summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2018-07-03 07:37:12 +0200
committerStanislaw Halik <sthalik@misaki.pl>2018-07-03 08:13:09 +0200
commit88534ba623421c956d8ffcda2d27f41d704d15ef (patch)
treefccc55245aec3f7381cd525a1355568e10ea37f4 /eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
parent3ee09beb3f0458fbeb0b0e816f854b9d5b406e6b (diff)
update eigen
Diffstat (limited to 'eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h')
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h184
1 files changed, 102 insertions, 82 deletions
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
index 28f52da..98f9f64 100644
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -18,7 +18,7 @@ namespace Eigen
namespace internal
{
- // TODO: Add this trait to the Eigen internal API?
+ // TODO: Check if already exists on the rest API
template <int Num, bool IsPositive = (Num > 0)>
struct Abs
{
@@ -36,12 +36,6 @@ namespace Eigen
{
enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
};
-
- template<typename System,
- typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
- struct eulerangles_assign_impl;
}
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
@@ -75,7 +69,7 @@ namespace Eigen
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
+ * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
@@ -86,7 +80,7 @@ namespace Eigen
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
- * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
+ * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
@@ -96,7 +90,7 @@ namespace Eigen
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
- * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
@@ -118,9 +112,9 @@ namespace Eigen
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
- * \tparam _BetaAxis the second fixed EulerAxis
+ * \tparam _AlphaAxis the second fixed EulerAxis
*
- * \tparam _GammaAxis the third fixed EulerAxis
+ * \tparam _AlphaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
@@ -144,16 +138,14 @@ namespace Eigen
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
-
- // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
- // by Z, or Z is followed by X; otherwise it is odd.
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
+
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
};
private:
@@ -188,70 +180,71 @@ namespace Eigen
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sqrt;
+ using std::sin;
+ using std::cos;
typedef typename Derived::Scalar Scalar;
-
- const Scalar plusMinus = IsEven? 1 : -1;
- const Scalar minusPlus = IsOdd? 1 : -1;
-
- const Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2);
- res[1] = atan2(plusMinus * mat(I,K), Rsum);
-
- // There is a singularity when cos(beta) == 0
- if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
- res[0] = atan2(minusPlus * mat(J, K), mat(K, K));
- res[2] = atan2(minusPlus * mat(I, J), mat(I, I));
- }
- else if(plusMinus * mat(I, K) > 0) {// cos(beta) == 0 and sin(beta) == 1
- Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma
- Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma)
- Scalar alphaPlusMinusGamma = atan2(spos, cpos);
- res[0] = alphaPlusMinusGamma;
- res[2] = 0;
- }
- else {// cos(beta) == 0 and sin(beta) == -1
- Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma)
- Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma)
- Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
- res[0] = alphaMinusPlusBeta;
- res[2] = 0;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,K), mat(K,K));
+ Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ res[1] = atan2(-mat(I,K), -c2);
}
+ else
+ res[1] = atan2(-mat(I,K), c2);
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
}
template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
- const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sqrt;
+ using std::sin;
+ using std::cos;
typedef typename Derived::Scalar Scalar;
-
- const Scalar plusMinus = IsEven? 1 : -1;
- const Scalar minusPlus = IsOdd? 1 : -1;
-
- const Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2);
-
- res[1] = atan2(Rsum, mat(I, I));
-
- // There is a singularity when sin(beta) == 0
- if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
- res[0] = atan2(mat(J, I), minusPlus * mat(K, I));
- res[2] = atan2(mat(I, J), plusMinus * mat(I, K));
- }
- else if(mat(I, I) > 0) {// sin(beta) == 0 and cos(beta) == 1
- Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma)
- Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma)
- res[0] = atan2(spos, cpos);
- res[2] = 0;
+ typedef Matrix<Scalar,2,1> Vector2;
+
+ res[0] = atan2(mat(J,I), mat(K,I));
+ if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
+ {
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = -atan2(s2, mat(I,I));
}
- else {// sin(beta) == 0 and cos(beta) == -1
- Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma)
- Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma)
- res[0] = atan2(sneg, cneg);
- res[2] = 0;
+ else
+ {
+ Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
+ res[1] = atan2(s2, mat(I,I));
}
+
+ // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
+ // we can compute their respective rotation, and apply its inverse to M. Since the result must
+ // be a rotation around x, we have:
+ //
+ // c2 s1.s2 c1.s2 1 0 0
+ // 0 c1 -s1 * M = 0 c3 s3
+ // -s2 s1.c2 c1.c2 0 -s3 c3
+ //
+ // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
+
+ Scalar s1 = sin(res[0]);
+ Scalar c1 = cos(res[0]);
+ res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
}
template<typename Scalar>
@@ -259,28 +252,55 @@ namespace Eigen
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
+ CalcEulerAngles(res, mat, false, false, false);
+ }
+
+ template<
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma,
+ typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+ {
+ CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
+ }
+
+ template<typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
+ bool PositiveRangeAlpha,
+ bool PositiveRangeBeta,
+ bool PositiveRangeGamma)
+ {
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
- if (IsAlphaOpposite)
+ if (IsAlphaOpposite == IsOdd)
res.alpha() = -res.alpha();
- if (IsBetaOpposite)
+ if (IsBetaOpposite == IsOdd)
res.beta() = -res.beta();
- if (IsGammaOpposite)
+ if (IsGammaOpposite == IsOdd)
res.gamma() = -res.gamma();
+
+ // Saturate results to the requested range
+ if (PositiveRangeAlpha && (res.alpha() < 0))
+ res.alpha() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeBeta && (res.beta() < 0))
+ res.beta() += Scalar(2 * EIGEN_PI);
+
+ if (PositiveRangeGamma && (res.gamma() < 0))
+ res.gamma() += Scalar(2 * EIGEN_PI);
}
template <typename _Scalar, class _System>
friend class Eigen::EulerAngles;
-
- template<typename System,
- typename Other,
- int OtherRows,
- int OtherCols>
- friend struct internal::eulerangles_assign_impl;
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \