summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src')
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h108
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h694
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h220
-rw-r--r--eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h293
-rw-r--r--eigen/unsupported/Eigen/src/BVH/KdBVH.h223
-rw-r--r--eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h805
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h386
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h326
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h261
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h420
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h189
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h510
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h343
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h90
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h154
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h289
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h187
-rw-r--r--eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h305
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt52
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h84
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h202
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h160
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h188
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h396
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h442
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h580
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h373
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h709
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h366
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h117
-rw-r--r--eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h95
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h601
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h657
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h66
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h70
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h107
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h79
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h298
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h91
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h30
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h99
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h49
-rw-r--r--eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h130
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/Companion.h276
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h406
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h143
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h352
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h862
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h212
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h295
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h259
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h89
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h122
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h1079
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h404
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h275
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h247
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h327
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h124
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h236
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h47
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h1565
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h58
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h165
-rw-r--r--eigen/unsupported/Eigen/src/Splines/Spline.h507
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFitting.h430
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFwd.h93
68 files changed, 0 insertions, 20423 deletions
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
deleted file mode 100644
index 33b6c39..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
+++ /dev/null
@@ -1,108 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_JACOBIAN_H
-#define EIGEN_AUTODIFF_JACOBIAN_H
-
-namespace Eigen
-{
-
-template<typename Functor> class AutoDiffJacobian : public Functor
-{
-public:
- AutoDiffJacobian() : Functor() {}
- AutoDiffJacobian(const Functor& f) : Functor(f) {}
-
- // forward constructors
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... T>
- AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
-#else
- template<typename T0>
- AutoDiffJacobian(const T0& a0) : Functor(a0) {}
- template<typename T0, typename T1>
- AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
- template<typename T0, typename T1, typename T2>
- AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
-#endif
-
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename ValueType::Scalar Scalar;
-
- enum {
- InputsAtCompileTime = InputType::RowsAtCompileTime,
- ValuesAtCompileTime = ValueType::RowsAtCompileTime
- };
-
- typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
- typedef typename JacobianType::Index Index;
-
- typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
- typedef AutoDiffScalar<DerivativeType> ActiveScalar;
-
- typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
- typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- // Some compilers don't accept variadic parameters after a default parameter,
- // i.e., we can't just write _jac=0 but we need to overload operator():
- EIGEN_STRONG_INLINE
- void operator() (const InputType& x, ValueType* v) const
- {
- this->operator()(x, v, 0);
- }
- template<typename... ParamsType>
- void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
- const ParamsType&... Params) const
-#else
- void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
-#endif
- {
- eigen_assert(v!=0);
-
- if (!_jac)
- {
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- Functor::operator()(x, v, Params...);
-#else
- Functor::operator()(x, v);
-#endif
- return;
- }
-
- JacobianType& jac = *_jac;
-
- ActiveInput ax = x.template cast<ActiveScalar>();
- ActiveValue av(jac.rows());
-
- if(InputsAtCompileTime==Dynamic)
- for (Index j=0; j<jac.rows(); j++)
- av[j].derivatives().resize(x.rows());
-
- for (Index i=0; i<jac.cols(); i++)
- ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- Functor::operator()(ax, &av, Params...);
-#else
- Functor::operator()(ax, &av);
-#endif
-
- for (Index i=0; i<jac.rows(); i++)
- {
- (*v)[i] = av[i].value();
- jac.row(i) = av[i].derivatives();
- }
- }
-};
-
-}
-
-#endif // EIGEN_AUTODIFF_JACOBIAN_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
deleted file mode 100644
index 2f50e99..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ /dev/null
@@ -1,694 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_SCALAR_H
-#define EIGEN_AUTODIFF_SCALAR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename A, typename B>
-struct make_coherent_impl {
- static void run(A&, B&) {}
-};
-
-// resize a to match b is a.size()==0, and conversely.
-template<typename A, typename B>
-void make_coherent(const A& a, const B&b)
-{
- make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
-}
-
-template<typename _DerType, bool Enable> struct auto_diff_special_op;
-
-} // end namespace internal
-
-template<typename _DerType> class AutoDiffScalar;
-
-template<typename NewDerType>
-inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
- return AutoDiffScalar<NewDerType>(value,der);
-}
-
-/** \class AutoDiffScalar
- * \brief A scalar type replacement with automatic differentation capability
- *
- * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
- * as well as the number of derivatives to compute are determined from this type.
- * Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
- * if the number of derivatives is not known at compile time, and/or, the number
- * of derivatives is large.
- * Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
- * existing vector into an AutoDiffScalar.
- * Finally, _DerType can also be any Eigen compatible expression.
- *
- * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
- * template mechanism.
- *
- * It supports the following list of global math function:
- * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
- * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
- * - internal::conj, internal::real, internal::imag, numext::abs2.
- *
- * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
- * in that case, the expression template mechanism only occurs at the top Matrix level,
- * while derivatives are computed right away.
- *
- */
-
-template<typename _DerType>
-class AutoDiffScalar
- : public internal::auto_diff_special_op
- <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
- typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
-{
- public:
- typedef internal::auto_diff_special_op
- <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
- typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
- typedef typename internal::remove_all<_DerType>::type DerType;
- typedef typename internal::traits<DerType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- using Base::operator+;
- using Base::operator*;
-
- /** Default constructor without any initialization. */
- AutoDiffScalar() {}
-
- /** Constructs an active scalar from its \a value,
- and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
- AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
- : m_value(value), m_derivatives(DerType::Zero(nbDer))
- {
- m_derivatives.coeffRef(derNumber) = Scalar(1);
- }
-
- /** Conversion from a scalar constant to an active scalar.
- * The derivatives are set to zero. */
- /*explicit*/ AutoDiffScalar(const Real& value)
- : m_value(value)
- {
- if(m_derivatives.size()>0)
- m_derivatives.setZero();
- }
-
- /** Constructs an active scalar from its \a value and derivatives \a der */
- AutoDiffScalar(const Scalar& value, const DerType& der)
- : m_value(value), m_derivatives(der)
- {}
-
- template<typename OtherDerType>
- AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- , typename internal::enable_if<
- internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value
- && internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0
-#endif
- )
- : m_value(other.value()), m_derivatives(other.derivatives())
- {}
-
- friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
- {
- return s << a.value();
- }
-
- AutoDiffScalar(const AutoDiffScalar& other)
- : m_value(other.value()), m_derivatives(other.derivatives())
- {}
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
- {
- m_value = other.value();
- m_derivatives = other.derivatives();
- return *this;
- }
-
- inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
- {
- m_value = other.value();
- m_derivatives = other.derivatives();
- return *this;
- }
-
- inline AutoDiffScalar& operator=(const Scalar& other)
- {
- m_value = other;
- if(m_derivatives.size()>0)
- m_derivatives.setZero();
- return *this;
- }
-
-// inline operator const Scalar& () const { return m_value; }
-// inline operator Scalar& () { return m_value; }
-
- inline const Scalar& value() const { return m_value; }
- inline Scalar& value() { return m_value; }
-
- inline const DerType& derivatives() const { return m_derivatives; }
- inline DerType& derivatives() { return m_derivatives; }
-
- inline bool operator< (const Scalar& other) const { return m_value < other; }
- inline bool operator<=(const Scalar& other) const { return m_value <= other; }
- inline bool operator> (const Scalar& other) const { return m_value > other; }
- inline bool operator>=(const Scalar& other) const { return m_value >= other; }
- inline bool operator==(const Scalar& other) const { return m_value == other; }
- inline bool operator!=(const Scalar& other) const { return m_value != other; }
-
- friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
- friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
- friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
- friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
- friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
- friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
-
- template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); }
- template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); }
- template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); }
- template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); }
- template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); }
- template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); }
-
- inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
- {
- return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
- }
-
- friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
- {
- return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
- }
-
-// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
-// {
-// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
-// }
-
-// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
-// {
-// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
-// }
-
- inline AutoDiffScalar& operator+=(const Scalar& other)
- {
- value() += other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
- operator+(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
- m_value + other.value(),
- m_derivatives + other.derivatives());
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar&
- operator+=(const AutoDiffScalar<OtherDerType>& other)
- {
- (*this) = (*this) + other;
- return *this;
- }
-
- inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
- {
- return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
- }
-
- friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- operator-(const Scalar& a, const AutoDiffScalar& b)
- {
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- (a - b.value(), -b.derivatives());
- }
-
- inline AutoDiffScalar& operator-=(const Scalar& other)
- {
- value() -= other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
- operator-(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
- m_value - other.value(),
- m_derivatives - other.derivatives());
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar&
- operator-=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this - other;
- return *this;
- }
-
- inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- operator-() const
- {
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
- -m_value,
- -m_derivatives);
- }
-
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator*(const Scalar& other) const
- {
- return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
- }
-
- friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator*(const Scalar& other, const AutoDiffScalar& a)
- {
- return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
- }
-
-// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator*(const Real& other) const
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// m_value * other,
-// (m_derivatives * other));
-// }
-//
-// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator*(const Real& other, const AutoDiffScalar& a)
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// a.value() * other,
-// a.derivatives() * other);
-// }
-
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator/(const Scalar& other) const
- {
- return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
- }
-
- friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator/(const Scalar& other, const AutoDiffScalar& a)
- {
- return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
- }
-
-// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator/(const Real& other) const
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// m_value / other,
-// (m_derivatives * (Real(1)/other)));
-// }
-//
-// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator/(const Real& other, const AutoDiffScalar& a)
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// other / a.value(),
-// a.derivatives() * (-Real(1)/other));
-// }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
- CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
- operator/(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return MakeAutoDiffScalar(
- m_value / other.value(),
- ((m_derivatives * other.value()) - (other.derivatives() * m_value))
- * (Scalar(1)/(other.value()*other.value())));
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
- operator*(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return MakeAutoDiffScalar(
- m_value * other.value(),
- (m_derivatives * other.value()) + (other.derivatives() * m_value));
- }
-
- inline AutoDiffScalar& operator*=(const Scalar& other)
- {
- *this = *this * other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this * other;
- return *this;
- }
-
- inline AutoDiffScalar& operator/=(const Scalar& other)
- {
- *this = *this / other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this / other;
- return *this;
- }
-
- protected:
- Scalar m_value;
- DerType m_derivatives;
-
-};
-
-namespace internal {
-
-template<typename _DerType>
-struct auto_diff_special_op<_DerType, true>
-// : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
-// is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
-{
- typedef typename remove_all<_DerType>::type DerType;
- typedef typename traits<DerType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
-// typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
-// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
-
-// using Base::operator+;
-// using Base::operator+=;
-// using Base::operator-;
-// using Base::operator-=;
-// using Base::operator*;
-// using Base::operator*=;
-
- const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
- AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
-
-
- inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
- {
- return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
- }
-
- friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
- {
- return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
- }
-
- inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
- {
- derived().value() += other;
- return derived();
- }
-
-
- inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >
- operator*(const Real& other) const
- {
- return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >(
- derived().value() * other,
- derived().derivatives() * other);
- }
-
- friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >
- operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
- {
- return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
- a.value() * other,
- a.derivatives() * other);
- }
-
- inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
- {
- *this = *this * other;
- return derived();
- }
-};
-
-template<typename _DerType>
-struct auto_diff_special_op<_DerType, false>
-{
- void operator*() const;
- void operator-() const;
- void operator+() const;
-};
-
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
-struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
- static void run(A& a, B& b) {
- if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
- {
- a.resize(b.size());
- a.setZero();
- }
- }
-};
-
-template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
-struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
- typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
- static void run(A& a, B& b) {
- if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
- {
- b.resize(a.size());
- b.setZero();
- }
- }
-};
-
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
- typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
-struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
- Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
- typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
- static void run(A& a, B& b) {
- if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
- {
- a.resize(b.size());
- a.setZero();
- }
- else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
- {
- b.resize(a.size());
- b.setZero();
- }
- }
-};
-
-} // end namespace internal
-
-template<typename DerType, typename BinOp>
-struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
-{
- typedef AutoDiffScalar<DerType> ReturnType;
-};
-
-template<typename DerType, typename BinOp>
-struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
-{
- typedef AutoDiffScalar<DerType> ReturnType;
-};
-
-
-// The following is an attempt to let Eigen's known about expression template, but that's more tricky!
-
-// template<typename DerType, typename BinOp>
-// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
-// {
-// enum { Defined = 1 };
-// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
-// };
-//
-// template<typename DerType1,typename DerType2, typename BinOp>
-// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
-// {
-// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
-// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
-// };
-
-#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
- template<typename DerType> \
- inline const Eigen::AutoDiffScalar< \
- EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
- FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
- using namespace Eigen; \
- typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
- EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \
- CODE; \
- }
-
-template<typename DerType>
-inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; }
-template<typename DerType>
-inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; }
-template<typename DerType>
-inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x <= y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x >= y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x < y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x > y ? ADS(x) : ADS(y));
-}
-template<typename DerType>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
- return (x.value() < y.value() ? x : y);
-}
-template<typename DerType>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
- return (x.value() >= y.value() ? x : y);
-}
-
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
- using std::abs;
- return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
- using numext::abs2;
- return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
- using std::sqrt;
- Scalar sqrtx = sqrt(x.value());
- return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
- using std::cos;
- using std::sin;
- return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
- using std::sin;
- using std::cos;
- return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
- using std::exp;
- Scalar expx = exp(x.value());
- return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
- using std::log;
- return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
-
-template<typename DerType>
-inline const Eigen::AutoDiffScalar<
-EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
-pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
-{
- using namespace Eigen;
- using std::pow;
- return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
-}
-
-
-template<typename DerTypeA,typename DerTypeB>
-inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
-atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
-{
- using std::atan2;
- typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
- typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
- PlainADS ret;
- ret.value() = atan2(a.value(), b.value());
-
- Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
-
- // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
- ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
-
- return ret;
-}
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
- using std::tan;
- using std::cos;
- return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
- using std::sqrt;
- using std::asin;
- return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
- using std::sqrt;
- using std::acos;
- return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
- using std::cosh;
- using std::tanh;
- return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
- using std::sinh;
- using std::cosh;
- return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
- using std::sinh;
- using std::cosh;
- return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
-
-#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
-
-template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
- : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real >
-{
- typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
- typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
- 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
- typedef AutoDiffScalar<DerType> NonInteger;
- typedef AutoDiffScalar<DerType> Nested;
- typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
- enum{
- RequireInitialization = 1
- };
-};
-
-}
-
-namespace std {
-template <typename T>
-class numeric_limits<Eigen::AutoDiffScalar<T> >
- : public numeric_limits<typename T::Scalar> {};
-
-} // namespace std
-
-#endif // EIGEN_AUTODIFF_SCALAR_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
deleted file mode 100644
index 8c2d048..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
+++ /dev/null
@@ -1,220 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_VECTOR_H
-#define EIGEN_AUTODIFF_VECTOR_H
-
-namespace Eigen {
-
-/* \class AutoDiffScalar
- * \brief A scalar type replacement with automatic differentation capability
- *
- * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
- *
- * This class represents a scalar value while tracking its respective derivatives.
- *
- * It supports the following list of global math function:
- * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
- * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
- * - internal::conj, internal::real, internal::imag, numext::abs2.
- *
- * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
- * in that case, the expression template mechanism only occurs at the top Matrix level,
- * while derivatives are computed right away.
- *
- */
-template<typename ValueType, typename JacobianType>
-class AutoDiffVector
-{
- public:
- //typedef typename internal::traits<ValueType>::Scalar Scalar;
- typedef typename internal::traits<ValueType>::Scalar BaseScalar;
- typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
- typedef ActiveScalar Scalar;
- typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
- typedef typename JacobianType::Index Index;
-
- inline AutoDiffVector() {}
-
- inline AutoDiffVector(const ValueType& values)
- : m_values(values)
- {
- m_jacobian.setZero();
- }
-
-
- CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- Index size() const { return m_values.size(); }
-
- // FIXME here we could return an expression of the sum
- Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
-
-
- inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
- : m_values(values), m_jacobian(jac)
- {}
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
- : m_values(other.values()), m_jacobian(other.jacobian())
- {}
-
- inline AutoDiffVector(const AutoDiffVector& other)
- : m_values(other.values()), m_jacobian(other.jacobian())
- {}
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
- {
- m_values = other.values();
- m_jacobian = other.jacobian();
- return *this;
- }
-
- inline AutoDiffVector& operator=(const AutoDiffVector& other)
- {
- m_values = other.values();
- m_jacobian = other.jacobian();
- return *this;
- }
-
- inline const ValueType& values() const { return m_values; }
- inline ValueType& values() { return m_values; }
-
- inline const JacobianType& jacobian() const { return m_jacobian; }
- inline JacobianType& jacobian() { return m_jacobian; }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline const AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
- operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
- m_values + other.values(),
- m_jacobian + other.jacobian());
- }
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector&
- operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- m_values += other.values();
- m_jacobian += other.jacobian();
- return *this;
- }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline const AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
- operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
- m_values - other.values(),
- m_jacobian - other.jacobian());
- }
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector&
- operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- m_values -= other.values();
- m_jacobian -= other.jacobian();
- return *this;
- }
-
- inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >
- operator-() const
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >(
- -m_values,
- -m_jacobian);
- }
-
- inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type>
- operator*(const BaseScalar& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
- m_values * other,
- m_jacobian * other);
- }
-
- friend inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >
- operator*(const Scalar& other, const AutoDiffVector& v)
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
- v.values() * other,
- v.jacobian() * other);
- }
-
-// template<typename OtherValueType,typename OtherJacobianType>
-// inline const AutoDiffVector<
-// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
-// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >
-// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
-// {
-// return AutoDiffVector<
-// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
-// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >(
-// m_values.cwise() * other.values(),
-// (m_jacobian * other.values()) + (m_values * other.jacobian()));
-// }
-
- inline AutoDiffVector& operator*=(const Scalar& other)
- {
- m_values *= other;
- m_jacobian *= other;
- return *this;
- }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- *this = *this * other;
- return *this;
- }
-
- protected:
- ValueType m_values;
- JacobianType m_jacobian;
-
-};
-
-}
-
-#endif // EIGEN_AUTODIFF_VECTOR_H
diff --git a/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h b/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
deleted file mode 100644
index 994c8af..0000000
--- a/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
+++ /dev/null
@@ -1,293 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BVALGORITHMS_H
-#define EIGEN_BVALGORITHMS_H
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename BVH, typename Intersector>
-bool intersect_helper(const BVH &tree, Intersector &intersector, typename BVH::Index root)
-{
- typedef typename BVH::Index Index;
- typedef typename BVH::VolumeIterator VolIter;
- typedef typename BVH::ObjectIterator ObjIter;
-
- VolIter vBegin = VolIter(), vEnd = VolIter();
- ObjIter oBegin = ObjIter(), oEnd = ObjIter();
-
- std::vector<Index> todo(1, root);
-
- while(!todo.empty()) {
- tree.getChildren(todo.back(), vBegin, vEnd, oBegin, oEnd);
- todo.pop_back();
-
- for(; vBegin != vEnd; ++vBegin) //go through child volumes
- if(intersector.intersectVolume(tree.getVolume(*vBegin)))
- todo.push_back(*vBegin);
-
- for(; oBegin != oEnd; ++oBegin) //go through child objects
- if(intersector.intersectObject(*oBegin))
- return true; //intersector said to stop query
- }
- return false;
-}
-#endif //not EIGEN_PARSED_BY_DOXYGEN
-
-template<typename Volume1, typename Object1, typename Object2, typename Intersector>
-struct intersector_helper1
-{
- intersector_helper1(const Object2 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
- bool intersectVolume(const Volume1 &vol) { return intersector.intersectVolumeObject(vol, stored); }
- bool intersectObject(const Object1 &obj) { return intersector.intersectObjectObject(obj, stored); }
- Object2 stored;
- Intersector &intersector;
-private:
- intersector_helper1& operator=(const intersector_helper1&);
-};
-
-template<typename Volume2, typename Object2, typename Object1, typename Intersector>
-struct intersector_helper2
-{
- intersector_helper2(const Object1 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
- bool intersectVolume(const Volume2 &vol) { return intersector.intersectObjectVolume(stored, vol); }
- bool intersectObject(const Object2 &obj) { return intersector.intersectObjectObject(stored, obj); }
- Object1 stored;
- Intersector &intersector;
-private:
- intersector_helper2& operator=(const intersector_helper2&);
-};
-
-} // end namespace internal
-
-/** Given a BVH, runs the query encapsulated by \a intersector.
- * The Intersector type must provide the following members: \code
- bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
- bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately
- \endcode
- */
-template<typename BVH, typename Intersector>
-void BVIntersect(const BVH &tree, Intersector &intersector)
-{
- internal::intersect_helper(tree, intersector, tree.getRootIndex());
-}
-
-/** Given two BVH's, runs the query on their Cartesian product encapsulated by \a intersector.
- * The Intersector type must provide the following members: \code
- bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
- bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
- bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
- bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately
- \endcode
- */
-template<typename BVH1, typename BVH2, typename Intersector>
-void BVIntersect(const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) //TODO: tandem descent when it makes sense
-{
- typedef typename BVH1::Index Index1;
- typedef typename BVH2::Index Index2;
- typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1;
- typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2;
- typedef typename BVH1::VolumeIterator VolIter1;
- typedef typename BVH1::ObjectIterator ObjIter1;
- typedef typename BVH2::VolumeIterator VolIter2;
- typedef typename BVH2::ObjectIterator ObjIter2;
-
- VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
- ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
- VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
- ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
-
- std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()));
-
- while(!todo.empty()) {
- tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1);
- tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2);
- todo.pop_back();
-
- for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
- const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2)))
- todo.push_back(std::make_pair(*vBegin1, *vCur2));
- }
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- Helper1 helper(*oCur2, intersector);
- if(internal::intersect_helper(tree1, helper, *vBegin1))
- return; //intersector said to stop query
- }
- }
-
- for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Helper2 helper(*oBegin1, intersector);
- if(internal::intersect_helper(tree2, helper, *vCur2))
- return; //intersector said to stop query
- }
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- if(intersector.intersectObjectObject(*oBegin1, *oCur2))
- return; //intersector said to stop query
- }
- }
- }
-}
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename BVH, typename Minimizer>
-typename Minimizer::Scalar minimize_helper(const BVH &tree, Minimizer &minimizer, typename BVH::Index root, typename Minimizer::Scalar minimum)
-{
- typedef typename Minimizer::Scalar Scalar;
- typedef typename BVH::Index Index;
- typedef std::pair<Scalar, Index> QueueElement; //first element is priority
- typedef typename BVH::VolumeIterator VolIter;
- typedef typename BVH::ObjectIterator ObjIter;
-
- VolIter vBegin = VolIter(), vEnd = VolIter();
- ObjIter oBegin = ObjIter(), oEnd = ObjIter();
- std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
-
- todo.push(std::make_pair(Scalar(), root));
-
- while(!todo.empty()) {
- tree.getChildren(todo.top().second, vBegin, vEnd, oBegin, oEnd);
- todo.pop();
-
- for(; oBegin != oEnd; ++oBegin) //go through child objects
- minimum = (std::min)(minimum, minimizer.minimumOnObject(*oBegin));
-
- for(; vBegin != vEnd; ++vBegin) { //go through child volumes
- Scalar val = minimizer.minimumOnVolume(tree.getVolume(*vBegin));
- if(val < minimum)
- todo.push(std::make_pair(val, *vBegin));
- }
- }
-
- return minimum;
-}
-#endif //not EIGEN_PARSED_BY_DOXYGEN
-
-
-template<typename Volume1, typename Object1, typename Object2, typename Minimizer>
-struct minimizer_helper1
-{
- typedef typename Minimizer::Scalar Scalar;
- minimizer_helper1(const Object2 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
- Scalar minimumOnVolume(const Volume1 &vol) { return minimizer.minimumOnVolumeObject(vol, stored); }
- Scalar minimumOnObject(const Object1 &obj) { return minimizer.minimumOnObjectObject(obj, stored); }
- Object2 stored;
- Minimizer &minimizer;
-private:
- minimizer_helper1& operator=(const minimizer_helper1&);
-};
-
-template<typename Volume2, typename Object2, typename Object1, typename Minimizer>
-struct minimizer_helper2
-{
- typedef typename Minimizer::Scalar Scalar;
- minimizer_helper2(const Object1 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
- Scalar minimumOnVolume(const Volume2 &vol) { return minimizer.minimumOnObjectVolume(stored, vol); }
- Scalar minimumOnObject(const Object2 &obj) { return minimizer.minimumOnObjectObject(stored, obj); }
- Object1 stored;
- Minimizer &minimizer;
-private:
- minimizer_helper2& operator=(const minimizer_helper2&);
-};
-
-} // end namespace internal
-
-/** Given a BVH, runs the query encapsulated by \a minimizer.
- * \returns the minimum value.
- * The Minimizer type must provide the following members: \code
- typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
- Scalar minimumOnVolume(const BVH::Volume &volume)
- Scalar minimumOnObject(const BVH::Object &object)
- \endcode
- */
-template<typename BVH, typename Minimizer>
-typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer)
-{
- return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
-}
-
-/** Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer.
- * \returns the minimum value.
- * The Minimizer type must provide the following members: \code
- typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
- Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
- Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
- Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
- Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)
- \endcode
- */
-template<typename BVH1, typename BVH2, typename Minimizer>
-typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
-{
- typedef typename Minimizer::Scalar Scalar;
- typedef typename BVH1::Index Index1;
- typedef typename BVH2::Index Index2;
- typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1;
- typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2;
- typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority
- typedef typename BVH1::VolumeIterator VolIter1;
- typedef typename BVH1::ObjectIterator ObjIter1;
- typedef typename BVH2::VolumeIterator VolIter2;
- typedef typename BVH2::ObjectIterator ObjIter2;
-
- VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
- ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
- VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
- ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
- std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
-
- Scalar minimum = (std::numeric_limits<Scalar>::max)();
- todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));
-
- while(!todo.empty()) {
- tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1);
- tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2);
- todo.pop();
-
- for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2));
- }
-
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Helper2 helper(*oBegin1, minimizer);
- minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum));
- }
- }
-
- for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
- const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- Helper1 helper(*oCur2, minimizer);
- minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum));
- }
-
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2));
- if(val < minimum)
- todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2)));
- }
- }
- }
- return minimum;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_BVALGORITHMS_H
diff --git a/eigen/unsupported/Eigen/src/BVH/KdBVH.h b/eigen/unsupported/Eigen/src/BVH/KdBVH.h
deleted file mode 100644
index 5e39af2..0000000
--- a/eigen/unsupported/Eigen/src/BVH/KdBVH.h
+++ /dev/null
@@ -1,223 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef KDBVH_H_INCLUDED
-#define KDBVH_H_INCLUDED
-
-namespace Eigen {
-
-namespace internal {
-
-//internal pair class for the BVH--used instead of std::pair because of alignment
-template<typename Scalar, int Dim>
-struct vector_int_pair
-{
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
- typedef Matrix<Scalar, Dim, 1> VectorType;
-
- vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
-
- VectorType first;
- int second;
-};
-
-//these templates help the tree initializer get the bounding boxes either from a provided
-//iterator range or using bounding_box in a unified way
-template<typename ObjectList, typename VolumeList, typename BoxIter>
-struct get_boxes_helper {
- void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
- {
- outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
- eigen_assert(outBoxes.size() == objects.size());
- EIGEN_ONLY_USED_FOR_DEBUG(objects);
- }
-};
-
-template<typename ObjectList, typename VolumeList>
-struct get_boxes_helper<ObjectList, VolumeList, int> {
- void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
- {
- outBoxes.reserve(objects.size());
- for(int i = 0; i < (int)objects.size(); ++i)
- outBoxes.push_back(bounding_box(objects[i]));
- }
-};
-
-} // end namespace internal
-
-
-/** \class KdBVH
- * \brief A simple bounding volume hierarchy based on AlignedBox
- *
- * \param _Scalar The underlying scalar type of the bounding boxes
- * \param _Dim The dimension of the space in which the hierarchy lives
- * \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
- * be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
- *
- * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
- * Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
- * and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
- * it is useful for _Object to be a pointer.
- */
-template<typename _Scalar, int _Dim, typename _Object> class KdBVH
-{
-public:
- enum { Dim = _Dim };
- typedef _Object Object;
- typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
- typedef _Scalar Scalar;
- typedef AlignedBox<Scalar, Dim> Volume;
- typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
- typedef int Index;
- typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
- typedef const Object *ObjectIterator;
-
- KdBVH() {}
-
- /** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */
- template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
-
- /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
- template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
-
- /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
- * Requires that bounding_box(Object) return a Volume. */
- template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
-
- /** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
- * constructs the BVH, overwriting whatever is in there currently. */
- template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
- {
- objects.clear();
- boxes.clear();
- children.clear();
-
- objects.insert(objects.end(), begin, end);
- int n = static_cast<int>(objects.size());
-
- if(n < 2)
- return; //if we have at most one object, we don't need any internal nodes
-
- VolumeList objBoxes;
- VIPairList objCenters;
-
- //compute the bounding boxes depending on BIter type
- internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
-
- objCenters.reserve(n);
- boxes.reserve(n - 1);
- children.reserve(2 * n - 2);
-
- for(int i = 0; i < n; ++i)
- objCenters.push_back(VIPair(objBoxes[i].center(), i));
-
- build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
-
- ObjectList tmp(n);
- tmp.swap(objects);
- for(int i = 0; i < n; ++i)
- objects[i] = tmp[objCenters[i].second];
- }
-
- /** \returns the index of the root of the hierarchy */
- inline Index getRootIndex() const { return (int)boxes.size() - 1; }
-
- /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
- * and \a outOBegin and \a outOEnd range over the object children of the node */
- EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
- ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
- { //inlining this function should open lots of optimization opportunities to the compiler
- if(index < 0) {
- outVBegin = outVEnd;
- if(!objects.empty())
- outOBegin = &(objects[0]);
- outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
- return;
- }
-
- int numBoxes = static_cast<int>(boxes.size());
-
- int idx = index * 2;
- if(children[idx + 1] < numBoxes) { //second index is always bigger
- outVBegin = &(children[idx]);
- outVEnd = outVBegin + 2;
- outOBegin = outOEnd;
- }
- else if(children[idx] >= numBoxes) { //if both children are objects
- outVBegin = outVEnd;
- outOBegin = &(objects[children[idx] - numBoxes]);
- outOEnd = outOBegin + 2;
- } else { //if the first child is a volume and the second is an object
- outVBegin = &(children[idx]);
- outVEnd = outVBegin + 1;
- outOBegin = &(objects[children[idx + 1] - numBoxes]);
- outOEnd = outOBegin + 1;
- }
- }
-
- /** \returns the bounding box of the node at \a index */
- inline const Volume &getVolume(Index index) const
- {
- return boxes[index];
- }
-
-private:
- typedef internal::vector_int_pair<Scalar, Dim> VIPair;
- typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
- typedef Matrix<Scalar, Dim, 1> VectorType;
- struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
- {
- VectorComparator(int inDim) : dim(inDim) {}
- inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
- int dim;
- };
-
- //Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
- //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
- //the two halves, and adds their parent node. TODO: a cache-friendlier layout
- void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
- {
- eigen_assert(to - from > 1);
- if(to - from == 2) {
- boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
- children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
- children.push_back(from + (int)objects.size());
- }
- else if(to - from == 3) {
- int mid = from + 2;
- std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
- objCenters.begin() + to, VectorComparator(dim)); //partition
- build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
- int idx1 = (int)boxes.size() - 1;
- boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
- children.push_back(idx1);
- children.push_back(mid + (int)objects.size() - 1);
- }
- else {
- int mid = from + (to - from) / 2;
- nth_element(objCenters.begin() + from, objCenters.begin() + mid,
- objCenters.begin() + to, VectorComparator(dim)); //partition
- build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
- int idx1 = (int)boxes.size() - 1;
- build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
- int idx2 = (int)boxes.size() - 1;
- boxes.push_back(boxes[idx1].merged(boxes[idx2]));
- children.push_back(idx1);
- children.push_back(idx2);
- }
- }
-
- std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
- VolumeList boxes;
- ObjectList objects;
-};
-
-} // end namespace Eigen
-
-#endif //KDBVH_H_INCLUDED
diff --git a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
deleted file mode 100644
index 866a8a4..0000000
--- a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
+++ /dev/null
@@ -1,805 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 David Harmon <dharmon@gmail.com>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
-#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
-
-#include <Eigen/Dense>
-
-namespace Eigen {
-
-namespace internal {
- template<typename Scalar, typename RealScalar> struct arpack_wrapper;
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
-}
-
-
-
-template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
-class ArpackGeneralizedSelfAdjointEigenSolver
-{
-public:
- //typedef typename MatrixSolver::MatrixType MatrixType;
-
- /** \brief Scalar type for matrices of type \p MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Real scalar type for \p MatrixType.
- *
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
- * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
- * complex.
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #RealScalar.
- * The length of the vector is the size of \p nbrEigenvalues.
- */
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
-
- /** \brief Default constructor.
- *
- * The default constructor is for cases in which the user intends to
- * perform decompositions via compute().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver()
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- { }
-
- /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
- *
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
- * computed. By default, the upper triangular part is used, but can be changed
- * through the template parameter.
- * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
- * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
- * \p options equals #ComputeEigenvectors.
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0)
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- {
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
- }
-
- /** \brief Constructor; computes eigenvalues of given matrix.
- *
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
- * computed. By default, the upper triangular part is used, but can be changed
- * through the template parameter.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
- * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
- * \p options equals #ComputeEigenvectors.
- *
- */
-
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0)
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- {
- compute(A, nbrEigenvalues, eigs_sigma, options, tol);
- }
-
-
- /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
- *
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
- * \param[in] B Selfadjoint matrix for generalized eigenvalues.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * \returns Reference to \c *this
- *
- * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
- * then the eigenvectors are also computed and can be retrieved by
- * calling eigenvectors().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0);
-
- /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
- *
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
- * then the eigenvectors are also computed and can be retrieved by
- * calling eigenvectors().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0);
-
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns A const reference to the matrix whose columns are the eigenvectors.
- *
- * \pre The eigenvectors have been computed before.
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
- * this object was used to solve the eigenproblem for the selfadjoint
- * matrix \f$ A \f$, then the matrix returned by this function is the
- * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
- * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
- *
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
- *
- * \sa eigenvalues()
- */
- const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre The eigenvalues have been computed before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are sorted in increasing order.
- *
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
- *
- * \sa eigenvectors(), MatrixBase::eigenvalues()
- */
- const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes the positive-definite square root of the matrix.
- *
- * \returns the positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * The square root of a positive-definite matrix \f$ A \f$ is the
- * positive-definite matrix whose square equals \f$ A \f$. This function
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
- *
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
- *
- * \sa operatorInverseSqrt(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Computes the inverse square root of the matrix.
- *
- * \returns the inverse positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
- * cheaper than first computing the square root with operatorSqrt() and
- * then its inverse with MatrixBase::inverse().
- *
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
- *
- * \sa operatorSqrt(), MatrixBase::inverse(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- return m_info;
- }
-
- size_t getNbrConvergedEigenValues() const
- { return m_nbrConverged; }
-
- size_t getNbrIterations() const
- { return m_nbrIterations; }
-
-protected:
- Matrix<Scalar, Dynamic, Dynamic> m_eivec;
- Matrix<Scalar, Dynamic, 1> m_eivalues;
- ComputationInfo m_info;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
-
- size_t m_nbrConverged;
- size_t m_nbrIterations;
-};
-
-
-
-
-
-template<typename MatrixType, typename MatrixSolver, bool BisSPD>
-ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
-::compute(const MatrixType& A, Index nbrEigenvalues,
- std::string eigs_sigma, int options, RealScalar tol)
-{
- MatrixType B(0,0);
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
-
- return *this;
-}
-
-
-template<typename MatrixType, typename MatrixSolver, bool BisSPD>
-ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
-::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
- std::string eigs_sigma, int options, RealScalar tol)
-{
- eigen_assert(A.cols() == A.rows());
- eigen_assert(B.cols() == B.rows());
- eigen_assert(B.rows() == 0 || A.cols() == B.rows());
- eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
- && (options & EigVecMask) != EigVecMask
- && "invalid option parameter");
-
- bool isBempty = (B.rows() == 0) || (B.cols() == 0);
-
- // For clarity, all parameters match their ARPACK name
- //
- // Always 0 on the first call
- //
- int ido = 0;
-
- int n = (int)A.cols();
-
- // User options: "LA", "SA", "SM", "LM", "BE"
- //
- char whch[3] = "LM";
-
- // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
- //
- RealScalar sigma = 0.0;
-
- if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
- {
- eigs_sigma[0] = toupper(eigs_sigma[0]);
- eigs_sigma[1] = toupper(eigs_sigma[1]);
-
- // In the following special case we're going to invert the problem, since solving
- // for larger magnitude is much much faster
- // i.e., if 'SM' is specified, we're going to really use 'LM', the default
- //
- if (eigs_sigma.substr(0,2) != "SM")
- {
- whch[0] = eigs_sigma[0];
- whch[1] = eigs_sigma[1];
- }
- }
- else
- {
- eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
-
- // If it's not scalar values, then the user may be explicitly
- // specifying the sigma value to cluster the evs around
- //
- sigma = atof(eigs_sigma.c_str());
-
- // If atof fails, it returns 0.0, which is a fine default
- //
- }
-
- // "I" means normal eigenvalue problem, "G" means generalized
- //
- char bmat[2] = "I";
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
- bmat[0] = 'G';
-
- // Now we determine the mode to use
- //
- int mode = (bmat[0] == 'G') + 1;
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
- {
- // We're going to use shift-and-invert mode, and basically find
- // the largest eigenvalues of the inverse operator
- //
- mode = 3;
- }
-
- // The user-specified number of eigenvalues/vectors to compute
- //
- int nev = (int)nbrEigenvalues;
-
- // Allocate space for ARPACK to store the residual
- //
- Scalar *resid = new Scalar[n];
-
- // Number of Lanczos vectors, must satisfy nev < ncv <= n
- // Note that this indicates that nev != n, and we cannot compute
- // all eigenvalues of a mtrix
- //
- int ncv = std::min(std::max(2*nev, 20), n);
-
- // The working n x ncv matrix, also store the final eigenvectors (if computed)
- //
- Scalar *v = new Scalar[n*ncv];
- int ldv = n;
-
- // Working space
- //
- Scalar *workd = new Scalar[3*n];
- int lworkl = ncv*ncv+8*ncv; // Must be at least this length
- Scalar *workl = new Scalar[lworkl];
-
- int *iparam= new int[11];
- iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
- iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
- iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
-
- // Used during reverse communicate to notify where arrays start
- //
- int *ipntr = new int[11];
-
- // Error codes are returned in here, initial value of 0 indicates a random initial
- // residual vector is used, any other values means resid contains the initial residual
- // vector, possibly from a previous run
- //
- int info = 0;
-
- Scalar scale = 1.0;
- //if (!isBempty)
- //{
- //Scalar scale = B.norm() / std::sqrt(n);
- //scale = std::pow(2, std::floor(std::log(scale+1)));
- ////M /= scale;
- //for (size_t i=0; i<(size_t)B.outerSize(); i++)
- // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
- // it.valueRef() /= scale;
- //}
-
- MatrixSolver OP;
- if (mode == 1 || mode == 2)
- {
- if (!isBempty)
- OP.compute(B);
- }
- else if (mode == 3)
- {
- if (sigma == 0.0)
- {
- OP.compute(A);
- }
- else
- {
- // Note: We will never enter here because sigma must be 0.0
- //
- if (isBempty)
- {
- MatrixType AminusSigmaB(A);
- for (Index i=0; i<A.rows(); ++i)
- AminusSigmaB.coeffRef(i,i) -= sigma;
-
- OP.compute(AminusSigmaB);
- }
- else
- {
- MatrixType AminusSigmaB = A - sigma * B;
- OP.compute(AminusSigmaB);
- }
- }
- }
-
- if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
- std::cout << "Error factoring matrix" << std::endl;
-
- do
- {
- internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
- &ncv, v, &ldv, iparam, ipntr, workd, workl,
- &lworkl, &info);
-
- if (ido == -1 || ido == 1)
- {
- Scalar *in = workd + ipntr[0] - 1;
- Scalar *out = workd + ipntr[1] - 1;
-
- if (ido == 1 && mode != 2)
- {
- Scalar *out2 = workd + ipntr[2] - 1;
- if (isBempty || mode == 1)
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
- else
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
-
- in = workd + ipntr[2] - 1;
- }
-
- if (mode == 1)
- {
- if (isBempty)
- {
- // OP = A
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
- }
- else
- {
- // OP = L^{-1}AL^{-T}
- //
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
- }
- }
- else if (mode == 2)
- {
- if (ido == 1)
- Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
-
- // OP = B^{-1} A
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- }
- else if (mode == 3)
- {
- // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
- // The B * in is already computed and stored at in if ido == 1
- //
- if (ido == 1 || isBempty)
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- else
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
- }
- }
- else if (ido == 2)
- {
- Scalar *in = workd + ipntr[0] - 1;
- Scalar *out = workd + ipntr[1] - 1;
-
- if (isBempty || mode == 1)
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
- else
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
- }
- } while (ido != 99);
-
- if (info == 1)
- m_info = NoConvergence;
- else if (info == 3)
- m_info = NumericalIssue;
- else if (info < 0)
- m_info = InvalidInput;
- else if (info != 0)
- eigen_assert(false && "Unknown ARPACK return value!");
- else
- {
- // Do we compute eigenvectors or not?
- //
- int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
-
- // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
- //
- char howmny[2] = "A";
-
- // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
- //
- int *select = new int[ncv];
-
- // Final eigenvalues
- //
- m_eivalues.resize(nev, 1);
-
- internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
- &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
- v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
-
- if (info == -14)
- m_info = NoConvergence;
- else if (info != 0)
- m_info = InvalidInput;
- else
- {
- if (rvec)
- {
- m_eivec.resize(A.rows(), nev);
- for (int i=0; i<nev; i++)
- for (int j=0; j<n; j++)
- m_eivec(j,i) = v[i*n+j] / scale;
-
- if (mode == 1 && !isBempty && BisSPD)
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
-
- m_eigenvectorsOk = true;
- }
-
- m_nbrIterations = iparam[2];
- m_nbrConverged = iparam[4];
-
- m_info = Success;
- }
-
- delete[] select;
- }
-
- delete[] v;
- delete[] iparam;
- delete[] ipntr;
- delete[] workd;
- delete[] workl;
- delete[] resid;
-
- m_isInitialized = true;
-
- return *this;
-}
-
-
-// Single precision
-//
-extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
- int *nev, float *tol, float *resid, int *ncv,
- float *v, int *ldv, int *iparam, int *ipntr,
- float *workd, float *workl, int *lworkl,
- int *info);
-
-extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
- float *z, int *ldz, float *sigma,
- char *bmat, int *n, char *which, int *nev,
- float *tol, float *resid, int *ncv, float *v,
- int *ldv, int *iparam, int *ipntr, float *workd,
- float *workl, int *lworkl, int *ierr);
-
-// Double precision
-//
-extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
- int *nev, double *tol, double *resid, int *ncv,
- double *v, int *ldv, int *iparam, int *ipntr,
- double *workd, double *workl, int *lworkl,
- int *info);
-
-extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
- double *z, int *ldz, double *sigma,
- char *bmat, int *n, char *which, int *nev,
- double *tol, double *resid, int *ncv, double *v,
- int *ldv, int *iparam, int *ipntr, double *workd,
- double *workl, int *lworkl, int *ierr);
-
-
-namespace internal {
-
-template<typename Scalar, typename RealScalar> struct arpack_wrapper
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, RealScalar *tol, Scalar *resid, int *ncv,
- Scalar *v, int *ldv, int *iparam, int *ipntr,
- Scalar *workd, Scalar *workl, int *lworkl, int *info)
- {
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
- }
-
- static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
- Scalar *z, int *ldz, RealScalar *sigma,
- char *bmat, int *n, char *which, int *nev,
- RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
- int *ldv, int *iparam, int *ipntr, Scalar *workd,
- Scalar *workl, int *lworkl, int *ierr)
- {
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
- }
-};
-
-template <> struct arpack_wrapper<float, float>
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, float *tol, float *resid, int *ncv,
- float *v, int *ldv, int *iparam, int *ipntr,
- float *workd, float *workl, int *lworkl, int *info)
- {
- ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
- }
-
- static inline void seupd(int *rvec, char *All, int *select, float *d,
- float *z, int *ldz, float *sigma,
- char *bmat, int *n, char *which, int *nev,
- float *tol, float *resid, int *ncv, float *v,
- int *ldv, int *iparam, int *ipntr, float *workd,
- float *workl, int *lworkl, int *ierr)
- {
- sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
- workd, workl, lworkl, ierr);
- }
-};
-
-template <> struct arpack_wrapper<double, double>
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, double *tol, double *resid, int *ncv,
- double *v, int *ldv, int *iparam, int *ipntr,
- double *workd, double *workl, int *lworkl, int *info)
- {
- dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
- }
-
- static inline void seupd(int *rvec, char *All, int *select, double *d,
- double *z, int *ldz, double *sigma,
- char *bmat, int *n, char *which, int *nev,
- double *tol, double *resid, int *ncv, double *v,
- int *ldv, int *iparam, int *ipntr, double *workd,
- double *workl, int *lworkl, int *ierr)
- {
- dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
- workd, workl, lworkl, ierr);
- }
-};
-
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
-struct OP
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
-};
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar>
-struct OP<MatrixSolver, MatrixType, Scalar, true>
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
-{
- // OP = L^{-1} A L^{-T} (B = LL^T)
- //
- // First solve L^T out = in
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
-
- // Then compute out = A out
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
-
- // Then solve L out = out
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
-}
-
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
-{
- // Solve L^T out = in
- //
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
-}
-
-};
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar>
-struct OP<MatrixSolver, MatrixType, Scalar, false>
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
-{
- eigen_assert(false && "Should never be in here...");
-}
-
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
-{
- eigen_assert(false && "Should never be in here...");
-}
-
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
-
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt b/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
deleted file mode 100644
index 40af550..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_EulerAngles_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_EulerAngles_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/EulerAngles COMPONENT Devel
- )
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
deleted file mode 100644
index 13a0da1..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
+++ /dev/null
@@ -1,386 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
-#define EIGEN_EULERANGLESCLASS_H
-
-namespace Eigen
-{
- /*template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
- struct ei_eulerangles_assign_impl;*/
-
- /** \class EulerAngles
- *
- * \ingroup EulerAngles_Module
- *
- * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
- *
- * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
- *
- * Here is how intrinsic Euler angles works:
- * - first, rotate the axes system over the alpha axis in angle alpha
- * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
- * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
- *
- * \note This class support only intrinsic Euler angles for simplicity,
- * see EulerSystem how to easily overcome this for extrinsic systems.
- *
- * ### Rotation representation and conversions ###
- *
- * It has been proved(see Wikipedia link below) that every rotation can be represented
- * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
- * Therefore, you can convert from Eigen rotation and to them
- * (including rotation matrices, which is not called "rotations" by Eigen design).
- *
- * Euler angles usually used for:
- * - convenient human representation of rotation, especially in interactive GUI.
- * - gimbal systems and robotics
- * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
- *
- * However, Euler angles are slow comparing to quaternion or matrices,
- * because their unnatural math definition, although it's simple for human.
- * To overcome this, this class provide easy movement from the math friendly representation
- * to the human friendly representation, and vise-versa.
- *
- * All the user need to do is a safe simple C++ type conversion,
- * and this class take care for the math.
- * Additionally, some axes related computation is done in compile time.
- *
- * #### Euler angles ranges in conversions ####
- *
- * When converting some rotation to Euler angles, there are some ways you can guarantee
- * the Euler angles ranges.
- *
- * #### implicit ranges ####
- * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
- * unless you convert from some other Euler angles.
- * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
- * \sa EulerAngles(const MatrixBase<Derived>&)
- * \sa EulerAngles(const RotationBase<Derived, 3>&)
- *
- * #### explicit ranges ####
- * When using explicit ranges, all angles are guarantee to be in the range you choose.
- * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
- * - _true_ - force the range between [0, +2*PI]
- * - _false_ - force the range between [-PI, +PI]
- *
- * ##### compile time ranges #####
- * This is when you have compile time ranges and you prefer to
- * use template parameter. (e.g. for performance)
- * \sa FromRotation()
- *
- * ##### run-time time ranges #####
- * Run-time ranges are also supported.
- * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
- * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
- *
- * ### Convenient user typedefs ###
- *
- * Convenient typedefs for EulerAngles exist for float and double scalar,
- * in a form of EulerAngles{A}{B}{C}{scalar},
- * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
- *
- * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
- * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
- * a word that represent what you need.
- *
- * ### Example ###
- *
- * \include EulerAngles.cpp
- * Output: \verbinclude EulerAngles.out
- *
- * ### Additional reading ###
- *
- * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
- *
- * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
- *
- * \tparam _Scalar the scalar type, i.e., the type of the angles.
- *
- * \tparam _System the EulerSystem to use, which represents the axes of rotation.
- */
- template <typename _Scalar, class _System>
- class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
- {
- public:
- /** the scalar type of the angles */
- typedef _Scalar Scalar;
-
- /** the EulerSystem to use, which represents the axes of rotation. */
- typedef _System System;
-
- typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
- typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
- typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
-
- /** \returns the axis vector of the first (alpha) rotation */
- static Vector3 AlphaAxisVector() {
- const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
- return System::IsAlphaOpposite ? -u : u;
- }
-
- /** \returns the axis vector of the second (beta) rotation */
- static Vector3 BetaAxisVector() {
- const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
- return System::IsBetaOpposite ? -u : u;
- }
-
- /** \returns the axis vector of the third (gamma) rotation */
- static Vector3 GammaAxisVector() {
- const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
- return System::IsGammaOpposite ? -u : u;
- }
-
- private:
- Vector3 m_angles;
-
- public:
- /** Default constructor without initialization. */
- EulerAngles() {}
- /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
- EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
- m_angles(alpha, beta, gamma) {}
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
- *
- * \note All angles will be in the range [-PI, PI].
- */
- template<typename Derived>
- EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const MatrixBase<Derived>& m,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot.
- *
- * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
- * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
- * (Use other functions here for enforcing range if this effect is desired)
- */
- template<typename Derived>
- EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const RotationBase<Derived, 3>& rot,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
-
- /** \returns The angle values stored in a vector (alpha, beta, gamma). */
- const Vector3& angles() const { return m_angles; }
- /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
- Vector3& angles() { return m_angles; }
-
- /** \returns The value of the first angle. */
- Scalar alpha() const { return m_angles[0]; }
- /** \returns A read-write reference to the angle of the first angle. */
- Scalar& alpha() { return m_angles[0]; }
-
- /** \returns The value of the second angle. */
- Scalar beta() const { return m_angles[1]; }
- /** \returns A read-write reference to the angle of the second angle. */
- Scalar& beta() { return m_angles[1]; }
-
- /** \returns The value of the third angle. */
- Scalar gamma() const { return m_angles[2]; }
- /** \returns A read-write reference to the angle of the third angle. */
- Scalar& gamma() { return m_angles[2]; }
-
- /** \returns The Euler angles rotation inverse (which is as same as the negative),
- * (-alpha, -beta, -gamma).
- */
- EulerAngles inverse() const
- {
- EulerAngles res;
- res.m_angles = -m_angles;
- return res;
- }
-
- /** \returns The Euler angles rotation negative (which is as same as the inverse),
- * (-alpha, -beta, -gamma).
- */
- EulerAngles operator -() const
- {
- return inverse();
- }
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const MatrixBase<Derived>& m)
- {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- EulerAngles e;
- System::template CalcEulerAngles<
- PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
- return e;
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
- {
- return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
- }
-
- /*EulerAngles& fromQuaternion(const QuaternionType& q)
- {
- // TODO: Implement it in a faster way for quaternions
- // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
- // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
- // Currently we compute all matrix cells from quaternion.
-
- // Special case only for ZYX
- //Scalar y2 = q.y() * q.y();
- //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
- //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
- //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
- }*/
-
- /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
- template<typename Derived>
- EulerAngles& operator=(const MatrixBase<Derived>& m) {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- System::CalcEulerAngles(*this, m);
- return *this;
- }
-
- // TODO: Assign and construct from another EulerAngles (with different system)
-
- /** Set \c *this from a rotation. */
- template<typename Derived>
- EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
- System::CalcEulerAngles(*this, rot.toRotationMatrix());
- return *this;
- }
-
- // TODO: Support isApprox function
-
- /** \returns an equivalent 3x3 rotation matrix. */
- Matrix3 toRotationMatrix() const
- {
- return static_cast<QuaternionType>(*this).toRotationMatrix();
- }
-
- /** Convert the Euler angles to quaternion. */
- operator QuaternionType() const
- {
- return
- AngleAxisType(alpha(), AlphaAxisVector()) *
- AngleAxisType(beta(), BetaAxisVector()) *
- AngleAxisType(gamma(), GammaAxisVector());
- }
-
- friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
- {
- s << eulerAngles.angles().transpose();
- return s;
- }
- };
-
-#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
- /** \ingroup EulerAngles_Module */ \
- typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
-
-#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
- \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
- \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
-
-EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
-EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
-
- namespace internal
- {
- template<typename _Scalar, class _System>
- struct traits<EulerAngles<_Scalar, _System> >
- {
- typedef _Scalar Scalar;
- };
- }
-
-}
-
-#endif // EIGEN_EULERANGLESCLASS_H
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
deleted file mode 100644
index 98f9f64..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ /dev/null
@@ -1,326 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERSYSTEM_H
-#define EIGEN_EULERSYSTEM_H
-
-namespace Eigen
-{
- // Forward declerations
- template <typename _Scalar, class _System>
- class EulerAngles;
-
- namespace internal
- {
- // TODO: Check if already exists on the rest API
- template <int Num, bool IsPositive = (Num > 0)>
- struct Abs
- {
- enum { value = Num };
- };
-
- template <int Num>
- struct Abs<Num, false>
- {
- enum { value = -Num };
- };
-
- template <int Axis>
- struct IsValidAxis
- {
- enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
- };
- }
-
- #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
-
- /** \brief Representation of a fixed signed rotation axis for EulerSystem.
- *
- * \ingroup EulerAngles_Module
- *
- * Values here represent:
- * - The axis of the rotation: X, Y or Z.
- * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
- *
- * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
- *
- * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
- */
- enum EulerAxis
- {
- EULER_X = 1, /*!< the X axis */
- EULER_Y = 2, /*!< the Y axis */
- EULER_Z = 3 /*!< the Z axis */
- };
-
- /** \class EulerSystem
- *
- * \ingroup EulerAngles_Module
- *
- * \brief Represents a fixed Euler rotation system.
- *
- * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
- *
- * You can use this class to get two things:
- * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
- *
- * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
- * This meta-class store constantly those signed axes. (see \ref EulerAxis)
- *
- * ### Types of Euler systems ###
- *
- * All and only valid 3 dimension Euler rotation over standard
- * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
- * - all axes X, Y, Z in each valid order (see below what order is valid)
- * - rotation over the axis is supported both over the positive and negative directions.
- * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
- *
- * Since EulerSystem support both positive and negative directions,
- * you may call this rotation distinction in other names:
- * - _right handed_ or _left handed_
- * - _counterclockwise_ or _clockwise_
- *
- * Notice all axed combination are valid, and would trigger a static assertion.
- * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
- * This yield two and only two classes:
- * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
- * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
- * and the second is different, e.g. {X,Y,X}
- *
- * ### Intrinsic vs extrinsic Euler systems ###
- *
- * Only intrinsic Euler systems are supported for simplicity.
- * If you want to use extrinsic Euler systems,
- * just use the equal intrinsic opposite order for axes and angles.
- * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
- *
- * ### Convenient user typedefs ###
- *
- * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
- * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
- *
- * ### Additional reading ###
- *
- * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
- *
- * \tparam _AlphaAxis the first fixed EulerAxis
- *
- * \tparam _AlphaAxis the second fixed EulerAxis
- *
- * \tparam _AlphaAxis the third fixed EulerAxis
- */
- template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
- class EulerSystem
- {
- public:
- // It's defined this way and not as enum, because I think
- // that enum is not guerantee to support negative numbers
-
- /** The first rotation axis */
- static const int AlphaAxis = _AlphaAxis;
-
- /** The second rotation axis */
- static const int BetaAxis = _BetaAxis;
-
- /** The third rotation axis */
- static const int GammaAxis = _GammaAxis;
-
- enum
- {
- AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
- BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
- GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
-
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
-
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
-
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
- };
-
- private:
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
- ALPHA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
- BETA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
- GAMMA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
- ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
- BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
-
- enum
- {
- // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
- // They are used in this class converters.
- // They are always different from each other, and their possible values are: 0, 1, or 2.
- I = AlphaAxisAbs - 1,
- J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
- K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
- };
-
- // TODO: Get @mat parameter in form that avoids double evaluation.
- template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
- {
- using std::atan2;
- using std::sin;
- using std::cos;
-
- typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,K), mat(K,K));
- Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- res[1] = atan2(-mat(I,K), -c2);
- }
- else
- res[1] = atan2(-mat(I,K), c2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
- }
-
- template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
- {
- using std::atan2;
- using std::sin;
- using std::cos;
-
- typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,I), mat(K,I));
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
- {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = -atan2(s2, mat(I,I));
- }
- else
- {
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = atan2(s2, mat(I,I));
- }
-
- // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
- // we can compute their respective rotation, and apply its inverse to M. Since the result must
- // be a rotation around x, we have:
- //
- // c2 s1.s2 c1.s2 1 0 0
- // 0 c1 -s1 * M = 0 c3 s3
- // -s2 s1.c2 c1.c2 0 -s3 c3
- //
- // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
-
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, false, false, false);
- }
-
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma)
- {
- CalcEulerAngles_imp(
- res.angles(), mat,
- typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
-
- if (IsAlphaOpposite == IsOdd)
- res.alpha() = -res.alpha();
-
- if (IsBetaOpposite == IsOdd)
- res.beta() = -res.beta();
-
- if (IsGammaOpposite == IsOdd)
- res.gamma() = -res.gamma();
-
- // Saturate results to the requested range
- if (PositiveRangeAlpha && (res.alpha() < 0))
- res.alpha() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeBeta && (res.beta() < 0))
- res.beta() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeGamma && (res.gamma() < 0))
- res.gamma() += Scalar(2 * EIGEN_PI);
- }
-
- template <typename _Scalar, class _System>
- friend class Eigen::EulerAngles;
- };
-
-#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
- /** \ingroup EulerAngles_Module */ \
- typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
-
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
-
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
-
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
-}
-
-#endif // EIGEN_EULERSYSTEM_H
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
deleted file mode 100644
index d49aa17..0000000
--- a/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
+++ /dev/null
@@ -1,261 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Mark Borgerding mark a borgerding net
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-namespace Eigen {
-
-namespace internal {
-
- // FFTW uses non-const arguments
- // so we must use ugly const_cast calls for all the args it uses
- //
- // This should be safe as long as
- // 1. we use FFTW_ESTIMATE for all our planning
- // see the FFTW docs section 4.3.2 "Planner Flags"
- // 2. fftw_complex is compatible with std::complex
- // This assumes std::complex<T> layout is array of size 2 with real,imag
- template <typename T>
- inline
- T * fftw_cast(const T* p)
- {
- return const_cast<T*>( p);
- }
-
- inline
- fftw_complex * fftw_cast( const std::complex<double> * p)
- {
- return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
- }
-
- inline
- fftwf_complex * fftw_cast( const std::complex<float> * p)
- {
- return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
- }
-
- inline
- fftwl_complex * fftw_cast( const std::complex<long double> * p)
- {
- return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
- }
-
- template <typename T>
- struct fftw_plan {};
-
- template <>
- struct fftw_plan<float>
- {
- typedef float scalar_type;
- typedef fftwf_complex complex_type;
- fftwf_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_c2r( m_plan, src,dst);
- }
-
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
-
- };
- template <>
- struct fftw_plan<double>
- {
- typedef double scalar_type;
- typedef fftw_complex complex_type;
- ::fftw_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_c2r( m_plan, src,dst);
- }
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- };
- template <>
- struct fftw_plan<long double>
- {
- typedef long double scalar_type;
- typedef fftwl_complex complex_type;
- fftwl_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_c2r( m_plan, src,dst);
- }
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- };
-
- template <typename _Scalar>
- struct fftw_impl
- {
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
-
- inline
- void clear()
- {
- m_plans.clear();
- }
-
- // complex-to-complex forward FFT
- inline
- void fwd( Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // real-to-complex forward FFT
- inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
- {
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
- }
-
- // 2-d complex-to-complex
- inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
- {
- get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
- }
-
- // inverse complex-to-complex
- inline
- void inv(Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // half-complex to scalar
- inline
- void inv( Scalar * dst,const Complex * src,int nfft)
- {
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // 2-d complex-to-complex
- inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
- {
- get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
- }
-
-
- protected:
- typedef fftw_plan<Scalar> PlanData;
-
- typedef std::map<int64_t,PlanData> PlanMap;
-
- PlanMap m_plans;
-
- inline
- PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
- {
- bool inplace = (dst==src);
- bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
- int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
- return m_plans[key];
- }
-
- inline
- PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
- {
- bool inplace = (dst==src);
- bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
- int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
- return m_plans[key];
- }
- };
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
deleted file mode 100644
index be51b4e..0000000
--- a/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
+++ /dev/null
@@ -1,420 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Mark Borgerding mark a borgerding net
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-namespace Eigen {
-
-namespace internal {
-
- // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
- // Copyright 2003-2009 Mark Borgerding
-
-template <typename _Scalar>
-struct kiss_cpx_fft
-{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
- std::vector<Complex> m_twiddles;
- std::vector<int> m_stageRadix;
- std::vector<int> m_stageRemainder;
- std::vector<Complex> m_scratchBuf;
- bool m_inverse;
-
- inline
- void make_twiddles(int nfft,bool inverse)
- {
- using std::acos;
- m_inverse = inverse;
- m_twiddles.resize(nfft);
- Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
- for (int i=0;i<nfft;++i)
- m_twiddles[i] = exp( Complex(0,i*phinc) );
- }
-
- void factorize(int nfft)
- {
- //start factoring out 4's, then 2's, then 3,5,7,9,...
- int n= nfft;
- int p=4;
- do {
- while (n % p) {
- switch (p) {
- case 4: p = 2; break;
- case 2: p = 3; break;
- default: p += 2; break;
- }
- if (p*p>n)
- p=n;// impossible to have a factor > sqrt(n)
- }
- n /= p;
- m_stageRadix.push_back(p);
- m_stageRemainder.push_back(n);
- if ( p > 5 )
- m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
- }while(n>1);
- }
-
- template <typename _Src>
- inline
- void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
- {
- int p = m_stageRadix[stage];
- int m = m_stageRemainder[stage];
- Complex * Fout_beg = xout;
- Complex * Fout_end = xout + p*m;
-
- if (m>1) {
- do{
- // recursive call:
- // DFT of size m*p performed by doing
- // p instances of smaller DFTs of size m,
- // each one takes a decimated version of the input
- work(stage+1, xout , xin, fstride*p,in_stride);
- xin += fstride*in_stride;
- }while( (xout += m) != Fout_end );
- }else{
- do{
- *xout = *xin;
- xin += fstride*in_stride;
- }while(++xout != Fout_end );
- }
- xout=Fout_beg;
-
- // recombine the p smaller DFTs
- switch (p) {
- case 2: bfly2(xout,fstride,m); break;
- case 3: bfly3(xout,fstride,m); break;
- case 4: bfly4(xout,fstride,m); break;
- case 5: bfly5(xout,fstride,m); break;
- default: bfly_generic(xout,fstride,m,p); break;
- }
- }
-
- inline
- void bfly2( Complex * Fout, const size_t fstride, int m)
- {
- for (int k=0;k<m;++k) {
- Complex t = Fout[m+k] * m_twiddles[k*fstride];
- Fout[m+k] = Fout[k] - t;
- Fout[k] += t;
- }
- }
-
- inline
- void bfly4( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex scratch[6];
- int negative_if_inverse = m_inverse * -2 +1;
- for (size_t k=0;k<m;++k) {
- scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
- scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
- scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
- scratch[5] = Fout[k] - scratch[1];
-
- Fout[k] += scratch[1];
- scratch[3] = scratch[0] + scratch[2];
- scratch[4] = scratch[0] - scratch[2];
- scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
-
- Fout[k+2*m] = Fout[k] - scratch[3];
- Fout[k] += scratch[3];
- Fout[k+m] = scratch[5] + scratch[4];
- Fout[k+3*m] = scratch[5] - scratch[4];
- }
- }
-
- inline
- void bfly3( Complex * Fout, const size_t fstride, const size_t m)
- {
- size_t k=m;
- const size_t m2 = 2*m;
- Complex *tw1,*tw2;
- Complex scratch[5];
- Complex epi3;
- epi3 = m_twiddles[fstride*m];
-
- tw1=tw2=&m_twiddles[0];
-
- do{
- scratch[1]=Fout[m] * *tw1;
- scratch[2]=Fout[m2] * *tw2;
-
- scratch[3]=scratch[1]+scratch[2];
- scratch[0]=scratch[1]-scratch[2];
- tw1 += fstride;
- tw2 += fstride*2;
- Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
- scratch[0] *= epi3.imag();
- *Fout += scratch[3];
- Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
- Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
- ++Fout;
- }while(--k);
- }
-
- inline
- void bfly5( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
- size_t u;
- Complex scratch[13];
- Complex * twiddles = &m_twiddles[0];
- Complex *tw;
- Complex ya,yb;
- ya = twiddles[fstride*m];
- yb = twiddles[fstride*2*m];
-
- Fout0=Fout;
- Fout1=Fout0+m;
- Fout2=Fout0+2*m;
- Fout3=Fout0+3*m;
- Fout4=Fout0+4*m;
-
- tw=twiddles;
- for ( u=0; u<m; ++u ) {
- scratch[0] = *Fout0;
-
- scratch[1] = *Fout1 * tw[u*fstride];
- scratch[2] = *Fout2 * tw[2*u*fstride];
- scratch[3] = *Fout3 * tw[3*u*fstride];
- scratch[4] = *Fout4 * tw[4*u*fstride];
-
- scratch[7] = scratch[1] + scratch[4];
- scratch[10] = scratch[1] - scratch[4];
- scratch[8] = scratch[2] + scratch[3];
- scratch[9] = scratch[2] - scratch[3];
-
- *Fout0 += scratch[7];
- *Fout0 += scratch[8];
-
- scratch[5] = scratch[0] + Complex(
- (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
- (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
- );
-
- scratch[6] = Complex(
- (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
- -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
- );
-
- *Fout1 = scratch[5] - scratch[6];
- *Fout4 = scratch[5] + scratch[6];
-
- scratch[11] = scratch[0] +
- Complex(
- (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
- (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
- );
-
- scratch[12] = Complex(
- -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
- (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
- );
-
- *Fout2=scratch[11]+scratch[12];
- *Fout3=scratch[11]-scratch[12];
-
- ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
- }
- }
-
- /* perform the butterfly for one stage of a mixed radix FFT */
- inline
- void bfly_generic(
- Complex * Fout,
- const size_t fstride,
- int m,
- int p
- )
- {
- int u,k,q1,q;
- Complex * twiddles = &m_twiddles[0];
- Complex t;
- int Norig = static_cast<int>(m_twiddles.size());
- Complex * scratchbuf = &m_scratchBuf[0];
-
- for ( u=0; u<m; ++u ) {
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- scratchbuf[q1] = Fout[ k ];
- k += m;
- }
-
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- int twidx=0;
- Fout[ k ] = scratchbuf[0];
- for (q=1;q<p;++q ) {
- twidx += static_cast<int>(fstride) * k;
- if (twidx>=Norig) twidx-=Norig;
- t=scratchbuf[q] * twiddles[twidx];
- Fout[ k ] += t;
- }
- k += m;
- }
- }
- }
-};
-
-template <typename _Scalar>
-struct kissfft_impl
-{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
-
- void clear()
- {
- m_plans.clear();
- m_realTwiddles.clear();
- }
-
- inline
- void fwd( Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,false).work(0, dst, src, 1,1);
- }
-
- inline
- void fwd2( Complex * dst,const Complex *src,int n0,int n1)
- {
- EIGEN_UNUSED_VARIABLE(dst);
- EIGEN_UNUSED_VARIABLE(src);
- EIGEN_UNUSED_VARIABLE(n0);
- EIGEN_UNUSED_VARIABLE(n1);
- }
-
- inline
- void inv2( Complex * dst,const Complex *src,int n0,int n1)
- {
- EIGEN_UNUSED_VARIABLE(dst);
- EIGEN_UNUSED_VARIABLE(src);
- EIGEN_UNUSED_VARIABLE(n0);
- EIGEN_UNUSED_VARIABLE(n1);
- }
-
- // real-to-complex forward FFT
- // perform two FFTs of src even and src odd
- // then twiddle to recombine them into the half-spectrum format
- // then fill in the conjugate symmetric half
- inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
- {
- if ( nfft&3 ) {
- // use generic mode for odd
- m_tmpBuf1.resize(nfft);
- get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
- std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
- }else{
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
-
- // use optimized mode for even real
- fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
- Complex dc = dst[0].real() + dst[0].imag();
- Complex nyquist = dst[0].real() - dst[0].imag();
- int k;
- for ( k=1;k <= ncfft2 ; ++k ) {
- Complex fpk = dst[k];
- Complex fpnk = conj(dst[ncfft-k]);
- Complex f1k = fpk + fpnk;
- Complex f2k = fpk - fpnk;
- Complex tw= f2k * rtw[k-1];
- dst[k] = (f1k + tw) * Scalar(.5);
- dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
- }
- dst[0] = dc;
- dst[ncfft] = nyquist;
- }
- }
-
- // inverse complex-to-complex
- inline
- void inv(Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,true).work(0, dst, src, 1,1);
- }
-
- // half-complex to scalar
- inline
- void inv( Scalar * dst,const Complex * src,int nfft)
- {
- if (nfft&3) {
- m_tmpBuf1.resize(nfft);
- m_tmpBuf2.resize(nfft);
- std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
- for (int k=1;k<(nfft>>1)+1;++k)
- m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
- inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
- for (int k=0;k<nfft;++k)
- dst[k] = m_tmpBuf2[k].real();
- }else{
- // optimized version for multiple of 4
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
- m_tmpBuf1.resize(ncfft);
- m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
- for (int k = 1; k <= ncfft / 2; ++k) {
- Complex fk = src[k];
- Complex fnkc = conj(src[ncfft-k]);
- Complex fek = fk + fnkc;
- Complex tmp = fk - fnkc;
- Complex fok = tmp * conj(rtw[k-1]);
- m_tmpBuf1[k] = fek + fok;
- m_tmpBuf1[ncfft-k] = conj(fek - fok);
- }
- get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
- }
- }
-
- protected:
- typedef kiss_cpx_fft<Scalar> PlanData;
- typedef std::map<int,PlanData> PlanMap;
-
- PlanMap m_plans;
- std::map<int, std::vector<Complex> > m_realTwiddles;
- std::vector<Complex> m_tmpBuf1;
- std::vector<Complex> m_tmpBuf2;
-
- inline
- int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
-
- inline
- PlanData & get_plan(int nfft, bool inverse)
- {
- // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
- PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
- if ( pd.m_twiddles.size() == 0 ) {
- pd.make_twiddles(nfft,inverse);
- pd.factorize(nfft);
- }
- return pd;
- }
-
- inline
- Complex * real_twiddles(int ncfft2)
- {
- using std::acos;
- std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
- if ( (int)twidref.size() != ncfft2 ) {
- twidref.resize(ncfft2);
- int ncfft= ncfft2<<1;
- Scalar pi = acos( Scalar(-1) );
- for (int k=1;k<=ncfft2;++k)
- twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
- }
- return &twidref[0];
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
deleted file mode 100644
index dc0093e..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
+++ /dev/null
@@ -1,189 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/* NOTE The functions of this file have been adapted from the GMM++ library */
-
-//========================================================================
-//
-// Copyright (C) 2002-2007 Yves Renard
-//
-// This file is a part of GETFEM++
-//
-// Getfem++ is free software; you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as
-// published by the Free Software Foundation; version 2.1 of the License.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-// You should have received a copy of the GNU Lesser General Public
-// License along with this program; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
-// USA.
-//
-//========================================================================
-
-#include "../../../../Eigen/src/Core/util/NonMPL2.h"
-
-#ifndef EIGEN_CONSTRAINEDCG_H
-#define EIGEN_CONSTRAINEDCG_H
-
-#include <Eigen/Core>
-
-namespace Eigen {
-
-namespace internal {
-
-/** \ingroup IterativeSolvers_Module
- * Compute the pseudo inverse of the non-square matrix C such that
- * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method.
- *
- * This function is internally used by constrained_cg.
- */
-template <typename CMatrix, typename CINVMatrix>
-void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV)
-{
- // optimisable : copie de la ligne, precalcul de C * trans(C).
- typedef typename CMatrix::Scalar Scalar;
- typedef typename CMatrix::Index Index;
- // FIXME use sparse vectors ?
- typedef Matrix<Scalar,Dynamic,1> TmpVec;
-
- Index rows = C.rows(), cols = C.cols();
-
- TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows);
- Scalar rho, rho_1, alpha;
- d.setZero();
-
- typedef Triplet<double> T;
- std::vector<T> tripletList;
-
- for (Index i = 0; i < rows; ++i)
- {
- d[i] = 1.0;
- rho = 1.0;
- e.setZero();
- r = d;
- p = d;
-
- while (rho >= 1e-38)
- { /* conjugate gradient to compute e */
- /* which is the i-th row of inv(C * trans(C)) */
- l = C.transpose() * p;
- q = C * l;
- alpha = rho / p.dot(q);
- e += alpha * p;
- r += -alpha * q;
- rho_1 = rho;
- rho = r.dot(r);
- p = (rho/rho_1) * p + r;
- }
-
- l = C.transpose() * e; // l is the i-th row of CINV
- // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse
- for (Index j=0; j<l.size(); ++j)
- if (l[j]<1e-15)
- tripletList.push_back(T(i,j,l(j)));
-
-
- d[i] = 0.0;
- }
- CINV.setFromTriplets(tripletList.begin(), tripletList.end());
-}
-
-
-
-/** \ingroup IterativeSolvers_Module
- * Constrained conjugate gradient
- *
- * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$
- */
-template<typename TMatrix, typename CMatrix,
- typename VectorX, typename VectorB, typename VectorF>
-void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x,
- const VectorB& b, const VectorF& f, IterationController &iter)
-{
- using std::sqrt;
- typedef typename TMatrix::Scalar Scalar;
- typedef typename TMatrix::Index Index;
- typedef Matrix<Scalar,Dynamic,1> TmpVec;
-
- Scalar rho = 1.0, rho_1, lambda, gamma;
- Index xSize = x.size();
- TmpVec p(xSize), q(xSize), q2(xSize),
- r(xSize), old_z(xSize), z(xSize),
- memox(xSize);
- std::vector<bool> satured(C.rows());
- p.setZero();
- iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b)
- if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0);
-
- SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols());
- pseudo_inverse(C, CINV);
-
- while(true)
- {
- // computation of residual
- old_z = z;
- memox = x;
- r = b;
- r += A * -x;
- z = r;
- bool transition = false;
- for (Index i = 0; i < C.rows(); ++i)
- {
- Scalar al = C.row(i).dot(x) - f.coeff(i);
- if (al >= -1.0E-15)
- {
- if (!satured[i])
- {
- satured[i] = true;
- transition = true;
- }
- Scalar bb = CINV.row(i).dot(z);
- if (bb > 0.0)
- // FIXME: we should allow that: z += -bb * C.row(i);
- for (typename CMatrix::InnerIterator it(C,i); it; ++it)
- z.coeffRef(it.index()) -= bb*it.value();
- }
- else
- satured[i] = false;
- }
-
- // descent direction
- rho_1 = rho;
- rho = r.dot(z);
-
- if (iter.finished(rho)) break;
-
- if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n";
- if (transition || iter.first()) gamma = 0.0;
- else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1);
- p = z + gamma*p;
-
- ++iter;
- // one dimensionnal optimization
- q = A * p;
- lambda = rho / q.dot(p);
- for (Index i = 0; i < C.rows(); ++i)
- {
- if (!satured[i])
- {
- Scalar bb = C.row(i).dot(p) - f[i];
- if (bb > 0.0)
- lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb);
- }
- }
- x += lambda * p;
- memox -= x;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CONSTRAINEDCG_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
deleted file mode 100644
index 4079e23..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
+++ /dev/null
@@ -1,510 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DGMRES_H
-#define EIGEN_DGMRES_H
-
-#include <Eigen/Eigenvalues>
-
-namespace Eigen {
-
-template< typename _MatrixType,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class DGMRES;
-
-namespace internal {
-
-template< typename _MatrixType, typename _Preconditioner>
-struct traits<DGMRES<_MatrixType,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-/** \brief Computes a permutation vector to have a sorted sequence
- * \param vec The vector to reorder.
- * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
- * \param ncut Put the ncut smallest elements at the end of the vector
- * WARNING This is an expensive sort, so should be used only
- * for small size vectors
- * TODO Use modified QuickSplit or std::nth_element to get the smallest values
- */
-template <typename VectorType, typename IndexType>
-void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
-{
- eigen_assert(vec.size() == perm.size());
- bool flag;
- for (Index k = 0; k < ncut; k++)
- {
- flag = false;
- for (Index j = 0; j < vec.size()-1; j++)
- {
- if ( vec(perm(j)) < vec(perm(j+1)) )
- {
- std::swap(perm(j),perm(j+1));
- flag = true;
- }
- if (!flag) break; // The vector is in sorted order
- }
- }
-}
-
-}
-/**
- * \ingroup IterativeLInearSolvers_Module
- * \brief A Restarted GMRES with deflation.
- * This class implements a modification of the GMRES solver for
- * sparse linear systems. The basis is built with modified
- * Gram-Schmidt. At each restart, a few approximated eigenvectors
- * corresponding to the smallest eigenvalues are used to build a
- * preconditioner for the next cycle. This preconditioner
- * for deflation can be combined with any other preconditioner,
- * the IncompleteLUT for instance. The preconditioner is applied
- * at right of the matrix and the combination is multiplicative.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- * Typical usage :
- * \code
- * SparseMatrix<double> A;
- * VectorXd x, b;
- * //Fill A and b ...
- * DGMRES<SparseMatrix<double> > solver;
- * solver.set_restart(30); // Set restarting value
- * solver.setEigenv(1); // Set the number of eigenvalues to deflate
- * solver.compute(A);
- * x = solver.solve(b);
- * \endcode
- *
- * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * References :
- * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
- * Algebraic Solvers for Linear Systems Arising from Compressible
- * Flows, Computers and Fluids, In Press,
- * http://dx.doi.org/10.1016/j.compfluid.2012.03.023
- * [2] K. Burrage and J. Erhel, On the performance of various
- * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
- * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
- * preconditioned by deflation,J. Computational and Applied
- * Mathematics, 69(1996), 303-318.
-
- *
- */
-template< typename _MatrixType, typename _Preconditioner>
-class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
-{
- typedef IterativeSolverBase<DGMRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
- using Base::m_tolerance;
- public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
- typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
- typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
- typedef Matrix<Scalar,Dynamic,1> DenseVector;
- typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
- typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
-
-
- /** Default constructor. */
- DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
-
- ~DGMRES() {}
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- bool failed = false;
- for(Index j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
- }
- m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
- m_isInitialized = true;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
- {
- x = b;
- _solve_with_guess_impl(b,x.derived());
- }
- /**
- * Get the restart value
- */
- Index restart() { return m_restart; }
-
- /**
- * Set the restart value (default is 30)
- */
- void set_restart(const Index restart) { m_restart=restart; }
-
- /**
- * Set the number of eigenvalues to deflate at each restart
- */
- void setEigenv(const Index neig)
- {
- m_neig = neig;
- if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
- }
-
- /**
- * Get the size of the deflation subspace size
- */
- Index deflSize() {return m_r; }
-
- /**
- * Set the maximum size of the deflation subspace
- */
- void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
-
- protected:
- // DGMRES algorithm
- template<typename Rhs, typename Dest>
- void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
- // Perform one cycle of GMRES
- template<typename Dest>
- Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const;
- // Compute data to use for deflation
- Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
- // Apply deflation to a vector
- template<typename RhsType, typename DestType>
- Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
- ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
- ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
- // Init data for deflation
- void dgmresInitDeflation(Index& rows) const;
- mutable DenseMatrix m_V; // Krylov basis vectors
- mutable DenseMatrix m_H; // Hessenberg matrix
- mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
- mutable Index m_restart; // Maximum size of the Krylov subspace
- mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
- mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
- mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
- mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
- mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
- mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
- mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
- mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
- mutable bool m_isDeflAllocated;
- mutable bool m_isDeflInitialized;
-
- //Adaptive strategy
- mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
- mutable bool m_force; // Force the use of deflation at each restart
-
-};
-/**
- * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
- *
- * A right preconditioner is used combined with deflation.
- *
- */
-template< typename _MatrixType, typename _Preconditioner>
-template<typename Rhs, typename Dest>
-void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
- const Preconditioner& precond) const
-{
- //Initialization
- Index n = mat.rows();
- DenseVector r0(n);
- Index nbIts = 0;
- m_H.resize(m_restart+1, m_restart);
- m_Hes.resize(m_restart, m_restart);
- m_V.resize(n,m_restart+1);
- //Initial residual vector and intial norm
- x = precond.solve(x);
- r0 = rhs - mat * x;
- RealScalar beta = r0.norm();
- RealScalar normRhs = rhs.norm();
- m_error = beta/normRhs;
- if(m_error < m_tolerance)
- m_info = Success;
- else
- m_info = NoConvergence;
-
- // Iterative process
- while (nbIts < m_iterations && m_info == NoConvergence)
- {
- dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
-
- // Compute the new residual vector for the restart
- if (nbIts < m_iterations && m_info == NoConvergence)
- r0 = rhs - mat * x;
- }
-}
-
-/**
- * \brief Perform one restart cycle of DGMRES
- * \param mat The coefficient matrix
- * \param precond The preconditioner
- * \param x the new approximated solution
- * \param r0 The initial residual vector
- * \param beta The norm of the residual computed so far
- * \param normRhs The norm of the right hand side vector
- * \param nbIts The number of iterations
- */
-template< typename _MatrixType, typename _Preconditioner>
-template<typename Dest>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const
-{
- //Initialization
- DenseVector g(m_restart+1); // Right hand side of the least square problem
- g.setZero();
- g(0) = Scalar(beta);
- m_V.col(0) = r0/beta;
- m_info = NoConvergence;
- std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
- Index it = 0; // Number of inner iterations
- Index n = mat.rows();
- DenseVector tv1(n), tv2(n); //Temporary vectors
- while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
- {
- // Apply preconditioner(s) at right
- if (m_isDeflInitialized )
- {
- dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
- tv2 = precond.solve(tv1);
- }
- else
- {
- tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
- }
- tv1 = mat * tv2;
-
- // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
- Scalar coef;
- for (Index i = 0; i <= it; ++i)
- {
- coef = tv1.dot(m_V.col(i));
- tv1 = tv1 - coef * m_V.col(i);
- m_H(i,it) = coef;
- m_Hes(i,it) = coef;
- }
- // Normalize the vector
- coef = tv1.norm();
- m_V.col(it+1) = tv1/coef;
- m_H(it+1, it) = coef;
-// m_Hes(it+1,it) = coef;
-
- // FIXME Check for happy breakdown
-
- // Update Hessenberg matrix with Givens rotations
- for (Index i = 1; i <= it; ++i)
- {
- m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
- }
- // Compute the new plane rotation
- gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
- // Apply the new rotation
- m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
- g.applyOnTheLeft(it,it+1, gr[it].adjoint());
-
- beta = std::abs(g(it+1));
- m_error = beta/normRhs;
- // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
- it++; nbIts++;
-
- if (m_error < m_tolerance)
- {
- // The method has converged
- m_info = Success;
- break;
- }
- }
-
- // Compute the new coefficients by solving the least square problem
-// it++;
- //FIXME Check first if the matrix is singular ... zero diagonal
- DenseVector nrs(m_restart);
- nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
-
- // Form the new solution
- if (m_isDeflInitialized)
- {
- tv1 = m_V.leftCols(it) * nrs;
- dgmresApplyDeflation(tv1, tv2);
- x = x + precond.solve(tv2);
- }
- else
- x = x + precond.solve(m_V.leftCols(it) * nrs);
-
- // Go for a new cycle and compute data for deflation
- if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
- dgmresComputeDeflationData(mat, precond, it, m_neig);
- return 0;
-
-}
-
-
-template< typename _MatrixType, typename _Preconditioner>
-void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
-{
- m_U.resize(rows, m_maxNeig);
- m_MU.resize(rows, m_maxNeig);
- m_T.resize(m_maxNeig, m_maxNeig);
- m_lambdaN = 0.0;
- m_isDeflAllocated = true;
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
-{
- return schurofH.matrixT().diagonal();
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
-{
- const DenseMatrix& T = schurofH.matrixT();
- Index it = T.rows();
- ComplexVector eig(it);
- Index j = 0;
- while (j < it-1)
- {
- if (T(j+1,j) ==Scalar(0))
- {
- eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
- j++;
- }
- else
- {
- eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
- eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
- j++;
- }
- }
- if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
- return eig;
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
-{
- // First, find the Schur form of the Hessenberg matrix H
- typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
- bool computeU = true;
- DenseMatrix matrixQ(it,it);
- matrixQ.setIdentity();
- schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
-
- ComplexVector eig(it);
- Matrix<StorageIndex,Dynamic,1>perm(it);
- eig = this->schurValues(schurofH);
-
- // Reorder the absolute values of Schur values
- DenseRealVector modulEig(it);
- for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
- perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1));
- internal::sortWithPermutation(modulEig, perm, neig);
-
- if (!m_lambdaN)
- {
- m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
- }
- //Count the real number of extracted eigenvalues (with complex conjugates)
- Index nbrEig = 0;
- while (nbrEig < neig)
- {
- if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
- else nbrEig += 2;
- }
- // Extract the Schur vectors corresponding to the smallest Ritz values
- DenseMatrix Sr(it, nbrEig);
- Sr.setZero();
- for (Index j = 0; j < nbrEig; j++)
- {
- Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
- }
-
- // Form the Schur vectors of the initial matrix using the Krylov basis
- DenseMatrix X;
- X = m_V.leftCols(it) * Sr;
- if (m_r)
- {
- // Orthogonalize X against m_U using modified Gram-Schmidt
- for (Index j = 0; j < nbrEig; j++)
- for (Index k =0; k < m_r; k++)
- X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
- }
-
- // Compute m_MX = A * M^-1 * X
- Index m = m_V.rows();
- if (!m_isDeflAllocated)
- dgmresInitDeflation(m);
- DenseMatrix MX(m, nbrEig);
- DenseVector tv1(m);
- for (Index j = 0; j < nbrEig; j++)
- {
- tv1 = mat * X.col(j);
- MX.col(j) = precond.solve(tv1);
- }
-
- //Update m_T = [U'MU U'MX; X'MU X'MX]
- m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
- if(m_r)
- {
- m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
- m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
- }
-
- // Save X into m_U and m_MX in m_MU
- for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
- for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
- // Increase the size of the invariant subspace
- m_r += nbrEig;
-
- // Factorize m_T into m_luT
- m_luT.compute(m_T.topLeftCorner(m_r, m_r));
-
- //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
- m_isDeflInitialized = true;
- return 0;
-}
-template<typename _MatrixType, typename _Preconditioner>
-template<typename RhsType, typename DestType>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
-{
- DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
- y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
- return 0;
-}
-
-} // end namespace Eigen
-#endif
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
deleted file mode 100644
index 92618b1..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
+++ /dev/null
@@ -1,343 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GMRES_H
-#define EIGEN_GMRES_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**
-* Generalized Minimal Residual Algorithm based on the
-* Arnoldi algorithm implemented with Householder reflections.
-*
-* Parameters:
-* \param mat matrix of linear system of equations
-* \param rhs right hand side vector of linear system of equations
-* \param x on input: initial guess, on output: solution
-* \param precond preconditioner used
-* \param iters on input: maximum number of iterations to perform
-* on output: number of iterations performed
-* \param restart number of iterations for a restart
-* \param tol_error on input: relative residual tolerance
-* on output: residuum achieved
-*
-* \sa IterativeMethods::bicgstab()
-*
-*
-* For references, please see:
-*
-* Saad, Y. and Schultz, M. H.
-* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
-* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
-*
-* Saad, Y.
-* Iterative Methods for Sparse Linear Systems.
-* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
-*
-* Walker, H. F.
-* Implementations of the GMRES method.
-* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
-*
-* Walker, H. F.
-* Implementation of the GMRES Method using Householder Transformations.
-* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
-*
-*/
-template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
-bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
- Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
-
- using std::sqrt;
- using std::abs;
-
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix < Scalar, Dynamic, 1 > VectorType;
- typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType;
-
- RealScalar tol = tol_error;
- const Index maxIters = iters;
- iters = 0;
-
- const Index m = mat.rows();
-
- // residual and preconditioned residual
- VectorType p0 = rhs - mat*x;
- VectorType r0 = precond.solve(p0);
-
- const RealScalar r0Norm = r0.norm();
-
- // is initial guess already good enough?
- if(r0Norm == 0)
- {
- tol_error = 0;
- return true;
- }
-
- // storage for Hessenberg matrix and Householder data
- FMatrixType H = FMatrixType::Zero(m, restart + 1);
- VectorType w = VectorType::Zero(restart + 1);
- VectorType tau = VectorType::Zero(restart + 1);
-
- // storage for Jacobi rotations
- std::vector < JacobiRotation < Scalar > > G(restart);
-
- // storage for temporaries
- VectorType t(m), v(m), workspace(m), x_new(m);
-
- // generate first Householder vector
- Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
- RealScalar beta;
- r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
- w(0) = Scalar(beta);
-
- for (Index k = 1; k <= restart; ++k)
- {
- ++iters;
-
- v = VectorType::Unit(m, k - 1);
-
- // apply Householder reflections H_{1} ... H_{k-1} to v
- // TODO: use a HouseholderSequence
- for (Index i = k - 1; i >= 0; --i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- // apply matrix M to v: v = mat * v;
- t.noalias() = mat * v;
- v = precond.solve(t);
-
- // apply Householder reflections H_{k-1} ... H_{1} to v
- // TODO: use a HouseholderSequence
- for (Index i = 0; i < k; ++i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- if (v.tail(m - k).norm() != 0.0)
- {
- if (k <= restart)
- {
- // generate new Householder vector
- Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
- v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
-
- // apply Householder reflection H_{k} to v
- v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
- }
- }
-
- if (k > 1)
- {
- for (Index i = 0; i < k - 1; ++i)
- {
- // apply old Givens rotations to v
- v.applyOnTheLeft(i, i + 1, G[i].adjoint());
- }
- }
-
- if (k<m && v(k) != (Scalar) 0)
- {
- // determine next Givens rotation
- G[k - 1].makeGivens(v(k - 1), v(k));
-
- // apply Givens rotation to v and w
- v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
- w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
- }
-
- // insert coefficients into upper matrix triangle
- H.col(k-1).head(k) = v.head(k);
-
- tol_error = abs(w(k)) / r0Norm;
- bool stop = (k==m || tol_error < tol || iters == maxIters);
-
- if (stop || k == restart)
- {
- // solve upper triangular system
- Ref<VectorType> y = w.head(k);
- H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
-
- // use Horner-like scheme to calculate solution vector
- x_new.setZero();
- for (Index i = k - 1; i >= 0; --i)
- {
- x_new(i) += y(i);
- // apply Householder reflection H_{i} to x_new
- x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- x += x_new;
-
- if(stop)
- {
- return true;
- }
- else
- {
- k=0;
-
- // reset data for restart
- p0.noalias() = rhs - mat*x;
- r0 = precond.solve(p0);
-
- // clear Hessenberg matrix and Householder data
- H.setZero();
- w.setZero();
- tau.setZero();
-
- // generate first Householder vector
- r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
- w(0) = Scalar(beta);
- }
- }
- }
-
- return false;
-
-}
-
-}
-
-template< typename _MatrixType,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class GMRES;
-
-namespace internal {
-
-template< typename _MatrixType, typename _Preconditioner>
-struct traits<GMRES<_MatrixType,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-}
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A GMRES solver for sparse square problems
- *
- * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
- * residual method. The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * GMRES<SparseMatrix<double> > solver(A);
- * x = solver.solve(b);
- * std::cout << "#iterations: " << solver.iterations() << std::endl;
- * std::cout << "estimated error: " << solver.error() << std::endl;
- * // update b, and solve again
- * x = solver.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method.
- *
- * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
-template< typename _MatrixType, typename _Preconditioner>
-class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
-{
- typedef IterativeSolverBase<GMRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
-
-private:
- Index m_restart;
-
-public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
-public:
-
- /** Default constructor. */
- GMRES() : Base(), m_restart(30) {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
-
- ~GMRES() {}
-
- /** Get the number of iterations after that a restart is performed.
- */
- Index get_restart() { return m_restart; }
-
- /** Set the number of iterations after that a restart is performed.
- * \param restart number of iterations for a restarti, default is 30.
- */
- void set_restart(const Index restart) { m_restart=restart; }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- bool failed = false;
- for(Index j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
- failed = true;
- }
- m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
- m_isInitialized = true;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
- {
- x = b;
- if(x.squaredNorm() == 0) return; // Check Zero right hand side
- _solve_with_guess_impl(b,x.derived());
- }
-
-protected:
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_GMRES_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
deleted file mode 100644
index 7d08c35..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
+++ /dev/null
@@ -1,90 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INCOMPLETE_LU_H
-#define EIGEN_INCOMPLETE_LU_H
-
-namespace Eigen {
-
-template <typename _Scalar>
-class IncompleteLU : public SparseSolverBase<IncompleteLU<_Scalar> >
-{
- protected:
- typedef SparseSolverBase<IncompleteLU<_Scalar> > Base;
- using Base::m_isInitialized;
-
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef typename Vector::Index Index;
- typedef SparseMatrix<Scalar,RowMajor> FactorType;
-
- public:
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- IncompleteLU() {}
-
- template<typename MatrixType>
- IncompleteLU(const MatrixType& mat)
- {
- compute(mat);
- }
-
- Index rows() const { return m_lu.rows(); }
- Index cols() const { return m_lu.cols(); }
-
- template<typename MatrixType>
- IncompleteLU& compute(const MatrixType& mat)
- {
- m_lu = mat;
- int size = mat.cols();
- Vector diag(size);
- for(int i=0; i<size; ++i)
- {
- typename FactorType::InnerIterator k_it(m_lu,i);
- for(; k_it && k_it.index()<i; ++k_it)
- {
- int k = k_it.index();
- k_it.valueRef() /= diag(k);
-
- typename FactorType::InnerIterator j_it(k_it);
- typename FactorType::InnerIterator kj_it(m_lu, k);
- while(kj_it && kj_it.index()<=k) ++kj_it;
- for(++j_it; j_it; )
- {
- if(kj_it.index()==j_it.index())
- {
- j_it.valueRef() -= k_it.value() * kj_it.value();
- ++j_it;
- ++kj_it;
- }
- else if(kj_it.index()<j_it.index()) ++kj_it;
- else ++j_it;
- }
- }
- if(k_it && k_it.index()==i) diag(i) = k_it.value();
- else diag(i) = 1;
- }
- m_isInitialized = true;
- return *this;
- }
-
- template<typename Rhs, typename Dest>
- void _solve_impl(const Rhs& b, Dest& x) const
- {
- x = m_lu.template triangularView<UnitLower>().solve(b);
- x = m_lu.template triangularView<Upper>().solve(x);
- }
-
- protected:
- FactorType m_lu;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_INCOMPLETE_LU_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
deleted file mode 100644
index c9c1a4b..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/* NOTE The class IterationController has been adapted from the iteration
- * class of the GMM++ and ITL libraries.
- */
-
-//=======================================================================
-// Copyright (C) 1997-2001
-// Authors: Andrew Lumsdaine <lums@osl.iu.edu>
-// Lie-Quan Lee <llee@osl.iu.edu>
-//
-// This file is part of the Iterative Template Library
-//
-// You should have received a copy of the License Agreement for the
-// Iterative Template Library along with the software; see the
-// file LICENSE.
-//
-// Permission to modify the code and to distribute modified code is
-// granted, provided the text of this NOTICE is retained, a notice that
-// the code was modified is included with the above COPYRIGHT NOTICE and
-// with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE
-// file is distributed with the modified code.
-//
-// LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
-// By way of example, but not limitation, Licensor MAKES NO
-// REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
-// PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS
-// OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS
-// OR OTHER RIGHTS.
-//=======================================================================
-
-//========================================================================
-//
-// Copyright (C) 2002-2007 Yves Renard
-//
-// This file is a part of GETFEM++
-//
-// Getfem++ is free software; you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as
-// published by the Free Software Foundation; version 2.1 of the License.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-// You should have received a copy of the GNU Lesser General Public
-// License along with this program; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
-// USA.
-//
-//========================================================================
-
-#include "../../../../Eigen/src/Core/util/NonMPL2.h"
-
-#ifndef EIGEN_ITERATION_CONTROLLER_H
-#define EIGEN_ITERATION_CONTROLLER_H
-
-namespace Eigen {
-
-/** \ingroup IterativeSolvers_Module
- * \class IterationController
- *
- * \brief Controls the iterations of the iterative solvers
- *
- * This class has been adapted from the iteration class of GMM++ and ITL libraries.
- *
- */
-class IterationController
-{
- protected :
- double m_rhsn; ///< Right hand side norm
- size_t m_maxiter; ///< Max. number of iterations
- int m_noise; ///< if noise > 0 iterations are printed
- double m_resmax; ///< maximum residual
- double m_resminreach, m_resadd;
- size_t m_nit; ///< iteration number
- double m_res; ///< last computed residual
- bool m_written;
- void (*m_callback)(const IterationController&);
- public :
-
- void init()
- {
- m_nit = 0; m_res = 0.0; m_written = false;
- m_resminreach = 1E50; m_resadd = 0.0;
- m_callback = 0;
- }
-
- IterationController(double r = 1.0E-8, int noi = 0, size_t mit = size_t(-1))
- : m_rhsn(1.0), m_maxiter(mit), m_noise(noi), m_resmax(r) { init(); }
-
- void operator ++(int) { m_nit++; m_written = false; m_resadd += m_res; }
- void operator ++() { (*this)++; }
-
- bool first() { return m_nit == 0; }
-
- /* get/set the "noisyness" (verbosity) of the solvers */
- int noiseLevel() const { return m_noise; }
- void setNoiseLevel(int n) { m_noise = n; }
- void reduceNoiseLevel() { if (m_noise > 0) m_noise--; }
-
- double maxResidual() const { return m_resmax; }
- void setMaxResidual(double r) { m_resmax = r; }
-
- double residual() const { return m_res; }
-
- /* change the user-definable callback, called after each iteration */
- void setCallback(void (*t)(const IterationController&))
- {
- m_callback = t;
- }
-
- size_t iteration() const { return m_nit; }
- void setIteration(size_t i) { m_nit = i; }
-
- size_t maxIterarions() const { return m_maxiter; }
- void setMaxIterations(size_t i) { m_maxiter = i; }
-
- double rhsNorm() const { return m_rhsn; }
- void setRhsNorm(double r) { m_rhsn = r; }
-
- bool converged() const { return m_res <= m_rhsn * m_resmax; }
- bool converged(double nr)
- {
- using std::abs;
- m_res = abs(nr);
- m_resminreach = (std::min)(m_resminreach, m_res);
- return converged();
- }
- template<typename VectorType> bool converged(const VectorType &v)
- { return converged(v.squaredNorm()); }
-
- bool finished(double nr)
- {
- if (m_callback) m_callback(*this);
- if (m_noise > 0 && !m_written)
- {
- converged(nr);
- m_written = true;
- }
- return (m_nit >= m_maxiter || converged(nr));
- }
- template <typename VectorType>
- bool finished(const MatrixBase<VectorType> &v)
- { return finished(double(v.squaredNorm())); }
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_ITERATION_CONTROLLER_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
deleted file mode 100644
index 256990c..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
+++ /dev/null
@@ -1,289 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
-// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_MINRES_H_
-#define EIGEN_MINRES_H_
-
-
-namespace Eigen {
-
- namespace internal {
-
- /** \internal Low-level MINRES algorithm
- * \param mat The matrix A
- * \param rhs The right hand side vector b
- * \param x On input and initial solution, on output the computed solution.
- * \param precond A right preconditioner being able to efficiently solve for an
- * approximation of Ax=b (regardless of b)
- * \param iters On input the max number of iteration, on output the number of performed iterations.
- * \param tol_error On input the tolerance error, on output an estimation of the relative error.
- */
- template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
- EIGEN_DONT_INLINE
- void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, Index& iters,
- typename Dest::RealScalar& tol_error)
- {
- using std::sqrt;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
-
- // Check for zero rhs
- const RealScalar rhsNorm2(rhs.squaredNorm());
- if(rhsNorm2 == 0)
- {
- x.setZero();
- iters = 0;
- tol_error = 0;
- return;
- }
-
- // initialize
- const Index maxIters(iters); // initialize maxIters to iters
- const Index N(mat.cols()); // the size of the matrix
- const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
-
- // Initialize preconditioned Lanczos
- VectorType v_old(N); // will be initialized inside loop
- VectorType v( VectorType::Zero(N) ); //initialize v
- VectorType v_new(rhs-mat*x); //initialize v_new
- RealScalar residualNorm2(v_new.squaredNorm());
- VectorType w(N); // will be initialized inside loop
- VectorType w_new(precond.solve(v_new)); // initialize w_new
-// RealScalar beta; // will be initialized inside loop
- RealScalar beta_new2(v_new.dot(w_new));
- eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
- RealScalar beta_new(sqrt(beta_new2));
- const RealScalar beta_one(beta_new);
- v_new /= beta_new;
- w_new /= beta_new;
- // Initialize other variables
- RealScalar c(1.0); // the cosine of the Givens rotation
- RealScalar c_old(1.0);
- RealScalar s(0.0); // the sine of the Givens rotation
- RealScalar s_old(0.0); // the sine of the Givens rotation
- VectorType p_oold(N); // will be initialized in loop
- VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
- VectorType p(p_old); // initialize p=0
- RealScalar eta(1.0);
-
- iters = 0; // reset iters
- while ( iters < maxIters )
- {
- // Preconditioned Lanczos
- /* Note that there are 4 variants on the Lanczos algorithm. These are
- * described in Paige, C. C. (1972). Computational variants of
- * the Lanczos method for the eigenproblem. IMA Journal of Applied
- * Mathematics, 10(3), 373–381. The current implementation corresponds
- * to the case A(2,7) in the paper. It also corresponds to
- * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
- * Systems, 2003 p.173. For the preconditioned version see
- * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
- */
- const RealScalar beta(beta_new);
- v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
-// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
- v = v_new; // update
- w = w_new; // update
-// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
- v_new.noalias() = mat*w - beta*v_old; // compute v_new
- const RealScalar alpha = v_new.dot(w);
- v_new -= alpha*v; // overwrite v_new
- w_new = precond.solve(v_new); // overwrite w_new
- beta_new2 = v_new.dot(w_new); // compute beta_new
- eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
- beta_new = sqrt(beta_new2); // compute beta_new
- v_new /= beta_new; // overwrite v_new for next iteration
- w_new /= beta_new; // overwrite w_new for next iteration
-
- // Givens rotation
- const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
- const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
- const RealScalar r1_hat=c*alpha-c_old*s*beta;
- const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
- c_old = c; // store for next iteration
- s_old = s; // store for next iteration
- c=r1_hat/r1; // new cosine
- s=beta_new/r1; // new sine
-
- // Update solution
- p_oold = p_old;
-// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
- p_old = p;
- p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
- x += beta_one*c*eta*p;
-
- /* Update the squared residual. Note that this is the estimated residual.
- The real residual |Ax-b|^2 may be slightly larger */
- residualNorm2 *= s*s;
-
- if ( residualNorm2 < threshold2)
- {
- break;
- }
-
- eta=-s*eta; // update eta
- iters++; // increment iteration number (for output purposes)
- }
-
- /* Compute error. Note that this is the estimated error. The real
- error |Ax-b|/|b| may be slightly larger */
- tol_error = std::sqrt(residualNorm2 / rhsNorm2);
- }
-
- }
-
- template< typename _MatrixType, int _UpLo=Lower,
- typename _Preconditioner = IdentityPreconditioner>
- class MINRES;
-
- namespace internal {
-
- template< typename _MatrixType, int _UpLo, typename _Preconditioner>
- struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
- {
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
- };
-
- }
-
- /** \ingroup IterativeLinearSolvers_Module
- * \brief A minimal residual solver for sparse symmetric problems
- *
- * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
- * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
- * The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
- * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * MINRES<SparseMatrix<double> > mr;
- * mr.compute(A);
- * x = mr.solve(b);
- * std::cout << "#iterations: " << mr.iterations() << std::endl;
- * std::cout << "estimated error: " << mr.error() << std::endl;
- * // update b, and solve again
- * x = mr.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method.
- *
- * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
- template< typename _MatrixType, int _UpLo, typename _Preconditioner>
- class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
- {
-
- typedef IterativeSolverBase<MINRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
- public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
- enum {UpLo = _UpLo};
-
- public:
-
- /** Default constructor. */
- MINRES() : Base() {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
-
- /** Destructor. */
- ~MINRES(){}
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- typedef typename Base::MatrixWrapper MatrixWrapper;
- typedef typename Base::ActualMatrixType ActualMatrixType;
- enum {
- TransposeInput = (!MatrixWrapper::MatrixFree)
- && (UpLo==(Lower|Upper))
- && (!MatrixType::IsRowMajor)
- && (!NumTraits<Scalar>::IsComplex)
- };
- typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
- typedef typename internal::conditional<UpLo==(Lower|Upper),
- RowMajorWrapper,
- typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
- >::type SelfAdjointWrapper;
-
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
- RowMajorWrapper row_mat(matrix());
- for(int j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- internal::minres(SelfAdjointWrapper(row_mat), b.col(j), xj,
- Base::m_preconditioner, m_iterations, m_error);
- }
-
- m_isInitialized = true;
- m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
- {
- x.setZero();
- _solve_with_guess_impl(b,x.derived());
- }
-
- protected:
-
- };
-
-} // end namespace Eigen
-
-#endif // EIGEN_MINRES_H
-
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h b/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
deleted file mode 100644
index d113e6e..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
+++ /dev/null
@@ -1,187 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ITERSCALING_H
-#define EIGEN_ITERSCALING_H
-
-namespace Eigen {
-
-/**
- * \ingroup IterativeSolvers_Module
- * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
- *
- * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods
- *
- * This feature is useful to limit the pivoting amount during LU/ILU factorization
- * The scaling strategy as presented here preserves the symmetry of the problem
- * NOTE It is assumed that the matrix does not have empty row or column,
- *
- * Example with key steps
- * \code
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A;
- * // fill A and b;
- * IterScaling<SparseMatrix<double> > scal;
- * // Compute the left and right scaling vectors. The matrix is equilibrated at output
- * scal.computeRef(A);
- * // Scale the right hand side
- * b = scal.LeftScaling().cwiseProduct(b);
- * // Now, solve the equilibrated linear system with any available solver
- *
- * // Scale back the computed solution
- * x = scal.RightScaling().cwiseProduct(x);
- * \endcode
- *
- * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix
- *
- * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552
- *
- * \sa \ref IncompleteLUT
- */
-template<typename _MatrixType>
-class IterScaling
-{
- public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- public:
- IterScaling() { init(); }
-
- IterScaling(const MatrixType& matrix)
- {
- init();
- compute(matrix);
- }
-
- ~IterScaling() { }
-
- /**
- * Compute the left and right diagonal matrices to scale the input matrix @p mat
- *
- * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
- *
- * \sa LeftScaling() RightScaling()
- */
- void compute (const MatrixType& mat)
- {
- using std::abs;
- int m = mat.rows();
- int n = mat.cols();
- eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
- m_left.resize(m);
- m_right.resize(n);
- m_left.setOnes();
- m_right.setOnes();
- m_matrix = mat;
- VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors
- Dr.resize(m); Dc.resize(n);
- DrRes.resize(m); DcRes.resize(n);
- double EpsRow = 1.0, EpsCol = 1.0;
- int its = 0;
- do
- { // Iterate until the infinite norm of each row and column is approximately 1
- // Get the maximum value in each row and column
- Dr.setZero(); Dc.setZero();
- for (int k=0; k<m_matrix.outerSize(); ++k)
- {
- for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
- {
- if ( Dr(it.row()) < abs(it.value()) )
- Dr(it.row()) = abs(it.value());
-
- if ( Dc(it.col()) < abs(it.value()) )
- Dc(it.col()) = abs(it.value());
- }
- }
- for (int i = 0; i < m; ++i)
- {
- Dr(i) = std::sqrt(Dr(i));
- Dc(i) = std::sqrt(Dc(i));
- }
- // Save the scaling factors
- for (int i = 0; i < m; ++i)
- {
- m_left(i) /= Dr(i);
- m_right(i) /= Dc(i);
- }
- // Scale the rows and the columns of the matrix
- DrRes.setZero(); DcRes.setZero();
- for (int k=0; k<m_matrix.outerSize(); ++k)
- {
- for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
- {
- it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) );
- // Accumulate the norms of the row and column vectors
- if ( DrRes(it.row()) < abs(it.value()) )
- DrRes(it.row()) = abs(it.value());
-
- if ( DcRes(it.col()) < abs(it.value()) )
- DcRes(it.col()) = abs(it.value());
- }
- }
- DrRes.array() = (1-DrRes.array()).abs();
- EpsRow = DrRes.maxCoeff();
- DcRes.array() = (1-DcRes.array()).abs();
- EpsCol = DcRes.maxCoeff();
- its++;
- }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) );
- m_isInitialized = true;
- }
- /** Compute the left and right vectors to scale the vectors
- * the input matrix is scaled with the computed vectors at output
- *
- * \sa compute()
- */
- void computeRef (MatrixType& mat)
- {
- compute (mat);
- mat = m_matrix;
- }
- /** Get the vector to scale the rows of the matrix
- */
- VectorXd& LeftScaling()
- {
- return m_left;
- }
-
- /** Get the vector to scale the columns of the matrix
- */
- VectorXd& RightScaling()
- {
- return m_right;
- }
-
- /** Set the tolerance for the convergence of the iterative scaling algorithm
- */
- void setTolerance(double tol)
- {
- m_tol = tol;
- }
-
- protected:
-
- void init()
- {
- m_tol = 1e-10;
- m_maxits = 5;
- m_isInitialized = false;
- }
-
- MatrixType m_matrix;
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- VectorXd m_left; // Left scaling vector
- VectorXd m_right; // m_right scaling vector
- double m_tol;
- int m_maxits; // Maximum number of iterations allowed
-};
-}
-#endif
diff --git a/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
deleted file mode 100644
index 582fa85..0000000
--- a/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
+++ /dev/null
@@ -1,305 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
-// Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
-// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef KRONECKER_TENSOR_PRODUCT_H
-#define KRONECKER_TENSOR_PRODUCT_H
-
-namespace Eigen {
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief The base class of dense and sparse Kronecker product.
- *
- * \tparam Derived is the derived type.
- */
-template<typename Derived>
-class KroneckerProductBase : public ReturnByValue<Derived>
-{
- private:
- typedef typename internal::traits<Derived> Traits;
- typedef typename Traits::Scalar Scalar;
-
- protected:
- typedef typename Traits::Lhs Lhs;
- typedef typename Traits::Rhs Rhs;
-
- public:
- /*! \brief Constructor. */
- KroneckerProductBase(const Lhs& A, const Rhs& B)
- : m_A(A), m_B(B)
- {}
-
- inline Index rows() const { return m_A.rows() * m_B.rows(); }
- inline Index cols() const { return m_A.cols() * m_B.cols(); }
-
- /*!
- * This overrides ReturnByValue::coeff because this function is
- * efficient enough.
- */
- Scalar coeff(Index row, Index col) const
- {
- return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
- m_B.coeff(row % m_B.rows(), col % m_B.cols());
- }
-
- /*!
- * This overrides ReturnByValue::coeff because this function is
- * efficient enough.
- */
- Scalar coeff(Index i) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
- return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
- }
-
- protected:
- typename Lhs::Nested m_A;
- typename Rhs::Nested m_B;
-};
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief Kronecker tensor product helper class for dense matrices
- *
- * This class is the return value of kroneckerProduct(MatrixBase,
- * MatrixBase). Use the function rather than construct this class
- * directly to avoid specifying template prarameters.
- *
- * \tparam Lhs Type of the left-hand side, a matrix expression.
- * \tparam Rhs Type of the rignt-hand side, a matrix expression.
- */
-template<typename Lhs, typename Rhs>
-class KroneckerProduct : public KroneckerProductBase<KroneckerProduct<Lhs,Rhs> >
-{
- private:
- typedef KroneckerProductBase<KroneckerProduct> Base;
- using Base::m_A;
- using Base::m_B;
-
- public:
- /*! \brief Constructor. */
- KroneckerProduct(const Lhs& A, const Rhs& B)
- : Base(A, B)
- {}
-
- /*! \brief Evaluate the Kronecker tensor product. */
- template<typename Dest> void evalTo(Dest& dst) const;
-};
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief Kronecker tensor product helper class for sparse matrices
- *
- * If at least one of the operands is a sparse matrix expression,
- * then this class is returned and evaluates into a sparse matrix.
- *
- * This class is the return value of kroneckerProduct(EigenBase,
- * EigenBase). Use the function rather than construct this class
- * directly to avoid specifying template prarameters.
- *
- * \tparam Lhs Type of the left-hand side, a matrix expression.
- * \tparam Rhs Type of the rignt-hand side, a matrix expression.
- */
-template<typename Lhs, typename Rhs>
-class KroneckerProductSparse : public KroneckerProductBase<KroneckerProductSparse<Lhs,Rhs> >
-{
- private:
- typedef KroneckerProductBase<KroneckerProductSparse> Base;
- using Base::m_A;
- using Base::m_B;
-
- public:
- /*! \brief Constructor. */
- KroneckerProductSparse(const Lhs& A, const Rhs& B)
- : Base(A, B)
- {}
-
- /*! \brief Evaluate the Kronecker tensor product. */
- template<typename Dest> void evalTo(Dest& dst) const;
-};
-
-template<typename Lhs, typename Rhs>
-template<typename Dest>
-void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const
-{
- const int BlockRows = Rhs::RowsAtCompileTime,
- BlockCols = Rhs::ColsAtCompileTime;
- const Index Br = m_B.rows(),
- Bc = m_B.cols();
- for (Index i=0; i < m_A.rows(); ++i)
- for (Index j=0; j < m_A.cols(); ++j)
- Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B;
-}
-
-template<typename Lhs, typename Rhs>
-template<typename Dest>
-void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
-{
- Index Br = m_B.rows(), Bc = m_B.cols();
- dst.resize(this->rows(), this->cols());
- dst.resizeNonZeros(0);
-
- // 1 - evaluate the operands if needed:
- typedef typename internal::nested_eval<Lhs,Dynamic>::type Lhs1;
- typedef typename internal::remove_all<Lhs1>::type Lhs1Cleaned;
- const Lhs1 lhs1(m_A);
- typedef typename internal::nested_eval<Rhs,Dynamic>::type Rhs1;
- typedef typename internal::remove_all<Rhs1>::type Rhs1Cleaned;
- const Rhs1 rhs1(m_B);
-
- // 2 - construct respective iterators
- typedef Eigen::InnerIterator<Lhs1Cleaned> LhsInnerIterator;
- typedef Eigen::InnerIterator<Rhs1Cleaned> RhsInnerIterator;
-
- // compute number of non-zeros per innervectors of dst
- {
- // TODO VectorXi is not necessarily big enough!
- VectorXi nnzA = VectorXi::Zero(Dest::IsRowMajor ? m_A.rows() : m_A.cols());
- for (Index kA=0; kA < m_A.outerSize(); ++kA)
- for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
- nnzA(Dest::IsRowMajor ? itA.row() : itA.col())++;
-
- VectorXi nnzB = VectorXi::Zero(Dest::IsRowMajor ? m_B.rows() : m_B.cols());
- for (Index kB=0; kB < m_B.outerSize(); ++kB)
- for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
- nnzB(Dest::IsRowMajor ? itB.row() : itB.col())++;
-
- Matrix<int,Dynamic,Dynamic,ColMajor> nnzAB = nnzB * nnzA.transpose();
- dst.reserve(VectorXi::Map(nnzAB.data(), nnzAB.size()));
- }
-
- for (Index kA=0; kA < m_A.outerSize(); ++kA)
- {
- for (Index kB=0; kB < m_B.outerSize(); ++kB)
- {
- for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
- {
- for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
- {
- Index i = itA.row() * Br + itB.row(),
- j = itA.col() * Bc + itB.col();
- dst.insert(i,j) = itA.value() * itB.value();
- }
- }
- }
- }
-}
-
-namespace internal {
-
-template<typename _Lhs, typename _Rhs>
-struct traits<KroneckerProduct<_Lhs,_Rhs> >
-{
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
-
- enum {
- Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
- Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
- MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret
- };
-
- typedef Matrix<Scalar,Rows,Cols> ReturnType;
-};
-
-template<typename _Lhs, typename _Rhs>
-struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind, scalar_product_op<typename Lhs::Scalar, typename Rhs::Scalar> >::ret StorageKind;
- typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
-
- enum {
- LhsFlags = Lhs::Flags,
- RhsFlags = Rhs::Flags,
-
- RowsAtCompileTime = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
- ColsAtCompileTime = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
- MaxRowsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxColsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
-
- EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit),
- RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
-
- Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeNestingBit,
- CoeffReadCost = HugeCost
- };
-
- typedef SparseMatrix<Scalar, 0, StorageIndex> ReturnType;
-};
-
-} // end namespace internal
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * Computes Kronecker tensor product of two dense matrices
- *
- * \warning If you want to replace a matrix by its Kronecker product
- * with some matrix, do \b NOT do this:
- * \code
- * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
- * \endcode
- * instead, use eval() to work around this:
- * \code
- * A = kroneckerProduct(A,B).eval();
- * \endcode
- *
- * \param a Dense matrix a
- * \param b Dense matrix b
- * \return Kronecker tensor product of a and b
- */
-template<typename A, typename B>
-KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b)
-{
- return KroneckerProduct<A, B>(a.derived(), b.derived());
-}
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * Computes Kronecker tensor product of two matrices, at least one of
- * which is sparse
- *
- * \warning If you want to replace a matrix by its Kronecker product
- * with some matrix, do \b NOT do this:
- * \code
- * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
- * \endcode
- * instead, use eval() to work around this:
- * \code
- * A = kroneckerProduct(A,B).eval();
- * \endcode
- *
- * \param a Dense/sparse matrix a
- * \param b Dense/sparse matrix b
- * \return Kronecker tensor product of a and b, stored in a sparse
- * matrix
- */
-template<typename A, typename B>
-KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b)
-{
- return KroneckerProductSparse<A,B>(a.derived(), b.derived());
-}
-
-} // end namespace Eigen
-
-#endif // KRONECKER_TENSOR_PRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
deleted file mode 100644
index ae7984d..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-Minpack Copyright Notice (1999) University of Chicago. All rights reserved
-
-Redistribution and use in source and binary forms, with or
-without modification, are permitted provided that the
-following conditions are met:
-
-1. Redistributions of source code must retain the above
-copyright notice, this list of conditions and the following
-disclaimer.
-
-2. Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following
-disclaimer in the documentation and/or other materials
-provided with the distribution.
-
-3. The end-user documentation included with the
-redistribution, if any, must include the following
-acknowledgment:
-
- "This product includes software developed by the
- University of Chicago, as Operator of Argonne National
- Laboratory.
-
-Alternately, this acknowledgment may appear in the software
-itself, if and wherever such third-party acknowledgments
-normally appear.
-
-4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
-WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
-UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
-THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
-OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
-OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
-OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
-USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
-THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
-DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
-UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
-BE CORRECTED.
-
-5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
-HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
-ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
-INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
-ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
-PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
-SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
-(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
-EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
-POSSIBILITY OF SUCH LOSS OR DAMAGES.
-
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
deleted file mode 100644
index b75bea2..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
+++ /dev/null
@@ -1,84 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMCOVAR_H
-#define EIGEN_LMCOVAR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void covar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi& ipvt,
- Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
-{
- using std::abs;
- /* Local variables */
- Index i, j, k, l, ii, jj;
- bool sing;
- Scalar temp;
-
- /* Function Body */
- const Index n = r.cols();
- const Scalar tolr = tol * abs(r(0,0));
- Matrix< Scalar, Dynamic, 1 > wa(n);
- eigen_assert(ipvt.size()==n);
-
- /* form the inverse of r in the full upper triangle of r. */
- l = -1;
- for (k = 0; k < n; ++k)
- if (abs(r(k,k)) > tolr) {
- r(k,k) = 1. / r(k,k);
- for (j = 0; j <= k-1; ++j) {
- temp = r(k,k) * r(j,k);
- r(j,k) = 0.;
- r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
- }
- l = k;
- }
-
- /* form the full upper triangle of the inverse of (r transpose)*r */
- /* in the full upper triangle of r. */
- for (k = 0; k <= l; ++k) {
- for (j = 0; j <= k-1; ++j)
- r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
- r.col(k).head(k+1) *= r(k,k);
- }
-
- /* form the full lower triangle of the covariance matrix */
- /* in the strict lower triangle of r and in wa. */
- for (j = 0; j < n; ++j) {
- jj = ipvt[j];
- sing = j > l;
- for (i = 0; i <= j; ++i) {
- if (sing)
- r(i,j) = 0.;
- ii = ipvt[i];
- if (ii > jj)
- r(ii,jj) = r(i,j);
- if (ii < jj)
- r(jj,ii) = r(i,j);
- }
- wa[jj] = r(j,j);
- }
-
- /* symmetrize the covariance matrix in r. */
- r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
- r.diagonal() = wa;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMCOVAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
deleted file mode 100644
index 25b32ec..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
+++ /dev/null
@@ -1,202 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMONESTEP_H
-#define EIGEN_LMONESTEP_H
-
-namespace Eigen {
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
- RealScalar temp, temp1,temp2;
- RealScalar ratio;
- RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- temp = 0.0; xnorm = 0.0;
- /* calculate the jacobian matrix. */
- Index df_ret = m_functor.df(x, m_fjac);
- if (df_ret<0)
- return LevenbergMarquardtSpace::UserAsked;
- if (df_ret>0)
- // numerical diff, we evaluated the function df_ret times
- m_nfev += df_ret;
- else m_njev++;
-
- /* compute the qr factorization of the jacobian. */
- for (int j = 0; j < x.size(); ++j)
- m_wa2(j) = m_fjac.col(j).blueNorm();
- QRSolver qrfac(m_fjac);
- if(qrfac.info() != Success) {
- m_info = NumericalIssue;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
- // Make a copy of the first factor with the associated permutation
- m_rfactor = qrfac.matrixR();
- m_permutation = (qrfac.colsPermutation());
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (m_iter == 1) {
- if (!m_useExternalScaling)
- for (Index j = 0; j < n; ++j)
- m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound m_delta. */
- xnorm = m_diag.cwiseProduct(x).stableNorm();
- m_delta = m_factor * xnorm;
- if (m_delta == 0.)
- m_delta = m_factor;
- }
-
- /* form (q transpose)*m_fvec and store the first n components in */
- /* m_qtf. */
- m_wa4 = m_fvec;
- m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
- m_qtf = m_wa4.head(n);
-
- /* compute the norm of the scaled gradient. */
- m_gnorm = 0.;
- if (m_fnorm != 0.)
- for (Index j = 0; j < n; ++j)
- if (m_wa2[m_permutation.indices()[j]] != 0.)
- m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (m_gnorm <= m_gtol) {
- m_info = Success;
- return LevenbergMarquardtSpace::CosinusTooSmall;
- }
-
- /* rescale if necessary. */
- if (!m_useExternalScaling)
- m_diag = m_diag.cwiseMax(m_wa2);
-
- do {
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- m_wa1 = -m_wa1;
- m_wa2 = x + m_wa1;
- pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (m_iter == 1)
- m_delta = (std::min)(m_delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( m_functor(m_wa2, m_wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++m_nfev;
- fnorm1 = m_wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < m_fnorm)
- actred = 1. - numext::abs2(fnorm1 / m_fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
- temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
- temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = RealScalar(.5);
- if (actred < 0.)
- temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
- if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
- m_par /= temp;
- } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
- m_delta = pnorm / RealScalar(.5);
- m_par = RealScalar(.5) * m_par;
- }
-
- /* test for successful iteration. */
- if (ratio >= RealScalar(1e-4)) {
- /* successful iteration. update x, m_fvec, and their norms. */
- x = m_wa2;
- m_wa2 = m_diag.cwiseProduct(x);
- m_fvec = m_wa4;
- xnorm = m_wa2.stableNorm();
- m_fnorm = fnorm1;
- ++m_iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- }
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- }
- if (m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
- }
-
- /* tests for termination and stringent tolerances. */
- if (m_nfev >= m_maxfev)
- {
- m_info = NoConvergence;
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- }
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::FtolTooSmall;
- }
- if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::XtolTooSmall;
- }
- if (m_gnorm <= NumTraits<Scalar>::epsilon())
- {
- m_info = Success;
- return LevenbergMarquardtSpace::GtolTooSmall;
- }
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMONESTEP_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
deleted file mode 100644
index 9a48365..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
+++ /dev/null
@@ -1,160 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMPAR_H
-#define EIGEN_LMPAR_H
-
-namespace Eigen {
-
-namespace internal {
-
- template <typename QRSolver, typename VectorType>
- void lmpar2(
- const QRSolver &qr,
- const VectorType &diag,
- const VectorType &qtb,
- typename VectorType::Scalar m_delta,
- typename VectorType::Scalar &par,
- VectorType &x)
-
- {
- using std::sqrt;
- using std::abs;
- typedef typename QRSolver::MatrixType MatrixType;
- typedef typename QRSolver::Scalar Scalar;
-// typedef typename QRSolver::StorageIndex StorageIndex;
-
- /* Local variables */
- Index j;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
- // Make a copy of the triangular factor.
- // This copy is modified during call the qrsolv
- MatrixType s;
- s = qr.matrixR();
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = qr.matrixR().cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
-
- VectorType wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
-
- // const Index rank = qr.nonzeroPivots(); // exactly double(0.)
- const Index rank = qr.rank(); // use a threshold
- wa1 = qtb;
- wa1.tail(n-rank).setZero();
- //FIXME There is no solve in place for sparse triangularView
- wa1.head(rank) = s.topLeftCorner(rank,rank).template triangularView<Upper>().solve(qtb.head(rank));
-
- x = qr.colsPermutation()*wa1;
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - m_delta;
- if (fp <= Scalar(0.1) * m_delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (rank==n) {
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
- s.topLeftCorner(n,n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- temp = wa1.blueNorm();
- parl = fp / m_delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = s.col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / m_delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(m_delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- VectorType sdiag(n);
- lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - m_delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
- // we could almost use this here, but the diagonal is outside qr, in sdiag[]
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (Index i = j+1; i < n; ++i)
- wa1[i] -= s.coeff(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / m_delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- par = (std::max)(parl,par+parc);
- }
- if (iter == 0)
- par = 0.;
- return;
- }
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMPAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
deleted file mode 100644
index ae9d793..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
+++ /dev/null
@@ -1,188 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMQRSOLV_H
-#define EIGEN_LMQRSOLV_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar,int Rows, int Cols, typename PermIndex>
-void lmqrsolv(
- Matrix<Scalar,Rows,Cols> &s,
- const PermutationMatrix<Dynamic,Dynamic,PermIndex> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- Index i, j, k;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize s. */
- /* in particular, save the diagonal elements of r in x. */
- x = s.diagonal();
- wa = qtb;
-
-
- s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
- /* eliminate the diagonal matrix d using a givens rotation. */
- for (j = 0; j < n; ++j) {
-
- /* prepare the row of d to be eliminated, locating the */
- /* diagonal element using p from the qr factorization. */
- const PermIndex l = iPerm.indices()(j);
- if (diag[l] == 0.)
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
-
- /* the transformations to eliminate the row of d */
- /* modify only a single element of (q transpose)*b */
- /* beyond the first n, which is initially zero. */
- Scalar qtbpj = 0.;
- for (k = j; k < n; ++k) {
- /* determine a givens rotation which eliminates the */
- /* appropriate element in the current row of d. */
- givens.makeGivens(-s(k,k), sdiag[k]);
-
- /* compute the modified diagonal element of r and */
- /* the modified element of ((q transpose)*b,0). */
- s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
- temp = givens.c() * wa[k] + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
- wa[k] = temp;
-
- /* accumulate the tranformation in the row of s. */
- for (i = k+1; i<n; ++i) {
- temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
- sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
- s(i,k) = temp;
- }
- }
- }
-
- /* solve the triangular system for z. if the system is */
- /* singular, then obtain a least squares solution. */
- Index nsing;
- for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
- s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
-
- // restore
- sdiag = s.diagonal();
- s.diagonal() = x;
-
- /* permute the components of z back to components of x. */
- x = iPerm * wa;
-}
-
-template <typename Scalar, int _Options, typename Index>
-void lmqrsolv(
- SparseMatrix<Scalar,_Options,Index> &s,
- const PermutationMatrix<Dynamic,Dynamic> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
- Index i, j, k, l;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize R. */
- wa = qtb;
- FactorType R(s);
- // Eliminate the diagonal matrix d using a givens rotation
- for (j = 0; j < n; ++j)
- {
- // Prepare the row of d to be eliminated, locating the
- // diagonal element using p from the qr factorization
- l = iPerm.indices()(j);
- if (diag(l) == Scalar(0))
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
- // the transformations to eliminate the row of d
- // modify only a single element of (q transpose)*b
- // beyond the first n, which is initially zero.
-
- Scalar qtbpj = 0;
- // Browse the nonzero elements of row j of the upper triangular s
- for (k = j; k < n; ++k)
- {
- typename FactorType::InnerIterator itk(R,k);
- for (; itk; ++itk){
- if (itk.index() < k) continue;
- else break;
- }
- //At this point, we have the diagonal element R(k,k)
- // Determine a givens rotation which eliminates
- // the appropriate element in the current row of d
- givens.makeGivens(-itk.value(), sdiag(k));
-
- // Compute the modified diagonal element of r and
- // the modified element of ((q transpose)*b,0).
- itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
- temp = givens.c() * wa(k) + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
- wa(k) = temp;
-
- // Accumulate the transformation in the remaining k row/column of R
- for (++itk; itk; ++itk)
- {
- i = itk.index();
- temp = givens.c() * itk.value() + givens.s() * sdiag(i);
- sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
- itk.valueRef() = temp;
- }
- }
- }
-
- // Solve the triangular system for z. If the system is
- // singular, then obtain a least squares solution
- Index nsing;
- for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
-// x = wa;
- wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
-
- sdiag = R.diagonal();
- // Permute the components of z back to components of x
- x = iPerm * wa;
-}
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMQRSOLV_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
deleted file mode 100644
index 9954279..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
+++ /dev/null
@@ -1,396 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// The algorithm of this class initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LEVENBERGMARQUARDT_H
-#define EIGEN_LEVENBERGMARQUARDT_H
-
-
-namespace Eigen {
-namespace LevenbergMarquardtSpace {
- enum Status {
- NotStarted = -2,
- Running = -1,
- ImproperInputParameters = 0,
- RelativeReductionTooSmall = 1,
- RelativeErrorTooSmall = 2,
- RelativeErrorAndReductionTooSmall = 3,
- CosinusTooSmall = 4,
- TooManyFunctionEvaluation = 5,
- FtolTooSmall = 6,
- XtolTooSmall = 7,
- GtolTooSmall = 8,
- UserAsked = 9
- };
-}
-
-template <typename _Scalar, int NX=Dynamic, int NY=Dynamic>
-struct DenseFunctor
-{
- typedef _Scalar Scalar;
- enum {
- InputsAtCompileTime = NX,
- ValuesAtCompileTime = NY
- };
- typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
- typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
- typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
- typedef ColPivHouseholderQR<JacobianType> QRSolver;
- const int m_inputs, m_values;
-
- DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
- DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
-
- int inputs() const { return m_inputs; }
- int values() const { return m_values; }
-
- //int operator()(const InputType &x, ValueType& fvec) { }
- // should be defined in derived classes
-
- //int df(const InputType &x, JacobianType& fjac) { }
- // should be defined in derived classes
-};
-
-template <typename _Scalar, typename _Index>
-struct SparseFunctor
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Matrix<Scalar,Dynamic,1> InputType;
- typedef Matrix<Scalar,Dynamic,1> ValueType;
- typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType;
- typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver;
- enum {
- InputsAtCompileTime = Dynamic,
- ValuesAtCompileTime = Dynamic
- };
-
- SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
-
- int inputs() const { return m_inputs; }
- int values() const { return m_values; }
-
- const int m_inputs, m_values;
- //int operator()(const InputType &x, ValueType& fvec) { }
- // to be defined in the functor
-
- //int df(const InputType &x, JacobianType& fjac) { }
- // to be defined in the functor if no automatic differentiation
-
-};
-namespace internal {
-template <typename QRSolver, typename VectorType>
-void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
- typename VectorType::Scalar m_delta, typename VectorType::Scalar &par,
- VectorType &x);
- }
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Performs non linear optimization over a non-linear function,
- * using a variant of the Levenberg Marquardt algorithm.
- *
- * Check wikipedia for more information.
- * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
- */
-template<typename _FunctorType>
-class LevenbergMarquardt : internal::no_assignment_operator
-{
- public:
- typedef _FunctorType FunctorType;
- typedef typename FunctorType::QRSolver QRSolver;
- typedef typename FunctorType::JacobianType JacobianType;
- typedef typename JacobianType::Scalar Scalar;
- typedef typename JacobianType::RealScalar RealScalar;
- typedef typename QRSolver::StorageIndex PermIndex;
- typedef Matrix<Scalar,Dynamic,1> FVectorType;
- typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
- public:
- LevenbergMarquardt(FunctorType& functor)
- : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0),
- m_isInitialized(false),m_info(InvalidInput)
- {
- resetParameters();
- m_useExternalScaling=false;
- }
-
- LevenbergMarquardtSpace::Status minimize(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
- LevenbergMarquardtSpace::Status lmder1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
- static LevenbergMarquardtSpace::Status lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- /** Sets the default parameters */
- void resetParameters()
- {
- using std::sqrt;
-
- m_factor = 100.;
- m_maxfev = 400;
- m_ftol = sqrt(NumTraits<RealScalar>::epsilon());
- m_xtol = sqrt(NumTraits<RealScalar>::epsilon());
- m_gtol = 0. ;
- m_epsfcn = 0. ;
- }
-
- /** Sets the tolerance for the norm of the solution vector*/
- void setXtol(RealScalar xtol) { m_xtol = xtol; }
-
- /** Sets the tolerance for the norm of the vector function*/
- void setFtol(RealScalar ftol) { m_ftol = ftol; }
-
- /** Sets the tolerance for the norm of the gradient of the error vector*/
- void setGtol(RealScalar gtol) { m_gtol = gtol; }
-
- /** Sets the step bound for the diagonal shift */
- void setFactor(RealScalar factor) { m_factor = factor; }
-
- /** Sets the error precision */
- void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; }
-
- /** Sets the maximum number of function evaluation */
- void setMaxfev(Index maxfev) {m_maxfev = maxfev; }
-
- /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
- void setExternalScaling(bool value) {m_useExternalScaling = value; }
-
- /** \returns the tolerance for the norm of the solution vector */
- RealScalar xtol() const {return m_xtol; }
-
- /** \returns the tolerance for the norm of the vector function */
- RealScalar ftol() const {return m_ftol; }
-
- /** \returns the tolerance for the norm of the gradient of the error vector */
- RealScalar gtol() const {return m_gtol; }
-
- /** \returns the step bound for the diagonal shift */
- RealScalar factor() const {return m_factor; }
-
- /** \returns the error precision */
- RealScalar epsilon() const {return m_epsfcn; }
-
- /** \returns the maximum number of function evaluation */
- Index maxfev() const {return m_maxfev; }
-
- /** \returns a reference to the diagonal of the jacobian */
- FVectorType& diag() {return m_diag; }
-
- /** \returns the number of iterations performed */
- Index iterations() { return m_iter; }
-
- /** \returns the number of functions evaluation */
- Index nfev() { return m_nfev; }
-
- /** \returns the number of jacobian evaluation */
- Index njev() { return m_njev; }
-
- /** \returns the norm of current vector function */
- RealScalar fnorm() {return m_fnorm; }
-
- /** \returns the norm of the gradient of the error */
- RealScalar gnorm() {return m_gnorm; }
-
- /** \returns the LevenbergMarquardt parameter */
- RealScalar lm_param(void) { return m_par; }
-
- /** \returns a reference to the current vector function
- */
- FVectorType& fvec() {return m_fvec; }
-
- /** \returns a reference to the matrix where the current Jacobian matrix is stored
- */
- JacobianType& jacobian() {return m_fjac; }
-
- /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix.
- * \sa jacobian()
- */
- JacobianType& matrixR() {return m_rfactor; }
-
- /** the permutation used in the QR factorization
- */
- PermutationType permutation() {return m_permutation; }
-
- /**
- * \brief Reports whether the minimization was successful
- * \returns \c Success if the minimization was succesful,
- * \c NumericalIssue if a numerical problem arises during the
- * minimization process, for exemple during the QR factorization
- * \c NoConvergence if the minimization did not converge after
- * the maximum number of function evaluation allowed
- * \c InvalidInput if the input matrix is invalid
- */
- ComputationInfo info() const
- {
-
- return m_info;
- }
- private:
- JacobianType m_fjac;
- JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac
- FunctorType &m_functor;
- FVectorType m_fvec, m_qtf, m_diag;
- Index n;
- Index m;
- Index m_nfev;
- Index m_njev;
- RealScalar m_fnorm; // Norm of the current vector function
- RealScalar m_gnorm; //Norm of the gradient of the error
- RealScalar m_factor; //
- Index m_maxfev; // Maximum number of function evaluation
- RealScalar m_ftol; //Tolerance in the norm of the vector function
- RealScalar m_xtol; //
- RealScalar m_gtol; //tolerance of the norm of the error gradient
- RealScalar m_epsfcn; //
- Index m_iter; // Number of iterations performed
- RealScalar m_delta;
- bool m_useExternalScaling;
- PermutationType m_permutation;
- FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors
- RealScalar m_par;
- bool m_isInitialized; // Check whether the minimization step has been called
- ComputationInfo m_info;
-};
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimize(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters) {
- m_isInitialized = true;
- return status;
- }
- do {
-// std::cout << " uv " << x.transpose() << "\n";
- status = minimizeOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- m_isInitialized = true;
- return status;
-}
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
-{
- n = x.size();
- m = m_functor.values();
-
- m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n);
- m_wa4.resize(m);
- m_fvec.resize(m);
- //FIXME Sparse Case : Allocate space for the jacobian
- m_fjac.resize(m, n);
-// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
- if (!m_useExternalScaling)
- m_diag.resize(n);
- eigen_assert( (!m_useExternalScaling || m_diag.size()==n) && "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
- m_qtf.resize(n);
-
- /* Function Body */
- m_nfev = 0;
- m_njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.){
- m_info = InvalidInput;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
-
- if (m_useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (m_diag[j] <= 0.)
- {
- m_info = InvalidInput;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- m_nfev = 1;
- if ( m_functor(x, m_fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- m_fnorm = m_fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- m_par = 0.;
- m_iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::lmder1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = m_functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- m_ftol = tol;
- m_xtol = tol;
- m_maxfev = 100*(n+1);
-
- return minimize(x);
-}
-
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol
- )
-{
- Index n = x.size();
- Index m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- NumericalDiff<FunctorType> numDiff(functor);
- // embedded LevenbergMarquardt
- LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
- lm.setFtol(tol);
- lm.setXtol(tol);
- lm.setMaxfev(200*(n+1));
-
- LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
- if (nfev)
- * nfev = lm.nfev();
- return info;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LEVENBERGMARQUARDT_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
deleted file mode 100644
index e5ebbcf..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ /dev/null
@@ -1,442 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_EXPONENTIAL
-#define EIGEN_MATRIX_EXPONENTIAL
-
-#include "StemFunction.h"
-
-namespace Eigen {
-namespace internal {
-
-/** \brief Scaling operator.
- *
- * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
- */
-template <typename RealScalar>
-struct MatrixExponentialScalingOp
-{
- /** \brief Constructor.
- *
- * \param[in] squarings The integer \f$ s \f$ in this document.
- */
- MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
-
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const RealScalar operator() (const RealScalar& x) const
- {
- using std::ldexp;
- return ldexp(x, -m_squarings);
- }
-
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const ComplexScalar operator() (const ComplexScalar& x) const
- {
- using std::ldexp;
- return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
- }
-
- private:
- int m_squarings;
-};
-
-/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
- const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-
-}
-
-/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
- 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A6 * A2;
- const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
- 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
- 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
- MatrixType tmp = A6 * V;
- tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
- V.noalias() = A6 * tmp;
- V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * This function activates only if your long double is double-double or quadruple.
- */
-#if LDBL_MANT_DIG > 64
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
- 100610229646136770560000.L, 15720348382208870400000.L,
- 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
- 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
- 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
- 46512.L, 306.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A4 * A4;
- V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
- MatrixType tmp = A8 * V;
- tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
- V.noalias() = tmp * A8;
- V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
- + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-#endif
-
-template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
-struct matrix_exp_computeUV
-{
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
- * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
- * denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
- * are chosen such that the approximation error is no more than the round-off error.
- */
- static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, float>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 4.258730016922831e-001f) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.880152677804762e+000f) {
- matrix_exp_pade5(arg, U, V);
- } else {
- const float maxnorm = 3.925724783138660f;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
- matrix_exp_pade7(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, double>
-{
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 1.495585217958292e-002) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 2.539398330063230e-001) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 9.504178996162932e-001) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.097847961257068e+000) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const RealScalar maxnorm = 5.371920351148152;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
- matrix_exp_pade13(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, long double>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
-#if LDBL_MANT_DIG == 53 // double precision
- matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
-
-#else
-
- using std::frexp;
- using std::pow;
- const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
-
-#if LDBL_MANT_DIG <= 64 // extended precision
-
- if (l1norm < 4.1968497232266989671e-003L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.1848116734693823091e-001L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.5170388480686700274e-001L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 1.3759868875587845383e+000L) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const long double maxnorm = 4.0246098906697353063L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade13(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 106 // double-double
-
- if (l1norm < 3.2787892205607026992947488108213e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 3.2579440895405400856599663723517L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 112 // quadruple precison
-
- if (l1norm < 1.639394610288918690547467954466970e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 2.884233277829519311757165057717815L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#else
-
- // this case should be handled in compute()
- eigen_assert(false && "Bug in MatrixExponential");
-
-#endif
-#endif // LDBL_MANT_DIG
- }
-};
-
-template<typename T> struct is_exp_known_type : false_type {};
-template<> struct is_exp_known_type<float> : true_type {};
-template<> struct is_exp_known_type<double> : true_type {};
-#if LDBL_MANT_DIG <= 112
-template<> struct is_exp_known_type<long double> : true_type {};
-#endif
-
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
-{
- typedef typename ArgType::PlainObject MatrixType;
- MatrixType U, V;
- int squarings;
- matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
- MatrixType numer = U + V;
- MatrixType denom = -U + V;
- result = denom.partialPivLu().solve(numer);
- for (int i=0; i<squarings; i++)
- result *= result; // undo scaling by repeated squaring
-}
-
-
-/* Computes the matrix exponential
- *
- * \param arg argument of matrix exponential (should be plain object)
- * \param result variable in which result will be stored
- */
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
-{
- typedef typename ArgType::PlainObject MatrixType;
- typedef typename traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
-}
-
-} // end namespace Eigen::internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix exponential of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix exponential.
- *
- * This class holds the argument to the matrix exponential until it is assigned or evaluated for
- * some other reason (so the argument should not be changed in the meantime). It is the return type
- * of MatrixBase::exp() and most of the time this is the only way it is used.
- */
-template<typename Derived> struct MatrixExponentialReturnValue
-: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param src %Matrix (expression) forming the argument of the matrix exponential.
- */
- MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix exponential.
- *
- * \param result the matrix exponential of \p src in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
- internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const typename internal::ref_selector<Derived>::type m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
-{
- eigen_assert(rows() == cols());
- return MatrixExponentialReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_EXPONENTIAL
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
deleted file mode 100644
index 3df8239..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ /dev/null
@@ -1,580 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTION_H
-#define EIGEN_MATRIX_FUNCTION_H
-
-#include "StemFunction.h"
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
-static const float matrix_function_separation = 0.1f;
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixFunctionAtomic
- * \brief Helper class for computing matrix functions of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- */
-template <typename MatrixType>
-class MatrixFunctionAtomic
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename stem_function<Scalar>::type StemFunction;
-
- /** \brief Constructor
- * \param[in] f matrix function to compute.
- */
- MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
-
- /** \brief Compute matrix function of atomic matrix
- * \param[in] A argument of matrix function, should be upper triangular and atomic
- * \returns f(A), the matrix function evaluated at the given matrix
- */
- MatrixType compute(const MatrixType& A);
-
- private:
- StemFunction* m_f;
-};
-
-template <typename MatrixType>
-typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
-{
- typedef typename plain_col_type<MatrixType>::type VectorType;
- typename MatrixType::Index rows = A.rows();
- const MatrixType N = MatrixType::Identity(rows, rows) - A;
- VectorType e = VectorType::Ones(rows);
- N.template triangularView<Upper>().solveInPlace(e);
- return e.cwiseAbs().maxCoeff();
-}
-
-template <typename MatrixType>
-MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
-{
- // TODO: Use that A is upper triangular
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- Index rows = A.rows();
- Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
- MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
- RealScalar mu = matrix_function_compute_mu(Ashifted);
- MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
- MatrixType P = Ashifted;
- MatrixType Fincr;
- for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
- Fincr = m_f(avgEival, static_cast<int>(s)) * P;
- F += Fincr;
- P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
-
- // test whether Taylor series converged
- const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
- const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
- if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
- RealScalar delta = 0;
- RealScalar rfactorial = 1;
- for (Index r = 0; r < rows; r++) {
- RealScalar mx = 0;
- for (Index i = 0; i < rows; i++)
- mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
- if (r != 0)
- rfactorial *= RealScalar(r);
- delta = (std::max)(delta, mx / rfactorial);
- }
- const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
- if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
- break;
- }
- }
- return F;
-}
-
-/** \brief Find cluster in \p clusters containing some value
- * \param[in] key Value to find
- * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
- * contains \p key.
- */
-template <typename Index, typename ListOfClusters>
-typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
-{
- typename std::list<Index>::iterator j;
- for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
- j = std::find(i->begin(), i->end(), key);
- if (j != i->end())
- return i;
- }
- return clusters.end();
-}
-
-/** \brief Partition eigenvalues in clusters of ei'vals close to each other
- *
- * \param[in] eivals Eigenvalues
- * \param[out] clusters Resulting partition of eigenvalues
- *
- * The partition satisfies the following two properties:
- * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
- * in the same cluster.
- * # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
- * The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
- */
-template <typename EivalsType, typename Cluster>
-void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
-{
- typedef typename EivalsType::Index Index;
- typedef typename EivalsType::RealScalar RealScalar;
- for (Index i=0; i<eivals.rows(); ++i) {
- // Find cluster containing i-th ei'val, adding a new cluster if necessary
- typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
- if (qi == clusters.end()) {
- Cluster l;
- l.push_back(i);
- clusters.push_back(l);
- qi = clusters.end();
- --qi;
- }
-
- // Look for other element to add to the set
- for (Index j=i+1; j<eivals.rows(); ++j) {
- if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
- && std::find(qi->begin(), qi->end(), j) == qi->end()) {
- typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
- if (qj == clusters.end()) {
- qi->push_back(j);
- } else {
- qi->insert(qi->end(), qj->begin(), qj->end());
- clusters.erase(qj);
- }
- }
- }
- }
-}
-
-/** \brief Compute size of each cluster given a partitioning */
-template <typename ListOfClusters, typename Index>
-void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
-{
- const Index numClusters = static_cast<Index>(clusters.size());
- clusterSize.setZero(numClusters);
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- clusterSize[clusterIndex] = cluster->size();
- ++clusterIndex;
- }
-}
-
-/** \brief Compute start of each block using clusterSize */
-template <typename VectorType>
-void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
-{
- blockStart.resize(clusterSize.rows());
- blockStart(0) = 0;
- for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
- blockStart(i) = blockStart(i-1) + clusterSize(i-1);
- }
-}
-
-/** \brief Compute mapping of eigenvalue indices to cluster indices */
-template <typename EivalsType, typename ListOfClusters, typename VectorType>
-void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
-{
- typedef typename EivalsType::Index Index;
- eivalToCluster.resize(eivals.rows());
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- for (Index i = 0; i < eivals.rows(); ++i) {
- if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
- eivalToCluster[i] = clusterIndex;
- }
- }
- ++clusterIndex;
- }
-}
-
-/** \brief Compute permutation which groups ei'vals in same cluster together */
-template <typename DynVectorType, typename VectorType>
-void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
-{
- typedef typename VectorType::Index Index;
- DynVectorType indexNextEntry = blockStart;
- permutation.resize(eivalToCluster.rows());
- for (Index i = 0; i < eivalToCluster.rows(); i++) {
- Index cluster = eivalToCluster[i];
- permutation[i] = indexNextEntry[cluster];
- ++indexNextEntry[cluster];
- }
-}
-
-/** \brief Permute Schur decomposition in U and T according to permutation */
-template <typename VectorType, typename MatrixType>
-void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
-{
- typedef typename VectorType::Index Index;
- for (Index i = 0; i < permutation.rows() - 1; i++) {
- Index j;
- for (j = i; j < permutation.rows(); j++) {
- if (permutation(j) == i) break;
- }
- eigen_assert(permutation(j) == i);
- for (Index k = j-1; k >= i; k--) {
- JacobiRotation<typename MatrixType::Scalar> rotation;
- rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
- T.applyOnTheLeft(k, k+1, rotation.adjoint());
- T.applyOnTheRight(k, k+1, rotation);
- U.applyOnTheRight(k, k+1, rotation);
- std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
- }
- }
-}
-
-/** \brief Compute block diagonal part of matrix function.
