summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen')
-rw-r--r--eigen/unsupported/Eigen/AdolcForward156
-rw-r--r--eigen/unsupported/Eigen/AlignedVector3224
-rw-r--r--eigen/unsupported/Eigen/ArpackSupport31
-rw-r--r--eigen/unsupported/Eigen/AutoDiff40
-rw-r--r--eigen/unsupported/Eigen/BVH95
-rw-r--r--eigen/unsupported/Eigen/CMakeLists.txt32
-rw-r--r--eigen/unsupported/Eigen/CXX11/CMakeLists.txt8
-rw-r--r--eigen/unsupported/Eigen/CXX11/Tensor154
-rw-r--r--eigen/unsupported/Eigen/CXX11/TensorSymmetry42
-rw-r--r--eigen/unsupported/Eigen/CXX11/ThreadPool65
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/README.md1760
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h527
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h299
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h181
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h1012
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h392
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h384
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h361
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h628
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h56
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h1391
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h467
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h1043
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h279
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h1104
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h212
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h313
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h68
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h337
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h81
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h122
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h282
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h236
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h428
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h181
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h633
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h288
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h371
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h651
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h389
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h169
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h109
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h489
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h185
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h33
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h79
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h509
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h725
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h229
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h82
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h253
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h209
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h54
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h323
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h218
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h888
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h397
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h269
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h276
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h781
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h750
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h242
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h429
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h288
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h287
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h264
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h146
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h338
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h82
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h121
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h239
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h204
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h177
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h114
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h181
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h70
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h237
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h272
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h248
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h608
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h293
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h236
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h338
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h669
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h233
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h274
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h210
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/SimpleThreadPool.h154
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h38
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h22
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h33
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h20
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h542
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h88
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h267
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/util/EmulateCXX11Meta.h311
-rw-r--r--eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h141
-rw-r--r--eigen/unsupported/Eigen/EulerAngles43
-rw-r--r--eigen/unsupported/Eigen/FFT419
-rw-r--r--eigen/unsupported/Eigen/IterativeSolvers42
-rw-r--r--eigen/unsupported/Eigen/KroneckerProduct36
-rw-r--r--eigen/unsupported/Eigen/LevenbergMarquardt45
-rw-r--r--eigen/unsupported/Eigen/MPRealSupport209
-rw-r--r--eigen/unsupported/Eigen/MatrixFunctions500
-rw-r--r--eigen/unsupported/Eigen/MoreVectorization24
-rw-r--r--eigen/unsupported/Eigen/NonLinearOptimization134
-rw-r--r--eigen/unsupported/Eigen/NumericalDiff56
-rw-r--r--eigen/unsupported/Eigen/OpenGLSupport322
-rw-r--r--eigen/unsupported/Eigen/Polynomials138
-rw-r--r--eigen/unsupported/Eigen/Skyline39
-rw-r--r--eigen/unsupported/Eigen/SparseExtra53
-rw-r--r--eigen/unsupported/Eigen/SpecialFunctions63
-rw-r--r--eigen/unsupported/Eigen/Splines31
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h108
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h694
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h220
-rw-r--r--eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h293
-rw-r--r--eigen/unsupported/Eigen/src/BVH/KdBVH.h223
-rw-r--r--eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h805
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h386
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h326
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h261
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h420
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h189
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h510
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h343
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h90
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h154
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h289
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h187
-rw-r--r--eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h305
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt52
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h84
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h202
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h160
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h188
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h396
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h442
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h580
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h373
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h709
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h366
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h117
-rw-r--r--eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h95
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h601
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h657
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h66
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h70
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h107
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h79
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h298
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h91
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h30
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h99
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h49
-rw-r--r--eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h130
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/Companion.h276
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h406
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h143
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h352
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h862
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h212
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h295
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h259
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h89
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h122
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h1079
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h404
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h275
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h247
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h327
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h124
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h236
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h47
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h1565
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h58
-rw-r--r--eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h165
-rw-r--r--eigen/unsupported/Eigen/src/Splines/Spline.h507
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFitting.h430
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFwd.h93
181 files changed, 0 insertions, 53343 deletions
diff --git a/eigen/unsupported/Eigen/AdolcForward b/eigen/unsupported/Eigen/AdolcForward
deleted file mode 100644
index 15f5f07..0000000
--- a/eigen/unsupported/Eigen/AdolcForward
+++ /dev/null
@@ -1,156 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ADLOC_FORWARD
-#define EIGEN_ADLOC_FORWARD
-
-//--------------------------------------------------------------------------------
-//
-// This file provides support for adolc's adouble type in forward mode.
-// ADOL-C is a C++ automatic differentiation library,
-// see https://projects.coin-or.org/ADOL-C for more information.
-//
-// Note that the maximal number of directions is controlled by
-// the preprocessor token NUMBER_DIRECTIONS. The default is 2.
-//
-//--------------------------------------------------------------------------------
-
-#define ADOLC_TAPELESS
-#ifndef NUMBER_DIRECTIONS
-# define NUMBER_DIRECTIONS 2
-#endif
-#include <adolc/adtl.h>
-
-// adolc defines some very stupid macros:
-#if defined(malloc)
-# undef malloc
-#endif
-
-#if defined(calloc)
-# undef calloc
-#endif
-
-#if defined(realloc)
-# undef realloc
-#endif
-
-#include <Eigen/Core>
-
-namespace Eigen {
-
-/**
- * \defgroup AdolcForward_Module Adolc forward module
- * This module provides support for adolc's adouble type in forward mode.
- * ADOL-C is a C++ automatic differentiation library,
- * see https://projects.coin-or.org/ADOL-C for more information.
- * It mainly consists in:
- * - a struct Eigen::NumTraits<adtl::adouble> specialization
- * - overloads of internal::* math function for adtl::adouble type.
- *
- * Note that the maximal number of directions is controlled by
- * the preprocessor token NUMBER_DIRECTIONS. The default is 2.
- *
- * \code
- * #include <unsupported/Eigen/AdolcSupport>
- * \endcode
- */
- //@{
-
-} // namespace Eigen
-
-// Eigen's require a few additional functions which must be defined in the same namespace
-// than the custom scalar type own namespace
-namespace adtl {
-
-inline const adouble& conj(const adouble& x) { return x; }
-inline const adouble& real(const adouble& x) { return x; }
-inline adouble imag(const adouble&) { return 0.; }
-inline adouble abs(const adouble& x) { return fabs(x); }
-inline adouble abs2(const adouble& x) { return x*x; }
-
-}
-
-namespace Eigen {
-
-template<> struct NumTraits<adtl::adouble>
- : NumTraits<double>
-{
- typedef adtl::adouble Real;
- typedef adtl::adouble NonInteger;
- typedef adtl::adouble Nested;
- enum {
- IsComplex = 0,
- IsInteger = 0,
- IsSigned = 1,
- RequireInitialization = 1,
- ReadCost = 1,
- AddCost = 1,
- MulCost = 1
- };
-};
-
-template<typename Functor> class AdolcForwardJacobian : public Functor
-{
- typedef adtl::adouble ActiveScalar;
-public:
-
- AdolcForwardJacobian() : Functor() {}
- AdolcForwardJacobian(const Functor& f) : Functor(f) {}
-
- // forward constructors
- template<typename T0>
- AdolcForwardJacobian(const T0& a0) : Functor(a0) {}
- template<typename T0, typename T1>
- AdolcForwardJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
- template<typename T0, typename T1, typename T2>
- AdolcForwardJacobian(const T0& a0, const T1& a1, const T1& a2) : Functor(a0, a1, a2) {}
-
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename Functor::JacobianType JacobianType;
-
- typedef Matrix<ActiveScalar, InputType::SizeAtCompileTime, 1> ActiveInput;
- typedef Matrix<ActiveScalar, ValueType::SizeAtCompileTime, 1> ActiveValue;
-
- void operator() (const InputType& x, ValueType* v, JacobianType* _jac) const
- {
- eigen_assert(v!=0);
- if (!_jac)
- {
- Functor::operator()(x, v);
- return;
- }
-
- JacobianType& jac = *_jac;
-
- ActiveInput ax = x.template cast<ActiveScalar>();
- ActiveValue av(jac.rows());
-
- for (int j=0; j<jac.cols(); j++)
- for (int i=0; i<jac.cols(); i++)
- ax[i].setADValue(j, i==j ? 1 : 0);
-
- Functor::operator()(ax, &av);
-
- for (int i=0; i<jac.rows(); i++)
- {
- (*v)[i] = av[i].getValue();
- for (int j=0; j<jac.cols(); j++)
- jac.coeffRef(i,j) = av[i].getADValue(j);
- }
- }
-protected:
-
-};
-
-//@}
-
-}
-
-#endif // EIGEN_ADLOC_FORWARD
diff --git a/eigen/unsupported/Eigen/AlignedVector3 b/eigen/unsupported/Eigen/AlignedVector3
deleted file mode 100644
index 47a86d4..0000000
--- a/eigen/unsupported/Eigen/AlignedVector3
+++ /dev/null
@@ -1,224 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ALIGNED_VECTOR3
-#define EIGEN_ALIGNED_VECTOR3
-
-#include <Eigen/Geometry>
-
-namespace Eigen {
-
-/**
- * \defgroup AlignedVector3_Module Aligned vector3 module
- *
- * \code
- * #include <unsupported/Eigen/AlignedVector3>
- * \endcode
- */
- //@{
-
-
-/** \class AlignedVector3
- *
- * \brief A vectorization friendly 3D vector
- *
- * This class represents a 3D vector internally using a 4D vector
- * such that vectorization can be seamlessly enabled. Of course,
- * the same result can be achieved by directly using a 4D vector.
