functions ***
-************************/
-
-/** \returns the rotation part of the transformation
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), computeScalingRotation(), class SVD
- */
-template<typename Scalar, int Dim>
-typename Transform<Scalar,Dim>::LinearMatrixType
-Transform<Scalar,Dim>::rotation() const
-{
- LinearMatrixType result;
- computeRotationScaling(&result, (LinearMatrixType*)0);
- return result;
-}
-
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeScalingRotation(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename RotationMatrixType, typename ScalingMatrixType>
-void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
- * not necessarily positive.
- *
- * If either pointer is zero, the corresponding computation is skipped.
- *
- * \nonstableyet
- *
- * \svd_module
- *
- * \sa computeRotationScaling(), rotation(), class SVD
- */
-template<typename Scalar, int Dim>
-template<typename ScalingMatrixType, typename RotationMatrixType>
-void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
-{
- JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
- Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
- Matrix<Scalar, Dim, 1> sv(svd.singularValues());
- sv.coeffRef(0) *= x;
- if(scaling)
- {
- scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
- }
- if(rotation)
- {
- LinearMatrixType m(svd.matrixU());
- m.col(0) /= x;
- rotation->noalias() = m * svd.matrixV().adjoint();
- }
-}
-
-/** Convenient method to set \c *this from a position, orientation and scale
- * of a 3D object.
- */
-template<typename Scalar, int Dim>
-template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
-Transform<Scalar,Dim>&
-Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
- const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
-{
- linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
- linear() *= scale.asDiagonal();
- translation() = position;
- m_matrix.template block<1,Dim>(Dim,0).setZero();
- m_matrix(Dim,Dim) = Scalar(1);
- return *this;
-}
-
-/** \nonstableyet
- *
- * \returns the inverse transformation matrix according to some given knowledge
- * on \c *this.
- *
- * \param traits allows to optimize the inversion process when the transformion
- * is known to be not a general transformation. The possible values are:
- * - Projective if the transformation is not necessarily affine, i.e., if the
- * last row is not guaranteed to be [0 ... 0 1]
- * - Affine is the default, the last row is assumed to be [0 ... 0 1]
- * - Isometry if the transformation is only a concatenations of translations
- * and rotations.
- *
- * \warning unless \a traits is always set to NoShear or NoScaling, this function
- * requires the generic inverse method of MatrixBase defined in the LU module. If
- * you forget to include this module, then you will get hard to debug linking errors.
- *
- * \sa MatrixBase::inverse()
- */
-template<typename Scalar, int Dim>
-inline const typename Transform<Scalar,Dim>::MatrixType
-Transform<Scalar,Dim>::inverse(TransformTraits traits) const
-{
- if (traits == Projective)
- {
- return m_matrix.inverse();
- }
- else
- {
- MatrixType res;
- if (traits == Affine)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
- }
- else if (traits == Isometry)
- {
- res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
- }
- else
- {
- ei_assert("invalid traits value in Transform::inverse()");
- }
- // translation and remaining parts
- res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
- res.template corner<1,Dim>(BottomLeft).setZero();
- res.coeffRef(Dim,Dim) = Scalar(1);
- return res;
- }
-}
-
-/*****************************************************
-*** Specializations of operator* with a MatrixBase ***
-*****************************************************/
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef TransformType ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- {
- TransformType res;
- res.translation() = tr.translation();
- res.matrix().row(Dim) = tr.matrix().row(Dim);
- res.linear() = (tr.linear() * other).lazy();
- return res;
- }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
-{
- typedef Transform<typename Other::Scalar,Dim> TransformType;
- typedef typename TransformType::MatrixType MatrixType;
- typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return tr.matrix() * other; }
-};
-
-template<typename Other, int Dim, int HDim>
-struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
-{
- typedef typename Other::Scalar Scalar;
- typedef Transform<Scalar,Dim> TransformType;
- typedef Matrix<Scalar,Dim,1> ResultType;
- static ResultType run(const TransformType& tr, const Other& other)
- { return ((tr.linear() * other) + tr.translation())
- * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
-};
-
-} // end namespace Eigen
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Translation.h b/eigen/Eigen/src/Eigen2Support/Geometry/Translation.h
deleted file mode 100644
index 2b9859f..0000000
--- a/eigen/Eigen/src/Eigen2Support/Geometry/Translation.h
+++ /dev/null
@@ -1,184 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Translation
- *
- * \brief Represents a translation transformation
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
- *
- * \note This class is not aimed to be used to store a translation transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * \sa class Scaling, class Transform
- */
-template<typename _Scalar, int _Dim>
-class Translation
-{
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
- /** dimension of the space */
- enum { Dim = _Dim };
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- /** corresponding vector type */
- typedef Matrix<Scalar,Dim,1> VectorType;
- /** corresponding linear transformation matrix type */
- typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
- /** corresponding scaling transformation type */
- typedef Scaling<Scalar,Dim> ScalingType;
- /** corresponding affine transformation type */
- typedef Transform<Scalar,Dim> TransformType;
-
-protected:
-
- VectorType m_coeffs;
-
-public:
-
- /** Default constructor without initialization. */
- Translation() {}
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy)
- {
- ei_assert(Dim==2);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- }
- /** */
- inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- {
- ei_assert(Dim==3);
- m_coeffs.x() = sx;
- m_coeffs.y() = sy;
- m_coeffs.z() = sz;
- }
- /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
- explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
-
- const VectorType& vector() const { return m_coeffs; }
- VectorType& vector() { return m_coeffs; }
-
- /** Concatenates two translation */
- inline Translation operator* (const Translation& other) const
- { return Translation(m_coeffs + other.m_coeffs); }
-
- /** Concatenates a translation and a scaling */
- inline TransformType operator* (const ScalingType& other) const;
-
- /** Concatenates a translation and a linear transformation */
- inline TransformType operator* (const LinearMatrixType& linear) const;
-
- template<typename Derived>
- inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
- { return *this * r.toRotationMatrix(); }
-
- /** Concatenates a linear transformation and a translation */
- // its a nightmare to define a templated friend function outside its declaration
- friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
- {
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = linear * t.m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
- }
-
- /** Concatenates a translation and an affine transformation */
- inline TransformType operator* (const TransformType& t) const;
-
- /** Applies translation to vector */
- inline VectorType operator* (const VectorType& other) const
- { return m_coeffs + other; }
-
- /** \returns the inverse translation (opposite) */
- Translation inverse() const { return Translation(-m_coeffs); }
-
- Translation& operator=(const Translation& other)
- {
- m_coeffs = other.m_coeffs;
- return *this;
- }
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
- { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
- { m_coeffs = other.vector().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-};
-
-/** \addtogroup Geometry_Module */
-//@{
-typedef Translation<float, 2> Translation2f;
-typedef Translation<double,2> Translation2d;
-typedef Translation<float, 3> Translation3f;
-typedef Translation<double,3> Translation3d;
-//@}
-
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const ScalingType& other) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear().diagonal() = other.coeffs();
- res.translation() = m_coeffs;
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
-{
- TransformType res;
- res.matrix().setZero();
- res.linear() = linear;
- res.translation() = m_coeffs;
- res.matrix().row(Dim).setZero();
- res(Dim,Dim) = Scalar(1);
- return res;
-}
-
-template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::TransformType
-Translation<Scalar,Dim>::operator* (const TransformType& t) const
-{
- TransformType res = t;
- res.pretranslate(m_coeffs);
- return res;
-}
-
-} // end namespace Eigen