- *
- * This routine computes the matrix function applied to the block diagonal part of \p T (which should be
- * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
- * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
- */
-template <typename MatrixType, typename AtomicType, typename VectorType>
-void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- fT.setZero(T.rows(), T.cols());
- for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
- fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
- }
-}
-
-/** \brief Solve a triangular Sylvester equation AX + XB = C
- *
- * \param[in] A the matrix A; should be square and upper triangular
- * \param[in] B the matrix B; should be square and upper triangular
- * \param[in] C the matrix C; should have correct size.
- *
- * \returns the solution X.
- *
- * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
- * equation is
- * \f[
- * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
- * \f]
- * This can be re-arranged to yield:
- * \f[
- * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
- * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
- * \f]
- * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
- * does not have a unique solution). In that case, these equations can be evaluated in the order
- * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
- */
-template <typename MatrixType>
-MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- eigen_assert(A.rows() == A.cols());
- eigen_assert(A.isUpperTriangular());
- eigen_assert(B.rows() == B.cols());
- eigen_assert(B.isUpperTriangular());
- eigen_assert(C.rows() == A.rows());
- eigen_assert(C.cols() == B.rows());
-
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
-
- Index m = A.rows();
- Index n = B.rows();
- MatrixType X(m, n);
-
- for (Index i = m - 1; i >= 0; --i) {
- for (Index j = 0; j < n; ++j) {
-
- // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
- Scalar AX;
- if (i == m - 1) {
- AX = 0;
- } else {
- Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
- AX = AXmatrix(0,0);
- }
-
- // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
- Scalar XB;
- if (j == 0) {
- XB = 0;
- } else {
- Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
- XB = XBmatrix(0,0);
- }
-
- X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
- }
- }
- return X;
-}
-
-/** \brief Compute part of matrix function above block diagonal.
- *
- * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
- * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
- * the diagonal is zero, because \p T is upper triangular.
- */
-template <typename MatrixType, typename VectorType>
-void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- typedef internal::traits<MatrixType> Traits;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = MatrixType::Options;
- typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- for (Index k = 1; k < clusterSize.rows(); k++) {
- for (Index i = 0; i < clusterSize.rows() - k; i++) {
- // compute (i, i+k) block
- DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
- DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- for (Index m = i + 1; m < i + k; m++) {
- C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- }
- fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- = matrix_function_solve_triangular_sylvester(A, B, C);
- }
- }
-}
-
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix functions.
- * \tparam MatrixType type of the argument of the matrix function,
- * expected to be an instantiation of the Matrix class template.
- * \tparam AtomicType type for computing matrix function of atomic blocks.
- * \tparam IsComplex used internally to select correct specialization.
- *
- * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
- * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
- * computation of the matrix function on every block corresponding to these clusters to an object of type
- * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
- * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
- *
- * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_function_compute
-{
- /** \brief Compute the matrix function.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- *
- * See MatrixBase::matrixFunction() for details on how this computation
- * is implemented.
- */
- template <typename AtomicType, typename ResultType>
- static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for real matrices
- *
- * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
- * converts the result back to a real matrix.
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 0>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
- typedef typename Traits::Scalar Scalar;
- static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
- static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
-
- typedef std::complex<Scalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
-
- ComplexMatrix CA = A.template cast<ComplexScalar>();
- ComplexMatrix Cresult;
- matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
- result = Cresult.real();
- }
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for complex matrices
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 1>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
-
- // compute Schur decomposition of A
- const ComplexSchur<MatrixType> schurOfA(A);
- MatrixType T = schurOfA.matrixT();
- MatrixType U = schurOfA.matrixU();
-
- // partition eigenvalues into clusters of ei'vals "close" to each other
- std::list<std::list<Index> > clusters;
- matrix_function_partition_eigenvalues(T.diagonal(), clusters);
-
- // compute size of each cluster
- Matrix<Index, Dynamic, 1> clusterSize;
- matrix_function_compute_cluster_size(clusters, clusterSize);
-
- // blockStart[i] is row index at which block corresponding to i-th cluster starts
- Matrix<Index, Dynamic, 1> blockStart;
- matrix_function_compute_block_start(clusterSize, blockStart);
-
- // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
- Matrix<Index, Dynamic, 1> eivalToCluster;
- matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
-
- // compute permutation which groups ei'vals in same cluster together
- Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
- matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
-
- // permute Schur decomposition
- matrix_function_permute_schur(permutation, U, T);
-
- // compute result
- MatrixType fT; // matrix function applied to T
- matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
- matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
- result = U * (fT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix function of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is assigned or evaluated for some other
- * reason (so the argument should not be changed in the meantime). It is the return type of
- * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
- */
-template<typename Derived> class MatrixFunctionReturnValue
-: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
-{
- public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
- typedef typename internal::stem_function<Scalar>::type StemFunction;
-
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix function.
- * \param[in] f Stem function for matrix function under consideration.
- */
- MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
-
- /** \brief Compute the matrix function.
- *
- * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
- typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
- typedef internal::traits<NestedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
- AtomicType atomic(m_f);
-
- internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const DerivedNested m_A;
- StemFunction *m_f;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixFunctionReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-
-/********** MatrixBase methods **********/
-
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
-{
- eigen_assert(rows() == cols());
- return MatrixFunctionReturnValue<Derived>(derived(), f);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
deleted file mode 100644
index cf5fffa..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_LOGARITHM
-#define EIGEN_MATRIX_LOGARITHM
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-struct matrix_log_min_pade_degree
-{
- static const int value = 3;
-};
-
-template <typename Scalar>
-struct matrix_log_max_pade_degree
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
- std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
- std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
- std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
- 11; // quadruple precision
-};
-
-/** \brief Compute logarithm of 2x2 triangular matrix. */
-template <typename MatrixType>
-void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- using std::abs;
- using std::ceil;
- using std::imag;
- using std::log;
-
- Scalar logA00 = log(A(0,0));
- Scalar logA11 = log(A(1,1));
-
- result(0,0) = logA00;
- result(1,0) = Scalar(0);
- result(1,1) = logA11;
-
- Scalar y = A(1,1) - A(0,0);
- if (y==Scalar(0))
- {
- result(0,1) = A(0,1) / A(0,0);
- }
- else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
- {
- result(0,1) = A(0,1) * (logA11 - logA00) / y;
- }
- else
- {
- // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
- int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
- result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
- }
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
-inline int matrix_log_get_pade_degree(float normTminusI)
-{
- const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
- 5.3149729967117310e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
-inline int matrix_log_get_pade_degree(double normTminusI)
-{
- const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
- 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
-inline int matrix_log_get_pade_degree(long double normTminusI)
-{
-#if LDBL_MANT_DIG == 53 // double precision
- const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
- 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
-#elif LDBL_MANT_DIG <= 64 // extended precision
- const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
- 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
- 2.32777776523703892094e-1L };
-#elif LDBL_MANT_DIG <= 106 // double-double
- const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
- 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
- 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
- 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
- 1.05026503471351080481093652651105e-1L };
-#else // quadruple precision
- const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
- 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
- 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
- 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
- 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
-#endif
- const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Compute Pade approximation to matrix logarithm */
-template <typename MatrixType>
-void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
-{
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- const int minPadeDegree = 3;
- const int maxPadeDegree = 11;
- assert(degree >= minPadeDegree && degree <= maxPadeDegree);
-
- const RealScalar nodes[][maxPadeDegree] = {
- { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
- 0.8872983346207416885179265399782400L },
- { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
- 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
- { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
- 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
- 0.9530899229693319963988134391496965L },
- { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
- 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
- 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
- { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
- 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
- 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
- 0.9745539561713792622630948420239256L },
- { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
- 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
- 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
- 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
- { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
- 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
- 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
- 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
- 0.9840801197538130449177881014518364L },
- { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
- 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
- 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
- 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
- 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
- { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
- 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
- 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
- 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
- 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
- 0.9891143290730284964019690005614287L } };
-
- const RealScalar weights[][maxPadeDegree] = {
- { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
- 0.2777777777777777777777777777777778L },
- { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
- 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
- { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
- 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
- 0.1184634425280945437571320203599587L },
- { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
- 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
- 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
- { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
- 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
- 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
- 0.0647424830844348466353057163395410L },
- { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
- 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
- 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
- 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
- { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
- 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
- 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
- 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
- 0.0406371941807872059859460790552618L },
- { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
- 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
- 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
- 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
- 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
- { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
- 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
- 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
- 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
- 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
- 0.0278342835580868332413768602212743L } };
-
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k) {
- RealScalar weight = weights[degree-minPadeDegree][k];
- RealScalar node = nodes[degree-minPadeDegree][k];
- result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
- .template triangularView<Upper>().solve(TminusI);
- }
-}
-
-/** \brief Compute logarithm of triangular matrices with size > 2.
- * \details This uses a inverse scale-and-square algorithm. */
-template <typename MatrixType>
-void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- using std::pow;
-
- int numberOfSquareRoots = 0;
- int numberOfExtraSquareRoots = 0;
- int degree;
- MatrixType T = A, sqrtT;
-
- int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
- const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
- maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
- maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
- maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
- 1.1880960220216759245467951592883642e-1L; // quadruple precision
-
- while (true) {
- RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
- if (normTminusI < maxNormForPade) {
- degree = matrix_log_get_pade_degree(normTminusI);
- int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
- if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
- break;
- ++numberOfExtraSquareRoots;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
-
- matrix_log_compute_pade(result, T, degree);
- result *= pow(RealScalar(2), numberOfSquareRoots);
-}
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixLogarithmAtomic
- * \brief Helper class for computing matrix logarithm of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- *
- * \sa class MatrixFunctionAtomic, MatrixBase::log()
- */
-template <typename MatrixType>
-class MatrixLogarithmAtomic
-{
-public:
- /** \brief Compute matrix logarithm of atomic matrix
- * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
- * \returns The logarithm of \p A.
- */
- MatrixType compute(const MatrixType& A);
-};
-
-template <typename MatrixType>
-MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
-{
- using std::log;
- MatrixType result(A.rows(), A.rows());
- if (A.rows() == 1)
- result(0,0) = log(A(0,0));
- else if (A.rows() == 2)
- matrix_log_compute_2x2(A, result);
- else
- matrix_log_compute_big(A, result);
- return result;
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix logarithm of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::log() and most of the time this is the only way it
- * is used.
- */
-template<typename Derived> class MatrixLogarithmReturnValue
-: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
-{
-public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
-protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
-public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
- */
- explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
-
- /** \brief Compute the matrix logarithm.
- *
- * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- typedef internal::traits<DerivedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
- typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
- AtomicType atomic;
-
- internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
-private:
- const DerivedNested m_A;
-};
-
-namespace internal {
- template<typename Derived>
- struct traits<MatrixLogarithmReturnValue<Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
-}
-
-
-/********** MatrixBase method **********/
-
-
-template <typename Derived>
-const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
-{
- eigen_assert(rows() == cols());
- return MatrixLogarithmReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_LOGARITHM
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
deleted file mode 100644
index a3273da..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ /dev/null
@@ -1,709 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_POWER
-#define EIGEN_MATRIX_POWER
-
-namespace Eigen {
-
-template<typename MatrixType> class MatrixPower;
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix.
- *
- * \tparam MatrixType type of the base, a matrix.
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixPower::operator() and related functions and most of the
- * time this is the only way it is used.
- */
-/* TODO This class is only used by MatrixPower, so it should be nested
- * into MatrixPower, like MatrixPower::ReturnValue. However, my
- * compiler complained about unused template parameter in the
- * following declaration in namespace internal.
- *
- * template<typename MatrixType>
- * struct traits<MatrixPower<MatrixType>::ReturnValue>;
- */
-template<typename MatrixType>
-class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
-{
- public:
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] pow %MatrixPower storing the base.
- * \param[in] p scalar, the exponent of the matrix power.
- */
- MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { m_pow.compute(result, m_p); }
-
- Index rows() const { return m_pow.rows(); }
- Index cols() const { return m_pow.cols(); }
-
- private:
- MatrixPower<MatrixType>& m_pow;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing triangular real/complex matrices
- * raised to a power in the interval \f$ (-1, 1) \f$.
- *
- * \note Currently this class is only used by MatrixPower. One may
- * insist that this be nested into MatrixPower. This class is here to
- * faciliate future development of triangular matrix functions.
- */
-template<typename MatrixType>
-class MatrixPowerAtomic : internal::noncopyable
-{
- private:
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef std::complex<RealScalar> ComplexScalar;
- typedef typename MatrixType::Index Index;
- typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
-
- const MatrixType& m_A;
- RealScalar m_p;
-
- void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
- void compute2x2(ResultType& res, RealScalar p) const;
- void computeBig(ResultType& res) const;
- static int getPadeDegree(float normIminusT);
- static int getPadeDegree(double normIminusT);
- static int getPadeDegree(long double normIminusT);
- static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
- static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] T the base of the matrix power.
- * \param[in] p the exponent of the matrix power, should be in
- * \f$ (-1, 1) \f$.
- *
- * The class stores a reference to T, so it should not be changed
- * (or destroyed) before evaluation. Only the upper triangular
- * part of T is read.
- */
- MatrixPowerAtomic(const MatrixType& T, RealScalar p);
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] res \f$ A^p \f$ where A and p are specified in the
- * constructor.
- */
- void compute(ResultType& res) const;
-};
-
-template<typename MatrixType>
-MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
- m_A(T), m_p(p)
-{
- eigen_assert(T.rows() == T.cols());
- eigen_assert(p > -1 && p < 1);
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
-{
- using std::pow;
- switch (m_A.rows()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A(0,0), m_p);
- break;
- case 2:
- compute2x2(res, m_p);
- break;
- default:
- computeBig(res);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
-{
- int i = 2*degree;
- res = (m_p-degree) / (2*i-2) * IminusT;
-
- for (--i; i; --i) {
- res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
- }
- res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
-}
-
-// This function assumes that res has the correct size (see bug 614)
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
-{
- using std::abs;
- using std::pow;
- res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
-
- for (Index i=1; i < m_A.cols(); ++i) {
- res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
- if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
- res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
- else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
- res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
- else
- res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
- res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
-{
- using std::ldexp;
- const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
- : digits <= 53? 2.789358995219730e-1L // double precision
- : digits <= 64? 2.4471944416607995472e-1L // extended precision
- : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
- : 9.134603732914548552537150753385375e-2L; // quadruple precision
- MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
- RealScalar normIminusT;
- int degree, degree2, numberOfSquareRoots = 0;
- bool hasExtraSquareRoot = false;
-
- for (Index i=0; i < m_A.cols(); ++i)
- eigen_assert(m_A(i,i) != RealScalar(0));
-
- while (true) {
- IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
- normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
- if (normIminusT < maxNormForPade) {
- degree = getPadeDegree(normIminusT);
- degree2 = getPadeDegree(normIminusT/2);
- if (degree - degree2 <= 1 || hasExtraSquareRoot)
- break;
- hasExtraSquareRoot = true;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
- computePade(degree, IminusT, res);
-
- for (; numberOfSquareRoots; --numberOfSquareRoots) {
- compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
- res = res.template triangularView<Upper>() * res;
- }
- compute2x2(res, m_p);
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
-{
- const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
- int degree = 3;
- for (; degree <= 4; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
-{
- const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
- 1.999045567181744e-1, 2.789358995219730e-1 };
- int degree = 3;
- for (; degree <= 7; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
-{
-#if LDBL_MANT_DIG == 53
- const int maxPadeDegree = 7;
- const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
- 1.999045567181744e-1L, 2.789358995219730e-1L };
-#elif LDBL_MANT_DIG <= 64
- const int maxPadeDegree = 8;
- const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
- 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
-#elif LDBL_MANT_DIG <= 106
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
- 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
- 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
- 1.1016843812851143391275867258512e-1L };
-#else
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
- 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
- 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
- 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
- 9.134603732914548552537150753385375e-2L };
-#endif
- int degree = 3;
- for (; degree <= maxPadeDegree; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
-{
- using std::ceil;
- using std::exp;
- using std::log;
- using std::sinh;
-
- ComplexScalar logCurr = log(curr);
- ComplexScalar logPrev = log(prev);
- int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
- ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
- return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::RealScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
-{
- using std::exp;
- using std::log;
- using std::sinh;
-
- RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
- return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
-}
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing real/complex matrices raised to
- * an arbitrary real power. Meanwhile, it saves the result of Schur
- * decomposition if an non-integral power has even been calculated.
- * Therefore, if you want to compute multiple (>= 2) matrix powers
- * for the same matrix, using the class directly is more efficient than
- * calling MatrixBase::pow().
- *
- * Example:
- * \include MatrixPower_optimal.cpp
- * Output: \verbinclude MatrixPower_optimal.out
- */
-template<typename MatrixType>
-class MatrixPower : internal::noncopyable
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] A the base of the matrix power.
- *
- * The class stores a reference to A, so it should not be changed
- * (or destroyed) before evaluation.
- */
- explicit MatrixPower(const MatrixType& A) :
- m_A(A),
- m_conditionNumber(0),
- m_rank(A.cols()),
- m_nulls(0)
- { eigen_assert(A.rows() == A.cols()); }
-
- /**
- * \brief Returns the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \return The expression \f$ A^p \f$, where A is specified in the
- * constructor.
- */
- const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
- { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \param[out] res \f$ A^p \f$ where A is specified in the
- * constructor.
- */
- template<typename ResultType>
- void compute(ResultType& res, RealScalar p);
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
- MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
-
- /** \brief Reference to the base of matrix power. */
- typename MatrixType::Nested m_A;
-
- /** \brief Temporary storage. */
- MatrixType m_tmp;
-
- /** \brief Store the result of Schur decomposition. */
- ComplexMatrix m_T, m_U;
-
- /** \brief Store fractional power of m_T. */
- ComplexMatrix m_fT;
-
- /**
- * \brief Condition number of m_A.
- *
- * It is initialized as 0 to avoid performing unnecessary Schur
- * decomposition, which is the bottleneck.
- */
- RealScalar m_conditionNumber;
-
- /** \brief Rank of m_A. */
- Index m_rank;
-
- /** \brief Rank deficiency of m_A. */
- Index m_nulls;
-
- /**
- * \brief Split p into integral part and fractional part.
- *
- * \param[in] p The exponent.
- * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
- * \param[out] intpart The integral part.
- *
- * Only if the fractional part is nonzero, it calls initialize().
- */
- void split(RealScalar& p, RealScalar& intpart);
-
- /** \brief Perform Schur decomposition for fractional power. */
- void initialize();
-
- template<typename ResultType>
- void computeIntPower(ResultType& res, RealScalar p);
-
- template<typename ResultType>
- void computeFracPower(ResultType& res, RealScalar p);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-};
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
-{
- using std::pow;
- switch (cols()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A.coeff(0,0), p);
- break;
- default:
- RealScalar intpart;
- split(p, intpart);
-
- res = MatrixType::Identity(rows(), cols());
- computeIntPower(res, intpart);
- if (p) computeFracPower(res, p);
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
-{
- using std::floor;
- using std::pow;
-
- intpart = floor(p);
- p -= intpart;
-
- // Perform Schur decomposition if it is not yet performed and the power is
- // not an integer.
- if (!m_conditionNumber && p)
- initialize();
-
- // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
- if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
- --p;
- ++intpart;
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::initialize()
-{
- const ComplexSchur<MatrixType> schurOfA(m_A);
- JacobiRotation<ComplexScalar> rot;
- ComplexScalar eigenvalue;
-
- m_fT.resizeLike(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
- m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
-
- // Move zero eigenvalues to the bottom right corner.
- for (Index i = cols()-1; i>=0; --i) {
- if (m_rank <= 2)
- return;
- if (m_T.coeff(i,i) == RealScalar(0)) {
- for (Index j=i+1; j < m_rank; ++j) {
- eigenvalue = m_T.coeff(j,j);
- rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
- m_T.applyOnTheRight(j-1, j, rot);
- m_T.applyOnTheLeft(j-1, j, rot.adjoint());
- m_T.coeffRef(j-1,j-1) = eigenvalue;
- m_T.coeffRef(j,j) = RealScalar(0);
- m_U.applyOnTheRight(j-1, j, rot);
- }
- --m_rank;
- }
- }
-
- m_nulls = rows() - m_rank;
- if (m_nulls) {
- eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
- && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
- m_fT.bottomRows(m_nulls).fill(RealScalar(0));
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
-{
- using std::abs;
- using std::fmod;
- RealScalar pp = abs(p);
-
- if (p<0)
- m_tmp = m_A.inverse();
- else
- m_tmp = m_A;
-
- while (true) {
- if (fmod(pp, 2) >= 1)
- res = m_tmp * res;
- pp /= 2;
- if (pp < 1)
- break;
- m_tmp *= m_tmp;
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
-{
- Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
- eigen_assert(m_conditionNumber);
- eigen_assert(m_rank + m_nulls == rows());
-
- MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
- if (m_nulls) {
- m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
- .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
- }
- revertSchur(m_tmp, m_fT, m_U);
- res = m_tmp * res;
-}
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename Derived::RealScalar RealScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p real scalar, the exponent of the matrix power.
- */
- MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p complex scalar, the exponent of the matrix power.
- */
- MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
- * \exp(p \log(A)) \f$.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { result = (m_p * m_A.log()).exp(); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const ComplexScalar m_p;
-};
-
-namespace internal {
-
-template<typename MatrixPowerType>
-struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
-{ typedef typename MatrixPowerType::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixComplexPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-}
-
-template<typename Derived>
-const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
-{ return MatrixPowerReturnValue<Derived>(derived(), p); }
-
-template<typename Derived>
-const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
-{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
-
-} // namespace Eigen
-
-#endif // EIGEN_MATRIX_POWER
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
deleted file mode 100644
index 2e5abda..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ /dev/null
@@ -1,366 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_SQUARE_ROOT
-#define EIGEN_MATRIX_SQUARE_ROOT
-
-namespace Eigen {
-
-namespace internal {
-
-// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
-// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
-{
- // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
- // in EigenSolver. If we expose it, we could call it directly from here.
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
- EigenSolver<Matrix<Scalar,2,2> > es(block);
- sqrtT.template block<2,2>(i,i)
- = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
-}
-
-// pre: block structure of T is such that (i,j) is a 1x1 block,
-// all blocks of sqrtT to left of and below (i,j) are correct
-// post: sqrtT(i,j) has the correct value
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
- sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
- if (j-i > 1)
- rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
- Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(j,j).transpose();
- sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
- if (j-i > 2)
- rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
- Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(i,i);
- sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
-}
-
-// solves the equation A X + X B = C where all matrices are 2-by-2
-template <typename MatrixType>
-void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
- coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
- coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
- coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
- coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
- coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
- coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
- coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
- coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
- coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
- coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
- coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
- coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
-
- Matrix<Scalar,4,1> rhs;
- rhs.coeffRef(0) = C.coeff(0,0);
- rhs.coeffRef(1) = C.coeff(0,1);
- rhs.coeffRef(2) = C.coeff(1,0);
- rhs.coeffRef(3) = C.coeff(1,1);
-
- Matrix<Scalar,4,1> result;
- result = coeffMatrix.fullPivLu().solve(rhs);
-
- X.coeffRef(0,0) = result.coeff(0);
- X.coeffRef(0,1) = result.coeff(1);
- X.coeffRef(1,0) = result.coeff(2);
- X.coeffRef(1,1) = result.coeff(3);
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
- Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
- Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
- if (j-i > 2)
- C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
- Matrix<Scalar,2,2> X;
- matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
- sqrtT.template block<2,2>(i,j) = X;
-}
-
-// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
-// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- using std::sqrt;
- const Index size = T.rows();
- for (Index i = 0; i < size; i++) {
- if (i == size - 1 || T.coeff(i+1, i) == 0) {
- eigen_assert(T(i,i) >= 0);
- sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
- }
- else {
- matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
- ++i;
- }
- }
-}
-
-// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
-// post: sqrtT is the square root of T.
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- const Index size = T.rows();
- for (Index j = 1; j < size; j++) {
- if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
- continue;
- for (Index i = j-1; i >= 0; i--) {
- if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
- continue;
- bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
- bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
- if (iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
- else if (iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
- }
- }
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of quasi-triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper Hessenberg part of \p arg.
- *
- * This function computes the square root of the upper quasi-triangular matrix stored in the upper
- * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
- * not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
-{
- eigen_assert(arg.rows() == arg.cols());
- result.resize(arg.rows(), arg.cols());
- internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
- internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
-}
-
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper triangular part of \p arg.
- *
- * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
- * touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
-{
- using std::sqrt;
- typedef typename MatrixType::Scalar Scalar;
-
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute square root of arg and store it in upper triangular part of result
- // This uses that the square root of triangular matrices can be computed directly.
- result.resize(arg.rows(), arg.cols());
- for (Index i = 0; i < arg.rows(); i++) {
- result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
- }
- for (Index j = 1; j < arg.cols(); j++) {
- for (Index i = j-1; i >= 0; i--) {
- // if i = j-1, then segment has length 0 so tmp = 0
- Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
- // denominator may be zero if original matrix is singular
- result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
- }
- }
-}
-
-
-namespace internal {
-
-/** \ingroup MatrixFunctions_Module
- * \brief Helper struct for computing matrix square roots of general matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
- * expected to be an instantiation of the Matrix class template.
- *
- * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_sqrt_compute
-{
- /** \brief Compute the matrix square root
- *
- * \param[in] arg matrix whose square root is to be computed.
- * \param[out] result square root of \p arg.
- *
- * See MatrixBase::sqrt() for details on how this computation is implemented.
- */
- template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
-};
-
-
-// ********** Partial specialization for real matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 0>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const RealSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
- matrix_sqrt_quasi_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * sqrtT * U.adjoint();
- }
-};
-
-
-// ********** Partial specialization for complex matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 1>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const ComplexSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT;
- matrix_sqrt_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix square root of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix square root.
- *
- * This class holds the argument to the matrix square root until it
- * is assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::sqrt() and most of the time this is the only way it is
- * used.
- */
-template<typename Derived> class MatrixSquareRootReturnValue
-: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
-{
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
- /** \brief Constructor.
- *
- * \param[in] src %Matrix (expression) forming the argument of the
- * matrix square root.
- */
- explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix square root.
- *
- * \param[out] result the matrix square root of \p src in the
- * constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- DerivedEvalType tmp(m_src);
- internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const DerivedNested m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixSquareRootReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
-{
- eigen_assert(rows() == cols());
- return MatrixSquareRootReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
deleted file mode 100644
index 7604df9..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STEM_FUNCTION
-#define EIGEN_STEM_FUNCTION
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief The exponential function (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_exp(Scalar x, int)
-{
- using std::exp;
- return exp(x);
-}
-
-/** \brief Cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cos(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::cos(x);
- break;
- case 1:
- res = -std::sin(x);
- break;
- case 2:
- res = -std::cos(x);
- break;
- case 3:
- res = std::sin(x);
- break;
- }
- return res;
-}
-
-/** \brief Sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sin(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::sin(x);
- break;
- case 1:
- res = std::cos(x);
- break;
- case 2:
- res = -std::sin(x);
- break;
- case 3:
- res = -std::cos(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cosh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::cosh(x);
- break;
- case 1:
- res = std::sinh(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sinh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::sinh(x);
- break;
- case 1:
- res = std::cosh(x);
- break;
- }
- return res;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_STEM_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h b/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
deleted file mode 100644
index 63cb28d..0000000
--- a/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
+++ /dev/null
@@ -1,95 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
-#define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal \returns the arcsin of \a a (coeff-wise) */
-template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); }
-
-#ifdef EIGEN_VECTORIZE_SSE
-
-template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x)
-{
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
- _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
- _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
-
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
-
- _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
- _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5);
-
- _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
-
- Packet4f a = pabs(x);//got the absolute value
-
- Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit
-
- Packet4f z1,z2;//will need them during computation
-
-
-//will compute the two branches for asin
-//so first compare with half
-
- Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take
-//both will be taken, and finally results will be merged
-//the branch for values >0.5
-
- {
-//the core series expansion
- z1=pmadd(p4f_minus_half,a,p4f_half);
- Packet4f x1=psqrt(z1);
- Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2);
- Packet4f s2=pmadd(s1, z1, p4f_asin3);
- Packet4f s3=pmadd(s2,z1, p4f_asin4);
- Packet4f s4=pmadd(s3,z1, p4f_asin5);
- Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd
- z1=pmadd(temp,x1,x1);
- z1=padd(z1,z1);
- z1=psub(p4f_pi_over_2,z1);
- }
-
- {
-//the core series expansion
- Packet4f x2=a;
- z2=pmul(x2,x2);
- Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2);
- Packet4f s2=pmadd(s1, z2, p4f_asin3);
- Packet4f s3=pmadd(s2,z2, p4f_asin4);
- Packet4f s4=pmadd(s3,z2, p4f_asin5);
- Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd
- z2=pmadd(temp,x2,x2);
- }
-
-/* select the correct result from the two branch evaluations */
- z1 = _mm_and_ps(branch_mask, z1);
- z2 = _mm_andnot_ps(branch_mask, z2);
- Packet4f z = _mm_or_ps(z1,z2);
-
-/* update the sign */
- return _mm_xor_ps(z, sign_bit);
-}
-
-#endif // EIGEN_VECTORIZE_SSE
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
deleted file mode 100644
index 8fe3ed8..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
+++ /dev/null
@@ -1,601 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
-#define EIGEN_HYBRIDNONLINEARSOLVER_H
-
-namespace Eigen {
-
-namespace HybridNonLinearSolverSpace {
- enum Status {
- Running = -1,
- ImproperInputParameters = 0,
- RelativeErrorTooSmall = 1,
- TooManyFunctionEvaluation = 2,
- TolTooSmall = 3,
- NotMakingProgressJacobian = 4,
- NotMakingProgressIterations = 5,
- UserAsked = 6
- };
-}
-
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Finds a zero of a system of n
- * nonlinear functions in n variables by a modification of the Powell
- * hybrid method ("dogleg").
- *
- * The user must provide a subroutine which calculates the
- * functions. The Jacobian is either provided by the user, or approximated
- * using a forward-difference method.
- *
- */
-template<typename FunctorType, typename Scalar=double>
-class HybridNonLinearSolver
-{
-public:
- typedef DenseIndex Index;
-
- HybridNonLinearSolver(FunctorType &_functor)
- : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
-
- struct Parameters {
- Parameters()
- : factor(Scalar(100.))
- , maxfev(1000)
- , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
- , nb_of_subdiagonals(-1)
- , nb_of_superdiagonals(-1)
- , epsfcn(Scalar(0.)) {}
- Scalar factor;
- Index maxfev; // maximum number of function evaluation
- Scalar xtol;
- Index nb_of_subdiagonals;
- Index nb_of_superdiagonals;
- Scalar epsfcn;
- };
- typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
- typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
- /* TODO: if eigen provides a triangular storage, use it here */
- typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
-
- HybridNonLinearSolverSpace::Status hybrj1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
- HybridNonLinearSolverSpace::Status solve(FVectorType &x);
-
- HybridNonLinearSolverSpace::Status hybrd1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
-
- void resetParameters(void) { parameters = Parameters(); }
- Parameters parameters;
- FVectorType fvec, qtf, diag;
- JacobianType fjac;
- UpperTriangularType R;
- Index nfev;
- Index njev;
- Index iter;
- Scalar fnorm;
- bool useExternalScaling;
-private:
- FunctorType &functor;
- Index n;
- Scalar sum;
- bool sing;
- Scalar temp;
- Scalar delta;
- bool jeval;
- Index ncsuc;
- Scalar ratio;
- Scalar pnorm, xnorm, fnorm1;
- Index nslow1, nslow2;
- Index ncfail;
- Scalar actred, prered;
- FVectorType wa1, wa2, wa3, wa4;
-
- HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
-};
-
-
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
-
- /* check the input parameters for errors. */
- if (n <= 0 || tol < 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.maxfev = 100*(n+1);
- parameters.xtol = tol;
- diag.setConstant(n, 1.);
- useExternalScaling = true;
- return solve(x);
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
-{
- n = x.size();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
- fvec.resize(n);
- qtf.resize(n);
- fjac.resize(n, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
- return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize iteration counter and monitors. */
- iter = 1;
- ncsuc = 0;
- ncfail = 0;
- nslow1 = 0;
- nslow2 = 0;
-
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
-{
- using std::abs;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- Index j;
- std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
-
- jeval = true;
-
- /* calculate the jacobian matrix. */
- if ( functor.df(x, fjac) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++njev;
-
- wa2 = fjac.colwise().blueNorm();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the qr factorization of the jacobian. */
- HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
-
- /* copy the triangular factor of the qr factorization into r. */
- R = qrfac.matrixQR();
-
- /* accumulate the orthogonal factor in fjac. */
- fjac = qrfac.householderQ();
-
- /* form (q transpose)*fvec and store in qtf. */
- qtf = fjac.transpose() * fvec;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- while (true) {
- /* determine the direction p. */
- internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (fnorm1 < fnorm) /* Computing 2nd power */
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction. */
- wa3 = R.template triangularView<Upper>()*wa1 + qtf;
- temp = wa3.stableNorm();
- prered = 0.;
- if (temp < fnorm) /* Computing 2nd power */
- prered = 1. - numext::abs2(temp / fnorm);
-
- /* compute the ratio of the actual to the predicted reduction. */
- ratio = 0.;
- if (prered > 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio < Scalar(.1)) {
- ncsuc = 0;
- ++ncfail;
- delta = Scalar(.5) * delta;
- } else {
- ncfail = 0;
- ++ncsuc;
- if (ratio >= Scalar(.5) || ncsuc > 1)
- delta = (std::max)(delta, pnorm / Scalar(.5));
- if (abs(ratio - 1.) <= Scalar(.1)) {
- delta = pnorm / Scalar(.5);
- }
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* determine the progress of the iteration. */
- ++nslow1;
- if (actred >= Scalar(.001))
- nslow1 = 0;
- if (jeval)
- ++nslow2;
- if (actred >= Scalar(.1))
- nslow2 = 0;
-
- /* test for convergence. */
- if (delta <= parameters.xtol * xnorm || fnorm == 0.)
- return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
- if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
- return HybridNonLinearSolverSpace::TolTooSmall;
- if (nslow2 == 5)
- return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
- if (nslow1 == 10)
- return HybridNonLinearSolverSpace::NotMakingProgressIterations;
-
- /* criterion for recalculating jacobian. */
- if (ncfail == 2)
- break; // leave inner loop and go for the next outer loop iteration
-
- /* calculate the rank one modification to the jacobian */
- /* and update qtf if necessary. */
- wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
- wa2 = fjac.transpose() * wa4;
- if (ratio >= Scalar(1e-4))
- qtf = wa2;
- wa2 = (wa2-wa3)/pnorm;
-
- /* compute the qr factorization of the updated jacobian. */
- internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
- internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
- internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
-
- jeval = false;
- }
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
-{
- HybridNonLinearSolverSpace::Status status = solveInit(x);
- if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
- return status;
- while (status==HybridNonLinearSolverSpace::Running)
- status = solveOneStep(x);
- return status;
-}
-
-
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
-
- /* check the input parameters for errors. */
- if (n <= 0 || tol < 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.maxfev = 200*(n+1);
- parameters.xtol = tol;
-
- diag.setConstant(n, 1.);
- useExternalScaling = true;
- return solveNumericalDiff(x);
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
-{
- n = x.size();
-
- if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
- if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
- qtf.resize(n);
- fjac.resize(n, n);
- fvec.resize(n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
- return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize iteration counter and monitors. */
- iter = 1;
- ncsuc = 0;
- ncfail = 0;
- nslow1 = 0;
- nslow2 = 0;
-
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
-{
- using std::sqrt;
- using std::abs;
-
- assert(x.size()==n); // check the caller is not cheating us
-
- Index j;
- std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
-
- jeval = true;
- if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
- if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
-
- /* calculate the jacobian matrix. */
- if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
- return HybridNonLinearSolverSpace::UserAsked;
- nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
-
- wa2 = fjac.colwise().blueNorm();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the qr factorization of the jacobian. */
- HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
-
- /* copy the triangular factor of the qr factorization into r. */
- R = qrfac.matrixQR();
-
- /* accumulate the orthogonal factor in fjac. */
- fjac = qrfac.householderQ();
-
- /* form (q transpose)*fvec and store in qtf. */
- qtf = fjac.transpose() * fvec;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- while (true) {
- /* determine the direction p. */
- internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (fnorm1 < fnorm) /* Computing 2nd power */
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction. */
- wa3 = R.template triangularView<Upper>()*wa1 + qtf;
- temp = wa3.stableNorm();
- prered = 0.;
- if (temp < fnorm) /* Computing 2nd power */
- prered = 1. - numext::abs2(temp / fnorm);
-
- /* compute the ratio of the actual to the predicted reduction. */
- ratio = 0.;
- if (prered > 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio < Scalar(.1)) {
- ncsuc = 0;
- ++ncfail;
- delta = Scalar(.5) * delta;
- } else {
- ncfail = 0;
- ++ncsuc;
- if (ratio >= Scalar(.5) || ncsuc > 1)
- delta = (std::max)(delta, pnorm / Scalar(.5));
- if (abs(ratio - 1.) <= Scalar(.1)) {
- delta = pnorm / Scalar(.5);
- }
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* determine the progress of the iteration. */
- ++nslow1;
- if (actred >= Scalar(.001))
- nslow1 = 0;
- if (jeval)
- ++nslow2;
- if (actred >= Scalar(.1))
- nslow2 = 0;
-
- /* test for convergence. */
- if (delta <= parameters.xtol * xnorm || fnorm == 0.)
- return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
- if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
- return HybridNonLinearSolverSpace::TolTooSmall;
- if (nslow2 == 5)
- return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
- if (nslow1 == 10)
- return HybridNonLinearSolverSpace::NotMakingProgressIterations;
-
- /* criterion for recalculating jacobian. */
- if (ncfail == 2)
- break; // leave inner loop and go for the next outer loop iteration
-
- /* calculate the rank one modification to the jacobian */
- /* and update qtf if necessary. */
- wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
- wa2 = fjac.transpose() * wa4;
- if (ratio >= Scalar(1e-4))
- qtf = wa2;
- wa2 = (wa2-wa3)/pnorm;
-
- /* compute the qr factorization of the updated jacobian. */
- internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
- internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
- internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
-
- jeval = false;
- }
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
-{
- HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
- if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
- return status;
- while (status==HybridNonLinearSolverSpace::Running)
- status = solveNumericalDiffOneStep(x);
- return status;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
-
-//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
deleted file mode 100644
index fe3b79c..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ /dev/null
@@ -1,657 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LEVENBERGMARQUARDT__H
-#define EIGEN_LEVENBERGMARQUARDT__H
-
-namespace Eigen {
-
-namespace LevenbergMarquardtSpace {
- enum Status {
- NotStarted = -2,
- Running = -1,
- ImproperInputParameters = 0,
- RelativeReductionTooSmall = 1,
- RelativeErrorTooSmall = 2,
- RelativeErrorAndReductionTooSmall = 3,
- CosinusTooSmall = 4,
- TooManyFunctionEvaluation = 5,
- FtolTooSmall = 6,
- XtolTooSmall = 7,
- GtolTooSmall = 8,
- UserAsked = 9
- };
-}
-
-
-
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Performs non linear optimization over a non-linear function,
- * using a variant of the Levenberg Marquardt algorithm.
- *
- * Check wikipedia for more information.
- * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
- */
-template<typename FunctorType, typename Scalar=double>
-class LevenbergMarquardt
-{
- static Scalar sqrt_epsilon()
- {
- using std::sqrt;
- return sqrt(NumTraits<Scalar>::epsilon());
- }
-
-public:
- LevenbergMarquardt(FunctorType &_functor)
- : functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
-
- typedef DenseIndex Index;
-
- struct Parameters {
- Parameters()
- : factor(Scalar(100.))
- , maxfev(400)
- , ftol(sqrt_epsilon())
- , xtol(sqrt_epsilon())
- , gtol(Scalar(0.))
- , epsfcn(Scalar(0.)) {}
- Scalar factor;
- Index maxfev; // maximum number of function evaluation
- Scalar ftol;
- Scalar xtol;
- Scalar gtol;
- Scalar epsfcn;
- };
-
- typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
- typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
-
- LevenbergMarquardtSpace::Status lmder1(
- FVectorType &x,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status minimize(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
-
- static LevenbergMarquardtSpace::Status lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status lmstr1(
- FVectorType &x,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x);
-
- void resetParameters(void) { parameters = Parameters(); }
-
- Parameters parameters;
- FVectorType fvec, qtf, diag;
- JacobianType fjac;
- PermutationMatrix<Dynamic,Dynamic> permutation;
- Index nfev;
- Index njev;
- Index iter;
- Scalar fnorm, gnorm;
- bool useExternalScaling;
-
- Scalar lm_param(void) { return par; }
-private:
-
- FunctorType &functor;
- Index n;
- Index m;
- FVectorType wa1, wa2, wa3, wa4;
-
- Scalar par, sum;
- Scalar temp, temp1, temp2;
- Scalar delta;
- Scalar ratio;
- Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
-
- LevenbergMarquardt& operator=(const LevenbergMarquardt&);
-};
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmder1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.ftol = tol;
- parameters.xtol = tol;
- parameters.maxfev = 100*(n+1);
-
- return minimize(x);
-}
-
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters)
- return status;
- do {
- status = minimizeOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- return status;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
-{
- n = x.size();
- m = functor.values();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n);
- wa4.resize(m);
- fvec.resize(m);
- fjac.resize(m, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
- qtf.resize(n);
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- par = 0.;
- iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- /* calculate the jacobian matrix. */
- Index df_ret = functor.df(x, fjac);
- if (df_ret<0)
- return LevenbergMarquardtSpace::UserAsked;
- if (df_ret>0)
- // numerical diff, we evaluated the function df_ret times
- nfev += df_ret;
- else njev++;
-
- /* compute the qr factorization of the jacobian. */
- wa2 = fjac.colwise().blueNorm();
- ColPivHouseholderQR<JacobianType> qrfac(fjac);
- fjac = qrfac.matrixQR();
- permutation = qrfac.colsPermutation();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (Index j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.)? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* form (q transpose)*fvec and store the first n components in */
- /* qtf. */
- wa4 = fvec;
- wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
- qtf = wa4.head(n);
-
- /* compute the norm of the scaled gradient. */
- gnorm = 0.;
- if (fnorm != 0.)
- for (Index j = 0; j < n; ++j)
- if (wa2[permutation.indices()[j]] != 0.)
- gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (gnorm <= parameters.gtol)
- return LevenbergMarquardtSpace::CosinusTooSmall;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- do {
-
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < fnorm)
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
- temp1 = numext::abs2(wa3.stableNorm() / fnorm);
- temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = Scalar(.5);
- if (actred < 0.)
- temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
- if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- delta = temp * (std::min)(delta, pnorm / Scalar(.1));
- par /= temp;
- } else if (!(par != 0. && ratio < Scalar(.75))) {
- delta = pnorm / Scalar(.5);
- par = Scalar(.5) * par;
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- if (delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::FtolTooSmall;
- if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
- return LevenbergMarquardtSpace::XtolTooSmall;
- if (gnorm <= NumTraits<Scalar>::epsilon())
- return LevenbergMarquardtSpace::GtolTooSmall;
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.ftol = tol;
- parameters.xtol = tol;
- parameters.maxfev = 100*(n+1);
-
- return minimizeOptimumStorage(x);
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x)
-{
- n = x.size();
- m = functor.values();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n);
- wa4.resize(m);
- fvec.resize(m);
- // Only R is stored in fjac. Q is only used to compute 'qtf', which is
- // Q.transpose()*rhs. qtf will be updated using givens rotation,
- // instead of storing them in Q.
- // The purpose it to only use a nxn matrix, instead of mxn here, so
- // that we can handle cases where m>>n :
- fjac.resize(n, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
- qtf.resize(n);
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- par = 0.;
- iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- Index i, j;
- bool sing;
-
- /* compute the qr factorization of the jacobian matrix */
- /* calculated one row at a time, while simultaneously */
- /* forming (q transpose)*fvec and storing the first */
- /* n components in qtf. */
- qtf.fill(0.);
- fjac.fill(0.);
- Index rownb = 2;
- for (i = 0; i < m; ++i) {
- if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
- internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
- ++rownb;
- }
- ++njev;
-
- /* if the jacobian is rank deficient, call qrfac to */
- /* reorder its columns and update the components of qtf. */
- sing = false;
- for (j = 0; j < n; ++j) {
- if (fjac(j,j) == 0.)
- sing = true;
- wa2[j] = fjac.col(j).head(j).stableNorm();
- }
- permutation.setIdentity(n);
- if (sing) {
- wa2 = fjac.colwise().blueNorm();
- // TODO We have no unit test covering this code path, do not modify
- // until it is carefully tested
- ColPivHouseholderQR<JacobianType> qrfac(fjac);
- fjac = qrfac.matrixQR();
- wa1 = fjac.diagonal();
- fjac.diagonal() = qrfac.hCoeffs();
- permutation = qrfac.colsPermutation();
- // TODO : avoid this:
- for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors
-
- for (j = 0; j < n; ++j) {
- if (fjac(j,j) != 0.) {
- sum = 0.;
- for (i = j; i < n; ++i)
- sum += fjac(i,j) * qtf[i];
- temp = -sum / fjac(j,j);
- for (i = j; i < n; ++i)
- qtf[i] += fjac(i,j) * temp;
- }
- fjac(j,j) = wa1[j];
- }
- }
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.)? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the norm of the scaled gradient. */
- gnorm = 0.;
- if (fnorm != 0.)
- for (j = 0; j < n; ++j)
- if (wa2[permutation.indices()[j]] != 0.)
- gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (gnorm <= parameters.gtol)
- return LevenbergMarquardtSpace::CosinusTooSmall;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- do {
-
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < fnorm)
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
- temp1 = numext::abs2(wa3.stableNorm() / fnorm);
- temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = Scalar(.5);
- if (actred < 0.)
- temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
- if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- delta = temp * (std::min)(delta, pnorm / Scalar(.1));
- par /= temp;
- } else if (!(par != 0. && ratio < Scalar(.75))) {
- delta = pnorm / Scalar(.5);
- par = Scalar(.5) * par;
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- if (delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::FtolTooSmall;
- if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
- return LevenbergMarquardtSpace::XtolTooSmall;
- if (gnorm <= NumTraits<Scalar>::epsilon())
- return LevenbergMarquardtSpace::GtolTooSmall;
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters)
- return status;
- do {
- status = minimizeOptimumStorageOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- return status;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol
- )
-{
- Index n = x.size();
- Index m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- NumericalDiff<FunctorType> numDiff(functor);
- // embedded LevenbergMarquardt
- LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff);
- lm.parameters.ftol = tol;
- lm.parameters.xtol = tol;
- lm.parameters.maxfev = 200*(n+1);
-
- LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
- if (nfev)
- * nfev = lm.nfev;
- return info;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LEVENBERGMARQUARDT__H
-
-//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
deleted file mode 100644
index db8ff7d..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
+++ /dev/null
@@ -1,66 +0,0 @@
-#define chkder_log10e 0.43429448190325182765
-#define chkder_factor 100.
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar>
-void chkder(
- const Matrix< Scalar, Dynamic, 1 > &x,
- const Matrix< Scalar, Dynamic, 1 > &fvec,
- const Matrix< Scalar, Dynamic, Dynamic > &fjac,
- Matrix< Scalar, Dynamic, 1 > &xp,
- const Matrix< Scalar, Dynamic, 1 > &fvecp,
- int mode,
- Matrix< Scalar, Dynamic, 1 > &err
- )
-{
- using std::sqrt;
- using std::abs;
- using std::log;
-
- typedef DenseIndex Index;
-
- const Scalar eps = sqrt(NumTraits<Scalar>::epsilon());
- const Scalar epsf = chkder_factor * NumTraits<Scalar>::epsilon();
- const Scalar epslog = chkder_log10e * log(eps);
- Scalar temp;
-
- const Index m = fvec.size(), n = x.size();
-
- if (mode != 2) {
- /* mode = 1. */
- xp.resize(n);
- for (Index j = 0; j < n; ++j) {
- temp = eps * abs(x[j]);
- if (temp == 0.)
- temp = eps;
- xp[j] = x[j] + temp;
- }
- }
- else {
- /* mode = 2. */
- err.setZero(m);
- for (Index j = 0; j < n; ++j) {
- temp = abs(x[j]);
- if (temp == 0.)