- * This class makes this process simpler.
- *
- */
-// TODO specialize Cwise
-template<typename _Scalar> class AlignedVector3;
-
-namespace internal {
-template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
- : traits<Matrix<_Scalar,3,1,0,4,1> >
-{
-};
-}
-
-template<typename _Scalar> class AlignedVector3
- : public MatrixBase<AlignedVector3<_Scalar> >
-{
- typedef Matrix<_Scalar,4,1> CoeffType;
- CoeffType m_coeffs;
- public:
-
- typedef MatrixBase<AlignedVector3<_Scalar> > Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
- using Base::operator*;
-
- inline Index rows() const { return 3; }
- inline Index cols() const { return 1; }
-
- Scalar* data() { return m_coeffs.data(); }
- const Scalar* data() const { return m_coeffs.data(); }
- Index innerStride() const { return 1; }
- Index outerStride() const { return 3; }
-
- inline const Scalar& coeff(Index row, Index col) const
- { return m_coeffs.coeff(row, col); }
-
- inline Scalar& coeffRef(Index row, Index col)
- { return m_coeffs.coeffRef(row, col); }
-
- inline const Scalar& coeff(Index index) const
- { return m_coeffs.coeff(index); }
-
- inline Scalar& coeffRef(Index index)
- { return m_coeffs.coeffRef(index);}
-
-
- inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
- : m_coeffs(x, y, z, Scalar(0))
- {}
-
- inline AlignedVector3(const AlignedVector3& other)
- : Base(), m_coeffs(other.m_coeffs)
- {}
-
- template<typename XprType, int Size=XprType::SizeAtCompileTime>
- struct generic_assign_selector {};
-
- template<typename XprType> struct generic_assign_selector<XprType,4>
- {
- inline static void run(AlignedVector3& dest, const XprType& src)
- {
- dest.m_coeffs = src;
- }
- };
-
- template<typename XprType> struct generic_assign_selector<XprType,3>
- {
- inline static void run(AlignedVector3& dest, const XprType& src)
- {
- dest.m_coeffs.template head<3>() = src;
- dest.m_coeffs.w() = Scalar(0);
- }
- };
-
- template<typename Derived>
- inline AlignedVector3(const MatrixBase<Derived>& other)
- {
- generic_assign_selector<Derived>::run(*this,other.derived());
- }
-
- inline AlignedVector3& operator=(const AlignedVector3& other)
- { m_coeffs = other.m_coeffs; return *this; }
-
- template <typename Derived>
- inline AlignedVector3& operator=(const MatrixBase<Derived>& other)
- {
- generic_assign_selector<Derived>::run(*this,other.derived());
- return *this;
- }
-
- inline AlignedVector3 operator+(const AlignedVector3& other) const
- { return AlignedVector3(m_coeffs + other.m_coeffs); }
-
- inline AlignedVector3& operator+=(const AlignedVector3& other)
- { m_coeffs += other.m_coeffs; return *this; }
-
- inline AlignedVector3 operator-(const AlignedVector3& other) const
- { return AlignedVector3(m_coeffs - other.m_coeffs); }
-
- inline AlignedVector3 operator-=(const AlignedVector3& other)
- { m_coeffs -= other.m_coeffs; return *this; }
-
- inline AlignedVector3 operator*(const Scalar& s) const
- { return AlignedVector3(m_coeffs * s); }
-
- inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
- { return AlignedVector3(s * vec.m_coeffs); }
-
- inline AlignedVector3& operator*=(const Scalar& s)
- { m_coeffs *= s; return *this; }
-
- inline AlignedVector3 operator/(const Scalar& s) const
- { return AlignedVector3(m_coeffs / s); }
-
- inline AlignedVector3& operator/=(const Scalar& s)
- { m_coeffs /= s; return *this; }
-
- inline Scalar dot(const AlignedVector3& other) const
- {
- eigen_assert(m_coeffs.w()==Scalar(0));
- eigen_assert(other.m_coeffs.w()==Scalar(0));
- return m_coeffs.dot(other.m_coeffs);
- }
-
- inline void normalize()
- {
- m_coeffs /= norm();
- }
-
- inline AlignedVector3 normalized() const
- {
- return AlignedVector3(m_coeffs / norm());
- }
-
- inline Scalar sum() const
- {
- eigen_assert(m_coeffs.w()==Scalar(0));
- return m_coeffs.sum();
- }
-
- inline Scalar squaredNorm() const
- {
- eigen_assert(m_coeffs.w()==Scalar(0));
- return m_coeffs.squaredNorm();
- }
-
- inline Scalar norm() const
- {
- using std::sqrt;
- return sqrt(squaredNorm());