- temp = 1.;
- err += temp * fjac.col(j);
- }
- for (Index i = 0; i < m; ++i) {
- temp = 1.;
- if (fvec[i] != 0. && fvecp[i] != 0. && abs(fvecp[i] - fvec[i]) >= epsf * abs(fvec[i]))
- temp = eps * abs((fvecp[i] - fvec[i]) / eps - err[i]) / (abs(fvec[i]) + abs(fvecp[i]));
- err[i] = 1.;
- if (temp > NumTraits<Scalar>::epsilon() && temp < eps)
- err[i] = (chkder_log10e * log(temp) - epslog) / epslog;
- if (temp >= eps)
- err[i] = 0.;
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
deleted file mode 100644
index 68260d1..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
+++ /dev/null
@@ -1,70 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void covar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi &ipvt,
- Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
-{
- using std::abs;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, k, l, ii, jj;
- bool sing;
- Scalar temp;
-
- /* Function Body */
- const Index n = r.cols();
- const Scalar tolr = tol * abs(r(0,0));
- Matrix< Scalar, Dynamic, 1 > wa(n);
- eigen_assert(ipvt.size()==n);
-
- /* form the inverse of r in the full upper triangle of r. */
- l = -1;
- for (k = 0; k < n; ++k)
- if (abs(r(k,k)) > tolr) {
- r(k,k) = 1. / r(k,k);
- for (j = 0; j <= k-1; ++j) {
- temp = r(k,k) * r(j,k);
- r(j,k) = 0.;
- r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
- }
- l = k;
- }
-
- /* form the full upper triangle of the inverse of (r transpose)*r */
- /* in the full upper triangle of r. */
- for (k = 0; k <= l; ++k) {
- for (j = 0; j <= k-1; ++j)
- r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
- r.col(k).head(k+1) *= r(k,k);
- }
-
- /* form the full lower triangle of the covariance matrix */
- /* in the strict lower triangle of r and in wa. */
- for (j = 0; j < n; ++j) {
- jj = ipvt[j];
- sing = j > l;
- for (i = 0; i <= j; ++i) {
- if (sing)
- r(i,j) = 0.;
- ii = ipvt[i];
- if (ii > jj)
- r(ii,jj) = r(i,j);
- if (ii < jj)
- r(jj,ii) = r(i,j);
- }
- wa[jj] = r(j,j);
- }
-
- /* symmetrize the covariance matrix in r. */
- r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
- r.diagonal() = wa;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
deleted file mode 100644
index 80c5d27..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
+++ /dev/null
@@ -1,107 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void dogleg(
- const Matrix< Scalar, Dynamic, Dynamic > &qrfac,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Matrix< Scalar, Dynamic, 1 > &x)
-{
- using std::abs;
- using std::sqrt;
-
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j;
- Scalar sum, temp, alpha, bnorm;
- Scalar gnorm, qnorm;
- Scalar sgnorm;
-
- /* Function Body */
- const Scalar epsmch = NumTraits<Scalar>::epsilon();
- const Index n = qrfac.cols();
- eigen_assert(n==qtb.size());
- eigen_assert(n==x.size());
- eigen_assert(n==diag.size());
- Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
-
- /* first, calculate the gauss-newton direction. */
- for (j = n-1; j >=0; --j) {
- temp = qrfac(j,j);
- if (temp == 0.) {
- temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
- if (temp == 0.)
- temp = epsmch;
- }
- if (j==n-1)
- x[j] = qtb[j] / temp;
- else
- x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
- }
-
- /* test whether the gauss-newton direction is acceptable. */
- qnorm = diag.cwiseProduct(x).stableNorm();
- if (qnorm <= delta)
- return;
-
- // TODO : this path is not tested by Eigen unit tests
-
- /* the gauss-newton direction is not acceptable. */
- /* next, calculate the scaled gradient direction. */
-
- wa1.fill(0.);
- for (j = 0; j < n; ++j) {
- wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
- wa1[j] /= diag[j];
- }
-
- /* calculate the norm of the scaled gradient and test for */
- /* the special case in which the scaled gradient is zero. */
- gnorm = wa1.stableNorm();
- sgnorm = 0.;
- alpha = delta / qnorm;
- if (gnorm == 0.)
- goto algo_end;
-
- /* calculate the point along the scaled gradient */
- /* at which the quadratic is minimized. */
- wa1.array() /= (diag*gnorm).array();
- // TODO : once unit tests cover this part,:
- // wa2 = qrfac.template triangularView<Upper>() * wa1;
- for (j = 0; j < n; ++j) {
- sum = 0.;
- for (i = j; i < n; ++i) {
- sum += qrfac(j,i) * wa1[i];
- }
- wa2[j] = sum;
- }
- temp = wa2.stableNorm();
- sgnorm = gnorm / temp / temp;
-
- /* test whether the scaled gradient direction is acceptable. */
- alpha = 0.;
- if (sgnorm >= delta)
- goto algo_end;
-
- /* the scaled gradient direction is not acceptable. */
- /* finally, calculate the point along the dogleg */
- /* at which the quadratic is minimized. */
- bnorm = qtb.stableNorm();
- temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
- temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
- alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
-algo_end:
-
- /* form appropriate convex combination of the gauss-newton */
- /* direction and the scaled gradient direction. */
- temp = (1.-alpha) * (std::min)(sgnorm,delta);
- x = temp * wa1 + alpha * x;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
deleted file mode 100644
index bb7cf26..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
+++ /dev/null
@@ -1,79 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template<typename FunctorType, typename Scalar>
-DenseIndex fdjac1(
- const FunctorType &Functor,
- Matrix< Scalar, Dynamic, 1 > &x,
- Matrix< Scalar, Dynamic, 1 > &fvec,
- Matrix< Scalar, Dynamic, Dynamic > &fjac,
- DenseIndex ml, DenseIndex mu,
- Scalar epsfcn)
-{
- using std::sqrt;
- using std::abs;
-
- typedef DenseIndex Index;
-
- /* Local variables */
- Scalar h;
- Index j, k;
- Scalar eps, temp;
- Index msum;
- int iflag;
- Index start, length;
-
- /* Function Body */
- const Scalar epsmch = NumTraits<Scalar>::epsilon();
- const Index n = x.size();
- eigen_assert(fvec.size()==n);
- Matrix< Scalar, Dynamic, 1 > wa1(n);
- Matrix< Scalar, Dynamic, 1 > wa2(n);
-
- eps = sqrt((std::max)(epsfcn,epsmch));
- msum = ml + mu + 1;
- if (msum >= n) {
- /* computation of dense approximate jacobian. */
- for (j = 0; j < n; ++j) {
- temp = x[j];
- h = eps * abs(temp);
- if (h == 0.)
- h = eps;
- x[j] = temp + h;
- iflag = Functor(x, wa1);
- if (iflag < 0)
- return iflag;
- x[j] = temp;
- fjac.col(j) = (wa1-fvec)/h;
- }
-
- }else {
- /* computation of banded approximate jacobian. */
- for (k = 0; k < msum; ++k) {
- for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
- wa2[j] = x[j];
- h = eps * abs(wa2[j]);
- if (h == 0.) h = eps;
- x[j] = wa2[j] + h;
- }
- iflag = Functor(x, wa1);
- if (iflag < 0)
- return iflag;
- for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
- x[j] = wa2[j];
- h = eps * abs(wa2[j]);
- if (h == 0.) h = eps;
- fjac.col(j).setZero();
- start = std::max<Index>(0,j-mu);
- length = (std::min)(n-1, j+ml) - start + 1;
- fjac.col(j).segment(start, length) = ( wa1.segment(start, length)-fvec.segment(start, length))/h;
- }
- }
- }
- return 0;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
deleted file mode 100644
index 4c17d4c..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
+++ /dev/null
@@ -1,298 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void lmpar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi &ipvt,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Scalar &par,
- Matrix< Scalar, Dynamic, 1 > &x)
-{
- using std::abs;
- using std::sqrt;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, l;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = r.cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
- eigen_assert(n==x.size());
-
- Matrix< Scalar, Dynamic, 1 > wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
- Index nsing = n-1;
- wa1 = qtb;
- for (j = 0; j < n; ++j) {
- if (r(j,j) == 0. && nsing == n-1)
- nsing = j - 1;
- if (nsing < n-1)
- wa1[j] = 0.;
- }
- for (j = nsing; j>=0; --j) {
- wa1[j] /= r(j,j);
- temp = wa1[j];
- for (i = 0; i < j ; ++i)
- wa1[i] -= r(i,j) * temp;
- }
-
- for (j = 0; j < n; ++j)
- x[ipvt[j]] = wa1[j];
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - delta;
- if (fp <= Scalar(0.1) * delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (nsing >= n-1) {
- for (j = 0; j < n; ++j) {
- l = ipvt[j];
- wa1[j] = diag[l] * (wa2[l] / dxnorm);
- }
- // it's actually a triangularView.solveInplace(), though in a weird
- // way:
- for (j = 0; j < n; ++j) {
- Scalar sum = 0.;
- for (i = 0; i < j; ++i)
- sum += r(i,j) * wa1[i];
- wa1[j] = (wa1[j] - sum) / r(j,j);
- }
- temp = wa1.blueNorm();
- parl = fp / delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- Matrix< Scalar, Dynamic, 1 > sdiag(n);
- qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- for (j = 0; j < n; ++j) {
- l = ipvt[j];
- wa1[j] = diag[l] * (wa2[l] / dxnorm);
- }
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (i = j+1; i < n; ++i)
- wa1[i] -= r(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- /* Computing MAX */
- par = (std::max)(parl,par+parc);
-
- /* end of an iteration. */
- }
-
- /* termination. */
- if (iter == 0)
- par = 0.;
- return;
-}
-
-template <typename Scalar>
-void lmpar2(
- const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Scalar &par,
- Matrix< Scalar, Dynamic, 1 > &x)
-
-{
- using std::sqrt;
- using std::abs;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index j;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = qr.matrixQR().cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
-
- Matrix< Scalar, Dynamic, 1 > wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
-
-// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
- const Index rank = qr.rank(); // use a threshold
- wa1 = qtb;
- wa1.tail(n-rank).setZero();
- qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
-
- x = qr.colsPermutation()*wa1;
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - delta;
- if (fp <= Scalar(0.1) * delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (rank==n) {
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
- qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- temp = wa1.blueNorm();
- parl = fp / delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- Matrix< Scalar, Dynamic, 1 > sdiag(n);
- qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
- // we could almost use this here, but the diagonal is outside qr, in sdiag[]
- // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (Index i = j+1; i < n; ++i)
- wa1[i] -= s(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- par = (std::max)(parl,par+parc);
- }
- if (iter == 0)
- par = 0.;
- return;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
deleted file mode 100644
index feafd62..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
+++ /dev/null
@@ -1,91 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-// TODO : once qrsolv2 is removed, use ColPivHouseholderQR or PermutationMatrix instead of ipvt
-template <typename Scalar>
-void qrsolv(
- Matrix< Scalar, Dynamic, Dynamic > &s,
- // TODO : use a PermutationMatrix once lmpar is no more:
- const VectorXi &ipvt,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Matrix< Scalar, Dynamic, 1 > &x,
- Matrix< Scalar, Dynamic, 1 > &sdiag)
-
-{
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, k, l;
- Scalar temp;
- Index n = s.cols();
- Matrix< Scalar, Dynamic, 1 > wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize s. */
- /* in particular, save the diagonal elements of r in x. */
- x = s.diagonal();
- wa = qtb;
-
- s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
-
- /* eliminate the diagonal matrix d using a givens rotation. */
- for (j = 0; j < n; ++j) {
-
- /* prepare the row of d to be eliminated, locating the */
- /* diagonal element using p from the qr factorization. */
- l = ipvt[j];
- if (diag[l] == 0.)
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
-
- /* the transformations to eliminate the row of d */
- /* modify only a single element of (q transpose)*b */
- /* beyond the first n, which is initially zero. */
- Scalar qtbpj = 0.;
- for (k = j; k < n; ++k) {
- /* determine a givens rotation which eliminates the */
- /* appropriate element in the current row of d. */
- givens.makeGivens(-s(k,k), sdiag[k]);
-
- /* compute the modified diagonal element of r and */
- /* the modified element of ((q transpose)*b,0). */
- s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
- temp = givens.c() * wa[k] + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
- wa[k] = temp;
-
- /* accumulate the tranformation in the row of s. */
- for (i = k+1; i<n; ++i) {
- temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
- sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
- s(i,k) = temp;
- }
- }
- }
-
- /* solve the triangular system for z. if the system is */
- /* singular, then obtain a least squares solution. */
- Index nsing;
- for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
- s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
-
- // restore
- sdiag = s.diagonal();
- s.diagonal() = x;
-
- /* permute the components of z back to components of x. */
- for (j = 0; j < n; ++j) x[ipvt[j]] = wa[j];
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
deleted file mode 100644
index 36ff700..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
+++ /dev/null
@@ -1,30 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-// TODO : move this to GivensQR once there's such a thing in Eigen
-
-template <typename Scalar>
-void r1mpyq(DenseIndex m, DenseIndex n, Scalar *a, const std::vector<JacobiRotation<Scalar> > &v_givens, const std::vector<JacobiRotation<Scalar> > &w_givens)
-{
- typedef DenseIndex Index;
-
- /* apply the first set of givens rotations to a. */
- for (Index j = n-2; j>=0; --j)
- for (Index i = 0; i<m; ++i) {
- Scalar temp = v_givens[j].c() * a[i+m*j] - v_givens[j].s() * a[i+m*(n-1)];
- a[i+m*(n-1)] = v_givens[j].s() * a[i+m*j] + v_givens[j].c() * a[i+m*(n-1)];
- a[i+m*j] = temp;
- }
- /* apply the second set of givens rotations to a. */
- for (Index j = 0; j<n-1; ++j)
- for (Index i = 0; i<m; ++i) {
- Scalar temp = w_givens[j].c() * a[i+m*j] + w_givens[j].s() * a[i+m*(n-1)];
- a[i+m*(n-1)] = -w_givens[j].s() * a[i+m*j] + w_givens[j].c() * a[i+m*(n-1)];
- a[i+m*j] = temp;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
deleted file mode 100644
index f287660..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
+++ /dev/null
@@ -1,99 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void r1updt(
- Matrix< Scalar, Dynamic, Dynamic > &s,
- const Matrix< Scalar, Dynamic, 1> &u,
- std::vector<JacobiRotation<Scalar> > &v_givens,
- std::vector<JacobiRotation<Scalar> > &w_givens,
- Matrix< Scalar, Dynamic, 1> &v,
- Matrix< Scalar, Dynamic, 1> &w,
- bool *sing)
-{
- typedef DenseIndex Index;
- const JacobiRotation<Scalar> IdentityRotation = JacobiRotation<Scalar>(1,0);
-
- /* Local variables */
- const Index m = s.rows();
- const Index n = s.cols();
- Index i, j=1;
- Scalar temp;
- JacobiRotation<Scalar> givens;
-
- // r1updt had a broader usecase, but we dont use it here. And, more
- // importantly, we can not test it.
- eigen_assert(m==n);
- eigen_assert(u.size()==m);
- eigen_assert(v.size()==n);
- eigen_assert(w.size()==n);
-
- /* move the nontrivial part of the last column of s into w. */
- w[n-1] = s(n-1,n-1);
-
- /* rotate the vector v into a multiple of the n-th unit vector */
- /* in such a way that a spike is introduced into w. */
- for (j=n-2; j>=0; --j) {
- w[j] = 0.;
- if (v[j] != 0.) {
- /* determine a givens rotation which eliminates the */
- /* j-th element of v. */
- givens.makeGivens(-v[n-1], v[j]);
-
- /* apply the transformation to v and store the information */
- /* necessary to recover the givens rotation. */
- v[n-1] = givens.s() * v[j] + givens.c() * v[n-1];
- v_givens[j] = givens;
-
- /* apply the transformation to s and extend the spike in w. */
- for (i = j; i < m; ++i) {
- temp = givens.c() * s(j,i) - givens.s() * w[i];
- w[i] = givens.s() * s(j,i) + givens.c() * w[i];
- s(j,i) = temp;
- }
- } else
- v_givens[j] = IdentityRotation;
- }
-
- /* add the spike from the rank 1 update to w. */
- w += v[n-1] * u;
-
- /* eliminate the spike. */
- *sing = false;
- for (j = 0; j < n-1; ++j) {
- if (w[j] != 0.) {
- /* determine a givens rotation which eliminates the */
- /* j-th element of the spike. */
- givens.makeGivens(-s(j,j), w[j]);
-
- /* apply the transformation to s and reduce the spike in w. */
- for (i = j; i < m; ++i) {
- temp = givens.c() * s(j,i) + givens.s() * w[i];
- w[i] = -givens.s() * s(j,i) + givens.c() * w[i];
- s(j,i) = temp;
- }
-
- /* store the information necessary to recover the */
- /* givens rotation. */
- w_givens[j] = givens;
- } else
- v_givens[j] = IdentityRotation;
-
- /* test for zero diagonal elements in the output s. */
- if (s(j,j) == 0.) {
- *sing = true;
- }
- }
- /* move w back into the last column of the output s. */
- s(n-1,n-1) = w[n-1];
-
- if (s(j,j) == 0.) {
- *sing = true;
- }
- return;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
deleted file mode 100644
index 6ebf856..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
+++ /dev/null
@@ -1,49 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void rwupdt(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const Matrix< Scalar, Dynamic, 1> &w,
- Matrix< Scalar, Dynamic, 1> &b,
- Scalar alpha)
-{
- typedef DenseIndex Index;
-
- const Index n = r.cols();
- eigen_assert(r.rows()>=n);
- std::vector<JacobiRotation<Scalar> > givens(n);
-
- /* Local variables */
- Scalar temp, rowj;
-
- /* Function Body */
- for (Index j = 0; j < n; ++j) {
- rowj = w[j];
-
- /* apply the previous transformations to */
- /* r(i,j), i=0,1,...,j-1, and to w(j). */
- for (Index i = 0; i < j; ++i) {
- temp = givens[i].c() * r(i,j) + givens[i].s() * rowj;
- rowj = -givens[i].s() * r(i,j) + givens[i].c() * rowj;
- r(i,j) = temp;
- }
-
- /* determine a givens rotation which eliminates w(j). */
- givens[j].makeGivens(-r(j,j), rowj);
-
- if (rowj == 0.)
- continue; // givens[j] is identity
-
- /* apply the current transformation to r(j,j), b(j), and alpha. */
- r(j,j) = givens[j].c() * r(j,j) + givens[j].s() * rowj;
- temp = givens[j].c() * b[j] + givens[j].s() * alpha;
- alpha = -givens[j].s() * b[j] + givens[j].c() * alpha;
- b[j] = temp;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
deleted file mode 100644
index ea5d8bc..0000000
--- a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NUMERICAL_DIFF_H
-#define EIGEN_NUMERICAL_DIFF_H
-
-namespace Eigen {
-
-enum NumericalDiffMode {
- Forward,
- Central
-};
-
-
-/**
- * This class allows you to add a method df() to your functor, which will
- * use numerical differentiation to compute an approximate of the
- * derivative for the functor. Of course, if you have an analytical form
- * for the derivative, you should rather implement df() by yourself.
- *
- * More information on
- * http://en.wikipedia.org/wiki/Numerical_differentiation
- *
- * Currently only "Forward" and "Central" scheme are implemented.
- */
-template<typename _Functor, NumericalDiffMode mode=Forward>
-class NumericalDiff : public _Functor
-{
-public:
- typedef _Functor Functor;
- typedef typename Functor::Scalar Scalar;
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename Functor::JacobianType JacobianType;
-
- NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
- NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}
-
- // forward constructors
- template<typename T0>
- NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
- template<typename T0, typename T1>
- NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
- template<typename T0, typename T1, typename T2>
- NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {}
-
- enum {
- InputsAtCompileTime = Functor::InputsAtCompileTime,
- ValuesAtCompileTime = Functor::ValuesAtCompileTime
- };
-
- /**
- * return the number of evaluation of functor
- */
- int df(const InputType& _x, JacobianType &jac) const
- {
- using std::sqrt;
- using std::abs;
- /* Local variables */
- Scalar h;
- int nfev=0;
- const typename InputType::Index n = _x.size();
- const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() )));
- ValueType val1, val2;
- InputType x = _x;
- // TODO : we should do this only if the size is not already known
- val1.resize(Functor::values());
- val2.resize(Functor::values());
-
- // initialization
- switch(mode) {
- case Forward:
- // compute f(x)
- Functor::operator()(x, val1); nfev++;
- break;
- case Central:
- // do nothing
- break;
- default:
- eigen_assert(false);
- };
-
- // Function Body
- for (int j = 0; j < n; ++j) {
- h = eps * abs(x[j]);
- if (h == 0.) {
- h = eps;
- }
- switch(mode) {
- case Forward:
- x[j] += h;
- Functor::operator()(x, val2);
- nfev++;
- x[j] = _x[j];
- jac.col(j) = (val2-val1)/h;
- break;
- case Central:
- x[j] += h;
- Functor::operator()(x, val2); nfev++;
- x[j] -= 2*h;
- Functor::operator()(x, val1); nfev++;
- x[j] = _x[j];
- jac.col(j) = (val2-val1)/(2*h);
- break;
- default:
- eigen_assert(false);
- };
- }
- return nfev;
- }
-private:
- Scalar epsfcn;
-
- NumericalDiff& operator=(const NumericalDiff&);
-};
-
-} // end namespace Eigen
-
-//vim: ai ts=4 sts=4 et sw=4
-#endif // EIGEN_NUMERICAL_DIFF_H
-
diff --git a/eigen/unsupported/Eigen/src/Polynomials/Companion.h b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
deleted file mode 100644
index b515c29..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/Companion.h
+++ /dev/null
@@ -1,276 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPANION_H
-#define EIGEN_COMPANION_H
-
-// This file requires the user to include
-// * Eigen/Core
-// * Eigen/src/PolynomialSolver.h
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-template <typename T>
-T radix(){ return 2; }
-
-template <typename T>
-T radix2(){ return radix<T>()*radix<T>(); }
-
-template<int Size>
-struct decrement_if_fixed_size
-{
- enum {
- ret = (Size == Dynamic) ? Dynamic : Size-1 };
-};
-
-#endif
-
-template< typename _Scalar, int _Deg >
-class companion
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- enum {
- Deg = _Deg,
- Deg_1=decrement_if_fixed_size<Deg>::ret
- };
-
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, Deg, 1> RightColumn;
- //typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
- typedef Matrix<Scalar, Deg_1, 1> BottomLeftDiagonal;
-
- typedef Matrix<Scalar, Deg, Deg> DenseCompanionMatrixType;
- typedef Matrix< Scalar, _Deg, Deg_1 > LeftBlock;
- typedef Matrix< Scalar, Deg_1, Deg_1 > BottomLeftBlock;
- typedef Matrix< Scalar, 1, Deg_1 > LeftBlockFirstRow;
-
- typedef DenseIndex Index;
-
- public:
- EIGEN_STRONG_INLINE const _Scalar operator()(Index row, Index col ) const
- {
- if( m_bl_diag.rows() > col )
- {
- if( 0 < row ){ return m_bl_diag[col]; }
- else{ return 0; }
- }
- else{ return m_monic[row]; }
- }
-
- public:
- template<typename VectorType>
- void setPolynomial( const VectorType& poly )
- {
- const Index deg = poly.size()-1;
- m_monic = -1/poly[deg] * poly.head(deg);
- //m_bl_diag.setIdentity( deg-1 );
- m_bl_diag.setOnes(deg-1);
- }
-
- template<typename VectorType>
- companion( const VectorType& poly ){
- setPolynomial( poly ); }
-
- public:
- DenseCompanionMatrixType denseMatrix() const
- {
- const Index deg = m_monic.size();
- const Index deg_1 = deg-1;
- DenseCompanionMatrixType companion(deg,deg);
- companion <<
- ( LeftBlock(deg,deg_1)
- << LeftBlockFirstRow::Zero(1,deg_1),
- BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
- , m_monic;
- return companion;
- }
-
-
-
- protected:
- /** Helper function for the balancing algorithm.
- * \returns true if the row and the column, having colNorm and rowNorm
- * as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
- * the column and the row in order to balance them.
- * */
- bool balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
-
- /** Helper function for the balancing algorithm.
- * \returns true if the row and the column, having colNorm and rowNorm
- * as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
- * the column and the row in order to balance them.
- * */
- bool balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
-
- public:
- /**
- * Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
- * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
- * adapted to the case of companion matrices.
- * A matrix with non zero row and non zero column is balanced
- * for a certain norm if the i-th row and the i-th column
- * have same norm for all i.
- */
- void balance();
-
- protected:
- RightColumn m_monic;
- BottomLeftDiagonal m_bl_diag;
-};
-
-
-
-template< typename _Scalar, int _Deg >
-inline
-bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
-{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
- else
- {
- //To find the balancing coefficients, if the radix is 2,
- //one finds \f$ \sigma \f$ such that
- // \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
- // then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
- // and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
- rowB = rowNorm / radix<Scalar>();
- colB = Scalar(1);
- const Scalar s = colNorm + rowNorm;
-
- while (colNorm < rowB)
- {
- colB *= radix<Scalar>();
- colNorm *= radix2<Scalar>();
- }
-
- rowB = rowNorm * radix<Scalar>();
-
- while (colNorm >= rowB)
- {
- colB /= radix<Scalar>();
- colNorm /= radix2<Scalar>();
- }
-
- //This line is used to avoid insubstantial balancing
- if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
- {
- isBalanced = false;
- rowB = Scalar(1) / colB;
- return false;
- }
- else{
- return true; }
- }
-}
-
-template< typename _Scalar, int _Deg >
-inline
-bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
-{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
- else
- {
- /**
- * Set the norm of the column and the row to the geometric mean
- * of the row and column norm
- */
- const _Scalar q = colNorm/rowNorm;
- if( !isApprox( q, _Scalar(1) ) )
- {
- rowB = sqrt( colNorm/rowNorm );
- colB = Scalar(1)/rowB;
-
- isBalanced = false;
- return false;
- }
- else{
- return true; }
- }
-}
-
-
-template< typename _Scalar, int _Deg >
-void companion<_Scalar,_Deg>::balance()
-{
- using std::abs;
- EIGEN_STATIC_ASSERT( Deg == Dynamic || 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
- const Index deg = m_monic.size();
- const Index deg_1 = deg-1;
-
- bool hasConverged=false;
- while( !hasConverged )
- {
- hasConverged = true;
- Scalar colNorm,rowNorm;
- Scalar colB,rowB;
-
- //First row, first column excluding the diagonal
- //==============================================
- colNorm = abs(m_bl_diag[0]);
- rowNorm = abs(m_monic[0]);
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- m_bl_diag[0] *= colB;
- m_monic[0] *= rowB;
- }
-
- //Middle rows and columns excluding the diagonal
- //==============================================
- for( Index i=1; i<deg_1; ++i )
- {
- // column norm, excluding the diagonal
- colNorm = abs(m_bl_diag[i]);
-
- // row norm, excluding the diagonal
- rowNorm = abs(m_bl_diag[i-1]) + abs(m_monic[i]);
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- m_bl_diag[i] *= colB;
- m_bl_diag[i-1] *= rowB;
- m_monic[i] *= rowB;
- }
- }
-
- //Last row, last column excluding the diagonal
- //============================================
- const Index ebl = m_bl_diag.size()-1;
- VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
- colNorm = headMonic.array().abs().sum();
- rowNorm = abs( m_bl_diag[ebl] );
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- headMonic *= colB;
- m_bl_diag[ebl] *= rowB;
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPANION_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
deleted file mode 100644
index 03198ec..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
+++ /dev/null
@@ -1,406 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_POLYNOMIAL_SOLVER_H
-#define EIGEN_POLYNOMIAL_SOLVER_H
-
-namespace Eigen {
-
-/** \ingroup Polynomials_Module
- * \class PolynomialSolverBase.
- *
- * \brief Defined to be inherited by polynomial solvers: it provides
- * convenient methods such as
- * - real roots,
- * - greatest, smallest complex roots,
- * - real roots with greatest, smallest absolute real value,
- * - greatest, smallest real roots.
- *
- * It stores the set of roots as a vector of complexes.
- *
- */
-template< typename _Scalar, int _Deg >
-class PolynomialSolverBase
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef std::complex<RealScalar> RootType;
- typedef Matrix<RootType,_Deg,1> RootsType;
-
- typedef DenseIndex Index;
-
- protected:
- template< typename OtherPolynomial >
- inline void setPolynomial( const OtherPolynomial& poly ){
- m_roots.resize(poly.size()-1); }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolverBase( const OtherPolynomial& poly ){
- setPolynomial( poly() ); }
-
- inline PolynomialSolverBase(){}
-
- public:
- /** \returns the complex roots of the polynomial */
- inline const RootsType& roots() const { return m_roots; }
-
- public:
- /** Clear and fills the back insertion sequence with the real roots of the polynomial
- * i.e. the real part of the complex roots that have an imaginary part which
- * absolute value is smaller than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- *
- * \param[out] bi_seq : the back insertion sequence (stl concept)
- * \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
- * number that is considered as real.
- * */
- template<typename Stl_back_insertion_sequence>
- inline void realRoots( Stl_back_insertion_sequence& bi_seq,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- bi_seq.clear();
- for(Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold ){
- bi_seq.push_back( m_roots[i].real() ); }
- }
- }
-
- protected:
- template<typename squaredNormBinaryPredicate>
- inline const RootType& selectComplexRoot_withRespectToNorm( squaredNormBinaryPredicate& pred ) const
- {
- Index res=0;
- RealScalar norm2 = numext::abs2( m_roots[0] );
- for( Index i=1; i<m_roots.size(); ++i )
- {
- const RealScalar currNorm2 = numext::abs2( m_roots[i] );
- if( pred( currNorm2, norm2 ) ){
- res=i; norm2=currNorm2; }
- }
- return m_roots[res];
- }
-
- public:
- /**
- * \returns the complex root with greatest norm.
- */
- inline const RootType& greatestRoot() const
- {
- std::greater<Scalar> greater;
- return selectComplexRoot_withRespectToNorm( greater );
- }
-
- /**
- * \returns the complex root with smallest norm.
- */
- inline const RootType& smallestRoot() const
- {
- std::less<Scalar> less;
- return selectComplexRoot_withRespectToNorm( less );
- }
-
- protected:
- template<typename squaredRealPartBinaryPredicate>
- inline const RealScalar& selectRealRoot_withRespectToAbsRealPart(
- squaredRealPartBinaryPredicate& pred,
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- hasArealRoot = false;
- Index res=0;
- RealScalar abs2(0);
-
- for( Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
- {
- if( !hasArealRoot )
- {
- hasArealRoot = true;
- res = i;
- abs2 = m_roots[i].real() * m_roots[i].real();
- }
- else
- {
- const RealScalar currAbs2 = m_roots[i].real() * m_roots[i].real();
- if( pred( currAbs2, abs2 ) )
- {
- abs2 = currAbs2;
- res = i;
- }
- }
- }
- else
- {
- if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
- res = i; }
- }
- }
- return numext::real_ref(m_roots[res]);
- }
-
-
- template<typename RealPartBinaryPredicate>
- inline const RealScalar& selectRealRoot_withRespectToRealPart(
- RealPartBinaryPredicate& pred,
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- hasArealRoot = false;
- Index res=0;
- RealScalar val(0);
-
- for( Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
- {
- if( !hasArealRoot )
- {
- hasArealRoot = true;
- res = i;
- val = m_roots[i].real();
- }
- else
- {
- const RealScalar curr = m_roots[i].real();
- if( pred( curr, val ) )
- {
- val = curr;
- res = i;
- }
- }
- }
- else
- {
- if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
- res = i; }
- }
- }
- return numext::real_ref(m_roots[res]);
- }
-
- public:
- /**
- * \returns a real root with greatest absolute magnitude.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& absGreatestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::greater<Scalar> greater;
- return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns a real root with smallest absolute magnitude.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& absSmallestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::less<Scalar> less;
- return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns the real root with greatest value.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& greatestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::greater<Scalar> greater;
- return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns the real root with smallest value.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& smallestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::less<Scalar> less;
- return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
- }
-
- protected:
- RootsType m_roots;
-};
-
-#define EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( BASE ) \
- typedef typename BASE::Scalar Scalar; \
- typedef typename BASE::RealScalar RealScalar; \
- typedef typename BASE::RootType RootType; \
- typedef typename BASE::RootsType RootsType;
-
-
-
-/** \ingroup Polynomials_Module
- *
- * \class PolynomialSolver
- *
- * \brief A polynomial solver
- *
- * Computes the complex roots of a real polynomial.
- *
- * \param _Scalar the scalar type, i.e., the type of the polynomial coefficients
- * \param _Deg the degree of the polynomial, can be a compile time value or Dynamic.
- * Notice that the number of polynomial coefficients is _Deg+1.
- *
- * This class implements a polynomial solver and provides convenient methods such as
- * - real roots,
- * - greatest, smallest complex roots,
- * - real roots with greatest, smallest absolute real value.
- * - greatest, smallest real roots.
- *
- * WARNING: this polynomial solver is experimental, part of the unsupported Eigen modules.
- *
- *
- * Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
- * the polynomial to compute its roots.
- * This supposes that the complex moduli of the roots are all distinct: e.g. there should
- * be no multiple roots or conjugate roots for instance.
- * With 32bit (float) floating types this problem shows up frequently.
- * However, almost always, correct accuracy is reached even in these cases for 64bit
- * (double) floating types and small polynomial degree (<20).
- */
-template< typename _Scalar, int _Deg >
-class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- typedef PolynomialSolverBase<_Scalar,_Deg> PS_Base;
- EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
-
- typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
- typedef EigenSolver<CompanionMatrixType> EigenSolverType;
-
- public:
- /** Computes the complex roots of a new polynomial. */
- template< typename OtherPolynomial >
- void compute( const OtherPolynomial& poly )
- {
- eigen_assert( Scalar(0) != poly[poly.size()-1] );
- eigen_assert( poly.size() > 1 );
- if(poly.size() > 2 )
- {
- internal::companion<Scalar,_Deg> companion( poly );
- companion.balance();
- m_eigenSolver.compute( companion.denseMatrix() );
- m_roots = m_eigenSolver.eigenvalues();
- }
- else if(poly.size () == 2)
- {
- m_roots.resize(1);
- m_roots[0] = -poly[0]/poly[1];
- }
- }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolver( const OtherPolynomial& poly ){
- compute( poly ); }
-
- inline PolynomialSolver(){}
-
- protected:
- using PS_Base::m_roots;
- EigenSolverType m_eigenSolver;
-};
-
-
-template< typename _Scalar >
-class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
-{
- public:
- typedef PolynomialSolverBase<_Scalar,1> PS_Base;
- EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
-
- public:
- /** Computes the complex roots of a new polynomial. */
- template< typename OtherPolynomial >
- void compute( const OtherPolynomial& poly )
- {
- eigen_assert( poly.size() == 2 );
- eigen_assert( Scalar(0) != poly[1] );
- m_roots[0] = -poly[0]/poly[1];
- }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolver( const OtherPolynomial& poly ){
- compute( poly ); }
-
- inline PolynomialSolver(){}
-
- protected:
- using PS_Base::m_roots;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_POLYNOMIAL_SOLVER_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
deleted file mode 100644
index 394e857..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
+++ /dev/null
@@ -1,143 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_POLYNOMIAL_UTILS_H
-#define EIGEN_POLYNOMIAL_UTILS_H
-
-namespace Eigen {
-
-/** \ingroup Polynomials_Module
- * \returns the evaluation of the polynomial at x using Horner algorithm.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- * \param[in] x : the value to evaluate the polynomial at.
- *
- * \note for stability:
- * \f$ |x| \le 1 \f$
- */
-template <typename Polynomials, typename T>
-inline
-T poly_eval_horner( const Polynomials& poly, const T& x )
-{
- T val=poly[poly.size()-1];
- for(DenseIndex i=poly.size()-2; i>=0; --i ){
- val = val*x + poly[i]; }
- return val;
-}
-
-/** \ingroup Polynomials_Module
- * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- * \param[in] x : the value to evaluate the polynomial at.
- */
-template <typename Polynomials, typename T>
-inline
-T poly_eval( const Polynomials& poly, const T& x )
-{
- typedef typename NumTraits<T>::Real Real;
-
- if( numext::abs2( x ) <= Real(1) ){
- return poly_eval_horner( poly, x ); }
- else
- {
- T val=poly[0];
- T inv_x = T(1)/x;
- for( DenseIndex i=1; i<poly.size(); ++i ){
- val = val*inv_x + poly[i]; }
-
- return numext::pow(x,(T)(poly.size()-1)) * val;
- }
-}
-
-/** \ingroup Polynomials_Module
- * \returns a maximum bound for the absolute value of any root of the polynomial.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- *
- * \pre
- * the leading coefficient of the input polynomial poly must be non zero
- */
-template <typename Polynomial>
-inline
-typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
-{
- using std::abs;
- typedef typename Polynomial::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- eigen_assert( Scalar(0) != poly[poly.size()-1] );
- const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
- Real cb(0);
-
- for( DenseIndex i=0; i<poly.size()-1; ++i ){
- cb += abs(poly[i]*inv_leading_coeff); }
- return cb + Real(1);
-}
-
-/** \ingroup Polynomials_Module
- * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- */
-template <typename Polynomial>
-inline
-typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
-{
- using std::abs;
- typedef typename Polynomial::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- DenseIndex i=0;
- while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
- if( poly.size()-1 == i ){
- return Real(1); }
-
- const Scalar inv_min_coeff = Scalar(1)/poly[i];
- Real cb(1);
- for( DenseIndex j=i+1; j<poly.size(); ++j ){
- cb += abs(poly[j]*inv_min_coeff); }
- return Real(1)/cb;
-}
-
-/** \ingroup Polynomials_Module
- * Given the roots of a polynomial compute the coefficients in the
- * monomial basis of the monic polynomial with same roots and minimal degree.
- * If RootVector is a vector of complexes, Polynomial should also be a vector
- * of complexes.
- * \param[in] rv : a vector containing the roots of a polynomial.
- * \param[out] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
- */
-template <typename RootVector, typename Polynomial>
-void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
-{
-
- typedef typename Polynomial::Scalar Scalar;
-
- poly.setZero( rv.size()+1 );
- poly[0] = -rv[0]; poly[1] = Scalar(1);
- for( DenseIndex i=1; i< rv.size(); ++i )
- {
- for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
- poly[0] = -rv[i]*poly[0];
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_POLYNOMIAL_UTILS_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h b/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
deleted file mode 100644
index a1f54ed..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
+++ /dev/null
@@ -1,352 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEINPLACELU_H
-#define EIGEN_SKYLINEINPLACELU_H
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineInplaceLU
- *
- * \brief Inplace LU decomposition of a skyline matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU factorization
- *
- */
-template<typename MatrixType>
-class SkylineInplaceLU {
-protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
-
-public:
-
- /** Creates a LU object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SkylineInplaceLU(MatrixType& matrix, int flags = 0)
- : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0), m_lu(matrix) {
- m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
- m_lu.IsRowMajor ? computeRowMajor() : compute();
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) {
- m_precision = v;
- }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const {
- return m_precision;
- }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient
- * - one of the ordering methods
- * - etc...
- *
- * \sa flags() */
- void setFlags(int f) {
- m_flags = f;
- }
-
- /** \returns the current flags */
- int flags() const {
- return m_flags;
- }
-
- void setOrderingMethod(int m) {
- m_flags = m;
- }
-
- int orderingMethod() const {
- return m_flags;
- }
-
- /** Computes/re-computes the LU factorization */
- void compute();
- void computeRowMajor();
-
- /** \returns the lower triangular matrix L */
- //inline const MatrixType& matrixL() const { return m_matrixL; }
-
- /** \returns the upper triangular matrix U */
- //inline const MatrixType& matrixU() const { return m_matrixU; }
-
- template<typename BDerived, typename XDerived>
- bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
- const int transposed = 0) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const {
- return m_succeeded;
- }
-
-protected:
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
- MatrixType& m_lu;
-};
-
-/** Computes / recomputes the in place LU decomposition of the SkylineInplaceLU.
- * using the default algorithm.
- */
-template<typename MatrixType>
-//template<typename _Scalar>
-void SkylineInplaceLU<MatrixType>::compute() {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
- eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
- eigen_assert(!m_lu.IsRowMajor && "LU decomposition does not work with rowMajor Storage");
-
- for (Index row = 0; row < rows; row++) {
- const double pivot = m_lu.coeffDiag(row);
-
- //Lower matrix Columns update
- const Index& col = row;
- for (typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
- lIt.valueRef() /= pivot;
- }
-
- //Upper matrix update -> contiguous memory access
- typename MatrixType::InnerLowerIterator lIt(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
- const double coef = lIt.value();
-
- uItPivot += (rrow - row - 1);
-
- //update upper part -> contiguous memory access
- for (++uItPivot; uIt && uItPivot;) {
- uIt.valueRef() -= uItPivot.value() * coef;
-
- ++uIt;
- ++uItPivot;
- }
- ++lIt;
- }
-
- //Upper matrix update -> non contiguous memory access
- typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- const double coef = lIt3.value();
-
- //update lower part -> non contiguous memory access
- for (Index i = 0; i < rrow - row - 1; i++) {
- m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
- ++uItPivot;
- }
- ++lIt3;
- }
- //update diag -> contiguous
- typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
-
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
- const double coef = lIt2.value();
-
- uItPivot += (rrow - row - 1);
- m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
- ++lIt2;
- }
- }
-}
-
-template<typename MatrixType>
-void SkylineInplaceLU<MatrixType>::computeRowMajor() {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
- eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
- eigen_assert(m_lu.IsRowMajor && "You're trying to apply rowMajor decomposition on a ColMajor matrix !");
-
- for (Index row = 0; row < rows; row++) {
- typename MatrixType::InnerLowerIterator llIt(m_lu, row);
-
-
- for (Index col = llIt.col(); col < row; col++) {
- if (m_lu.coeffExistLower(row, col)) {
- const double diag = m_lu.coeffDiag(col);
-
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
-
-
- const Index offset = lIt.col() - uIt.row();
-
-
- Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();
-
- //#define VECTORIZE
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
-
-
- Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffLower(row, col);
-
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
- ++lIt;
- ++uIt;
- }
-#endif
-
- m_lu.coeffRefLower(row, col) = newCoeff / diag;
- }
- }
-
- //Upper matrix update
- const Index col = row;
- typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
- for (Index rrow = uuIt.row(); rrow < col; rrow++) {
-
- typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
- const Index offset = lIt.col() - uIt.row();
-
- Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();
-
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
-
- Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffUpper(rrow, col);
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
-
- ++lIt;
- ++uIt;
- }
-#endif
- m_lu.coeffRefUpper(rrow, col) = newCoeff;
- }
-
-
- //Diag matrix update
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, row);
-
- const Index offset = lIt.col() - uIt.row();
-
-
- Index stop = offset > 0 ? lIt.size() : uIt.size();
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
- Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffDiag(row);
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
- ++lIt;
- ++uIt;
- }
-#endif
- m_lu.coeffRefDiag(row) = newCoeff;
- }
-}
-
-/** Computes *x = U^-1 L^-1 b
- *
- * If \a transpose is set to SvTranspose or SvAdjoint, the solution
- * of the transposed/adjoint system is computed instead.
- *
- * Not all backends implement the solution of the transposed or
- * adjoint system.
- */
-template<typename MatrixType>
-template<typename BDerived, typename XDerived>
-bool SkylineInplaceLU<MatrixType>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
-
- for (Index row = 0; row < rows; row++) {
- x->coeffRef(row) = b.coeff(row);
- Scalar newVal = x->coeff(row);
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
-
- Index col = lIt.col();
- while (lIt.col() < row) {
-
- newVal -= x->coeff(col++) * lIt.value();
- ++lIt;
- }
-
- x->coeffRef(row) = newVal;
- }
-
-
- for (Index col = rows - 1; col > 0; col--) {
- x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);
-
- const Scalar x_col = x->coeff(col);
-
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
- uIt += uIt.size()-1;
-
-
- while (uIt) {
- x->coeffRef(uIt.row()) -= x_col * uIt.value();
- //TODO : introduce --operator
- uIt += -1;
- }
-
-
- }
- x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);
-
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINELU_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
deleted file mode 100644
index a2a8933..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
+++ /dev/null
@@ -1,862 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEMATRIX_H
-#define EIGEN_SKYLINEMATRIX_H
-
-#include "SkylineStorage.h"
-#include "SkylineMatrixBase.h"
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineMatrix
- *
- * \brief The main skyline matrix class
- *
- * This class implements a skyline matrix using the very uncommon storage
- * scheme.
- *
- * \param _Scalar the scalar type, i.e. the type of the coefficients
- * \param _Options Union of bit flags controlling the storage scheme. Currently the only possibility
- * is RowMajor. The default is 0 which means column-major.
- *
- *
- */
-namespace internal {
-template<typename _Scalar, int _Options>
-struct traits<SkylineMatrix<_Scalar, _Options> > {
- typedef _Scalar Scalar;
- typedef Sparse StorageKind;
-
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = SkylineBit | _Options,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- };
-};
-}
-
-template<typename _Scalar, int _Options>
-class SkylineMatrix
-: public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
-public:
- EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)
-
- using Base::IsRowMajor;
-
-protected:
-
- typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;
-
- Index m_outerSize;
- Index m_innerSize;
-
-public:
- Index* m_colStartIndex;
- Index* m_rowStartIndex;
- SkylineStorage<Scalar> m_data;
-
-public:
-
- inline Index rows() const {
- return IsRowMajor ? m_outerSize : m_innerSize;
- }
-
- inline Index cols() const {
- return IsRowMajor ? m_innerSize : m_outerSize;
- }
-
- inline Index innerSize() const {
- return m_innerSize;
- }
-
- inline Index outerSize() const {
- return m_outerSize;
- }
-
- inline Index upperNonZeros() const {
- return m_data.upperSize();
- }
-
- inline Index lowerNonZeros() const {
- return m_data.lowerSize();
- }
-
- inline Index upperNonZeros(Index j) const {
- return m_colStartIndex[j + 1] - m_colStartIndex[j];
- }
-
- inline Index lowerNonZeros(Index j) const {
- return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
- }
-
- inline const Scalar* _diagPtr() const {
- return &m_data.diag(0);
- }
-
- inline Scalar* _diagPtr() {
- return &m_data.diag(0);
- }
-
- inline const Scalar* _upperPtr() const {
- return &m_data.upper(0);
- }
-
- inline Scalar* _upperPtr() {
- return &m_data.upper(0);
- }
-
- inline const Scalar* _lowerPtr() const {
- return &m_data.lower(0);
- }
-
- inline Scalar* _lowerPtr() {
- return &m_data.lower(0);
- }
-
- inline const Index* _upperProfilePtr() const {
- return &m_data.upperProfile(0);
- }
-
- inline Index* _upperProfilePtr() {
- return &m_data.upperProfile(0);
- }
-
- inline const Index* _lowerProfilePtr() const {
- return &m_data.lowerProfile(0);
- }
-
- inline Index* _lowerProfilePtr() {
- return &m_data.lowerProfile(0);
- }
-
- inline Scalar coeff(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return this->m_data.diag(outer);
-
- if (IsRowMajor) {
- if (inner > outer) //upper matrix
- {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- if (outer >= minOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- else
- return Scalar(0);
- }
- if (inner < outer) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner >= minInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- else
- return Scalar(0);
- }
- return m_data.upper(m_colStartIndex[inner] + outer - inner);
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer <= maxOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- else
- return Scalar(0);
- }
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
-
- if (inner <= maxInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- else
- return Scalar(0);
- }
- }
- }
-
- inline Scalar& coeffRef(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return this->m_data.diag(outer);
-
- if (IsRowMajor) {
- if (col > row) //upper matrix
- {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- }
- if (col < row) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- }
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- }
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- }
- }
- }
-
- inline Scalar coeffDiag(Index idx) const {
- eigen_assert(idx < outerSize());
- eigen_assert(idx < innerSize());
- return this->m_data.diag(idx);
- }
-
- inline Scalar coeffLower(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner >= minInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- else
- return Scalar(0);
-
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- if (inner <= maxInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- else
- return Scalar(0);
- }
- }
-
- inline Scalar coeffUpper(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- if (outer >= minOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- else
- return Scalar(0);
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer <= maxOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- else
- return Scalar(0);
- }
- }
-
- inline Scalar& coeffRefDiag(Index idx) {
- eigen_assert(idx < outerSize());
- eigen_assert(idx < innerSize());
- return this->m_data.diag(idx);
- }
-
- inline Scalar& coeffRefLower(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- }
- }
-
- inline bool coeffExistLower(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- return inner >= minInnerIndex;
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- return inner <= maxInnerIndex;
- }
- }
-
- inline Scalar& coeffRefUpper(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- }
- }
-
- inline bool coeffExistUpper(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- return outer >= minOuterIndex;
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- return outer <= maxOuterIndex;
- }
- }
-
-
-protected:
-
-public:
- class InnerUpperIterator;
- class InnerLowerIterator;
-
- class OuterUpperIterator;
- class OuterLowerIterator;
-
- /** Removes all non zeros */
- inline void setZero() {
- m_data.clear();
- memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
- memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
- }
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const {
- return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
- }
-
- /** Preallocates \a reserveSize non zeros */
- inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
- m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
- }
-
- /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
-
- *
- * \warning This function can be extremely slow if the non zero coefficients
- * are not inserted in a coherent order.
- *
- * After an insertion session, you should call the finalize() function.
- */
- EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return m_data.diag(col);
-
- if (IsRowMajor) {
- if (outer < inner) //upper matrix
- {
- Index minOuterIndex = 0;
- minOuterIndex = inner - m_data.upperProfile(inner);
-
- if (outer < minOuterIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.upperProfile(inner);
-
- m_data.upperProfile(inner) = inner - outer;
-
-
- const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_colStartIndex[cols()];
- const Index start = m_colStartIndex[inner];
-
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
- }
-
- for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
- m_colStartIndex[innerIdx] += bandIncrement;
- }
-
- //zeros new data
- memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
-
- return m_data.upper(m_colStartIndex[inner]);
- } else {
- return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- }
- }
-
- if (outer > inner) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner < minInnerIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.lowerProfile(outer);
- m_data.lowerProfile(outer) = outer - inner;
-
- const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_rowStartIndex[rows()];
- const Index start = m_rowStartIndex[outer];
-
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
- }
-
- for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
- m_rowStartIndex[innerIdx] += bandIncrement;
- }
-
- //zeros new data
- memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.lower(m_rowStartIndex[outer]);
- } else {
- return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- }
- }
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer > maxOuterIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.upperProfile(inner);
- m_data.upperProfile(inner) = outer - inner;
-
- const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_rowStartIndex[rows()];
- const Index start = m_rowStartIndex[inner + 1];
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
- }
-
- for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
- m_rowStartIndex[innerIdx] += bandIncrement;
- }
- memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
- } else {
- return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
- }
- }
-
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- if (inner > maxInnerIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.lowerProfile(outer);
- m_data.lowerProfile(outer) = inner - outer;
-
- const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_colStartIndex[cols()];
- const Index start = m_colStartIndex[outer + 1];
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
- }
-
- for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
- m_colStartIndex[innerIdx] += bandIncrement;
- }
- memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
- } else {
- return m_data.lower(m_colStartIndex[outer] + (inner - outer));
- }
- }
- }
- }
-
- /** Must be called after inserting a set of non zero entries.
- */
- inline void finalize() {
- if (IsRowMajor) {
- if (rows() > cols())
- m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
- else
- m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
-
- // eigen_assert(rows() == cols() && "memory reorganisatrion only works with suare matrix");
- //
- // Scalar* newArray = new Scalar[m_colStartIndex[cols()] + 1 + m_rowStartIndex[rows()] + 1];
- // Index dataIdx = 0;
- // for (Index row = 0; row < rows(); row++) {
- //
- // const Index nbLowerElts = m_rowStartIndex[row + 1] - m_rowStartIndex[row];
- // // std::cout << "nbLowerElts" << nbLowerElts << std::endl;
- // memcpy(newArray + dataIdx, m_data.m_lower + m_rowStartIndex[row], nbLowerElts * sizeof (Scalar));
- // m_rowStartIndex[row] = dataIdx;
- // dataIdx += nbLowerElts;
- //
- // const Index nbUpperElts = m_colStartIndex[row + 1] - m_colStartIndex[row];
- // memcpy(newArray + dataIdx, m_data.m_upper + m_colStartIndex[row], nbUpperElts * sizeof (Scalar));
- // m_colStartIndex[row] = dataIdx;
- // dataIdx += nbUpperElts;
- //
- //
- // }
- // //todo : don't access m_data profile directly : add an accessor from SkylineMatrix
- // m_rowStartIndex[rows()] = m_rowStartIndex[rows()-1] + m_data.lowerProfile(rows()-1);
- // m_colStartIndex[cols()] = m_colStartIndex[cols()-1] + m_data.upperProfile(cols()-1);
- //
- // delete[] m_data.m_lower;
- // delete[] m_data.m_upper;
- //
- // m_data.m_lower = newArray;
- // m_data.m_upper = newArray;
- } else {
- if (rows() > cols())
- m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
- else
- m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
- }
- }
-
- inline void squeeze() {
- finalize();
- m_data.squeeze();
- }
-
- void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
- //TODO
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
- * \sa resizeNonZeros(Index), reserve(), setZero()
- */
- void resize(size_t rows, size_t cols) {
- const Index diagSize = rows > cols ? cols : rows;
- m_innerSize = IsRowMajor ? cols : rows;
-
- eigen_assert(rows == cols && "Skyline matrix must be square matrix");
-
- if (diagSize % 2) { // diagSize is odd
- const Index k = (diagSize - 1) / 2;
-
- m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
- 2 * k * k + k + 1,
- 2 * k * k + k + 1);
-
- } else // diagSize is even
- {
- const Index k = diagSize / 2;
- m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
- 2 * k * k - k + 1,
- 2 * k * k - k + 1);
- }
-
- if (m_colStartIndex && m_rowStartIndex) {
- delete[] m_colStartIndex;
- delete[] m_rowStartIndex;
- }
- m_colStartIndex = new Index [cols + 1];
- m_rowStartIndex = new Index [rows + 1];
- m_outerSize = diagSize;
-
- m_data.reset();
- m_data.clear();
-
- m_outerSize = diagSize;
- memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
- memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
- }
-
- void resizeNonZeros(Index size) {
- m_data.resize(size);
- }
-
- inline SkylineMatrix()
- : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- resize(0, 0);
- }
-
- inline SkylineMatrix(size_t rows, size_t cols)
- : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- resize(rows, cols);
- }
-
- template<typename OtherDerived>
- inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
- : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- *this = other.derived();
- }
-
- inline SkylineMatrix(const SkylineMatrix & other)
- : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- *this = other.derived();
- }
-
- inline void swap(SkylineMatrix & other) {
- //EIGEN_DBG_SKYLINE(std::cout << "SkylineMatrix:: swap\n");
- std::swap(m_colStartIndex, other.m_colStartIndex);
- std::swap(m_rowStartIndex, other.m_rowStartIndex);
- std::swap(m_innerSize, other.m_innerSize);
- std::swap(m_outerSize, other.m_outerSize);
- m_data.swap(other.m_data);
- }
-
- inline SkylineMatrix & operator=(const SkylineMatrix & other) {
- std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
- if (other.isRValue()) {
- swap(other.const_cast_derived());
- } else {
- resize(other.rows(), other.cols());
- memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
- memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
- m_data = other.m_data;
- }
- return *this;
- }
-
- template<typename OtherDerived>
- inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
- const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- if (needToTranspose) {
- // TODO
- // return *this;
- } else {
- // there is no special optimization
- return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
- }
- }
-
- friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {
-
- EIGEN_DBG_SKYLINE(
- std::cout << "upper elements : " << std::endl;
- for (Index i = 0; i < m.m_data.upperSize(); i++)
- std::cout << m.m_data.upper(i) << "\t";
- std::cout << std::endl;
- std::cout << "upper profile : " << std::endl;
- for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
- std::cout << m.m_data.upperProfile(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower startIdx : " << std::endl;
- for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
- std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
- std::cout << std::endl;
-
-
- std::cout << "lower elements : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerSize(); i++)
- std::cout << m.m_data.lower(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower profile : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
- std::cout << m.m_data.lowerProfile(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower startIdx : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
- std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
- std::cout << std::endl;
- );
- for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
- for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
- s << m.coeff(rowIdx, colIdx) << "\t";
- }
- s << std::endl;
- }
- return s;
- }
-
- /** Destructor */
- inline ~SkylineMatrix() {
- delete[] m_colStartIndex;
- delete[] m_rowStartIndex;
- }
-
- /** Overloaded for performance */
- Scalar sum() const;
-};
-
-template<typename Scalar, int _Options>
-class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
-public:
-
- InnerUpperIterator(const SkylineMatrix& mat, Index outer)
- : m_matrix(mat), m_outer(outer),
- m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
- m_start(m_id),
- m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
- }
-
- inline InnerUpperIterator & operator++() {
- m_id++;
- return *this;
- }
-
- inline InnerUpperIterator & operator+=(Index shift) {
- m_id += shift;
- return *this;
- }
-
- inline Scalar value() const {
- return m_matrix.m_data.upper(m_id);
- }
-
- inline Scalar* valuePtr() {
- return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
- }
-
- inline Scalar& valueRef() {
- return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
- }
-
- inline Index index() const {
- return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
- m_outer + (m_id - m_start) + 1;
- }
-
- inline Index row() const {
- return IsRowMajor ? index() : m_outer;
- }
-
- inline Index col() const {
- return IsRowMajor ? m_outer : index();
- }
-
- inline size_t size() const {
- return m_matrix.m_data.upperProfile(m_outer);
- }
-
- inline operator bool() const {
- return (m_id < m_end) && (m_id >= m_start);
- }
-
-protected:
- const SkylineMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-template<typename Scalar, int _Options>
-class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
-public:
-
- InnerLowerIterator(const SkylineMatrix& mat, Index outer)
- : m_matrix(mat),
- m_outer(outer),
- m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
- m_start(m_id),
- m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
- }
-
- inline InnerLowerIterator & operator++() {
- m_id++;
- return *this;
- }
-
- inline InnerLowerIterator & operator+=(Index shift) {
- m_id += shift;
- return *this;
- }
-
- inline Scalar value() const {
- return m_matrix.m_data.lower(m_id);
- }
-
- inline Scalar* valuePtr() {
- return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
- }
-
- inline Scalar& valueRef() {
- return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
- }
-
- inline Index index() const {
- return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
- m_outer + (m_id - m_start) + 1;
- ;
- }
-
- inline Index row() const {
- return IsRowMajor ? m_outer : index();
- }
-
- inline Index col() const {
- return IsRowMajor ? index() : m_outer;
- }
-
- inline size_t size() const {
- return m_matrix.m_data.lowerProfile(m_outer);
- }
-
- inline operator bool() const {
- return (m_id < m_end) && (m_id >= m_start);
- }
-
-protected:
- const SkylineMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SkylineMatrix_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
deleted file mode 100644
index b3a2372..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
+++ /dev/null
@@ -1,212 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEMATRIXBASE_H
-#define EIGEN_SKYLINEMATRIXBASE_H
-
-#include "SkylineUtil.h"
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineMatrixBase
- *
- * \brief Base class of any skyline matrices or skyline expressions
- *
- * \param Derived
- *
- */
-template<typename Derived> class SkylineMatrixBase : public EigenBase<Derived> {
-public:
-
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::index<StorageKind>::type Index;
-
- enum {
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- /**< The number of rows at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
-
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- /**< The number of columns at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
-
-
- SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime>::ret),
- /**< This is equal to the number of coefficients, i.e. the number of
- * rows times the number of columns, or to \a Dynamic if this is not
- * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
-
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
-
- MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
- MaxColsAtCompileTime>::ret),
-
- IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
- /**< This is set to true if either the number of rows or the number of
- * columns is known at compile-time to be equal to 1. Indeed, in that case,
- * we are dealing with a column-vector (if there is only one column) or with
- * a row-vector (if there is only one row). */
-
- Flags = internal::traits<Derived>::Flags,
- /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
- * constructed from this one. See the \ref flags "list of flags".
- */
-
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
- IsRowMajor = Flags & RowMajorBit ? 1 : 0
- };
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is the "real scalar" type; if the \a Scalar type is already real numbers
- * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
- * \a Scalar is \a std::complex<T> then RealScalar is \a T.
- *
- * \sa class NumTraits
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** type of the equivalent square matrix */
- typedef Matrix<Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime),
- EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime) > SquareMatrixType;
-
- inline const Derived& derived() const {
- return *static_cast<const Derived*> (this);
- }
-
- inline Derived& derived() {
- return *static_cast<Derived*> (this);
- }
-
- inline Derived& const_cast_derived() const {
- return *static_cast<Derived*> (const_cast<SkylineMatrixBase*> (this));
- }
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
- inline Index rows() const {
- return derived().rows();
- }
-
- /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
- inline Index cols() const {
- return derived().cols();
- }
-
- /** \returns the number of coefficients, which is \a rows()*cols().
- * \sa rows(), cols(), SizeAtCompileTime. */
- inline Index size() const {
- return rows() * cols();
- }
-
- /** \returns the number of nonzero coefficients which is in practice the number
- * of stored coefficients. */
- inline Index nonZeros() const {
- return derived().nonZeros();
- }
-
- /** \returns the size of the storage major dimension,
- * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
- Index outerSize() const {
- return (int(Flags) & RowMajorBit) ? this->rows() : this->cols();
- }
-
- /** \returns the size of the inner dimension according to the storage order,
- * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
- Index innerSize() const {
- return (int(Flags) & RowMajorBit) ? this->cols() : this->rows();
- }
-
- bool isRValue() const {
- return m_isRValue;
- }
-
- Derived& markAsRValue() {
- m_isRValue = true;
- return derived();
- }
-
- SkylineMatrixBase() : m_isRValue(false) {
- /* TODO check flags */
- }
-
- inline Derived & operator=(const Derived& other) {
- this->operator=<Derived > (other);
- return derived();
- }
-
- template<typename OtherDerived>
- inline void assignGeneric(const OtherDerived& other) {
- derived().resize(other.rows(), other.cols());
- for (Index row = 0; row < rows(); row++)
- for (Index col = 0; col < cols(); col++) {
- if (other.coeff(row, col) != Scalar(0))
- derived().insert(row, col) = other.coeff(row, col);
- }
- derived().finalize();
- }
-
- template<typename OtherDerived>
- inline Derived & operator=(const SkylineMatrixBase<OtherDerived>& other) {
- //TODO
- }
-
- template<typename Lhs, typename Rhs>
- inline Derived & operator=(const SkylineProduct<Lhs, Rhs, SkylineTimeSkylineProduct>& product);
-
- friend std::ostream & operator <<(std::ostream & s, const SkylineMatrixBase& m) {
- s << m.derived();
- return s;
- }
-
- template<typename OtherDerived>
- const typename SkylineProductReturnType<Derived, OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- /** \internal use operator= */
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& dst) const {
- dst.setZero();
- for (Index i = 0; i < rows(); i++)
- for (Index j = 0; j < rows(); j++)
- dst(i, j) = derived().coeff(i, j);
- }
-
- Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime> toDense() const {
- return derived();
- }
-
- /** \returns the matrix or vector obtained by evaluating this expression.
- *
- * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
- * a const reference, in order to avoid a useless copy.
- */
- EIGEN_STRONG_INLINE const typename internal::eval<Derived, IsSkyline>::type eval() const {
- return typename internal::eval<Derived>::type(derived());
- }
-
-protected:
- bool m_isRValue;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SkylineMatrixBase_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h b/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
deleted file mode 100644
index d9eb814..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
+++ /dev/null
@@ -1,295 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEPRODUCT_H
-#define EIGEN_SKYLINEPRODUCT_H
-
-namespace Eigen {
-
-template<typename Lhs, typename Rhs, int ProductMode>
-struct SkylineProductReturnType {
- typedef const typename internal::nested_eval<Lhs, Rhs::RowsAtCompileTime>::type LhsNested;
- typedef const typename internal::nested_eval<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef SkylineProduct<LhsNested, RhsNested, ProductMode> Type;
-};
-
-template<typename LhsNested, typename RhsNested, int ProductMode>
-struct internal::traits<SkylineProduct<LhsNested, RhsNested, ProductMode> > {
- // clean the nested types:
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
- typedef typename _LhsNested::Scalar Scalar;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
- ResultIsSkyline = ProductMode == SkylineTimeSkylineProduct,
-
- RemovedBits = ~((EvalToRowMajor ? 0 : RowMajorBit) | (ResultIsSkyline ? 0 : SkylineBit)),
-
- Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeAssigningBit
- | EvalBeforeNestingBit,
-
- CoeffReadCost = HugeCost
- };
-
- typedef typename internal::conditional<ResultIsSkyline,
- SkylineMatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> >,
- MatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> > >::type Base;
-};
-
-namespace internal {
-template<typename LhsNested, typename RhsNested, int ProductMode>
-class SkylineProduct : no_assignment_operator,
-public traits<SkylineProduct<LhsNested, RhsNested, ProductMode> >::Base {
-public:
-
- EIGEN_GENERIC_PUBLIC_INTERFACE(SkylineProduct)
-
-private:
-
- typedef typename traits<SkylineProduct>::_LhsNested _LhsNested;
- typedef typename traits<SkylineProduct>::_RhsNested _RhsNested;
-
-public:
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SkylineProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs) {
- eigen_assert(lhs.cols() == rhs.rows());
-
- enum {
- ProductIsValid = _LhsNested::ColsAtCompileTime == Dynamic
- || _RhsNested::RowsAtCompileTime == Dynamic
- || int(_LhsNested::ColsAtCompileTime) == int(_RhsNested::RowsAtCompileTime),
- AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested, _RhsNested)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwise()*v2
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- }
-
- EIGEN_STRONG_INLINE Index rows() const {
- return m_lhs.rows();
- }
-
- EIGEN_STRONG_INLINE Index cols() const {
- return m_rhs.cols();
- }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const {
- return m_lhs;
- }
-
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const {
- return m_rhs;
- }
-
-protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
-};
-
-// dense = skyline * dense
-// Note that here we force no inlining and separate the setZero() because GCC messes up otherwise
-
-template<typename Lhs, typename Rhs, typename Dest>
-EIGEN_DONT_INLINE void skyline_row_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename traits<Lhs>::Scalar Scalar;
-
- enum {
- LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
- LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
- ProcessFirstHalf = LhsIsSelfAdjoint
- && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
- || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
- || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
- ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
- };
-
- //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
- for (Index col = 0; col < rhs.cols(); col++) {
- for (Index row = 0; row < lhs.rows(); row++) {
- dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
- }
- }
- //Use matrix lower triangular part
- for (Index row = 0; row < lhs.rows(); row++) {
- typename _Lhs::InnerLowerIterator lIt(lhs, row);
- const Index stop = lIt.col() + lIt.size();
- for (Index col = 0; col < rhs.cols(); col++) {
-
- Index k = lIt.col();
- Scalar tmp = 0;
- while (k < stop) {
- tmp +=
- lIt.value() *
- rhs(k++, col);
- ++lIt;
- }
- dst(row, col) += tmp;
- lIt += -lIt.size();
- }
-
- }
-
- //Use matrix upper triangular part
- for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
- typename _Lhs::InnerUpperIterator uIt(lhs, lhscol);
- const Index stop = uIt.size() + uIt.row();
- for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
-
-
- const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
- Index k = uIt.row();
- while (k < stop) {
- dst(k++, rhscol) +=
- uIt.value() *
- rhsCoeff;
- ++uIt;
- }
- uIt += -uIt.size();
- }
- }
-
-}
-
-template<typename Lhs, typename Rhs, typename Dest>
-EIGEN_DONT_INLINE void skyline_col_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename traits<Lhs>::Scalar Scalar;
-
- enum {
- LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
- LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
- ProcessFirstHalf = LhsIsSelfAdjoint
- && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
- || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
- || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
- ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
- };
-
- //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
- for (Index col = 0; col < rhs.cols(); col++) {
- for (Index row = 0; row < lhs.rows(); row++) {
- dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
- }
- }
-
- //Use matrix upper triangular part
- for (Index row = 0; row < lhs.rows(); row++) {
- typename _Lhs::InnerUpperIterator uIt(lhs, row);
- const Index stop = uIt.col() + uIt.size();
- for (Index col = 0; col < rhs.cols(); col++) {
-
- Index k = uIt.col();
- Scalar tmp = 0;
- while (k < stop) {
- tmp +=
- uIt.value() *
- rhs(k++, col);
- ++uIt;
- }
-
-
- dst(row, col) += tmp;
- uIt += -uIt.size();
- }
- }
-
- //Use matrix lower triangular part
- for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
- typename _Lhs::InnerLowerIterator lIt(lhs, lhscol);
- const Index stop = lIt.size() + lIt.row();
- for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
-
- const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
- Index k = lIt.row();
- while (k < stop) {
- dst(k++, rhscol) +=
- lIt.value() *
- rhsCoeff;
- ++lIt;
- }
- lIt += -lIt.size();
- }
- }
-
-}
-
-template<typename Lhs, typename Rhs, typename ResultType,
- int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit>
- struct skyline_product_selector;
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct skyline_product_selector<Lhs, Rhs, ResultType, RowMajor> {
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
- skyline_row_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct skyline_product_selector<Lhs, Rhs, ResultType, ColMajor> {
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
- skyline_col_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
- }
-};
-
-} // end namespace internal
-
-// template<typename Derived>
-// template<typename Lhs, typename Rhs >
-// Derived & MatrixBase<Derived>::lazyAssign(const SkylineProduct<Lhs, Rhs, SkylineTimeDenseProduct>& product) {
-// typedef typename internal::remove_all<Lhs>::type _Lhs;
-// internal::skyline_product_selector<typename internal::remove_all<Lhs>::type,
-// typename internal::remove_all<Rhs>::type,
-// Derived>::run(product.lhs(), product.rhs(), derived());
-//
-// return derived();
-// }
-
-// skyline * dense
-
-template<typename Derived>
-template<typename OtherDerived >
-EIGEN_STRONG_INLINE const typename SkylineProductReturnType<Derived, OtherDerived>::Type
-SkylineMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const {
-
- return typename SkylineProductReturnType<Derived, OtherDerived>::Type(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINEPRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h b/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
deleted file mode 100644
index 378a8de..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
+++ /dev/null
@@ -1,259 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINE_STORAGE_H
-#define EIGEN_SKYLINE_STORAGE_H
-
-namespace Eigen {
-
-/** Stores a skyline set of values in three structures :
- * The diagonal elements
- * The upper elements
- * The lower elements
- *
- */
-template<typename Scalar>
-class SkylineStorage {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef SparseIndex Index;
-public:
-
- SkylineStorage()
- : m_diag(0),
- m_lower(0),
- m_upper(0),
- m_lowerProfile(0),
- m_upperProfile(0),
- m_diagSize(0),
- m_upperSize(0),
- m_lowerSize(0),
- m_upperProfileSize(0),
- m_lowerProfileSize(0),
- m_allocatedSize(0) {
- }
-
- SkylineStorage(const SkylineStorage& other)
- : m_diag(0),
- m_lower(0),
- m_upper(0),
- m_lowerProfile(0),
- m_upperProfile(0),
- m_diagSize(0),
- m_upperSize(0),
- m_lowerSize(0),
- m_upperProfileSize(0),
- m_lowerProfileSize(0),
- m_allocatedSize(0) {
- *this = other;
- }
-
- SkylineStorage & operator=(const SkylineStorage& other) {
- resize(other.diagSize(), other.m_upperProfileSize, other.m_lowerProfileSize, other.upperSize(), other.lowerSize());
- memcpy(m_diag, other.m_diag, m_diagSize * sizeof (Scalar));
- memcpy(m_upper, other.m_upper, other.upperSize() * sizeof (Scalar));
- memcpy(m_lower, other.m_lower, other.lowerSize() * sizeof (Scalar));
- memcpy(m_upperProfile, other.m_upperProfile, m_upperProfileSize * sizeof (Index));
- memcpy(m_lowerProfile, other.m_lowerProfile, m_lowerProfileSize * sizeof (Index));
- return *this;
- }
-
- void swap(SkylineStorage& other) {
- std::swap(m_diag, other.m_diag);
- std::swap(m_upper, other.m_upper);
- std::swap(m_lower, other.m_lower);
- std::swap(m_upperProfile, other.m_upperProfile);
- std::swap(m_lowerProfile, other.m_lowerProfile);
- std::swap(m_diagSize, other.m_diagSize);
- std::swap(m_upperSize, other.m_upperSize);
- std::swap(m_lowerSize, other.m_lowerSize);
- std::swap(m_allocatedSize, other.m_allocatedSize);
- }
-
- ~SkylineStorage() {
- delete[] m_diag;
- delete[] m_upper;
- if (m_upper != m_lower)
- delete[] m_lower;
- delete[] m_upperProfile;
- delete[] m_lowerProfile;
- }
-
- void reserve(Index size, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
- Index newAllocatedSize = size + upperSize + lowerSize;
- if (newAllocatedSize > m_allocatedSize)
- reallocate(size, upperProfileSize, lowerProfileSize, upperSize, lowerSize);
- }
-
- void squeeze() {
- if (m_allocatedSize > m_diagSize + m_upperSize + m_lowerSize)
- reallocate(m_diagSize, m_upperProfileSize, m_lowerProfileSize, m_upperSize, m_lowerSize);
- }
-
- void resize(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize, float reserveSizeFactor = 0) {
- if (m_allocatedSize < diagSize + upperSize + lowerSize)
- reallocate(diagSize, upperProfileSize, lowerProfileSize, upperSize + Index(reserveSizeFactor * upperSize), lowerSize + Index(reserveSizeFactor * lowerSize));
- m_diagSize = diagSize;
- m_upperSize = upperSize;
- m_lowerSize = lowerSize;
- m_upperProfileSize = upperProfileSize;
- m_lowerProfileSize = lowerProfileSize;
- }
-
- inline Index diagSize() const {
- return m_diagSize;
- }
-
- inline Index upperSize() const {
- return m_upperSize;
- }
-
- inline Index lowerSize() const {
- return m_lowerSize;
- }
-
- inline Index upperProfileSize() const {
- return m_upperProfileSize;
- }
-
- inline Index lowerProfileSize() const {
- return m_lowerProfileSize;
- }
-
- inline Index allocatedSize() const {
- return m_allocatedSize;
- }
-
- inline void clear() {
- m_diagSize = 0;
- }
-
- inline Scalar& diag(Index i) {
- return m_diag[i];
- }
-
- inline const Scalar& diag(Index i) const {
- return m_diag[i];
- }
-
- inline Scalar& upper(Index i) {
- return m_upper[i];
- }
-
- inline const Scalar& upper(Index i) const {
- return m_upper[i];
- }
-
- inline Scalar& lower(Index i) {
- return m_lower[i];
- }
-
- inline const Scalar& lower(Index i) const {
- return m_lower[i];
- }
-
- inline Index& upperProfile(Index i) {
- return m_upperProfile[i];
- }
-
- inline const Index& upperProfile(Index i) const {
- return m_upperProfile[i];
- }
-
- inline Index& lowerProfile(Index i) {
- return m_lowerProfile[i];
- }
-
- inline const Index& lowerProfile(Index i) const {
- return m_lowerProfile[i];
- }
-
- static SkylineStorage Map(Index* upperProfile, Index* lowerProfile, Scalar* diag, Scalar* upper, Scalar* lower, Index size, Index upperSize, Index lowerSize) {
- SkylineStorage res;
- res.m_upperProfile = upperProfile;
- res.m_lowerProfile = lowerProfile;
- res.m_diag = diag;
- res.m_upper = upper;
- res.m_lower = lower;
- res.m_allocatedSize = res.m_diagSize = size;
- res.m_upperSize = upperSize;
- res.m_lowerSize = lowerSize;
- return res;
- }
-
- inline void reset() {
- memset(m_diag, 0, m_diagSize * sizeof (Scalar));
- memset(m_upper, 0, m_upperSize * sizeof (Scalar));
- memset(m_lower, 0, m_lowerSize * sizeof (Scalar));
- memset(m_upperProfile, 0, m_diagSize * sizeof (Index));
- memset(m_lowerProfile, 0, m_diagSize * sizeof (Index));
- }
-
- void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>()) {
- //TODO
- }
-
-protected:
-
- inline void reallocate(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
-
- Scalar* diag = new Scalar[diagSize];
- Scalar* upper = new Scalar[upperSize];
- Scalar* lower = new Scalar[lowerSize];
- Index* upperProfile = new Index[upperProfileSize];
- Index* lowerProfile = new Index[lowerProfileSize];
-
- Index copyDiagSize = (std::min)(diagSize, m_diagSize);
- Index copyUpperSize = (std::min)(upperSize, m_upperSize);
- Index copyLowerSize = (std::min)(lowerSize, m_lowerSize);
- Index copyUpperProfileSize = (std::min)(upperProfileSize, m_upperProfileSize);
- Index copyLowerProfileSize = (std::min)(lowerProfileSize, m_lowerProfileSize);
-
- // copy
- memcpy(diag, m_diag, copyDiagSize * sizeof (Scalar));
- memcpy(upper, m_upper, copyUpperSize * sizeof (Scalar));
- memcpy(lower, m_lower, copyLowerSize * sizeof (Scalar));
- memcpy(upperProfile, m_upperProfile, copyUpperProfileSize * sizeof (Index));
- memcpy(lowerProfile, m_lowerProfile, copyLowerProfileSize * sizeof (Index));
-
-
-
- // delete old stuff
- delete[] m_diag;
- delete[] m_upper;
- delete[] m_lower;
- delete[] m_upperProfile;
- delete[] m_lowerProfile;
- m_diag = diag;
- m_upper = upper;
- m_lower = lower;
- m_upperProfile = upperProfile;
- m_lowerProfile = lowerProfile;
- m_allocatedSize = diagSize + upperSize + lowerSize;
- m_upperSize = upperSize;
- m_lowerSize = lowerSize;
- }
-
-public:
- Scalar* m_diag;
- Scalar* m_upper;
- Scalar* m_lower;
- Index* m_upperProfile;
- Index* m_lowerProfile;
- Index m_diagSize;
- Index m_upperSize;
- Index m_lowerSize;
- Index m_upperProfileSize;
- Index m_lowerProfileSize;
- Index m_allocatedSize;
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPRESSED_STORAGE_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h b/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
deleted file mode 100644
index 75eb612..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
+++ /dev/null
@@ -1,89 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEUTIL_H
-#define EIGEN_SKYLINEUTIL_H
-
-namespace Eigen {
-
-#ifdef NDEBUG
-#define EIGEN_DBG_SKYLINE(X)
-#else
-#define EIGEN_DBG_SKYLINE(X) X
-#endif
-
-const unsigned int SkylineBit = 0x1200;
-template<typename Lhs, typename Rhs, int ProductMode> class SkylineProduct;
-enum AdditionalProductEvaluationMode {SkylineTimeDenseProduct, SkylineTimeSkylineProduct, DenseTimeSkylineProduct};
-enum {IsSkyline = SkylineBit};
-
-
-#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename OtherDerived> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SkylineMatrixBase<OtherDerived>& other) \
-{ \
- return Base::operator Op(other.derived()); \
-} \
-EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
-{ \
- return Base::operator Op(other); \
-}
-
-#define EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename Other> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
-{ \
- return Base::operator Op(scalar); \
-}
-
-#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
- EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
- EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
-
-#define _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, BaseClass) \
- typedef BaseClass Base; \
- typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; \
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
- typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
- typedef typename Eigen::internal::index<StorageKind>::type Index; \
- enum { Flags = Eigen::internal::traits<Derived>::Flags, };
-
-#define EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived) \
- _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, Eigen::SkylineMatrixBase<Derived>)
-
-template<typename Derived> class SkylineMatrixBase;
-template<typename _Scalar, int _Flags = 0> class SkylineMatrix;
-template<typename _Scalar, int _Flags = 0> class DynamicSkylineMatrix;
-template<typename _Scalar, int _Flags = 0> class SkylineVector;
-template<typename _Scalar, int _Flags = 0> class MappedSkylineMatrix;
-
-namespace internal {
-
-template<typename Lhs, typename Rhs> struct skyline_product_mode;
-template<typename Lhs, typename Rhs, int ProductMode = skyline_product_mode<Lhs,Rhs>::value> struct SkylineProductReturnType;
-
-template<typename T> class eval<T,IsSkyline>
-{
- typedef typename traits<T>::Scalar _Scalar;
- enum {
- _Flags = traits<T>::Flags
- };
-
- public:
- typedef SkylineMatrix<_Scalar, _Flags> type;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINEUTIL_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
deleted file mode 100644
index e9ec746..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
+++ /dev/null
@@ -1,122 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
-#define EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
-
-namespace Eigen {
-
-#if 0
-
-// NOTE Have to be reimplemented as a specialization of BlockImpl< DynamicSparseMatrix<_Scalar, _Options, _Index>, ... >
-// See SparseBlock.h for an example
-
-
-/***************************************************************************
-* specialisation for DynamicSparseMatrix
-***************************************************************************/
-
-template<typename _Scalar, int _Options, typename _Index, int Size>
-class SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size>
- : public SparseMatrixBase<SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size> >
-{
- typedef DynamicSparseMatrix<_Scalar, _Options, _Index> MatrixType;
- public:
-
- enum { IsRowMajor = internal::traits<SparseInnerVectorSet>::IsRowMajor };
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseInnerVectorSet)
- class InnerIterator: public MatrixType::InnerIterator
- {
- public:
- inline InnerIterator(const SparseInnerVectorSet& xpr, Index outer)
- : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
-
- inline SparseInnerVectorSet(const MatrixType& matrix, Index outerStart, Index outerSize)
- : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize)
- {
- eigen_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) );
- }
-
- inline SparseInnerVectorSet(const MatrixType& matrix, Index outer)
- : m_matrix(matrix), m_outerStart(outer), m_outerSize(Size)
- {
- eigen_assert(Size!=Dynamic);
- eigen_assert( (outer>=0) && (outer<matrix.outerSize()) );
- }
-
- template<typename OtherDerived>
- inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit))
- {
- // need to transpose => perform a block evaluation followed by a big swap
- DynamicSparseMatrix<Scalar,IsRowMajor?RowMajorBit:0> aux(other);
- *this = aux.markAsRValue();
- }
- else
- {
- // evaluate/copy vector per vector
- for (Index j=0; j<m_outerSize.value(); ++j)
- {
- SparseVector<Scalar,IsRowMajor ? RowMajorBit : 0> aux(other.innerVector(j));
- m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data());
- }
- }
- return *this;
- }
-
- inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other)
- {
- return operator=<SparseInnerVectorSet>(other);
- }
-
- Index nonZeros() const
- {
- Index count = 0;
- for (Index j=0; j<m_outerSize.value(); ++j)
- count += m_matrix._data()[m_outerStart+j].size();
- return count;
- }
-
- const Scalar& lastCoeff() const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(SparseInnerVectorSet);
- eigen_assert(m_matrix.data()[m_outerStart].size()>0);
- return m_matrix.data()[m_outerStart].vale(m_matrix.data()[m_outerStart].size()-1);
- }
-
-// template<typename Sparse>
-// inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
-// {
-// return *this;
-// }
-
- EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
-
- protected:
-
- const typename MatrixType::Nested m_matrix;
- Index m_outerStart;
- const internal::variable_if_dynamic<Index, Size> m_outerSize;
-
-};
-
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
deleted file mode 100644
index 536a0c3..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
+++ /dev/null
@@ -1,1079 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEBLOCKMATRIX_H
-#define EIGEN_SPARSEBLOCKMATRIX_H
-
-namespace Eigen {
-/** \ingroup SparseCore_Module
- *
- * \class BlockSparseMatrix
- *
- * \brief A versatile sparse matrix representation where each element is a block
- *
- * This class provides routines to manipulate block sparse matrices stored in a
- * BSR-like representation. There are two main types :
- *
- * 1. All blocks have the same number of rows and columns, called block size
- * in the following. In this case, if this block size is known at compile time,
- * it can be given as a template parameter like
- * \code
- * BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols);
- * \endcode
- * Here, bmat is a b_rows x b_cols block sparse matrix
- * where each coefficient is a 3x3 dense matrix.
- * If the block size is fixed but will be given at runtime,
- * \code
- * BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols);
- * bmat.setBlockSize(block_size);
- * \endcode
- *
- * 2. The second case is for variable-block sparse matrices.
- * Here each block has its own dimensions. The only restriction is that all the blocks
- * in a row (resp. a column) should have the same number of rows (resp. of columns).
- * It is thus required in this case to describe the layout of the matrix by calling
- * setBlockLayout(rowBlocks, colBlocks).
- *
- * In any of the previous case, the matrix can be filled by calling setFromTriplets().
- * A regular sparse matrix can be converted to a block sparse matrix and vice versa.
- * It is obviously required to describe the block layout beforehand by calling either
- * setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks.
- *
- * \tparam _Scalar The Scalar type
- * \tparam _BlockAtCompileTime The block layout option. It takes the following values
- * Dynamic : block size known at runtime
- * a numeric number : fixed-size block known at compile time
- */
-template<typename _Scalar, int _BlockAtCompileTime=Dynamic, int _Options=ColMajor, typename _StorageIndex=int> class BlockSparseMatrix;
-
-template<typename BlockSparseMatrixT> class BlockSparseMatrixView;
-
-namespace internal {
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _Index>
-struct traits<BlockSparseMatrix<_Scalar,_BlockAtCompileTime,_Options, _Index> >
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Sparse StorageKind; // FIXME Where is it used ??
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- BlockSize = _BlockAtCompileTime,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-template<typename BlockSparseMatrixT>
-struct traits<BlockSparseMatrixView<BlockSparseMatrixT> >
-{
- typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar;
- typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar;
-
-};
-
-// Function object to sort a triplet list
-template<typename Iterator, bool IsColMajor>
-struct TripletComp
-{
- typedef typename Iterator::value_type Triplet;
- bool operator()(const Triplet& a, const Triplet& b)
- { if(IsColMajor)
- return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col()));
- else
- return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row()));
- }
-};
-} // end namespace internal
-
-
-/* Proxy to view the block sparse matrix as a regular sparse matrix */
-template<typename BlockSparseMatrixT>
-class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT>
-{
- public:
- typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar;
- typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar;
- typedef typename BlockSparseMatrixT::Index Index;
- typedef BlockSparseMatrixT Nested;
- enum {
- Flags = BlockSparseMatrixT::Options,
- Options = BlockSparseMatrixT::Options,
- RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime,
- ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime,
- MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime,
- MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime
- };
- public:
- BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat)
- : m_spblockmat(spblockmat)
- {}
-
- Index outerSize() const
- {
- return (Flags&RowMajorBit) == 1 ? this->rows() : this->cols();
- }
- Index cols() const
- {
- return m_spblockmat.blockCols();
- }
- Index rows() const
- {
- return m_spblockmat.blockRows();
- }
- Scalar coeff(Index row, Index col)
- {
- return m_spblockmat.coeff(row, col);
- }
- Scalar coeffRef(Index row, Index col)
- {
- return m_spblockmat.coeffRef(row, col);
- }
- // Wrapper to iterate over all blocks
- class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator
- {
- public:
- InnerIterator(const BlockSparseMatrixView& mat, Index outer)
- : BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer)
- {}
-
- };
-
- protected:
- const BlockSparseMatrixT& m_spblockmat;
-};
-
-// Proxy to view a regular vector as a block vector
-template<typename BlockSparseMatrixT, typename VectorType>
-class BlockVectorView
-{
- public:
- enum {
- BlockSize = BlockSparseMatrixT::BlockSize,
- ColsAtCompileTime = VectorType::ColsAtCompileTime,
- RowsAtCompileTime = VectorType::RowsAtCompileTime,
- Flags = VectorType::Flags
- };
- typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime==1)? 1 : BlockSize, (ColsAtCompileTime==1)? 1 : BlockSize> >Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- public:
- BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec)
- : m_spblockmat(spblockmat),m_vec(vec)
- { }
- inline Index cols() const
- {
- return m_vec.cols();
- }
- inline Index size() const
- {
- return m_spblockmat.blockRows();
- }
- inline Scalar coeff(Index bi) const
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.middleRows(startRow, rowSize);
- }
- inline Scalar coeff(Index bi, Index j) const
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.block(startRow, j, rowSize, 1);
- }
- protected:
- const BlockSparseMatrixT& m_spblockmat;
- const VectorType& m_vec;
-};
-
-template<typename VectorType, typename Index> class BlockVectorReturn;
-
-
-// Proxy to view a regular vector as a block vector
-template<typename BlockSparseMatrixT, typename VectorType>
-class BlockVectorReturn
-{
- public:
- enum {
- ColsAtCompileTime = VectorType::ColsAtCompileTime,
- RowsAtCompileTime = VectorType::RowsAtCompileTime,
- Flags = VectorType::Flags
- };
- typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- public:
- BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec)
- : m_spblockmat(spblockmat),m_vec(vec)
- { }
- inline Index size() const
- {
- return m_spblockmat.blockRows();
- }
- inline Scalar coeffRef(Index bi)
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.middleRows(startRow, rowSize);
- }
- inline Scalar coeffRef(Index bi, Index j)
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.block(startRow, j, rowSize, 1);
- }
-
- protected:
- const BlockSparseMatrixT& m_spblockmat;
- VectorType& m_vec;
-};
-
-// Block version of the sparse dense product
-template<typename Lhs, typename Rhs>
-class BlockSparseTimeDenseProduct;
-
-namespace internal {
-
-template<typename BlockSparseMatrixT, typename VecType>
-struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> >
-{
- typedef Dense StorageKind;
- typedef MatrixXpr XprKind;
- typedef typename BlockSparseMatrixT::Scalar Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = 0,
- CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost
- };
-};
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class BlockSparseTimeDenseProduct
- : public ProductBase<BlockSparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct)
-
- BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const
- {
- BlockVectorReturn<Lhs,Dest> tmpDest(m_lhs, dest);
- internal::sparse_time_dense_product( BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), tmpDest, alpha);
- }
-
- private:
- BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&);
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix : public SparseMatrixBase<BlockSparseMatrix<_Scalar,_BlockAtCompileTime, _Options,_StorageIndex> >
-{
- public:
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef _StorageIndex StorageIndex;
- typedef typename internal::ref_selector<BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex> >::type Nested;
-
- enum {
- Options = _Options,
- Flags = Options,
- BlockSize=_BlockAtCompileTime,
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- IsVectorAtCompileTime = 0,
- IsColMajor = Flags&RowMajorBit ? 0 : 1
- };
- typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockScalar;
- typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockRealScalar;
- typedef typename internal::conditional<_BlockAtCompileTime==Dynamic, Scalar, BlockScalar>::type BlockScalarReturnType;
- typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject;
- public:
- // Default constructor
- BlockSparseMatrix()
- : m_innerBSize(0),m_outerBSize(0),m_innerOffset(0),m_outerOffset(0),
- m_nonzerosblocks(0),m_values(0),m_blockPtr(0),m_indices(0),
- m_outerIndex(0),m_blockSize(BlockSize)
- { }
-
-
- /**
- * \brief Construct and resize
- *
- */
- BlockSparseMatrix(Index brow, Index bcol)
- : m_innerBSize(IsColMajor ? brow : bcol),
- m_outerBSize(IsColMajor ? bcol : brow),
- m_innerOffset(0),m_outerOffset(0),m_nonzerosblocks(0),
- m_values(0),m_blockPtr(0),m_indices(0),
- m_outerIndex(0),m_blockSize(BlockSize)
- { }
-
- /**
- * \brief Copy-constructor
- */
- BlockSparseMatrix(const BlockSparseMatrix& other)
- : m_innerBSize(other.m_innerBSize),m_outerBSize(other.m_outerBSize),
- m_nonzerosblocks(other.m_nonzerosblocks),m_nonzeros(other.m_nonzeros),
- m_blockPtr(0),m_blockSize(other.m_blockSize)
- {
- // should we allow copying between variable-size blocks and fixed-size blocks ??
- eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS");
-
- std::copy(other.m_innerOffset, other.m_innerOffset+m_innerBSize+1, m_innerOffset);
- std::copy(other.m_outerOffset, other.m_outerOffset+m_outerBSize+1, m_outerOffset);
- std::copy(other.m_values, other.m_values+m_nonzeros, m_values);
-
- if(m_blockSize != Dynamic)
- std::copy(other.m_blockPtr, other.m_blockPtr+m_nonzerosblocks, m_blockPtr);
-
- std::copy(other.m_indices, other.m_indices+m_nonzerosblocks, m_indices);
- std::copy(other.m_outerIndex, other.m_outerIndex+m_outerBSize, m_outerIndex);
- }
-
- friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second)
- {
- std::swap(first.m_innerBSize, second.m_innerBSize);
- std::swap(first.m_outerBSize, second.m_outerBSize);
- std::swap(first.m_innerOffset, second.m_innerOffset);
- std::swap(first.m_outerOffset, second.m_outerOffset);
- std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks);
- std::swap(first.m_nonzeros, second.m_nonzeros);
- std::swap(first.m_values, second.m_values);
- std::swap(first.m_blockPtr, second.m_blockPtr);
- std::swap(first.m_indices, second.m_indices);
- std::swap(first.m_outerIndex, second.m_outerIndex);
- std::swap(first.m_BlockSize, second.m_blockSize);
- }
-
- BlockSparseMatrix& operator=(BlockSparseMatrix other)
- {
- //Copy-and-swap paradigm ... avoid leaked data if thrown
- swap(*this, other);
- return *this;
- }
-
- // Destructor
- ~BlockSparseMatrix()
- {
- delete[] m_outerIndex;
- delete[] m_innerOffset;
- delete[] m_outerOffset;
- delete[] m_indices;
- delete[] m_blockPtr;
- delete[] m_values;
- }
-
-
- /**
- * \brief Constructor from a sparse matrix
- *
- */
- template<typename MatrixType>
- inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize)
- {
- EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE);
-
- *this = spmat;
- }
-
- /**
- * \brief Assignment from a sparse matrix with the same storage order
- *
- * Convert from a sparse matrix to block sparse matrix.
- * \warning Before calling this function, tt is necessary to call
- * either setBlockLayout() (matrices with variable-size blocks)
- * or setBlockSize() (for fixed-size blocks).
- */
- template<typename MatrixType>
- inline BlockSparseMatrix& operator=(const MatrixType& spmat)
- {
- eigen_assert((m_innerBSize != 0 && m_outerBSize != 0)
- && "Trying to assign to a zero-size matrix, call resize() first");
- eigen_assert(((MatrixType::Options&RowMajorBit) != IsColMajor) && "Wrong storage order");
- typedef SparseMatrix<bool,MatrixType::Options,typename MatrixType::Index> MatrixPatternType;
- MatrixPatternType blockPattern(blockRows(), blockCols());
- m_nonzeros = 0;
-
- // First, compute the number of nonzero blocks and their locations
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- // Browse each outer block and compute the structure
- std::vector<bool> nzblocksFlag(m_innerBSize,false); // Record the existing blocks
- blockPattern.startVec(bj);
- for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
- {
- typename MatrixType::InnerIterator it_spmat(spmat, j);
- for(; it_spmat; ++it_spmat)
- {
- StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
- if(!nzblocksFlag[bi])
- {
- // Save the index of this nonzero block
- nzblocksFlag[bi] = true;
- blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true;
- // Compute the total number of nonzeros (including explicit zeros in blocks)
- m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi);
- }
- }
- } // end current outer block
- }
- blockPattern.finalize();
-
- // Allocate the internal arrays
- setBlockStructure(blockPattern);
-
- for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- // Now copy the values
- for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
- {
- // Browse the outer block column by column (for column-major matrices)
- typename MatrixType::InnerIterator it_spmat(spmat, j);
- for(; it_spmat; ++it_spmat)
- {
- StorageIndex idx = 0; // Position of this block in the column block
- StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
- // Go to the inner block where this element belongs to
- while(bi > m_indices[m_outerIndex[bj]+idx]) ++idx; // Not expensive for ordered blocks
- StorageIndex idxVal;// Get the right position in the array of values for this element
- if(m_blockSize == Dynamic)
- {
- // Offset from all blocks before ...
- idxVal = m_blockPtr[m_outerIndex[bj]+idx];
- // ... and offset inside the block
- idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi];
- }
- else
- {
- // All blocks before
- idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize;
- // inside the block
- idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index()%m_blockSize);
- }
- // Insert the value
- m_values[idxVal] = it_spmat.value();
- } // end of this column
- } // end of this block
- } // end of this outer block
-
- return *this;
- }
-
- /**
- * \brief Set the nonzero block pattern of the matrix
- *
- * Given a sparse matrix describing the nonzero block pattern,
- * this function prepares the internal pointers for values.
- * After calling this function, any *nonzero* block (bi, bj) can be set
- * with a simple call to coeffRef(bi,bj).
- *
- *
- * \warning Before calling this function, tt is necessary to call
- * either setBlockLayout() (matrices with variable-size blocks)
- * or setBlockSize() (for fixed-size blocks).
- *
- * \param blockPattern Sparse matrix of boolean elements describing the block structure
- *
- * \sa setBlockLayout() \sa setBlockSize()
- */
- template<typename MatrixType>
- void setBlockStructure(const MatrixType& blockPattern)
- {
- resize(blockPattern.rows(), blockPattern.cols());
- reserve(blockPattern.nonZeros());
-
- // Browse the block pattern and set up the various pointers
- m_outerIndex[0] = 0;
- if(m_blockSize == Dynamic) m_blockPtr[0] = 0;
- for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- //Browse each outer block
-
- //First, copy and save the indices of nonzero blocks
- //FIXME : find a way to avoid this ...
- std::vector<int> nzBlockIdx;
- typename MatrixType::InnerIterator it(blockPattern, bj);
- for(; it; ++it)
- {
- nzBlockIdx.push_back(it.index());
- }
- std::sort(nzBlockIdx.begin(), nzBlockIdx.end());
-
- // Now, fill block indices and (eventually) pointers to blocks
- for(StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx)
- {
- StorageIndex offset = m_outerIndex[bj]+idx; // offset in m_indices
- m_indices[offset] = nzBlockIdx[idx];
- if(m_blockSize == Dynamic)
- m_blockPtr[offset] = m_blockPtr[offset-1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj);
- // There is no blockPtr for fixed-size blocks... not needed !???
- }
- // Save the pointer to the next outer block
- m_outerIndex[bj+1] = m_outerIndex[bj] + nzBlockIdx.size();
- }
- }
-
- /**
- * \brief Set the number of rows and columns blocks
- */
- inline void resize(Index brow, Index bcol)
- {
- m_innerBSize = IsColMajor ? brow : bcol;
- m_outerBSize = IsColMajor ? bcol : brow;
- }
-
- /**
- * \brief set the block size at runtime for fixed-size block layout
- *
- * Call this only for fixed-size blocks
- */
- inline void setBlockSize(Index blockSize)
- {
- m_blockSize = blockSize;
- }
-
- /**
- * \brief Set the row and column block layouts,
- *
- * This function set the size of each row and column block.
- * So this function should be used only for blocks with variable size.
- * \param rowBlocks : Number of rows per row block
- * \param colBlocks : Number of columns per column block
- * \sa resize(), setBlockSize()
- */
- inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks)
- {
- const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks;
- const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks;
- eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
- eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
- m_outerBSize = outerBlocks.size();
- // starting index of blocks... cumulative sums
- m_innerOffset = new StorageIndex[m_innerBSize+1];
- m_outerOffset = new StorageIndex[m_outerBSize+1];
- m_innerOffset[0] = 0;
- m_outerOffset[0] = 0;
- std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize-1]+1, &m_innerOffset[1]);
- std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize-1]+1, &m_outerOffset[1]);
-
- // Compute the total number of nonzeros
- m_nonzeros = 0;
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- for(StorageIndex bi = 0; bi < m_innerBSize; ++bi)
- m_nonzeros += outerBlocks[bj] * innerBlocks[bi];
-
- }
-
- /**
- * \brief Allocate the internal array of pointers to blocks and their inner indices
- *
- * \note For fixed-size blocks, call setBlockSize() to set the block.
- * And For variable-size blocks, call setBlockLayout() before using this function
- *
- * \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is
- * is computed in setBlockLayout() for variable-size blocks
- * \sa setBlockSize()
- */
- inline void reserve(const Index nonzerosblocks)
- {
- eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) &&
- "TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first");
-
- //FIXME Should free if already allocated
- m_outerIndex = new StorageIndex[m_outerBSize+1];
-
- m_nonzerosblocks = nonzerosblocks;
- if(m_blockSize != Dynamic)
- {
- m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize);
- m_blockPtr = 0;
- }
- else
- {
- // m_nonzeros is already computed in setBlockLayout()
- m_blockPtr = new StorageIndex[m_nonzerosblocks+1];
- }
- m_indices = new StorageIndex[m_nonzerosblocks+1];
- m_values = new Scalar[m_nonzeros];
- }
-
-
- /**
- * \brief Fill values in a matrix from a triplet list.
- *
- * Each triplet item has a block stored in an Eigen dense matrix.