- }
-
- inline AlignedVector3 cross(const AlignedVector3& other) const
- {
- return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
- }
-
- template<typename Derived>
- inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
- {
- return m_coeffs.template head<3>().isApprox(other,eps);
- }
-
- CoeffType& coeffs() { return m_coeffs; }
- const CoeffType& coeffs() const { return m_coeffs; }
-};
-
-namespace internal {
-
-template<typename _Scalar>
-struct eval<AlignedVector3<_Scalar>, Dense>
-{
- typedef const AlignedVector3<_Scalar>& type;
-};
-
-template<typename Scalar>
-struct evaluator<AlignedVector3<Scalar> >
- : evaluator<Matrix<Scalar,4,1> >
-{
- typedef AlignedVector3<Scalar> XprType;
- typedef evaluator<Matrix<Scalar,4,1> > Base;
-
- evaluator(const XprType &m) : Base(m.coeffs()) {}
-};
-
-}
-
-//@}
-
-}
-
-#endif // EIGEN_ALIGNED_VECTOR3
diff --git a/eigen/unsupported/Eigen/ArpackSupport b/eigen/unsupported/Eigen/ArpackSupport
deleted file mode 100644
index 37a2799..0000000
--- a/eigen/unsupported/Eigen/ArpackSupport
+++ /dev/null
@@ -1,31 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ARPACKSUPPORT_MODULE_H
-#define EIGEN_ARPACKSUPPORT_MODULE_H
-
-#include <Eigen/Core>
-
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
-
-/** \defgroup ArpackSupport_Module Arpack support module
- *
- * This module provides a wrapper to Arpack, a library for sparse eigenvalue decomposition.
- *
- * \code
- * #include <Eigen/ArpackSupport>
- * \endcode
- */
-
-#include <Eigen/SparseCholesky>
-#include "src/Eigenvalues/ArpackSelfAdjointEigenSolver.h"
-
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
-
-#endif // EIGEN_ARPACKSUPPORT_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/AutoDiff b/eigen/unsupported/Eigen/AutoDiff
deleted file mode 100644
index abf5b7d..0000000
--- a/eigen/unsupported/Eigen/AutoDiff
+++ /dev/null
@@ -1,40 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_MODULE
-#define EIGEN_AUTODIFF_MODULE
-
-namespace Eigen {
-
-/**
- * \defgroup AutoDiff_Module Auto Diff module
- *
- * This module features forward automatic differentation via a simple
- * templated scalar type wrapper AutoDiffScalar.
- *
- * Warning : this should NOT be confused with numerical differentiation, which
- * is a different method and has its own module in Eigen : \ref NumericalDiff_Module.
- *
- * \code
- * #include <unsupported/Eigen/AutoDiff>
- * \endcode
- */
-//@{
-
-}
-
-#include "src/AutoDiff/AutoDiffScalar.h"
-// #include "src/AutoDiff/AutoDiffVector.h"
-#include "src/AutoDiff/AutoDiffJacobian.h"
-
-namespace Eigen {
-//@}
-}
-
-#endif // EIGEN_AUTODIFF_MODULE
diff --git a/eigen/unsupported/Eigen/BVH b/eigen/unsupported/Eigen/BVH
deleted file mode 100644
index 0161a54..0000000
--- a/eigen/unsupported/Eigen/BVH
+++ /dev/null
@@ -1,95 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BVH_MODULE_H
-#define EIGEN_BVH_MODULE_H
-
-#include <Eigen/Core>
-#include <Eigen/Geometry>
-#include <Eigen/StdVector>
-#include <algorithm>
-#include <queue>
-
-namespace Eigen {
-
-/**
- * \defgroup BVH_Module BVH module
- * \brief This module provides generic bounding volume hierarchy algorithms
- * and reference tree implementations.
- *
- *
- * \code
- * #include <unsupported/Eigen/BVH>
- * \endcode
- *
- * A bounding volume hierarchy (BVH) can accelerate many geometric queries. This module provides a generic implementation
- * of the two basic algorithms over a BVH: intersection of a query object against all objects in the hierarchy and minimization
- * of a function over the objects in the hierarchy. It also provides intersection and minimization over a cartesian product of
- * two BVH's. A BVH accelerates intersection by using the fact that if a query object does not intersect a volume, then it cannot
- * intersect any object contained in that volume. Similarly, a BVH accelerates minimization because the minimum of a function
- * over a volume is no greater than the minimum of a function over any object contained in it.
- *
- * Some sample queries that can be written in terms of intersection are:
- * - Determine all points where a ray intersects a triangle mesh
- * - Given a set of points, determine which are contained in a query sphere
- * - Given a set of spheres, determine which contain the query point
- * - Given a set of disks, determine if any is completely contained in a query rectangle (represent each 2D disk as a point \f$(x,y,r)\f$
- * in 3D and represent the rectangle as a pyramid based on the original rectangle and shrinking in the \f$r\f$ direction)
- * - Given a set of points, count how many pairs are \f$d\pm\epsilon\f$ apart (done by looking at the cartesian product of the set
- * of points with itself)
- *
- * Some sample queries that can be written in terms of function minimization over a set of objects are:
- * - Find the intersection between a ray and a triangle mesh closest to the ray origin (function is infinite off the ray)
- * - Given a polyline and a query point, determine the closest point on the polyline to the query
- * - Find the diameter of a point cloud (done by looking at the cartesian product and using negative distance as the function)
- * - Determine how far two meshes are from colliding (this is also a cartesian product query)
- *
- * This implementation decouples the basic algorithms both from the type of hierarchy (and the types of the bounding volumes) and
- * from the particulars of the query. To enable abstraction from the BVH, the BVH is required to implement a generic mechanism
- * for traversal. To abstract from the query, the query is responsible for keeping track of results.
- *
- * To be used in the algorithms, a hierarchy must implement the following traversal mechanism (see KdBVH for a sample implementation): \code
- typedef Volume //the type of bounding volume
- typedef Object //the type of object in the hierarchy
- typedef Index //a reference to a node in the hierarchy--typically an int or a pointer
- typedef VolumeIterator //an iterator type over node children--returns Index
- typedef ObjectIterator //an iterator over object (leaf) children--returns const Object &
- Index getRootIndex() const //returns the index of the hierarchy root
- const Volume &getVolume(Index index) const //returns the bounding volume of the node at given index
- void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
- ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
- //getChildren takes a node index and makes [outVBegin, outVEnd) range over its node children
- //and [outOBegin, outOEnd) range over its object children
- \endcode
- *
- * To use the hierarchy, call BVIntersect or BVMinimize, passing it a BVH (or two, for cartesian product) and a minimizer or intersector.
- * For an intersection query on a single BVH, the intersector encapsulates the query and must provide two functions:
- * \code
- bool intersectVolume(const Volume &volume) //returns true if the query intersects the volume
- bool intersectObject(const Object &object) //returns true if the intersection search should terminate immediately
- \endcode
- * The guarantee that BVIntersect provides is that intersectObject will be called on every object whose bounding volume
- * intersects the query (but possibly on other objects too) unless the search is terminated prematurely. It is the
- * responsibility of the intersectObject function to keep track of the results in whatever manner is appropriate.
- * The cartesian product intersection and the BVMinimize queries are similar--see their individual documentation.
- *
- * The following is a simple but complete example for how to use the BVH to accelerate the search for a closest red-blue point pair:
- * \include BVH_Example.cpp
- * Output: \verbinclude BVH_Example.out
- */
-}
-
-//@{
-
-#include "src/BVH/BVAlgorithms.h"
-#include "src/BVH/KdBVH.h"
-
-//@}
-
-#endif // EIGEN_BVH_MODULE_H
diff --git a/eigen/unsupported/Eigen/CMakeLists.txt b/eigen/unsupported/Eigen/CMakeLists.txt
deleted file mode 100644
index 631a060..0000000
--- a/eigen/unsupported/Eigen/CMakeLists.txt
+++ /dev/null
@@ -1,32 +0,0 @@
-set(Eigen_HEADERS
- AdolcForward
- AlignedVector3
- ArpackSupport
- AutoDiff
- BVH
- EulerAngles
- FFT
- IterativeSolvers
- KroneckerProduct
- LevenbergMarquardt
- MatrixFunctions
- MoreVectorization
- MPRealSupport
- NonLinearOptimization
- NumericalDiff
- OpenGLSupport
- Polynomials
- Skyline
- SparseExtra
- SpecialFunctions
- Splines
- )
-
-install(FILES
- ${Eigen_HEADERS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen COMPONENT Devel
- )
-
-install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen COMPONENT Devel FILES_MATCHING PATTERN "*.h")
-
-add_subdirectory(CXX11)
diff --git a/eigen/unsupported/Eigen/CXX11/CMakeLists.txt b/eigen/unsupported/Eigen/CXX11/CMakeLists.txt
deleted file mode 100644
index 385ed24..0000000
--- a/eigen/unsupported/Eigen/CXX11/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-set(Eigen_CXX11_HEADERS Tensor TensorSymmetry ThreadPool)
-
-install(FILES
- ${Eigen_CXX11_HEADERS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/CXX11 COMPONENT Devel
- )
-
-install(DIRECTORY src DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/CXX11 COMPONENT Devel FILES_MATCHING PATTERN "*.h")
diff --git a/eigen/unsupported/Eigen/CXX11/Tensor b/eigen/unsupported/Eigen/CXX11/Tensor
deleted file mode 100644
index bb6523d..0000000
--- a/eigen/unsupported/Eigen/CXX11/Tensor
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-//#ifndef EIGEN_CXX11_TENSOR_MODULE
-//#define EIGEN_CXX11_TENSOR_MODULE
-
-#include "../../../Eigen/Core"
-
-#ifdef EIGEN_USE_SYCL
-#undef min
-#undef max
-#undef isnan
-#undef isinf
-#undef isfinite
-#include <SYCL/sycl.hpp>
-#include <map>
-#include <memory>
-#include <utility>
-#endif
-
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
-
-#include "../SpecialFunctions"
-#include "src/util/CXX11Meta.h"
-#include "src/util/MaxSizeVector.h"
-
-/** \defgroup CXX11_Tensor_Module Tensor Module
- *
- * This module provides a Tensor class for storing arbitrarily indexed
- * objects.