- * The InputIterator class should provide the functions row(), col() and value()
- *
- * \note For fixed-size blocks, call setBlockSize() before this function.
- *
- * FIXME Do not accept duplicates
- */
- template<typename InputIterator>
- void setFromTriplets(const InputIterator& begin, const InputIterator& end)
- {
- eigen_assert((m_innerBSize!=0 && m_outerBSize !=0) && "ZERO BLOCKS, PLEASE CALL resize() before");
-
- /* First, sort the triplet list
- * FIXME This can be unnecessarily expensive since only the inner indices have to be sorted
- * The best approach is like in SparseMatrix::setFromTriplets()
- */
- internal::TripletComp<InputIterator, IsColMajor> tripletcomp;
- std::sort(begin, end, tripletcomp);
-
- /* Count the number of rows and column blocks,
- * and the number of nonzero blocks per outer dimension
- */
- VectorXi rowBlocks(m_innerBSize); // Size of each block row
- VectorXi colBlocks(m_outerBSize); // Size of each block column
- rowBlocks.setZero(); colBlocks.setZero();
- VectorXi nzblock_outer(m_outerBSize); // Number of nz blocks per outer vector
- VectorXi nz_outer(m_outerBSize); // Number of nz per outer vector...for variable-size blocks
- nzblock_outer.setZero();
- nz_outer.setZero();
- for(InputIterator it(begin); it !=end; ++it)
- {
- eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols());
- eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize))
- || (m_blockSize == Dynamic));
-
- if(m_blockSize == Dynamic)
- {
- eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) &&
- "NON CORRESPONDING SIZES FOR ROW BLOCKS");
- eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) &&
- "NON CORRESPONDING SIZES FOR COLUMN BLOCKS");
- rowBlocks[it->row()] =it->value().rows();
- colBlocks[it->col()] = it->value().cols();
- }
- nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols();
- nzblock_outer(IsColMajor ? it->col() : it->row())++;
- }
- // Allocate member arrays
- if(m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks);
- StorageIndex nzblocks = nzblock_outer.sum();
- reserve(nzblocks);
-
- // Temporary markers
- VectorXi block_id(m_outerBSize); // To be used as a block marker during insertion
-
- // Setup outer index pointers and markers
- m_outerIndex[0] = 0;
- if (m_blockSize == Dynamic) m_blockPtr[0] = 0;
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- m_outerIndex[bj+1] = m_outerIndex[bj] + nzblock_outer(bj);
- block_id(bj) = m_outerIndex[bj];
- if(m_blockSize==Dynamic)
- {
- m_blockPtr[m_outerIndex[bj+1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj);
- }
- }
-
- // Fill the matrix
- for(InputIterator it(begin); it!=end; ++it)
- {
- StorageIndex outer = IsColMajor ? it->col() : it->row();
- StorageIndex inner = IsColMajor ? it->row() : it->col();
- m_indices[block_id(outer)] = inner;
- StorageIndex block_size = it->value().rows()*it->value().cols();
- StorageIndex nz_marker = blockPtr(block_id[outer]);
- memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar));
- if(m_blockSize == Dynamic)
- {
- m_blockPtr[block_id(outer)+1] = m_blockPtr[block_id(outer)] + block_size;
- }
- block_id(outer)++;
- }
-
- // An alternative when the outer indices are sorted...no need to use an array of markers
-// for(Index bcol = 0; bcol < m_outerBSize; ++bcol)
-// {
-// Index id = 0, id_nz = 0, id_nzblock = 0;
-// for(InputIterator it(begin); it!=end; ++it)
-// {
-// while (id<bcol) // one pass should do the job unless there are empty columns
-// {
-// id++;
-// m_outerIndex[id+1]=m_outerIndex[id];
-// }
-// m_outerIndex[id+1] += 1;
-// m_indices[id_nzblock]=brow;
-// Index block_size = it->value().rows()*it->value().cols();
-// m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size;
-// id_nzblock++;
-// memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar));
-// id_nz += block_size;
-// }
-// while(id < m_outerBSize-1) // Empty columns at the end
-// {
-// id++;
-// m_outerIndex[id+1]=m_outerIndex[id];
-// }
-// }
- }
-
-
- /**
- * \returns the number of rows
- */
- inline Index rows() const
- {
-// return blockRows();
- return (IsColMajor ? innerSize() : outerSize());
- }
-
- /**
- * \returns the number of cols
- */
- inline Index cols() const
- {
-// return blockCols();
- return (IsColMajor ? outerSize() : innerSize());
- }
-
- inline Index innerSize() const
- {
- if(m_blockSize == Dynamic) return m_innerOffset[m_innerBSize];
- else return (m_innerBSize * m_blockSize) ;
- }
-
- inline Index outerSize() const
- {
- if(m_blockSize == Dynamic) return m_outerOffset[m_outerBSize];
- else return (m_outerBSize * m_blockSize) ;
- }
- /** \returns the number of rows grouped by blocks */
- inline Index blockRows() const
- {
- return (IsColMajor ? m_innerBSize : m_outerBSize);
- }
- /** \returns the number of columns grouped by blocks */
- inline Index blockCols() const
- {
- return (IsColMajor ? m_outerBSize : m_innerBSize);
- }
-
- inline Index outerBlocks() const { return m_outerBSize; }
- inline Index innerBlocks() const { return m_innerBSize; }
-
- /** \returns the block index where outer belongs to */
- inline Index outerToBlock(Index outer) const
- {
- eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS");
-
- if(m_blockSize != Dynamic)
- return (outer / m_blockSize); // Integer division
-
- StorageIndex b_outer = 0;
- while(m_outerOffset[b_outer] <= outer) ++b_outer;
- return b_outer - 1;
- }
- /** \returns the block index where inner belongs to */
- inline Index innerToBlock(Index inner) const
- {
- eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS");
-
- if(m_blockSize != Dynamic)
- return (inner / m_blockSize); // Integer division
-
- StorageIndex b_inner = 0;
- while(m_innerOffset[b_inner] <= inner) ++b_inner;
- return b_inner - 1;
- }
-
- /**
- *\returns a reference to the (i,j) block as an Eigen Dense Matrix
- */
- Ref<BlockScalar> coeffRef(Index brow, Index bcol)
- {
- eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
- eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS");
-
- StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
- StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
- StorageIndex inner = IsColMajor ? brow : bcol;
- StorageIndex outer = IsColMajor ? bcol : brow;
- StorageIndex offset = m_outerIndex[outer];
- while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner)
- offset++;
- if(m_indices[offset] == inner)
- {
- return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize);
- }
- else
- {
- //FIXME the block does not exist, Insert it !!!!!!!!!
- eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED");
- }
- }
-
- /**
- * \returns the value of the (i,j) block as an Eigen Dense Matrix
- */
- Map<const BlockScalar> coeff(Index brow, Index bcol) const
- {
- eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
- eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS");
-
- StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
- StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
- StorageIndex inner = IsColMajor ? brow : bcol;
- StorageIndex outer = IsColMajor ? bcol : brow;
- StorageIndex offset = m_outerIndex[outer];
- while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner) offset++;
- if(m_indices[offset] == inner)
- {
- return Map<const BlockScalar> (&(m_values[blockPtr(offset)]), rsize, csize);
- }
- else
-// return BlockScalar::Zero(rsize, csize);
- eigen_assert("NOT YET SUPPORTED");
- }
-
- // Block Matrix times vector product
- template<typename VecType>
- BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const
- {
- return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs);
- }
-
- /** \returns the number of nonzero blocks */
- inline Index nonZerosBlocks() const { return m_nonzerosblocks; }
- /** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */
- inline Index nonZeros() const { return m_nonzeros; }
-
- inline BlockScalarReturnType *valuePtr() {return static_cast<BlockScalarReturnType *>(m_values);}
-// inline Scalar *valuePtr(){ return m_values; }
- inline StorageIndex *innerIndexPtr() {return m_indices; }
- inline const StorageIndex *innerIndexPtr() const {return m_indices; }
- inline StorageIndex *outerIndexPtr() {return m_outerIndex; }
- inline const StorageIndex* outerIndexPtr() const {return m_outerIndex; }
-
- /** \brief for compatibility purposes with the SparseMatrix class */
- inline bool isCompressed() const {return true;}
- /**
- * \returns the starting index of the bi row block
- */
- inline Index blockRowsIndex(Index bi) const
- {
- return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi);
- }
-
- /**
- * \returns the starting index of the bj col block
- */
- inline Index blockColsIndex(Index bj) const
- {
- return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj);
- }
-
- inline Index blockOuterIndex(Index bj) const
- {
- return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize);
- }
- inline Index blockInnerIndex(Index bi) const
- {
- return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize);
- }
-
- // Not needed ???
- inline Index blockInnerSize(Index bi) const
- {
- return (m_blockSize == Dynamic) ? (m_innerOffset[bi+1] - m_innerOffset[bi]) : m_blockSize;
- }
- inline Index blockOuterSize(Index bj) const
- {
- return (m_blockSize == Dynamic) ? (m_outerOffset[bj+1]- m_outerOffset[bj]) : m_blockSize;
- }
-
- /**
- * \brief Browse the matrix by outer index
- */
- class InnerIterator; // Browse column by column
-
- /**
- * \brief Browse the matrix by block outer index
- */
- class BlockInnerIterator; // Browse block by block
-
- friend std::ostream & operator << (std::ostream & s, const BlockSparseMatrix& m)
- {
- for (StorageIndex j = 0; j < m.outerBlocks(); ++j)
- {
- BlockInnerIterator itb(m, j);
- for(; itb; ++itb)
- {
- s << "("<<itb.row() << ", " << itb.col() << ")\n";
- s << itb.value() <<"\n";
- }
- }
- s << std::endl;
- return s;
- }
-
- /**
- * \returns the starting position of the block \p id in the array of values
- */
- Index blockPtr(Index id) const
- {
- if(m_blockSize == Dynamic) return m_blockPtr[id];
- else return id * m_blockSize * m_blockSize;
- //return blockDynIdx(id, typename internal::conditional<(BlockSize==Dynamic), internal::true_type, internal::false_type>::type());
- }
-
-
- protected:
-// inline Index blockDynIdx(Index id, internal::true_type) const
-// {
-// return m_blockPtr[id];
-// }
-// inline Index blockDynIdx(Index id, internal::false_type) const
-// {
-// return id * BlockSize * BlockSize;
-// }
-
- // To be implemented
- // Insert a block at a particular location... need to make a room for that
- Map<BlockScalar> insert(Index brow, Index bcol);
-
- Index m_innerBSize; // Number of block rows
- Index m_outerBSize; // Number of block columns
- StorageIndex *m_innerOffset; // Starting index of each inner block (size m_innerBSize+1)
- StorageIndex *m_outerOffset; // Starting index of each outer block (size m_outerBSize+1)
- Index m_nonzerosblocks; // Total nonzeros blocks (lower than m_innerBSize x m_outerBSize)
- Index m_nonzeros; // Total nonzeros elements
- Scalar *m_values; //Values stored block column after block column (size m_nonzeros)
- StorageIndex *m_blockPtr; // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for fixed-size blocks
- StorageIndex *m_indices; //Inner block indices, size m_nonzerosblocks ... OK
- StorageIndex *m_outerIndex; // Starting pointer of each block column in m_indices (size m_outerBSize)... OK
- Index m_blockSize; // Size of a block for fixed-size blocks, otherwise -1
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::BlockInnerIterator
-{
- public:
-
- enum{
- Flags = _Options
- };
-
- BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer)
- : m_mat(mat),m_outer(outer),
- m_id(mat.m_outerIndex[outer]),
- m_end(mat.m_outerIndex[outer+1])
- {
- }
-
- inline BlockInnerIterator& operator++() {m_id++; return *this; }
-
- inline const Map<const BlockScalar> value() const
- {
- return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
- rows(),cols());
- }
- inline Map<BlockScalar> valueRef()
- {
- return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
- rows(),cols());
- }
- // Block inner index
- inline Index index() const {return m_mat.m_indices[m_id]; }
- inline Index outer() const { return m_outer; }
- // block row index
- inline Index row() const {return index(); }
- // block column index
- inline Index col() const {return outer(); }
- // FIXME Number of rows in the current block
- inline Index rows() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_innerOffset[index()+1] - m_mat.m_innerOffset[index()]) : m_mat.m_blockSize; }
- // Number of columns in the current block ...
- inline Index cols() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_outerOffset[m_outer+1]-m_mat.m_outerOffset[m_outer]) : m_mat.m_blockSize;}
- inline operator bool() const { return (m_id < m_end); }
-
- protected:
- const BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, StorageIndex>& m_mat;
- const Index m_outer;
- Index m_id;
- Index m_end;
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::InnerIterator
-{
- public:
- InnerIterator(const BlockSparseMatrix& mat, Index outer)
- : m_mat(mat),m_outerB(mat.outerToBlock(outer)),m_outer(outer),
- itb(mat, mat.outerToBlock(outer)),
- m_offset(outer - mat.blockOuterIndex(m_outerB))
- {
- if (itb)
- {
- m_id = m_mat.blockInnerIndex(itb.index());
- m_start = m_id;
- m_end = m_mat.blockInnerIndex(itb.index()+1);
- }
- }
- inline InnerIterator& operator++()
- {
- m_id++;
- if (m_id >= m_end)
- {
- ++itb;
- if (itb)
- {
- m_id = m_mat.blockInnerIndex(itb.index());
- m_start = m_id;
- m_end = m_mat.blockInnerIndex(itb.index()+1);
- }
- }
- return *this;
- }
- inline const Scalar& value() const
- {
- return itb.value().coeff(m_id - m_start, m_offset);
- }
- inline Scalar& valueRef()
- {
- return itb.valueRef().coeff(m_id - m_start, m_offset);
- }
- inline Index index() const { return m_id; }
- inline Index outer() const {return m_outer; }
- inline Index col() const {return outer(); }
- inline Index row() const { return index();}
- inline operator bool() const
- {
- return itb;
- }
- protected:
- const BlockSparseMatrix& m_mat;
- const Index m_outer;
- const Index m_outerB;
- BlockInnerIterator itb; // Iterator through the blocks
- const Index m_offset; // Position of this column in the block
- Index m_start; // starting inner index of this block
- Index m_id; // current inner index in the block
- Index m_end; // starting inner index of the next block
-
-};
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEBLOCKMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
deleted file mode 100644
index 0ffbc43..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
+++ /dev/null
@@ -1,404 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
-#define EIGEN_DYNAMIC_SPARSEMATRIX_H
-
-namespace Eigen {
-
-/** \deprecated use a SparseMatrix in an uncompressed mode
- *
- * \class DynamicSparseMatrix
- *
- * \brief A sparse matrix class designed for matrix assembly purpose
- *
- * \param _Scalar the scalar type, i.e. the type of the coefficients
- *
- * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
- * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
- * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
- * otherwise.
- *
- * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
- * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
- * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
- *
- * \see SparseMatrix
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct traits<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef _Scalar Scalar;
- typedef _StorageIndex StorageIndex;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = OuterRandomAccessPattern
- };
-};
-}
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
- class DynamicSparseMatrix
- : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef SparseMatrixBase<DynamicSparseMatrix> Base;
- using Base::convert_index;
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
- // FIXME: why are these operator already alvailable ???
- // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
- // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
- typedef MappedSparseMatrix<Scalar,Flags> Map;
- using Base::IsRowMajor;
- using Base::operator=;
- enum {
- Options = _Options
- };
-
- protected:
-
- typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0), StorageIndex> TransposedSparseMatrix;
-
- Index m_innerSize;
- std::vector<internal::CompressedStorage<Scalar,StorageIndex> > m_data;
-
- public:
-
- inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
- inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
- inline Index innerSize() const { return m_innerSize; }
- inline Index outerSize() const { return convert_index(m_data.size()); }
- inline Index innerNonZeros(Index j) const { return m_data[j].size(); }
-
- std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() { return m_data; }
- const std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() const { return m_data; }
-
- /** \returns the coefficient value at given position \a row, \a col
- * This operation involes a log(rho*outer_size) binary search.
- */
- inline Scalar coeff(Index row, Index col) const
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return m_data[outer].at(inner);
- }
-
- /** \returns a reference to the coefficient value at given position \a row, \a col
- * This operation involes a log(rho*outer_size) binary search. If the coefficient does not
- * exist yet, then a sorted insertion into a sequential buffer is performed.
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return m_data[outer].atWithInsertion(inner);
- }
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- void setZero()
- {
- for (Index j=0; j<outerSize(); ++j)
- m_data[j].clear();
- }
-
- /** \returns the number of non zero coefficients */
- Index nonZeros() const
- {
- Index res = 0;
- for (Index j=0; j<outerSize(); ++j)
- res += m_data[j].size();
- return res;
- }
-
-
-
- void reserve(Index reserveSize = 1000)
- {
- if (outerSize()>0)
- {
- Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4));
- for (Index j=0; j<outerSize(); ++j)
- {
- m_data[j].reserve(reserveSizePerVector);
- }
- }
- }
-
- /** Does nothing: provided for compatibility with SparseMatrix */
- inline void startVec(Index /*outer*/) {}
-
- /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
- * - the nonzero does not already exist
- * - the new coefficient is the last one of the given inner vector.
- *
- * \sa insert, insertBackByOuterInner */
- inline Scalar& insertBack(Index row, Index col)
- {
- return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
- }
-
- /** \sa insertBack */
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range");
- eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
- && "wrong sorted insertion");
- m_data[outer].append(0, inner);
- return m_data[outer].value(m_data[outer].size()-1);
- }
-
- inline Scalar& insert(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index startId = 0;
- Index id = static_cast<Index>(m_data[outer].size()) - 1;
- m_data[outer].resize(id+2,1);
-
- while ( (id >= startId) && (m_data[outer].index(id) > inner) )
- {
- m_data[outer].index(id+1) = m_data[outer].index(id);
- m_data[outer].value(id+1) = m_data[outer].value(id);
- --id;
- }
- m_data[outer].index(id+1) = inner;
- m_data[outer].value(id+1) = 0;
- return m_data[outer].value(id+1);
- }
-
- /** Does nothing: provided for compatibility with SparseMatrix */
- inline void finalize() {}
-
- /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
- void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- for (Index j=0; j<outerSize(); ++j)
- m_data[j].prune(reference,epsilon);
- }
-
- /** Resize the matrix without preserving the data (the matrix is set to zero)
- */
- void resize(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = convert_index(IsRowMajor ? cols : rows);
- setZero();
- if (Index(m_data.size()) != outerSize)
- {
- m_data.resize(outerSize);
- }
- }
-
- void resizeAndKeepData(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- const Index innerSize = IsRowMajor ? cols : rows;
- if (m_innerSize>innerSize)
- {
- // remove all coefficients with innerCoord>=innerSize
- // TODO
- //std::cerr << "not implemented yet\n";
- exit(2);
- }
- if (m_data.size() != outerSize)
- {
- m_data.resize(outerSize);
- }
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- EIGEN_DEPRECATED inline DynamicSparseMatrix()
- : m_innerSize(0), m_data(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- eigen_assert(innerSize()==0 && outerSize()==0);
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols)
- : m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- resize(rows, cols);
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- template<typename OtherDerived>
- EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
- : m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- Base::operator=(other.derived());
- }
-
- inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
- : Base(), m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- *this = other.derived();
- }
-
- inline void swap(DynamicSparseMatrix& other)
- {
- //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
- std::swap(m_innerSize, other.m_innerSize);
- //std::swap(m_outerSize, other.m_outerSize);
- m_data.swap(other.m_data);
- }
-
- inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
- {
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else
- {
- resize(other.rows(), other.cols());
- m_data = other.m_data;
- }
- return *this;
- }
-
- /** Destructor */
- inline ~DynamicSparseMatrix() {}
-
- public:
-
- /** \deprecated
- * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
- EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
- {
- setZero();
- reserve(reserveSize);
- }
-
- /** \deprecated use insert()
- * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
- * 1 - the coefficient does not exist yet
- * 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
- * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
- * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
- *
- * \see fillrand(), coeffRef()
- */
- EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return insertBack(outer,inner);
- }
-
- /** \deprecated use insert()
- * Like fill() but with random inner coordinates.
- * Compared to the generic coeffRef(), the unique limitation is that we assume
- * the coefficient does not exist yet.
- */
- EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
- {
- return insert(row,col);
- }
-
- /** \deprecated use finalize()
- * Does nothing. Provided for compatibility with SparseMatrix. */
- EIGEN_DEPRECATED void endFill() {}
-
-# ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
-# include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
-# endif
- };
-
-template<typename Scalar, int _Options, typename _StorageIndex>
-class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::InnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator
-{
- typedef typename SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator Base;
- public:
- InnerIterator(const DynamicSparseMatrix& mat, Index outer)
- : Base(mat.m_data[outer]), m_outer(outer)
- {}
-
- inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
- inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
- inline Index outer() const { return m_outer; }
-
- protected:
- const Index m_outer;
-};
-
-template<typename Scalar, int _Options, typename _StorageIndex>
-class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator
-{
- typedef typename SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator Base;
- public:
- ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer)
- : Base(mat.m_data[outer]), m_outer(outer)
- {}
-
- inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
- inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
- inline Index outer() const { return m_outer; }
-
- protected:
- const Index m_outer;
-};
-
-namespace internal {
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
- : evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
-{
- typedef _Scalar Scalar;
- typedef DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
- typedef typename SparseMatrixType::InnerIterator InnerIterator;
- typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
-
- enum {
- CoeffReadCost = NumTraits<_Scalar>::ReadCost,
- Flags = SparseMatrixType::Flags
- };
-
- evaluator() : m_matrix(0) {}
- evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
-
- operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
- operator const SparseMatrixType&() const { return *m_matrix; }
-
- Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
-
- Index nonZerosEstimate() const { return m_matrix->nonZeros(); }
-
- const SparseMatrixType *m_matrix;
-};
-
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
deleted file mode 100644
index 04b7d69..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
+++ /dev/null
@@ -1,275 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_MARKET_IO_H
-#define EIGEN_SPARSE_MARKET_IO_H
-
-#include <iostream>
-
-namespace Eigen {
-
-namespace internal
-{
- template <typename Scalar,typename IndexType>
- inline bool GetMarketLine (std::stringstream& line, IndexType& M, IndexType& N, IndexType& i, IndexType& j, Scalar& value)
- {
- line >> i >> j >> value;
- i--;
- j--;
- if(i>=0 && j>=0 && i<M && j<N)
- {
- return true;
- }
- else
- return false;
- }
- template <typename Scalar,typename IndexType>
- inline bool GetMarketLine (std::stringstream& line, IndexType& M, IndexType& N, IndexType& i, IndexType& j, std::complex<Scalar>& value)
- {
- Scalar valR, valI;
- line >> i >> j >> valR >> valI;
- i--;
- j--;
- if(i>=0 && j>=0 && i<M && j<N)
- {
- value = std::complex<Scalar>(valR, valI);
- return true;
- }
- else
- return false;
- }
-
- template <typename RealScalar>
- inline void GetVectorElt (const std::string& line, RealScalar& val)
- {
- std::istringstream newline(line);
- newline >> val;
- }
-
- template <typename RealScalar>
- inline void GetVectorElt (const std::string& line, std::complex<RealScalar>& val)
- {
- RealScalar valR, valI;
- std::istringstream newline(line);
- newline >> valR >> valI;
- val = std::complex<RealScalar>(valR, valI);
- }
-
- template<typename Scalar>
- inline void putMarketHeader(std::string& header,int sym)
- {
- header= "%%MatrixMarket matrix coordinate ";
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- {
- header += " complex";
- if(sym == Symmetric) header += " symmetric";
- else if (sym == SelfAdjoint) header += " Hermitian";
- else header += " general";
- }
- else
- {
- header += " real";
- if(sym == Symmetric) header += " symmetric";
- else header += " general";
- }
- }
-
- template<typename Scalar>
- inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
- {
- out << row << " "<< col << " " << value << "\n";
- }
- template<typename Scalar>
- inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
- {
- out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
- }
-
-
- template<typename Scalar>
- inline void putVectorElt(Scalar value, std::ofstream& out)
- {
- out << value << "\n";
- }
- template<typename Scalar>
- inline void putVectorElt(std::complex<Scalar> value, std::ofstream& out)
- {
- out << value.real << " " << value.imag()<< "\n";
- }
-
-} // end namepsace internal
-
-inline bool getMarketHeader(const std::string& filename, int& sym, bool& iscomplex, bool& isvector)
-{
- sym = 0;
- iscomplex = false;
- isvector = false;
- std::ifstream in(filename.c_str(),std::ios::in);
- if(!in)
- return false;
-
- std::string line;
- // The matrix header is always the first line in the file
- std::getline(in, line); eigen_assert(in.good());
-
- std::stringstream fmtline(line);
- std::string substr[5];
- fmtline>> substr[0] >> substr[1] >> substr[2] >> substr[3] >> substr[4];
- if(substr[2].compare("array") == 0) isvector = true;
- if(substr[3].compare("complex") == 0) iscomplex = true;
- if(substr[4].compare("symmetric") == 0) sym = Symmetric;
- else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
-
- return true;
-}
-
-template<typename SparseMatrixType>
-bool loadMarket(SparseMatrixType& mat, const std::string& filename)
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- std::ifstream input(filename.c_str(),std::ios::in);
- if(!input)
- return false;
-
- const int maxBuffersize = 2048;
- char buffer[maxBuffersize];
-
- bool readsizes = false;
-
- typedef Triplet<Scalar,StorageIndex> T;
- std::vector<T> elements;
-
- StorageIndex M(-1), N(-1), NNZ(-1);
- StorageIndex count = 0;
- while(input.getline(buffer, maxBuffersize))
- {
- // skip comments
- //NOTE An appropriate test should be done on the header to get the symmetry
- if(buffer[0]=='%')
- continue;
-
- std::stringstream line(buffer);
-
- if(!readsizes)
- {
- line >> M >> N >> NNZ;
- if(M > 0 && N > 0 && NNZ > 0)
- {
- readsizes = true;
- //std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
- mat.resize(M,N);
- mat.reserve(NNZ);
- }
- }
- else
- {
- StorageIndex i(-1), j(-1);
- Scalar value;
- if( internal::GetMarketLine(line, M, N, i, j, value) )
- {
- ++ count;
- elements.push_back(T(i,j,value));
- }
- else
- std::cerr << "Invalid read: " << i << "," << j << "\n";
- }
- }
- mat.setFromTriplets(elements.begin(), elements.end());
- if(count!=NNZ)
- std::cerr << count << "!=" << NNZ << "\n";
-
- input.close();
- return true;
-}
-
-template<typename VectorType>
-bool loadMarketVector(VectorType& vec, const std::string& filename)
-{
- typedef typename VectorType::Scalar Scalar;
- std::ifstream in(filename.c_str(), std::ios::in);
- if(!in)
- return false;
-
- std::string line;
- int n(0), col(0);
- do
- { // Skip comments
- std::getline(in, line); eigen_assert(in.good());
- } while (line[0] == '%');
- std::istringstream newline(line);
- newline >> n >> col;
- eigen_assert(n>0 && col>0);
- vec.resize(n);
- int i = 0;
- Scalar value;
- while ( std::getline(in, line) && (i < n) ){
- internal::GetVectorElt(line, value);
- vec(i++) = value;
- }
- in.close();
- if (i!=n){
- std::cerr<< "Unable to read all elements from file " << filename << "\n";
- return false;
- }
- return true;
-}
-
-template<typename SparseMatrixType>
-bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- std::ofstream out(filename.c_str(),std::ios::out);
- if(!out)
- return false;
-
- out.flags(std::ios_base::scientific);
- out.precision(64);
- std::string header;
- internal::putMarketHeader<Scalar>(header, sym);
- out << header << std::endl;
- out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
- int count = 0;
- for(int j=0; j<mat.outerSize(); ++j)
- for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
- {
- ++ count;
- internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
- // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
- }
- out.close();
- return true;
-}
-
-template<typename VectorType>
-bool saveMarketVector (const VectorType& vec, const std::string& filename)
-{
- typedef typename VectorType::Scalar Scalar;
- std::ofstream out(filename.c_str(),std::ios::out);
- if(!out)
- return false;
-
- out.flags(std::ios_base::scientific);
- out.precision(64);
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- out << "%%MatrixMarket matrix array complex general\n";
- else
- out << "%%MatrixMarket matrix array real general\n";
- out << vec.size() << " "<< 1 << "\n";
- for (int i=0; i < vec.size(); i++){
- internal::putVectorElt(vec(i), out);
- }
- out.close();
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_MARKET_IO_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h b/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
deleted file mode 100644
index 02916ea..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
+++ /dev/null
@@ -1,247 +0,0 @@
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BROWSE_MATRICES_H
-#define EIGEN_BROWSE_MATRICES_H
-
-namespace Eigen {
-
-enum {
- SPD = 0x100,
- NonSymmetric = 0x0
-};
-
-/**
- * @brief Iterator to browse matrices from a specified folder
- *
- * This is used to load all the matrices from a folder.
- * The matrices should be in Matrix Market format
- * It is assumed that the matrices are named as matname.mtx
- * and matname_SPD.mtx if the matrix is Symmetric and positive definite (or Hermitian)
- * The right hand side vectors are loaded as well, if they exist.
- * They should be named as matname_b.mtx.
- * Note that the right hand side for a SPD matrix is named as matname_SPD_b.mtx
- *
- * Sometimes a reference solution is available. In this case, it should be named as matname_x.mtx
- *
- * Sample code
- * \code
- *
- * \endcode
- *
- * \tparam Scalar The scalar type
- */
-template <typename Scalar>
-class MatrixMarketIterator
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- public:
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef SparseMatrix<Scalar,ColMajor> MatrixType;
-
- public:
- MatrixMarketIterator(const std::string &folder)
- : m_sym(0), m_isvalid(false), m_matIsLoaded(false), m_hasRhs(false), m_hasrefX(false), m_folder(folder)
- {
- m_folder_id = opendir(folder.c_str());
- if(m_folder_id)
- Getnextvalidmatrix();
- }
-
- ~MatrixMarketIterator()
- {
- if (m_folder_id) closedir(m_folder_id);
- }
-
- inline MatrixMarketIterator& operator++()
- {
- m_matIsLoaded = false;
- m_hasrefX = false;
- m_hasRhs = false;
- Getnextvalidmatrix();
- return *this;
- }
- inline operator bool() const { return m_isvalid;}
-
- /** Return the sparse matrix corresponding to the current file */
- inline MatrixType& matrix()
- {
- // Read the matrix
- if (m_matIsLoaded) return m_mat;
-
- std::string matrix_file = m_folder + "/" + m_matname + ".mtx";
- if ( !loadMarket(m_mat, matrix_file))
- {
- std::cerr << "Warning loadMarket failed when loading \"" << matrix_file << "\"" << std::endl;
- m_matIsLoaded = false;
- return m_mat;
- }
- m_matIsLoaded = true;
-
- if (m_sym != NonSymmetric)
- {
- // Check whether we need to restore a full matrix:
- RealScalar diag_norm = m_mat.diagonal().norm();
- RealScalar lower_norm = m_mat.template triangularView<Lower>().norm();
- RealScalar upper_norm = m_mat.template triangularView<Upper>().norm();
- if(lower_norm>diag_norm && upper_norm==diag_norm)
- {
- // only the lower part is stored
- MatrixType tmp(m_mat);
- m_mat = tmp.template selfadjointView<Lower>();
- }
- else if(upper_norm>diag_norm && lower_norm==diag_norm)
- {
- // only the upper part is stored
- MatrixType tmp(m_mat);
- m_mat = tmp.template selfadjointView<Upper>();
- }
- }
- return m_mat;
- }
-
- /** Return the right hand side corresponding to the current matrix.
- * If the rhs file is not provided, a random rhs is generated
- */
- inline VectorType& rhs()
- {
- // Get the right hand side
- if (m_hasRhs) return m_rhs;
-
- std::string rhs_file;
- rhs_file = m_folder + "/" + m_matname + "_b.mtx"; // The pattern is matname_b.mtx
- m_hasRhs = Fileexists(rhs_file);
- if (m_hasRhs)
- {
- m_rhs.resize(m_mat.cols());
- m_hasRhs = loadMarketVector(m_rhs, rhs_file);
- }
- if (!m_hasRhs)
- {
- // Generate a random right hand side
- if (!m_matIsLoaded) this->matrix();
- m_refX.resize(m_mat.cols());
- m_refX.setRandom();
- m_rhs = m_mat * m_refX;
- m_hasrefX = true;
- m_hasRhs = true;
- }
- return m_rhs;
- }
-
- /** Return a reference solution
- * If it is not provided and if the right hand side is not available
- * then refX is randomly generated such that A*refX = b
- * where A and b are the matrix and the rhs.
- * Note that when a rhs is provided, refX is not available
- */
- inline VectorType& refX()
- {
- // Check if a reference solution is provided
- if (m_hasrefX) return m_refX;
-
- std::string lhs_file;
- lhs_file = m_folder + "/" + m_matname + "_x.mtx";
- m_hasrefX = Fileexists(lhs_file);
- if (m_hasrefX)
- {
- m_refX.resize(m_mat.cols());
- m_hasrefX = loadMarketVector(m_refX, lhs_file);
- }
- else
- m_refX.resize(0);
- return m_refX;
- }
-
- inline std::string& matname() { return m_matname; }
-
- inline int sym() { return m_sym; }
-
- bool hasRhs() {return m_hasRhs; }
- bool hasrefX() {return m_hasrefX; }
- bool isFolderValid() { return bool(m_folder_id); }
-
- protected:
-
- inline bool Fileexists(std::string file)
- {
- std::ifstream file_id(file.c_str());
- if (!file_id.good() )
- {
- return false;
- }
- else
- {
- file_id.close();
- return true;
- }
- }
-
- void Getnextvalidmatrix( )
- {
- m_isvalid = false;
- // Here, we return with the next valid matrix in the folder
- while ( (m_curs_id = readdir(m_folder_id)) != NULL) {
- m_isvalid = false;
- std::string curfile;
- curfile = m_folder + "/" + m_curs_id->d_name;
- // Discard if it is a folder
- if (m_curs_id->d_type == DT_DIR) continue; //FIXME This may not be available on non BSD systems
-// struct stat st_buf;
-// stat (curfile.c_str(), &st_buf);
-// if (S_ISDIR(st_buf.st_mode)) continue;
-
- // Determine from the header if it is a matrix or a right hand side
- bool isvector,iscomplex=false;
- if(!getMarketHeader(curfile,m_sym,iscomplex,isvector)) continue;
- if(isvector) continue;
- if (!iscomplex)
- {
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- continue;
- }
- if (iscomplex)
- {
- if(internal::is_same<Scalar, float>::value || internal::is_same<Scalar, double>::value)
- continue;
- }
-
-
- // Get the matrix name
- std::string filename = m_curs_id->d_name;
- m_matname = filename.substr(0, filename.length()-4);
-
- // Find if the matrix is SPD
- size_t found = m_matname.find("SPD");
- if( (found!=std::string::npos) && (m_sym != NonSymmetric) )
- m_sym = SPD;
-
- m_isvalid = true;
- break;
- }
- }
- int m_sym; // Symmetry of the matrix
- MatrixType m_mat; // Current matrix
- VectorType m_rhs; // Current vector
- VectorType m_refX; // The reference solution, if exists
- std::string m_matname; // Matrix Name
- bool m_isvalid;
- bool m_matIsLoaded; // Determine if the matrix has already been loaded from the file
- bool m_hasRhs; // The right hand side exists
- bool m_hasrefX; // A reference solution is provided
- std::string m_folder;
- DIR * m_folder_id;
- struct dirent *m_curs_id;
-
-};
-
-} // end namespace Eigen
-
-#endif
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h b/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
deleted file mode 100644
index ee97299..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
+++ /dev/null
@@ -1,327 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_RANDOMSETTER_H
-#define EIGEN_RANDOMSETTER_H
-
-namespace Eigen {
-
-/** Represents a std::map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdMapTraits
-{
- typedef int KeyType;
- typedef std::map<KeyType,Scalar> Type;
- enum {
- IsSorted = 1
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-
-#ifdef EIGEN_UNORDERED_MAP_SUPPORT
-/** Represents a std::unordered_map
- *
- * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
- * yourself making sure that unordered_map is defined in the std namespace.
- *
- * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
- * \code
- * #include <tr1/unordered_map>
- * #define EIGEN_UNORDERED_MAP_SUPPORT
- * namespace std {
- * using std::tr1::unordered_map;
- * }
- * \endcode
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdUnorderedMapTraits
-{
- typedef int KeyType;
- typedef std::unordered_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif // EIGEN_UNORDERED_MAP_SUPPORT
-
-#ifdef _DENSE_HASH_MAP_H_
-/** Represents a google::dense_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleDenseHashMapTraits
-{
- typedef int KeyType;
- typedef google::dense_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type& map, const KeyType& k)
- { map.set_empty_key(k); }
-};
-#endif
-
-#ifdef _SPARSE_HASH_MAP_H_
-/** Represents a google::sparse_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleSparseHashMapTraits
-{
- typedef int KeyType;
- typedef google::sparse_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif
-
-/** \class RandomSetter
- *
- * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
- *
- * \tparam SparseMatrixType the type of the sparse matrix we are updating
- * \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
- * Its default value depends on the system.
- * \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
- * as a power of two exponent.
- *
- * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
- * efficient random access. The conversion from the compressed representation to a hash_map object is performed
- * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
- * suggest the use of nested blocks as in this example:
- *
- * \code
- * SparseMatrix<double> m(rows,cols);
- * {
- * RandomSetter<SparseMatrix<double> > w(m);
- * // don't use m but w instead with read/write random access to the coefficients:
- * for(;;)
- * w(rand(),rand()) = rand;
- * }
- * // when w is deleted, the data are copied back to m
- * // and m is ready to use.
- * \endcode
- *
- * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
- * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
- * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
- * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
- * per rows/columns.
- *
- * The possible values for the template parameter MapTraits are:
- * - \b StdMapTraits: corresponds to std::map. (does not perform very well)
- * - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
- * - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
- * - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
- *
- * The default map implementation depends on the availability, and the preferred order is:
- * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
- *
- * For performance and memory consumption reasons it is highly recommended to use one of
- * the Google's hash_map implementation. To enable the support for them, you have two options:
- * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
- * - define EIGEN_GOOGLEHASH_SUPPORT
- * In the later case the inclusion of <google/dense_hash_map> is made for you.
- *
- * \see http://code.google.com/p/google-sparsehash/
- */
-template<typename SparseMatrixType,
- template <typename T> class MapTraits =
-#if defined _DENSE_HASH_MAP_H_
- GoogleDenseHashMapTraits
-#elif defined _HASH_MAP
- GnuHashMapTraits
-#else
- StdMapTraits
-#endif
- ,int OuterPacketBits = 6>
-class RandomSetter
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
-
- struct ScalarWrapper
- {
- ScalarWrapper() : value(0) {}
- Scalar value;
- };
- typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
- typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
- static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
- enum {
- SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
- TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
- SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
- };
-
- public:
-
- /** Constructs a random setter object from the sparse matrix \a target
- *
- * Note that the initial value of \a target are imported. If you want to re-set
- * a sparse matrix from scratch, then you must set it to zero first using the
- * setZero() function.
- */
- inline RandomSetter(SparseMatrixType& target)
- : mp_target(&target)
- {
- const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
- const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
- m_outerPackets = outerSize >> OuterPacketBits;
- if (outerSize&OuterPacketMask)
- m_outerPackets += 1;
- m_hashmaps = new HashMapType[m_outerPackets];
- // compute number of bits needed to store inner indices
- Index aux = innerSize - 1;
- m_keyBitsOffset = 0;
- while (aux)
- {
- ++m_keyBitsOffset;
- aux = aux >> 1;
- }
- KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
- for (Index k=0; k<m_outerPackets; ++k)
- MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
-
- // insert current coeffs
- for (Index j=0; j<mp_target->outerSize(); ++j)
- for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
- (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
- }
-
- /** Destructor updating back the sparse matrix target */
- ~RandomSetter()
- {
- KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
- if (!SwapStorage) // also means the map is sorted
- {
- mp_target->setZero();
- mp_target->makeCompressed();
- mp_target->reserve(nonZeros());
- Index prevOuter = -1;
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index inner = it->first & keyBitsMask;
- if (prevOuter!=outer)
- {
- for (Index j=prevOuter+1;j<=outer;++j)
- mp_target->startVec(j);
- prevOuter = outer;
- }
- mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
- }
- }
- mp_target->finalize();
- }
- else
- {
- VectorXi positions(mp_target->outerSize());
- positions.setZero();
- // pass 1
- for (Index k=0; k<m_outerPackets; ++k)
- {
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = it->first & keyBitsMask;
- ++positions[outer];
- }
- }
- // prefix sum
- Index count = 0;
- for (Index j=0; j<mp_target->outerSize(); ++j)
- {
- Index tmp = positions[j];
- mp_target->outerIndexPtr()[j] = count;
- positions[j] = count;
- count += tmp;
- }
- mp_target->makeCompressed();
- mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
- mp_target->resizeNonZeros(count);
- // pass 2
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index outer = it->first & keyBitsMask;
- // sorted insertion
- // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
- // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
- // small fraction of them have to be sorted, whence the following simple procedure:
- Index posStart = mp_target->outerIndexPtr()[outer];
- Index i = (positions[outer]++) - 1;
- while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
- {
- mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
- mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
- --i;
- }
- mp_target->innerIndexPtr()[i+1] = inner;
- mp_target->valuePtr()[i+1] = it->second.value;
- }
- }
- }
- delete[] m_hashmaps;
- }
-
- /** \returns a reference to the coefficient at given coordinates \a row, \a col */
- Scalar& operator() (Index row, Index col)
- {
- const Index outer = SetterRowMajor ? row : col;
- const Index inner = SetterRowMajor ? col : row;
- const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
- const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
- const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
- return m_hashmaps[outerMajor][key].value;
- }
-
- /** \returns the number of non zero coefficients
- *
- * \note According to the underlying map/hash_map implementation,
- * this function might be quite expensive.
- */
- Index nonZeros() const
- {
- Index nz = 0;
- for (Index k=0; k<m_outerPackets; ++k)
- nz += static_cast<Index>(m_hashmaps[k].size());
- return nz;
- }
-
-
- protected:
-
- HashMapType* m_hashmaps;
- SparseMatrixType* mp_target;
- Index m_outerPackets;
- unsigned char m_keyBitsOffset;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_RANDOMSETTER_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
deleted file mode 100644
index ed415db..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
+++ /dev/null
@@ -1,124 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
-#define EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
-
-namespace Eigen {
-
-/** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
- *
- * This function computes the coefficient-wise incomplete gamma function.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::igammac(), Eigen::lgamma()
- */
-template<typename Derived,typename ExponentDerived>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
-igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
- a.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
- *
- * This function computes the coefficient-wise complementary incomplete gamma function.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::igamma(), Eigen::lgamma()
- */
-template<typename Derived,typename ExponentDerived>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
-igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
- a.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays.
- *
- * It returns the \a n -th derivative of the digamma(psi) evaluated at \c x.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::digamma()
- */
-// * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x)
-// * \sa ArrayBase::polygamma()
-template<typename DerivedN,typename DerivedX>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>
-polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>(
- n.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays.
- *
- * This function computes the regularized incomplete beta function (integral).
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::betainc(), Eigen::lgamma()
- */
-template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived>
-inline const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>
-betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x)
-{
- return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>(
- a.derived(),
- b.derived(),
- x.derived()
- );
-}
-
-
-/** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays.
- *
- * It returns the Riemann zeta function of two arguments \a x and \a q:
- *
- * \param x is the exposent, it must be > 1
- * \param q is the shift, it must be > 0
- *
- * \note This function supports only float and double scalar types. To support other scalar types, the user has
- * to provide implementations of zeta(T,T) for any scalar type T to be supported.
- *
- * \sa ArrayBase::zeta()
- */
-template<typename DerivedX,typename DerivedQ>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>
-zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>(
- x.derived(),
- q.derived()
- );
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
deleted file mode 100644
index d8f2363..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
-#define EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-/** \internal
- * \brief Template functor to compute the incomplete gamma function igamma(a, x)
- *
- * \sa class CwiseBinaryOp, Cwise::igamma
- */
-template<typename Scalar> struct scalar_igamma_op : binary_op_base<Scalar,Scalar>
-{
- EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
- using numext::igamma; return igamma(a, x);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
- return internal::pigamma(a, x);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_igamma_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasIGamma
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
- *
- * \sa class CwiseBinaryOp, Cwise::igammac
- */
-template<typename Scalar> struct scalar_igammac_op : binary_op_base<Scalar,Scalar>
-{
- EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
- using numext::igammac; return igammac(a, x);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
- {
- return internal::pigammac(a, x);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_igammac_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasIGammac
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the incomplete beta integral betainc(a, b, x)
- *
- */
-template<typename Scalar> struct scalar_betainc_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_betainc_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& x, const Scalar& a, const Scalar& b) const {
- using numext::betainc; return betainc(x, a, b);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& x, const Packet& a, const Packet& b) const
- {
- return internal::pbetainc(x, a, b);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_betainc_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 400 * NumTraits<Scalar>::MulCost + 400 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasBetaInc
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the natural log of the absolute
- * value of Gamma of a scalar
- * \sa class CwiseUnaryOp, Cwise::lgamma()
- */
-template<typename Scalar> struct scalar_lgamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::lgamma; return lgamma(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plgamma(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_lgamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasLGamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute psi, the derivative of lgamma of a scalar.
- * \sa class CwiseUnaryOp, Cwise::digamma()
- */
-template<typename Scalar> struct scalar_digamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_digamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::digamma; return digamma(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pdigamma(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_digamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasDiGamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Riemann Zeta function of two arguments.
- * \sa class CwiseUnaryOp, Cwise::zeta()
- */
-template<typename Scalar> struct scalar_zeta_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& x, const Scalar& q) const {
- using numext::zeta; return zeta(x, q);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_zeta_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasZeta
- };
-};
-
-/** \internal
- * \brief Template functor to compute the polygamma function.
- * \sa class CwiseUnaryOp, Cwise::polygamma()
- */
-template<typename Scalar> struct scalar_polygamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_polygamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& n, const Scalar& x) const {
- using numext::polygamma; return polygamma(n, x);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& n, const Packet& x) const { return internal::ppolygamma(n, x); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_polygamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasPolygamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Gauss error function of a
- * scalar
- * \sa class CwiseUnaryOp, Cwise::erf()
- */
-template<typename Scalar> struct scalar_erf_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::erf; return erf(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perf(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_erf_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasErf
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Complementary Error Function
- * of a scalar
- * \sa class CwiseUnaryOp, Cwise::erfc()
- */
-template<typename Scalar> struct scalar_erfc_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::erfc; return erfc(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perfc(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_erfc_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasErfc
- };
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
deleted file mode 100644
index 553bcda..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
+++ /dev/null
@@ -1,47 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_HALF_H
-#define EIGEN_SPECIALFUNCTIONS_HALF_H
-
-namespace Eigen {
-namespace numext {
-
-#if EIGEN_HAS_C99_MATH
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::lgamma(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::digamma(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) {
- return Eigen::half(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::erfc(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half betainc(const Eigen::half& a, const Eigen::half& b, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x)));
-}
-#endif
-
-} // end namespace numext
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_HALF_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
deleted file mode 100644
index f524d71..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
+++ /dev/null
@@ -1,1565 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIAL_FUNCTIONS_H
-#define EIGEN_SPECIAL_FUNCTIONS_H
-
-namespace Eigen {
-namespace internal {
-
-// Parts of this code are based on the Cephes Math Library.
-//
-// Cephes Math Library Release 2.8: June, 2000
-// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
-//
-// Permission has been kindly provided by the original author
-// to incorporate the Cephes software into the Eigen codebase:
-//
-// From: Stephen Moshier
-// To: Eugene Brevdo
-// Subject: Re: Permission to wrap several cephes functions in Eigen
-//
-// Hello Eugene,
-//
-// Thank you for writing.
-//
-// If your licensing is similar to BSD, the formal way that has been
-// handled is simply to add a statement to the effect that you are incorporating
-// the Cephes software by permission of the author.
-//
-// Good luck with your project,
-// Steve
-
-namespace cephes {
-
-/* polevl (modified for Eigen)
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * Scalar x, y, coef[N+1];
- *
- * y = polevl<decltype(x), N>( x, coef);
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evl() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevl().
- *
- *
- * The Eigen implementation is templatized. For best speed, store
- * coef as a const array (constexpr), e.g.
- *
- * const double coef[] = {1.0, 2.0, 3.0, ...};
- *
- */
-template <typename Scalar, int N>
-struct polevl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
- EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
- }
-};
-
-template <typename Scalar>
-struct polevl<Scalar, 0> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
- return coef[0];
- }
-};
-
-} // end namespace cephes
-
-/****************************************************************************
- * Implementation of lgamma, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct lgamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct lgamma_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct lgamma_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(float x) {
-#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int signgam;
- return ::lgammaf_r(x, &signgam);
-#else
- return ::lgammaf(x);
-#endif
- }
-};
-
-template <>
-struct lgamma_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(double x) {
-#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int signgam;
- return ::lgamma_r(x, &signgam);
-#else
- return ::lgamma(x);
-#endif
- }
-};
-#endif
-
-/****************************************************************************
- * Implementation of digamma (psi), based on Cephes *
- ****************************************************************************/
-
-template <typename Scalar>
-struct digamma_retval {
- typedef Scalar type;
-};
-
-/*
- *
- * Polynomial evaluation helper for the Psi (digamma) function.
- *
- * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
- * input Scalar s, assuming s is above 10.0.
- *
- * If s is above a certain threshold for the given Scalar type, zero
- * is returned. Otherwise the polynomial is evaluated with enough
- * coefficients for results matching Scalar machine precision.