- *
- * \code
- * #include <Eigen/CXX11/Tensor>
- * \endcode
- *
- * Much of the documentation can be found \ref eigen_tensors "here".
- */
-
-#include <cmath>
-#include <cstddef>
-#include <cstring>
-
-#ifdef _WIN32
-typedef __int16 int16_t;
-typedef unsigned __int16 uint16_t;
-typedef __int32 int32_t;
-typedef unsigned __int32 uint32_t;
-typedef __int64 int64_t;
-typedef unsigned __int64 uint64_t;
-#else
-#include <stdint.h>
-#endif
-
-#if __cplusplus > 199711 || EIGEN_COMP_MSVC >= 1900
-#include <random>
-#endif
-
-#ifdef _WIN32
-#include <windows.h>
-#elif defined(__APPLE__)
-#include <mach/mach_time.h>
-#else
-#include <time.h>
-#endif
-
-#ifdef EIGEN_USE_THREADS
-#include "ThreadPool"
-#endif
-
-#ifdef EIGEN_USE_GPU
-#include <iostream>
-#include <cuda_runtime.h>
-#if __cplusplus >= 201103L
-#include <atomic>
-#include <unistd.h>
-#endif
-#endif
-
-#include "src/Tensor/TensorMacros.h"
-#include "src/Tensor/TensorForwardDeclarations.h"
-#include "src/Tensor/TensorMeta.h"
-#include "src/Tensor/TensorFunctors.h"
-#include "src/Tensor/TensorCostModel.h"
-#include "src/Tensor/TensorDeviceDefault.h"
-#include "src/Tensor/TensorDeviceThreadPool.h"
-#include "src/Tensor/TensorDeviceCuda.h"
-#include "src/Tensor/TensorDeviceSycl.h"
-#include "src/Tensor/TensorIndexList.h"
-#include "src/Tensor/TensorDimensionList.h"
-#include "src/Tensor/TensorDimensions.h"
-#include "src/Tensor/TensorInitializer.h"
-#include "src/Tensor/TensorTraits.h"
-#include "src/Tensor/TensorRandom.h"
-#include "src/Tensor/TensorUInt128.h"
-#include "src/Tensor/TensorIntDiv.h"
-#include "src/Tensor/TensorGlobalFunctions.h"
-
-#include "src/Tensor/TensorBase.h"
-
-#include "src/Tensor/TensorEvaluator.h"
-#include "src/Tensor/TensorExpr.h"
-#include "src/Tensor/TensorReduction.h"
-#include "src/Tensor/TensorReductionCuda.h"
-#include "src/Tensor/TensorArgMax.h"
-#include "src/Tensor/TensorConcatenation.h"
-#include "src/Tensor/TensorContractionMapper.h"
-#include "src/Tensor/TensorContractionBlocking.h"
-#include "src/Tensor/TensorContraction.h"
-#include "src/Tensor/TensorContractionThreadPool.h"
-#include "src/Tensor/TensorContractionCuda.h"
-#include "src/Tensor/TensorConversion.h"
-#include "src/Tensor/TensorConvolution.h"
-#include "src/Tensor/TensorFFT.h"
-#include "src/Tensor/TensorPatch.h"
-#include "src/Tensor/TensorImagePatch.h"
-#include "src/Tensor/TensorVolumePatch.h"
-#include "src/Tensor/TensorBroadcasting.h"
-#include "src/Tensor/TensorChipping.h"
-#include "src/Tensor/TensorInflation.h"
-#include "src/Tensor/TensorLayoutSwap.h"
-#include "src/Tensor/TensorMorphing.h"
-#include "src/Tensor/TensorPadding.h"
-#include "src/Tensor/TensorReverse.h"
-#include "src/Tensor/TensorShuffling.h"
-#include "src/Tensor/TensorStriding.h"
-#include "src/Tensor/TensorCustomOp.h"
-#include "src/Tensor/TensorEvalTo.h"
-#include "src/Tensor/TensorForcedEval.h"
-#include "src/Tensor/TensorGenerator.h"
-#include "src/Tensor/TensorAssign.h"
-#include "src/Tensor/TensorScan.h"
-
-#include "src/Tensor/TensorSycl.h"
-#include "src/Tensor/TensorExecutor.h"
-#include "src/Tensor/TensorDevice.h"
-
-#include "src/Tensor/TensorStorage.h"
-#include "src/Tensor/Tensor.h"
-#include "src/Tensor/TensorFixedSize.h"
-#include "src/Tensor/TensorMap.h"
-#include "src/Tensor/TensorRef.h"
-
-#include "src/Tensor/TensorIO.h"
-
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
-
-//#endif // EIGEN_CXX11_TENSOR_MODULE
diff --git a/eigen/unsupported/Eigen/CXX11/TensorSymmetry b/eigen/unsupported/Eigen/CXX11/TensorSymmetry
deleted file mode 100644
index fb1b0c0..0000000
--- a/eigen/unsupported/Eigen/CXX11/TensorSymmetry
+++ /dev/null
@@ -1,42 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSORSYMMETRY_MODULE
-#define EIGEN_CXX11_TENSORSYMMETRY_MODULE
-
-#include <unsupported/Eigen/CXX11/Tensor>
-
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
-
-#include "src/util/CXX11Meta.h"
-
-/** \defgroup CXX11_TensorSymmetry_Module Tensor Symmetry Module
- *
- * This module provides a classes that allow for the definition of
- * symmetries w.r.t. tensor indices.
- *
- * Including this module will implicitly include the Tensor module.
- *
- * \code
- * #include <Eigen/TensorSymmetry>
- * \endcode
- */
-
-#include "src/TensorSymmetry/util/TemplateGroupTheory.h"
-#include "src/TensorSymmetry/Symmetry.h"
-#include "src/TensorSymmetry/StaticSymmetry.h"
-#include "src/TensorSymmetry/DynamicSymmetry.h"
-
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
-
-#endif // EIGEN_CXX11_TENSORSYMMETRY_MODULE
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/ThreadPool b/eigen/unsupported/Eigen/CXX11/ThreadPool
deleted file mode 100644
index 09d637e..0000000
--- a/eigen/unsupported/Eigen/CXX11/ThreadPool
+++ /dev/null
@@ -1,65 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_MODULE
-#define EIGEN_CXX11_THREADPOOL_MODULE
-
-#include "../../../Eigen/Core"
-
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
-
-/** \defgroup CXX11_ThreadPool_Module C++11 ThreadPool Module
- *
- * This module provides 2 threadpool implementations
- * - a simple reference implementation
- * - a faster non blocking implementation
- *
- * This module requires C++11.
- *
- * \code
- * #include <Eigen/CXX11/ThreadPool>
- * \endcode
- */
-
-
-// The code depends on CXX11, so only include the module if the
-// compiler supports it.
-#if __cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900
-#include <cstddef>
-#include <cstring>
-#include <stdint.h>
-#include <time.h>
-
-#include <vector>
-#include <atomic>
-#include <condition_variable>
-#include <deque>
-#include <mutex>
-#include <thread>
-#include <functional>
-#include <memory>
-
-#include "src/util/CXX11Meta.h"
-#include "src/util/MaxSizeVector.h"
-
-#include "src/ThreadPool/ThreadLocal.h"
-#include "src/ThreadPool/ThreadYield.h"
-#include "src/ThreadPool/EventCount.h"
-#include "src/ThreadPool/RunQueue.h"
-#include "src/ThreadPool/ThreadPoolInterface.h"
-#include "src/ThreadPool/ThreadEnvironment.h"
-#include "src/ThreadPool/SimpleThreadPool.h"
-#include "src/ThreadPool/NonBlockingThreadPool.h"
-
-#endif
-
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
-
-#endif // EIGEN_CXX11_THREADPOOL_MODULE
-
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md b/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md
deleted file mode 100644
index da70fa2..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md
+++ /dev/null
@@ -1,1760 +0,0 @@
-# Eigen Tensors {#eigen_tensors}
-
-Tensors are multidimensional arrays of elements. Elements are typically scalars,
-but more complex types such as strings are also supported.
-
-[TOC]
-
-## Tensor Classes
-
-You can manipulate a tensor with one of the following classes. They all are in
-the namespace `::Eigen.`
-
-
-### Class Tensor<data_type, rank>
-
-This is the class to use to create a tensor and allocate memory for it. The
-class is templatized with the tensor datatype, such as float or int, and the
-tensor rank. The rank is the number of dimensions, for example rank 2 is a
-matrix.
-
-Tensors of this class are resizable. For example, if you assign a tensor of a
-different size to a Tensor, that tensor is resized to match its new value.