- *
- *
- */
-template <typename Scalar>
-struct digamma_impl_maybe_poly {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-
-template <>
-struct digamma_impl_maybe_poly<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(const float s) {
- const float A[] = {
- -4.16666666666666666667E-3f,
- 3.96825396825396825397E-3f,
- -8.33333333333333333333E-3f,
- 8.33333333333333333333E-2f
- };
-
- float z;
- if (s < 1.0e8f) {
- z = 1.0f / (s * s);
- return z * cephes::polevl<float, 3>::run(z, A);
- } else return 0.0f;
- }
-};
-
-template <>
-struct digamma_impl_maybe_poly<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(const double s) {
- const double A[] = {
- 8.33333333333333333333E-2,
- -2.10927960927960927961E-2,
- 7.57575757575757575758E-3,
- -4.16666666666666666667E-3,
- 3.96825396825396825397E-3,
- -8.33333333333333333333E-3,
- 8.33333333333333333333E-2
- };
-
- double z;
- if (s < 1.0e17) {
- z = 1.0 / (s * s);
- return z * cephes::polevl<double, 6>::run(z, A);
- }
- else return 0.0;
- }
-};
-
-template <typename Scalar>
-struct digamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar x) {
- /*
- *
- * Psi (digamma) function (modified for Eigen)
- *
- *
- * SYNOPSIS:
- *
- * double x, y, psi();
- *
- * y = psi( x );
- *
- *
- * DESCRIPTION:
- *
- * d -
- * psi(x) = -- ln | (x)
- * dx
- *
- * is the logarithmic derivative of the gamma function.
- * For integer x,
- * n-1
- * -
- * psi(n) = -EUL + > 1/k.
- * -
- * k=1
- *
- * If x is negative, it is transformed to a positive argument by the
- * reflection formula psi(1-x) = psi(x) + pi cot(pi x).
- * For general positive x, the argument is made greater than 10
- * using the recurrence psi(x+1) = psi(x) + 1/x.
- * Then the following asymptotic expansion is applied:
- *
- * inf. B
- * - 2k
- * psi(x) = log(x) - 1/2x - > -------
- * - 2k
- * k=1 2k x
- *
- * where the B2k are Bernoulli numbers.
- *
- * ACCURACY (float):
- * Relative error (except absolute when |psi| < 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 1.3e-15 1.4e-16
- * IEEE -30,0 40000 1.5e-15 2.2e-16
- *
- * ACCURACY (double):
- * Absolute error, relative when |psi| > 1 :
- * arithmetic domain # trials peak rms
- * IEEE -33,0 30000 8.2e-7 1.2e-7
- * IEEE 0,33 100000 7.3e-7 7.7e-8
- *
- * ERROR MESSAGES:
- * message condition value returned
- * psi singularity x integer <=0 INFINITY
- */
-
- Scalar p, q, nz, s, w, y;
- bool negative = false;
-
- const Scalar maxnum = NumTraits<Scalar>::infinity();
- const Scalar m_pi = Scalar(EIGEN_PI);
-
- const Scalar zero = Scalar(0);
- const Scalar one = Scalar(1);
- const Scalar half = Scalar(0.5);
- nz = zero;
-
- if (x <= zero) {
- negative = true;
- q = x;
- p = numext::floor(q);
- if (p == q) {
- return maxnum;
- }
- /* Remove the zeros of tan(m_pi x)
- * by subtracting the nearest integer from x
- */
- nz = q - p;
- if (nz != half) {
- if (nz > half) {
- p += one;
- nz = q - p;
- }
- nz = m_pi / numext::tan(m_pi * nz);
- }
- else {
- nz = zero;
- }
- x = one - x;
- }
-
- /* use the recurrence psi(x+1) = psi(x) + 1/x. */
- s = x;
- w = zero;
- while (s < Scalar(10)) {
- w += one / s;
- s += one;
- }
-
- y = digamma_impl_maybe_poly<Scalar>::run(s);
-
- y = numext::log(s) - (half / s) - y - w;
-
- return (negative) ? y - nz : y;
- }
-};
-
-/****************************************************************************
- * Implementation of erf, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct erf_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct erf_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct erf_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
-};
-
-template <>
-struct erf_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
-};
-#endif // EIGEN_HAS_C99_MATH
-
-/***************************************************************************
-* Implementation of erfc, requires C++11/C99 *
-****************************************************************************/
-
-template <typename Scalar>
-struct erfc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct erfc_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct erfc_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
-};
-
-template <>
-struct erfc_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
-};
-#endif // EIGEN_HAS_C99_MATH
-
-/**************************************************************************************************************
- * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
- **************************************************************************************************************/
-
-template <typename Scalar>
-struct igammac_retval {
- typedef Scalar type;
-};
-
-// NOTE: cephes_helper is also used to implement zeta
-template <typename Scalar>
-struct cephes_helper {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
-};
-
-template <>
-struct cephes_helper<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float machep() {
- return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float big() {
- // use epsneg (1.0 - epsneg == 1.0)
- return 1.0f / (NumTraits<float>::epsilon() / 2);
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float biginv() {
- // epsneg
- return machep();
- }
-};
-
-template <>
-struct cephes_helper<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double machep() {
- return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double big() {
- return 1.0 / NumTraits<double>::epsilon();
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double biginv() {
- // inverse of eps
- return NumTraits<double>::epsilon();
- }
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct igammac_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
-
-template <typename Scalar>
-struct igammac_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- /* igamc()
- *
- * Incomplete gamma integral (modified for Eigen)
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igamc();
- *
- * y = igamc( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 7.8e-6 5.9e-7
- *
- *
- * ACCURACY (double):
- *
- * Tested at random a, x.
- * a x Relative error:
- * arithmetic domain domain # trials peak rms
- * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
- * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if ((x < zero) || (a <= zero)) {
- // domain error
- return nan;
- }
-
- if ((x < one) || (x < a)) {
- /* The checks above ensure that we meet the preconditions for
- * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igamma_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igamma_impl calls igammac_impl::Impl. */
- friend struct igamma_impl<Scalar>;
-
- /* Actually computes igamc(a, x).
- *
- * Preconditions:
- * a > 0
- * x >= 1
- * x >= a
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
- const Scalar inf = NumTraits<Scalar>::infinity();
-
- Scalar ans, ax, c, yc, r, t, y, z;
- Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
-
- if (x == inf) return zero; // std::isinf crashes on CUDA
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) { // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- // continued fraction
- y = one - a;
- z = x + y + one;
- c = zero;
- pkm2 = one;
- qkm2 = x;
- pkm1 = x + one;
- qkm1 = z * x;
- ans = pkm1 / qkm1;
-
- while (true) {
- c += one;
- y += one;
- z += two;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if (qk != zero) {
- r = pk / qk;
- t = numext::abs((ans - r) / r);
- ans = r;
- } else {
- t = one;
- }
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if (numext::abs(pk) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if (t <= machep) {
- break;
- }
- }
-
- return (ans * ax);
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/************************************************************************************************
- * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
- ************************************************************************************************/
-
-template <typename Scalar>
-struct igamma_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct igamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct igamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- /* igam()
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (double):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 200000 3.6e-14 2.9e-15
- * IEEE 0,100 300000 9.9e-14 1.5e-14
- *
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if (x == zero) return zero;
-
- if ((x < zero) || (a <= zero)) { // domain error
- return nan;
- }
-
- if ((x > one) && (x > a)) {
- /* The checks above ensure that we meet the preconditions for
- * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igammac_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igammac_impl calls igamma_impl::Impl. */
- friend struct igammac_impl<Scalar>;
-
- /* Actually computes igam(a, x).
- *
- * Preconditions:
- * x > 0
- * a > 0
- * !(x > 1 && x > a)
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
-
- Scalar ans, ax, c, r;
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) {
- // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- /* power series */
- r = a;
- c = one;
- ans = one;
-
- while (true) {
- r += one;
- c *= x/r;
- ans += c;
- if (c/ans <= machep) {
- break;
- }
- }
-
- return (ans * ax / a);
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/*****************************************************************************
- * Implementation of Riemann zeta function of two arguments, based on Cephes *
- *****************************************************************************/
-
-template <typename Scalar>
-struct zeta_retval {
- typedef Scalar type;
-};
-
-template <typename Scalar>
-struct zeta_impl_series {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <>
-struct zeta_impl_series<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
- int i = 0;
- while(i < 9)
- {
- i += 1;
- a += 1.0f;
- b = numext::pow( a, -x );
- s += b;
- if( numext::abs(b/s) < machep )
- return true;
- }
-
- //Return whether we are done
- return false;
- }
-};
-
-template <>
-struct zeta_impl_series<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
- int i = 0;
- while( (i < 9) || (a <= 9.0) )
- {
- i += 1;
- a += 1.0;
- b = numext::pow( a, -x );
- s += b;
- if( numext::abs(b/s) < machep )
- return true;
- }
-
- //Return whether we are done
- return false;
- }
-};
-
-template <typename Scalar>
-struct zeta_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar x, Scalar q) {
- /* zeta.c
- *
- * Riemann zeta function of two arguments
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, q, y, zeta();
- *
- * y = zeta( x, q );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=0
- *
- * where x > 1 and q is not a negative integer or zero.
- * The Euler-Maclaurin summation formula is used to obtain
- * the expansion
- *
- * n
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=1
- *
- * 1-x inf. B x(x+1)...(x+2j)
- * (n+q) 1 - 2j
- * + --------- - ------- + > --------------------
- * x-1 x - x+2j+1
- * 2(n+q) j=1 (2j)! (n+q)
- *
- * where the B2j are Bernoulli numbers. Note that (see zetac.c)
- * zeta(x,1) = zetac(x) + 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error for single precision:
- * arithmetic domain # trials peak rms
- * IEEE 0,25 10000 6.9e-7 1.0e-7
- *
- * Large arguments may produce underflow in powf(), in which
- * case the results are inaccurate.
- *
- * REFERENCE:
- *
- * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
- * Series, and Products, p. 1073; Academic Press, 1980.
- *
- */
-
- int i;
- Scalar p, r, a, b, k, s, t, w;
-
- const Scalar A[] = {
- Scalar(12.0),
- Scalar(-720.0),
- Scalar(30240.0),
- Scalar(-1209600.0),
- Scalar(47900160.0),
- Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
- Scalar(7.47242496e10),
- Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
- Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
- Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
- Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
- Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
- };
-
- const Scalar maxnum = NumTraits<Scalar>::infinity();
- const Scalar zero = 0.0, half = 0.5, one = 1.0;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if( x == one )
- return maxnum;
-
- if( x < one )
- {
- return nan;
- }
-
- if( q <= zero )
- {
- if(q == numext::floor(q))
- {
- return maxnum;
- }
- p = x;
- r = numext::floor(p);
- if (p != r)
- return nan;
- }
-
- /* Permit negative q but continue sum until n+q > +9 .
- * This case should be handled by a reflection formula.
- * If q<0 and x is an integer, there is a relation to
- * the polygamma function.
- */
- s = numext::pow( q, -x );
- a = q;
- b = zero;
- // Run the summation in a helper function that is specific to the floating precision
- if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
- return s;
- }
-
- w = a;
- s += b*w/(x-one);
- s -= half * b;
- a = one;
- k = zero;
- for( i=0; i<12; i++ )
- {
- a *= x + k;
- b /= w;
- t = a*b/A[i];
- s = s + t;
- t = numext::abs(t/s);
- if( t < machep ) {
- break;
- }
- k += one;
- a *= x + k;
- b /= w;
- k += one;
- }
- return s;
- }
-};
-
-/****************************************************************************
- * Implementation of polygamma function, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct polygamma_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct polygamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct polygamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar n, Scalar x) {
- Scalar zero = 0.0, one = 1.0;
- Scalar nplus = n + one;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- // Check that n is an integer
- if (numext::floor(n) != n) {
- return nan;
- }
- // Just return the digamma function for n = 1
- else if (n == zero) {
- return digamma_impl<Scalar>::run(x);
- }
- // Use the same implementation as scipy
- else {
- Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
- return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
- }
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/************************************************************************************************
- * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
- ************************************************************************************************/
-
-template <typename Scalar>
-struct betainc_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct betainc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct betainc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
- /* betaincf.c
- *
- * Incomplete beta integral
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, betaincf();
- *
- * y = betaincf( a, b, x );
- *
- *
- * DESCRIPTION:
- *
- * Returns incomplete beta integral of the arguments, evaluated
- * from zero to x. The function is defined as
- *
- * x
- * - -
- * | (a+b) | | a-1 b-1
- * ----------- | t (1-t) dt.
- * - - | |
- * | (a) | (b) -
- * 0
- *
- * The domain of definition is 0 <= x <= 1. In this
- * implementation a and b are restricted to positive values.
- * The integral from x to 1 may be obtained by the symmetry
- * relation
- *
- * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ).
- *
- * The integral is evaluated by a continued fraction expansion.
- * If a < 1, the function calls itself recursively after a
- * transformation to increase a to a+1.
- *
- * ACCURACY (float):
- *
- * Tested at random points (a,b,x) with a and b in the indicated
- * interval and x between 0 and 1.
- *
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,30 10000 3.7e-5 5.1e-6
- * IEEE 0,100 10000 1.7e-4 2.5e-5
- * The useful domain for relative error is limited by underflow
- * of the single precision exponential function.
- * Absolute error:
- * IEEE 0,30 100000 2.2e-5 9.6e-7
- * IEEE 0,100 10000 6.5e-5 3.7e-6
- *
- * Larger errors may occur for extreme ratios of a and b.
- *
- * ACCURACY (double):
- * arithmetic domain # trials peak rms
- * IEEE 0,5 10000 6.9e-15 4.5e-16
- * IEEE 0,85 250000 2.2e-13 1.7e-14
- * IEEE 0,1000 30000 5.3e-12 6.3e-13
- * IEEE 0,10000 250000 9.3e-11 7.1e-12
- * IEEE 0,100000 10000 8.7e-10 4.8e-11
- * Outputs smaller than the IEEE gradual underflow threshold
- * were excluded from these statistics.
- *
- * ERROR MESSAGES:
- * message condition value returned
- * incbet domain x<0, x>1 nan
- * incbet underflow nan
- */
-
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
- * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
- */
-template <typename Scalar>
-struct incbeta_cfe {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
- internal::is_same<Scalar, double>::value),
- THIS_TYPE_IS_NOT_SUPPORTED);
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
-
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
-
- Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
- Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
- Scalar ans;
- int n;
-
- const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
- const Scalar thresh =
- (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
- Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
-
- if (small_branch) {
- k1 = a;
- k2 = a + b;
- k3 = a;
- k4 = a + one;
- k5 = one;
- k6 = b - one;
- k7 = k4;
- k8 = a + two;
- k26update = one;
- } else {
- k1 = a;
- k2 = b - one;
- k3 = a;
- k4 = a + one;
- k5 = one;
- k6 = a + b;
- k7 = a + one;
- k8 = a + two;
- k26update = -one;
- x = x / (one - x);
- }
-
- pkm2 = zero;
- qkm2 = one;
- pkm1 = one;
- qkm1 = one;
- ans = one;
- n = 0;
-
- do {
- xk = -(x * k1 * k2) / (k3 * k4);
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- xk = (x * k5 * k6) / (k7 * k8);
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- if (qk != zero) {
- r = pk / qk;
- if (numext::abs(ans - r) < numext::abs(r) * thresh) {
- return r;
- }
- ans = r;
- }
-
- k1 += one;
- k2 += k26update;
- k3 += two;
- k4 += two;
- k5 += one;
- k6 -= k26update;
- k7 += two;
- k8 += two;
-
- if ((numext::abs(qk) + numext::abs(pk)) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- } while (++n < num_iters);
-
- return ans;
- }
-};
-
-/* Helper functions depending on the Scalar type */
-template <typename Scalar>
-struct betainc_helper {};
-
-template <>
-struct betainc_helper<float> {
- /* Core implementation, assumes a large (> 1.0) */
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
- float xx) {
- float ans, a, b, t, x, onemx;
- bool reversed_a_b = false;
-
- onemx = 1.0f - xx;
-
- /* see if x is greater than the mean */
- if (xx > (aa / (aa + bb))) {
- reversed_a_b = true;
- a = bb;
- b = aa;
- t = xx;
- x = onemx;
- } else {
- a = aa;
- b = bb;
- t = onemx;
- x = xx;
- }
-
- /* Choose expansion for optimal convergence */
- if (b > 10.0f) {
- if (numext::abs(b * x / a) < 0.3f) {
- t = betainc_helper<float>::incbps(a, b, x);
- if (reversed_a_b) t = 1.0f - t;
- return t;
- }
- }
-
- ans = x * (a + b - 2.0f) / (a - 1.0f);
- if (ans < 1.0f) {
- ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
- t = b * numext::log(t);
- } else {
- ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
- t = (b - 1.0f) * numext::log(t);
- }
-
- t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
- lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
- t += numext::log(ans / a);
- t = numext::exp(t);
-
- if (reversed_a_b) t = 1.0f - t;
- return t;
- }
-
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
- float t, u, y, s;
- const float machep = cephes_helper<float>::machep();
-
- y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
- y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
- y += lgamma_impl<float>::run(a + b);
-
- t = x / (1.0f - x);
- s = 0.0f;
- u = 1.0f;
- do {
- b -= 1.0f;
- if (b == 0.0f) {
- break;
- }
- a += 1.0f;
- u *= t * b / a;
- s += u;
- } while (numext::abs(u) > machep);
-
- return numext::exp(y) * (1.0f + s);
- }
-};
-
-template <>
-struct betainc_impl<float> {
- EIGEN_DEVICE_FUNC
- static float run(float a, float b, float x) {
- const float nan = NumTraits<float>::quiet_NaN();
- float ans, t;
-
- if (a <= 0.0f) return nan;
- if (b <= 0.0f) return nan;
- if ((x <= 0.0f) || (x >= 1.0f)) {
- if (x == 0.0f) return 0.0f;
- if (x == 1.0f) return 1.0f;
- // mtherr("betaincf", DOMAIN);
- return nan;
- }
-
- /* transformation for small aa */
- if (a <= 1.0f) {
- ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
- t = a * numext::log(x) + b * numext::log1p(-x) +
- lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
- lgamma_impl<float>::run(b);
- return (ans + numext::exp(t));
- } else {
- return betainc_helper<float>::incbsa(a, b, x);
- }
- }
-};
-
-template <>
-struct betainc_helper<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
- const double machep = cephes_helper<double>::machep();
-
- double s, t, u, v, n, t1, z, ai;
-
- ai = 1.0 / a;
- u = (1.0 - b) * x;
- v = u / (a + 1.0);
- t1 = v;
- t = u;
- n = 2.0;
- s = 0.0;
- z = machep * ai;
- while (numext::abs(v) > z) {
- u = (n - b) * x / n;
- t *= u;
- v = t / (a + n);
- s += v;
- n += 1.0;
- }
- s += t1;
- s += ai;
-
- u = a * numext::log(x);
- // TODO: gamma() is not directly implemented in Eigen.
- /*
- if ((a + b) < maxgam && numext::abs(u) < maxlog) {
- t = gamma(a + b) / (gamma(a) * gamma(b));
- s = s * t * pow(x, a);
- } else {
- */
- t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
- lgamma_impl<double>::run(b) + u + numext::log(s);
- return s = numext::exp(t);
- }
-};
-
-template <>
-struct betainc_impl<double> {
- EIGEN_DEVICE_FUNC
- static double run(double aa, double bb, double xx) {
- const double nan = NumTraits<double>::quiet_NaN();
- const double machep = cephes_helper<double>::machep();
- // const double maxgam = 171.624376956302725;
-
- double a, b, t, x, xc, w, y;
- bool reversed_a_b = false;
-
- if (aa <= 0.0 || bb <= 0.0) {
- return nan; // goto domerr;
- }
-
- if ((xx <= 0.0) || (xx >= 1.0)) {
- if (xx == 0.0) return (0.0);
- if (xx == 1.0) return (1.0);
- // mtherr("incbet", DOMAIN);
- return nan;
- }
-
- if ((bb * xx) <= 1.0 && xx <= 0.95) {
- return betainc_helper<double>::incbps(aa, bb, xx);
- }
-
- w = 1.0 - xx;
-
- /* Reverse a and b if x is greater than the mean. */
- if (xx > (aa / (aa + bb))) {
- reversed_a_b = true;
- a = bb;
- b = aa;
- xc = xx;
- x = w;
- } else {
- a = aa;
- b = bb;
- xc = w;
- x = xx;
- }
-
- if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
- t = betainc_helper<double>::incbps(a, b, x);
- if (t <= machep) {
- t = 1.0 - machep;
- } else {
- t = 1.0 - t;
- }
- return t;
- }
-
- /* Choose expansion for better convergence. */
- y = x * (a + b - 2.0) - (a - 1.0);
- if (y < 0.0) {
- w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
- } else {
- w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
- }
-
- /* Multiply w by the factor
- a b _ _ _
- x (1-x) | (a+b) / ( a | (a) | (b) ) . */
-
- y = a * numext::log(x);
- t = b * numext::log(xc);
- // TODO: gamma is not directly implemented in Eigen.
- /*
- if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
- {
- t = pow(xc, b);
- t *= pow(x, a);
- t /= a;
- t *= w;
- t *= gamma(a + b) / (gamma(a) * gamma(b));
- } else {
- */
- /* Resort to logarithms. */
- y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
- lgamma_impl<double>::run(b);
- y += numext::log(w / a);
- t = numext::exp(y);
-
- /* } */
- // done:
-
- if (reversed_a_b) {
- if (t <= machep) {
- t = 1.0 - machep;
- } else {
- t = 1.0 - t;
- }
- }
- return t;
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-} // end namespace internal
-
-namespace numext {
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
- lgamma(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
- digamma(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
-zeta(const Scalar& x, const Scalar& q) {
- return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
-polygamma(const Scalar& n, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
- erf(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
- erfc(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
- igamma(const Scalar& a, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
- igammac(const Scalar& a, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
- betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
-}
-
-} // end namespace numext
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIAL_FUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
deleted file mode 100644
index 46d60d3..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
+++ /dev/null
@@ -1,58 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-#define EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal \returns the ln(|gamma(\a a)|) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); }
-
-/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
-
-/** \internal \returns the zeta function of two arguments (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); }
-
-/** \internal \returns the polygamma function (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet ppolygamma(const Packet& n, const Packet& x) { using numext::polygamma; return polygamma(n, x); }
-
-/** \internal \returns the erf(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet perf(const Packet& a) { using numext::erf; return erf(a); }
-
-/** \internal \returns the erfc(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
-
-/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
-
-/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
-
-/** \internal \returns the complementary incomplete gamma function betainc(\a a, \a b, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pbetainc(const Packet& a, const Packet& b,const Packet& x) { using numext::betainc; return betainc(a, b, x); }
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h b/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
deleted file mode 100644
index ec4fa84..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
+++ /dev/null
@@ -1,165 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CUDA_SPECIALFUNCTIONS_H
-#define EIGEN_CUDA_SPECIALFUNCTIONS_H
-
-namespace Eigen {
-
-namespace internal {
-
-// Make sure this is only available when targeting a GPU: we don't want to
-// introduce conflicts between these packet_traits definitions and the ones
-// we'll use on the host side (SSE, AVX, ...)
-#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 plgamma<float4>(const float4& a)
-{
- return make_float4(lgammaf(a.x), lgammaf(a.y), lgammaf(a.z), lgammaf(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 plgamma<double2>(const double2& a)
-{
- using numext::lgamma;
- return make_double2(lgamma(a.x), lgamma(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pdigamma<float4>(const float4& a)
-{
- using numext::digamma;
- return make_float4(digamma(a.x), digamma(a.y), digamma(a.z), digamma(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pdigamma<double2>(const double2& a)
-{
- using numext::digamma;
- return make_double2(digamma(a.x), digamma(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pzeta<float4>(const float4& x, const float4& q)
-{
- using numext::zeta;
- return make_float4(zeta(x.x, q.x), zeta(x.y, q.y), zeta(x.z, q.z), zeta(x.w, q.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pzeta<double2>(const double2& x, const double2& q)
-{
- using numext::zeta;
- return make_double2(zeta(x.x, q.x), zeta(x.y, q.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 ppolygamma<float4>(const float4& n, const float4& x)
-{
- using numext::polygamma;
- return make_float4(polygamma(n.x, x.x), polygamma(n.y, x.y), polygamma(n.z, x.z), polygamma(n.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 ppolygamma<double2>(const double2& n, const double2& x)
-{
- using numext::polygamma;
- return make_double2(polygamma(n.x, x.x), polygamma(n.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 perf<float4>(const float4& a)
-{
- return make_float4(erff(a.x), erff(a.y), erff(a.z), erff(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 perf<double2>(const double2& a)
-{
- using numext::erf;
- return make_double2(erf(a.x), erf(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 perfc<float4>(const float4& a)
-{
- using numext::erfc;
- return make_float4(erfc(a.x), erfc(a.y), erfc(a.z), erfc(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 perfc<double2>(const double2& a)
-{
- using numext::erfc;
- return make_double2(erfc(a.x), erfc(a.y));
-}
-
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pigamma<float4>(const float4& a, const float4& x)
-{
- using numext::igamma;
- return make_float4(
- igamma(a.x, x.x),
- igamma(a.y, x.y),
- igamma(a.z, x.z),
- igamma(a.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pigamma<double2>(const double2& a, const double2& x)
-{
- using numext::igamma;
- return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pigammac<float4>(const float4& a, const float4& x)
-{
- using numext::igammac;
- return make_float4(
- igammac(a.x, x.x),
- igammac(a.y, x.y),
- igammac(a.z, x.z),
- igammac(a.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pigammac<double2>(const double2& a, const double2& x)
-{
- using numext::igammac;
- return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pbetainc<float4>(const float4& a, const float4& b, const float4& x)
-{
- using numext::betainc;
- return make_float4(
- betainc(a.x, b.x, x.x),
- betainc(a.y, b.y, x.y),
- betainc(a.z, b.z, x.z),
- betainc(a.w, b.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pbetainc<double2>(const double2& a, const double2& b, const double2& x)
-{
- using numext::betainc;
- return make_double2(betainc(a.x, b.x, x.x), betainc(a.y, b.y, x.y));
-}
-
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CUDA_SPECIALFUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/Splines/Spline.h b/eigen/unsupported/Eigen/src/Splines/Spline.h
deleted file mode 100644
index 57788c8..0000000
--- a/eigen/unsupported/Eigen/src/Splines/Spline.h
+++ /dev/null
@@ -1,507 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINE_H
-#define EIGEN_SPLINE_H
-
-#include "SplineFwd.h"
-
-namespace Eigen
-{
- /**
- * \ingroup Splines_Module
- * \class Spline
- * \brief A class representing multi-dimensional spline curves.
- *
- * The class represents B-splines with non-uniform knot vectors. Each control
- * point of the B-spline is associated with a basis function
- * \f{align*}
- * C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
- * \f}
- *
- * \tparam _Scalar The underlying data type (typically float or double)
- * \tparam _Dim The curve dimension (e.g. 2 or 3)
- * \tparam _Degree Per default set to Dynamic; could be set to the actual desired
- * degree for optimization purposes (would result in stack allocation
- * of several temporary variables).
- **/
- template <typename _Scalar, int _Dim, int _Degree>
- class Spline
- {
- public:
- typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
- enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
- enum { Degree = _Degree /*!< The spline curve's degree. */ };
-
- /** \brief The point type the spline is representing. */
- typedef typename SplineTraits<Spline>::PointType PointType;
-
- /** \brief The data type used to store knot vectors. */
- typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
-
- /** \brief The data type used to store parameter vectors. */
- typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
-
- /** \brief The data type used to store non-zero basis functions. */
- typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
-
- /** \brief The data type representing the spline's control points. */
- typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
-
- /**
- * \brief Creates a (constant) zero spline.
- * For Splines with dynamic degree, the resulting degree will be 0.
- **/
- Spline()
- : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
- , m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
- {
- // in theory this code can go to the initializer list but it will get pretty
- // much unreadable ...
- enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
- m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
- m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
- }
-
- /**
- * \brief Creates a spline from a knot vector and control points.
- * \param knots The spline's knot vector.
- * \param ctrls The spline's control point vector.
- **/
- template <typename OtherVectorType, typename OtherArrayType>
- Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
-
- /**
- * \brief Copy constructor for splines.
- * \param spline The input spline.
- **/
- template <int OtherDegree>
- Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
- m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
-
- /**
- * \brief Returns the knots of the underlying spline.
- **/
- const KnotVectorType& knots() const { return m_knots; }
-
- /**
- * \brief Returns the ctrls of the underlying spline.
- **/
- const ControlPointVectorType& ctrls() const { return m_ctrls; }
-
- /**
- * \brief Returns the spline value at a given site \f$u\f$.
- *
- * The function returns
- * \f{align*}
- * C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
- * \f}
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
- * \return The spline value at the given location \f$u\f$.
- **/
- PointType operator()(Scalar u) const;
-
- /**
- * \brief Evaluation of spline derivatives of up-to given order.
- *
- * The function returns
- * \f{align*}
- * \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
- * \f}
- * for i ranging between 0 and order.
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
- * \param order The order up to which the derivatives are computed.
- **/
- typename SplineTraits<Spline>::DerivativeType
- derivatives(Scalar u, DenseIndex order) const;
-
- /**
- * \copydoc Spline::derivatives
- * Using the template version of this function is more efficieent since
- * temporary objects are allocated on the stack whenever this is possible.
- **/
- template <int DerivativeOrder>
- typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
- derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
-
- /**
- * \brief Computes the non-zero basis functions at the given site.
- *
- * Splines have local support and a point from their image is defined
- * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
- * spline degree.
- *
- * This function computes the \f$p+1\f$ non-zero basis function values
- * for a given parameter value \f$u\f$. It returns
- * \f{align*}{
- * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
- * \f}
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
- * are computed.
- **/
- typename SplineTraits<Spline>::BasisVectorType
- basisFunctions(Scalar u) const;
-
- /**
- * \brief Computes the non-zero spline basis function derivatives up to given order.
- *
- * The function computes
- * \f{align*}{
- * \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
- * \f}
- * with i ranging from 0 up to the specified order.
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
- * derivatives are computed.
- * \param order The order up to which the basis function derivatives are computes.
- **/
- typename SplineTraits<Spline>::BasisDerivativeType
- basisFunctionDerivatives(Scalar u, DenseIndex order) const;
-
- /**
- * \copydoc Spline::basisFunctionDerivatives
- * Using the template version of this function is more efficieent since
- * temporary objects are allocated on the stack whenever this is possible.
- **/
- template <int DerivativeOrder>
- typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
- basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
-
- /**
- * \brief Returns the spline degree.
- **/
- DenseIndex degree() const;
-
- /**
- * \brief Returns the span within the knot vector in which u is falling.
- * \param u The site for which the span is determined.
- **/
- DenseIndex span(Scalar u) const;
-
- /**
- * \brief Computes the spang within the provided knot vector in which u is falling.
- **/
- static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
-
- /**
- * \brief Returns the spline's non-zero basis functions.
- *
- * The function computes and returns
- * \f{align*}{
- * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
- * \f}
- *
- * \param u The site at which the basis functions are computed.
- * \param degree The degree of the underlying spline.
- * \param knots The underlying spline's knot vector.
- **/
- static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
-
- /**
- * \copydoc Spline::basisFunctionDerivatives
- * \param degree The degree of the underlying spline
- * \param knots The underlying spline's knot vector.
- **/
- static BasisDerivativeType BasisFunctionDerivatives(
- const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
-
- private:
- KnotVectorType m_knots; /*!< Knot vector. */
- ControlPointVectorType m_ctrls; /*!< Control points. */
-
- template <typename DerivativeType>
- static void BasisFunctionDerivativesImpl(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex p,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
- DerivativeType& N_);
- };
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
- DenseIndex degree,
- const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
- {
- // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
- if (u <= knots(0)) return degree;
- const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
- return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
- Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
- typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- DenseIndex degree,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
- {
- const DenseIndex p = degree;
- const DenseIndex i = Spline::Span(u, degree, knots);
-
- const KnotVectorType& U = knots;
-
- BasisVectorType left(p+1); left(0) = Scalar(0);
- BasisVectorType right(p+1); right(0) = Scalar(0);
-
- VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
- VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
-
- BasisVectorType N(1,p+1);
- N(0) = Scalar(1);
- for (DenseIndex j=1; j<=p; ++j)
- {
- Scalar saved = Scalar(0);
- for (DenseIndex r=0; r<j; r++)
- {
- const Scalar tmp = N(r)/(right(r+1)+left(j-r));
- N[r] = saved + right(r+1)*tmp;
- saved = left(j-r)*tmp;
- }
- N(j) = saved;
- }
- return N;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
- {
- if (_Degree == Dynamic)
- return m_knots.size() - m_ctrls.cols() - 1;
- else
- return _Degree;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
- {
- return Spline::Span(u, degree(), knots());
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
- {
- enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
-
- const DenseIndex span = this->span(u);
- const DenseIndex p = degree();
- const BasisVectorType basis_funcs = basisFunctions(u);
-
- const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
- const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
- return (ctrl_weights * ctrl_pts).rowwise().sum();
- }
-
- /* --------------------------------------------------------------------------------------------- */
-
- template <typename SplineType, typename DerivativeType>
- void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
- {
- enum { Dimension = SplineTraits<SplineType>::Dimension };
- enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
- enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
-
- typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
- typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
- typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
-
- const DenseIndex p = spline.degree();
- const DenseIndex span = spline.span(u);
-
- const DenseIndex n = (std::min)(p, order);
-
- der.resize(Dimension,n+1);
-
- // Retrieve the basis function derivatives up to the desired order...
- const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
-
- // ... and perform the linear combinations of the control points.
- for (DenseIndex der_order=0; der_order<n+1; ++der_order)
- {
- const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
- const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
- der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
- }
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
- Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline >::DerivativeType res;
- derivativesImpl(*this, u, order, res);
- return res;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <int DerivativeOrder>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
- Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
- derivativesImpl(*this, u, order, res);
- return res;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
- Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
- {
- return Spline::BasisFunctions(u, degree(), knots());
- }
-
- /* --------------------------------------------------------------------------------------------- */
-
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <typename DerivativeType>
- void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex p,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
- DerivativeType& N_)
- {
- typedef Spline<_Scalar, _Dim, _Degree> SplineType;
- enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
-
- const DenseIndex span = SplineType::Span(u, p, U);
-
- const DenseIndex n = (std::min)(p, order);
-
- N_.resize(n+1, p+1);
-
- BasisVectorType left = BasisVectorType::Zero(p+1);
- BasisVectorType right = BasisVectorType::Zero(p+1);
-
- Matrix<Scalar,Order,Order> ndu(p+1,p+1);
-
- Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
-
- ndu(0,0) = 1.0;
-
- DenseIndex j;
- for (j=1; j<=p; ++j)
- {
- left[j] = u-U[span+1-j];
- right[j] = U[span+j]-u;
- saved = 0.0;
-
- for (DenseIndex r=0; r<j; ++r)
- {
- /* Lower triangle */
- ndu(j,r) = right[r+1]+left[j-r];
- temp = ndu(r,j-1)/ndu(j,r);
- /* Upper triangle */
- ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
- saved = left[j-r] * temp;
- }
-
- ndu(j,j) = static_cast<Scalar>(saved);
- }
-
- for (j = p; j>=0; --j)
- N_(0,j) = ndu(j,p);
-
- // Compute the derivatives
- DerivativeType a(n+1,p+1);
- DenseIndex r=0;
- for (; r<=p; ++r)
- {
- DenseIndex s1,s2;
- s1 = 0; s2 = 1; // alternate rows in array a
- a(0,0) = 1.0;
-
- // Compute the k-th derivative
- for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
- {
- Scalar d = 0.0;
- DenseIndex rk,pk,j1,j2;
- rk = r-k; pk = p-k;
-
- if (r>=k)
- {
- a(s2,0) = a(s1,0)/ndu(pk+1,rk);
- d = a(s2,0)*ndu(rk,pk);
- }
-
- if (rk>=-1) j1 = 1;
- else j1 = -rk;
-
- if (r-1 <= pk) j2 = k-1;
- else j2 = p-r;
-
- for (j=j1; j<=j2; ++j)
- {
- a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
- d += a(s2,j)*ndu(rk+j,pk);
- }
-
- if (r<=pk)
- {
- a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
- d += a(s2,k)*ndu(r,pk);
- }
-
- N_(k,r) = static_cast<Scalar>(d);
- j = s1; s1 = s2; s2 = j; // Switch rows
- }
- }
-
- /* Multiply through by the correct factors */
- /* (Eq. [2.9]) */
- r = p;
- for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
- {
- for (j=p; j>=0; --j) N_(k,j) *= r;
- r *= p-k;
- }
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
- return der;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <int DerivativeOrder>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
- return der;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex degree,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
- {
- typename SplineTraits<Spline>::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree, knots, der);
- return der;
- }
-}
-
-#endif // EIGEN_SPLINE_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFitting.h b/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
deleted file mode 100644
index c761a9b..0000000
--- a/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
+++ /dev/null
@@ -1,430 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINE_FITTING_H
-#define EIGEN_SPLINE_FITTING_H
-
-#include <algorithm>
-#include <functional>
-#include <numeric>
-#include <vector>
-
-#include "SplineFwd.h"
-
-#include <Eigen/LU>
-#include <Eigen/QR>
-
-namespace Eigen
-{
- /**
- * \brief Computes knot averages.
- * \ingroup Splines_Module
- *
- * The knots are computed as
- * \f{align*}
- * u_0 & = \hdots = u_p = 0 \\
- * u_{m-p} & = \hdots = u_{m} = 1 \\
- * u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
- * \f}
- * where \f$p\f$ is the degree and \f$m+1\f$ the number knots
- * of the desired interpolating spline.
- *
- * \param[in] parameters The input parameters. During interpolation one for each data point.
- * \param[in] degree The spline degree which is used during the interpolation.
- * \param[out] knots The output knot vector.
- *
- * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
- **/
- template <typename KnotVectorType>
- void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
- {
- knots.resize(parameters.size()+degree+1);
-
- for (DenseIndex j=1; j<parameters.size()-degree; ++j)
- knots(j+degree) = parameters.segment(j,degree).mean();
-
- knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
- knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
- }
-
- /**
- * \brief Computes knot averages when derivative constraints are present.
- * Note that this is a technical interpretation of the referenced article
- * since the algorithm contained therein is incorrect as written.
- * \ingroup Splines_Module
- *
- * \param[in] parameters The parameters at which the interpolation B-Spline
- * will intersect the given interpolation points. The parameters
- * are assumed to be a non-decreasing sequence.
- * \param[in] degree The degree of the interpolating B-Spline. This must be
- * greater than zero.
- * \param[in] derivativeIndices The indices corresponding to parameters at
- * which there are derivative constraints. The indices are assumed
- * to be a non-decreasing sequence.
- * \param[out] knots The calculated knot vector. These will be returned as a
- * non-decreasing sequence
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- **/
- template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray>
- void KnotAveragingWithDerivatives(const ParameterVectorType& parameters,
- const unsigned int degree,
- const IndexArray& derivativeIndices,
- KnotVectorType& knots)
- {
- typedef typename ParameterVectorType::Scalar Scalar;
-
- DenseIndex numParameters = parameters.size();
- DenseIndex numDerivatives = derivativeIndices.size();
-
- if (numDerivatives < 1)
- {
- KnotAveraging(parameters, degree, knots);
- return;
- }
-
- DenseIndex startIndex;
- DenseIndex endIndex;
-
- DenseIndex numInternalDerivatives = numDerivatives;
-
- if (derivativeIndices[0] == 0)
- {
- startIndex = 0;
- --numInternalDerivatives;
- }
- else
- {
- startIndex = 1;
- }
- if (derivativeIndices[numDerivatives - 1] == numParameters - 1)
- {
- endIndex = numParameters - degree;
- --numInternalDerivatives;
- }
- else
- {
- endIndex = numParameters - degree - 1;
- }
-
- // There are (endIndex - startIndex + 1) knots obtained from the averaging
- // and 2 for the first and last parameters.
- DenseIndex numAverageKnots = endIndex - startIndex + 3;
- KnotVectorType averageKnots(numAverageKnots);
- averageKnots[0] = parameters[0];
-
- int newKnotIndex = 0;
- for (DenseIndex i = startIndex; i <= endIndex; ++i)
- averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean();
- averageKnots[++newKnotIndex] = parameters[numParameters - 1];
-
- newKnotIndex = -1;
-
- ParameterVectorType temporaryParameters(numParameters + 1);
- KnotVectorType derivativeKnots(numInternalDerivatives);
- for (DenseIndex i = 0; i < numAverageKnots - 1; ++i)
- {
- temporaryParameters[0] = averageKnots[i];
- ParameterVectorType parameterIndices(numParameters);
- int temporaryParameterIndex = 1;
- for (DenseIndex j = 0; j < numParameters; ++j)
- {
- Scalar parameter = parameters[j];
- if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1])
- {
- parameterIndices[temporaryParameterIndex] = j;
- temporaryParameters[temporaryParameterIndex++] = parameter;
- }
- }
- temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1];
-
- for (int j = 0; j <= temporaryParameterIndex - 2; ++j)
- {
- for (DenseIndex k = 0; k < derivativeIndices.size(); ++k)
- {
- if (parameterIndices[j + 1] == derivativeIndices[k]
- && parameterIndices[j + 1] != 0
- && parameterIndices[j + 1] != numParameters - 1)
- {
- derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean();
- break;
- }
- }
- }
- }
-
- KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size());
-
- std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(),
- derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(),
- temporaryKnots.data());
-
- // Number of knots (one for each point and derivative) plus spline order.
- DenseIndex numKnots = numParameters + numDerivatives + degree + 1;
- knots.resize(numKnots);
-
- knots.head(degree).fill(temporaryKnots[0]);
- knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]);
- knots.segment(degree, temporaryKnots.size()) = temporaryKnots;
- }
-
- /**
- * \brief Computes chord length parameters which are required for spline interpolation.
- * \ingroup Splines_Module
- *
- * \param[in] pts The data points to which a spline should be fit.
- * \param[out] chord_lengths The resulting chord lenggth vector.
- *
- * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
- **/
- template <typename PointArrayType, typename KnotVectorType>
- void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
- {
- typedef typename KnotVectorType::Scalar Scalar;
-
- const DenseIndex n = pts.cols();
-
- // 1. compute the column-wise norms
- chord_lengths.resize(pts.cols());
- chord_lengths[0] = 0;
- chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
-
- // 2. compute the partial sums
- std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());
-
- // 3. normalize the data
- chord_lengths /= chord_lengths(n-1);
- chord_lengths(n-1) = Scalar(1);
- }
-
- /**
- * \brief Spline fitting methods.
- * \ingroup Splines_Module
- **/
- template <typename SplineType>
- struct SplineFitting
- {
- typedef typename SplineType::KnotVectorType KnotVectorType;
- typedef typename SplineType::ParameterVectorType ParameterVectorType;
-
- /**
- * \brief Fits an interpolating Spline to the given data points.
- *
- * \param pts The points for which an interpolating spline will be computed.
- * \param degree The degree of the interpolating spline.
- *
- * \returns A spline interpolating the initially provided points.
- **/
- template <typename PointArrayType>
- static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
-
- /**
- * \brief Fits an interpolating Spline to the given data points.
- *
- * \param pts The points for which an interpolating spline will be computed.
- * \param degree The degree of the interpolating spline.
- * \param knot_parameters The knot parameters for the interpolation.
- *
- * \returns A spline interpolating the initially provided points.
- **/
- template <typename PointArrayType>
- static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
-
- /**
- * \brief Fits an interpolating spline to the given data points and
- * derivatives.
- *
- * \param points The points for which an interpolating spline will be computed.
- * \param derivatives The desired derivatives of the interpolating spline at interpolation
- * points.
- * \param derivativeIndices An array indicating which point each derivative belongs to. This
- * must be the same size as @a derivatives.
- * \param degree The degree of the interpolating spline.
- *
- * \returns A spline interpolating @a points with @a derivatives at those points.
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- **/
- template <typename PointArrayType, typename IndexArray>
- static SplineType InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree);
-
- /**
- * \brief Fits an interpolating spline to the given data points and derivatives.
- *
- * \param points The points for which an interpolating spline will be computed.
- * \param derivatives The desired derivatives of the interpolating spline at interpolation points.
- * \param derivativeIndices An array indicating which point each derivative belongs to. This
- * must be the same size as @a derivatives.
- * \param degree The degree of the interpolating spline.
- * \param parameters The parameters corresponding to the interpolation points.
- *
- * \returns A spline interpolating @a points with @a derivatives at those points.
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- */
- template <typename PointArrayType, typename IndexArray>
- static SplineType InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree,
- const ParameterVectorType& parameters);
- };
-
- template <typename SplineType>
- template <typename PointArrayType>
- SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters)
- {
- typedef typename SplineType::KnotVectorType::Scalar Scalar;
- typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
-
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- KnotVectorType knots;
- KnotAveraging(knot_parameters, degree, knots);
-
- DenseIndex n = pts.cols();
- MatrixType A = MatrixType::Zero(n,n);
- for (DenseIndex i=1; i<n-1; ++i)
- {
- const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots);
-
- // The segment call should somehow be told the spline order at compile time.
- A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots);
- }
- A(0,0) = 1.0;
- A(n-1,n-1) = 1.0;
-
- HouseholderQR<MatrixType> qr(A);
-
- // Here, we are creating a temporary due to an Eigen issue.
- ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();
-
- return SplineType(knots, ctrls);
- }
-
- template <typename SplineType>
- template <typename PointArrayType>
- SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
- {
- KnotVectorType chord_lengths; // knot parameters
- ChordLengths(pts, chord_lengths);
- return Interpolate(pts, degree, chord_lengths);
- }
-
- template <typename SplineType>
- template <typename PointArrayType, typename IndexArray>
- SplineType
- SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree,
- const ParameterVectorType& parameters)
- {
- typedef typename SplineType::KnotVectorType::Scalar Scalar;
- typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
-
- typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType;
-
- const DenseIndex n = points.cols() + derivatives.cols();
-
- KnotVectorType knots;
-
- KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots);
-
- // fill matrix
- MatrixType A = MatrixType::Zero(n, n);
-
- // Use these dimensions for quicker populating, then transpose for solving.
- MatrixType b(points.rows(), n);
-
- DenseIndex startRow;
- DenseIndex derivativeStart;
-
- // End derivatives.
- if (derivativeIndices[0] == 0)
- {
- A.template block<1, 2>(1, 0) << -1, 1;
-
- Scalar y = (knots(degree + 1) - knots(0)) / degree;
- b.col(1) = y*derivatives.col(0);
-
- startRow = 2;
- derivativeStart = 1;
- }
- else
- {
- startRow = 1;
- derivativeStart = 0;
- }
- if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1)
- {
- A.template block<1, 2>(n - 2, n - 2) << -1, 1;
-
- Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree;
- b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1);
- }
-
- DenseIndex row = startRow;
- DenseIndex derivativeIndex = derivativeStart;
- for (DenseIndex i = 1; i < parameters.size() - 1; ++i)
- {
- const DenseIndex span = SplineType::Span(parameters[i], degree, knots);
-
- if (derivativeIndices[derivativeIndex] == i)
- {
- A.block(row, span - degree, 2, degree + 1)
- = SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots);
-
- b.col(row++) = points.col(i);
- b.col(row++) = derivatives.col(derivativeIndex++);
- }
- else
- {
- A.row(row++).segment(span - degree, degree + 1)
- = SplineType::BasisFunctions(parameters[i], degree, knots);
- }
- }
- b.col(0) = points.col(0);
- b.col(b.cols() - 1) = points.col(points.cols() - 1);
- A(0,0) = 1;
- A(n - 1, n - 1) = 1;
-
- // Solve
- FullPivLU<MatrixType> lu(A);
- ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose();
-
- SplineType spline(knots, controlPoints);
-
- return spline;
- }
-
- template <typename SplineType>
- template <typename PointArrayType, typename IndexArray>
- SplineType
- SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree)
- {
- ParameterVectorType parameters;
- ChordLengths(points, parameters);
- return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters);
- }
-}
-
-#endif // EIGEN_SPLINE_FITTING_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFwd.h b/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
deleted file mode 100644
index 0a95fbf..0000000
--- a/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
+++ /dev/null
@@ -1,93 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINES_FWD_H
-#define EIGEN_SPLINES_FWD_H
-
-#include <Eigen/Core>
-
-namespace Eigen
-{
- template <typename Scalar, int Dim, int Degree = Dynamic> class Spline;
-
- template < typename SplineType, int DerivativeOrder = Dynamic > struct SplineTraits {};
-
- /**
- * \ingroup Splines_Module
- * \brief Compile-time attributes of the Spline class for Dynamic degree.
- **/
- template <typename _Scalar, int _Dim, int _Degree>
- struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, Dynamic >
- {
- typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
- enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
- enum { Degree = _Degree /*!< The spline curve's degree. */ };
-
- enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
- enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
-
- enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
-
- /** \brief The data type used to store non-zero basis functions. */
- typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
-
- /** \brief The data type used to store the spline's derivative values. */
- typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
-
- /** \brief The point type the spline is representing. */
- typedef Array<Scalar,Dimension,1> PointType;
-
- /** \brief The data type used to store knot vectors. */
- typedef Array<Scalar,1,Dynamic> KnotVectorType;
-
- /** \brief The data type used to store parameter vectors. */
- typedef Array<Scalar,1,Dynamic> ParameterVectorType;
-
- /** \brief The data type representing the spline's control points. */
- typedef Array<Scalar,Dimension,Dynamic> ControlPointVectorType;
- };
-
- /**
- * \ingroup Splines_Module
- * \brief Compile-time attributes of the Spline class for fixed degree.
- *
- * The traits class inherits all attributes from the SplineTraits of Dynamic degree.
- **/
- template < typename _Scalar, int _Dim, int _Degree, int _DerivativeOrder >
- struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, _DerivativeOrder > : public SplineTraits< Spline<_Scalar, _Dim, _Degree> >
- {
- enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
- enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
-
- enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
-
- /** \brief The data type used to store the spline's derivative values. */
- typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
- };
-
- /** \brief 2D float B-spline with dynamic degree. */
- typedef Spline<float,2> Spline2f;
-
- /** \brief 3D float B-spline with dynamic degree. */
- typedef Spline<float,3> Spline3f;
-
- /** \brief 2D double B-spline with dynamic degree. */
- typedef Spline<double,2> Spline2d;
-
- /** \brief 3D double B-spline with dynamic degree. */
- typedef Spline<double,3> Spline3d;
-}
-
-#endif // EIGEN_SPLINES_FWD_H