-
-#### Constructor `Tensor<data_type, rank>(size0, size1, ...)`
-
-Constructor for a Tensor. The constructor must be passed `rank` integers
-indicating the sizes of the instance along each of the the `rank`
-dimensions.
-
- // Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
- // memory to hold 24 floating point values (24 = 2 x 3 x 4).
- Tensor<float, 3> t_3d(2, 3, 4);
-
- // Resize t_3d by assigning a tensor of different sizes, but same rank.
- t_3d = Tensor<float, 3>(3, 4, 3);
-
-#### Constructor `Tensor<data_type, rank>(size_array)`
-
-Constructor where the sizes for the constructor are specified as an array of
-values instead of an explicitly list of parameters. The array type to use is
-`Eigen::array<Eigen::Index>`. The array can be constructed automatically
-from an initializer list.
-
- // Create a tensor of strings of rank 2 with sizes 5, 7.
- Tensor<string, 2> t_2d({5, 7});
-
-
-### Class `TensorFixedSize<data_type, Sizes<size0, size1, ...>>`
-
-Class to use for tensors of fixed size, where the size is known at compile
-time. Fixed sized tensors can provide very fast computations because all their
-dimensions are known by the compiler. FixedSize tensors are not resizable.
-
-If the total number of elements in a fixed size tensor is small enough the
-tensor data is held onto the stack and does not cause heap allocation and free.
-
- // Create a 4 x 3 tensor of floats.
- TensorFixedSize<float, Sizes<4, 3>> t_4x3;
-
-### Class `TensorMap<Tensor<data_type, rank>>`
-
-This is the class to use to create a tensor on top of memory allocated and
-owned by another part of your code. It allows to view any piece of allocated
-memory as a Tensor. Instances of this class do not own the memory where the
-data are stored.
-
-A TensorMap is not resizable because it does not own the memory where its data
-are stored.
-
-#### Constructor `TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)`
-
-Constructor for a Tensor. The constructor must be passed a pointer to the
-storage for the data, and "rank" size attributes. The storage has to be
-large enough to hold all the data.
-
- // Map a tensor of ints on top of stack-allocated storage.
- int storage[128]; // 2 x 4 x 2 x 8 = 128
- TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
-
- // The same storage can be viewed as a different tensor.
- // You can also pass the sizes as an array.
- TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
-
- // You can also map fixed-size tensors. Here we get a 1d view of
- // the 2d fixed-size tensor.
- TensorFixedSize<float, Sizes<4, 5>> t_4x3;
- TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
-
-
-#### Class `TensorRef`
-
-See Assigning to a TensorRef below.
-
-## Accessing Tensor Elements
-
-#### `<data_type> tensor(index0, index1...)`
-
-Return the element at position `(index0, index1...)` in tensor
-`tensor`. You must pass as many parameters as the rank of `tensor`.
-The expression can be used as an l-value to set the value of the element at the
-specified position. The value returned is of the datatype of the tensor.
-
- // Set the value of the element at position (0, 1, 0);
- Tensor<float, 3> t_3d(2, 3, 4);
- t_3d(0, 1, 0) = 12.0f;
-
- // Initialize all elements to random values.
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
- for (int k = 0; k < 4; ++k) {
- t_3d(i, j, k) = ...some random value...;
- }
- }
- }
-
- // Print elements of a tensor.
- for (int i = 0; i < 2; ++i) {
- LOG(INFO) << t_3d(i, 0, 0);
- }
-
-
-## TensorLayout
-
-The tensor library supports 2 layouts: `ColMajor` (the default) and
-`RowMajor`. Only the default column major layout is currently fully
-supported, and it is therefore not recommended to attempt to use the row major
-layout at the moment.
-
-The layout of a tensor is optionally specified as part of its type. If not
-specified explicitly column major is assumed.
-
- Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
- TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
-
-All the arguments to an expression must use the same layout. Attempting to mix
-different layouts will result in a compilation error.
-
-It is possible to change the layout of a tensor or an expression using the
-`swap_layout()` method. Note that this will also reverse the order of the
-dimensions.
-
- Tensor<float, 2, ColMajor> col_major(2, 4);
- Tensor<float, 2, RowMajor> row_major(2, 4);
-
- Tensor<float, 2> col_major_result = col_major; // ok, layouts match
- Tensor<float, 2> col_major_result = row_major; // will not compile
-
- // Simple layout swap
- col_major_result = row_major.swap_layout();
- eigen_assert(col_major_result.dimension(0) == 4);
- eigen_assert(col_major_result.dimension(1) == 2);
-
- // Swap the layout and preserve the order of the dimensions
- array<int, 2> shuffle(1, 0);
- col_major_result = row_major.swap_layout().shuffle(shuffle);
- eigen_assert(col_major_result.dimension(0) == 2);
- eigen_assert(col_major_result.dimension(1) == 4);
-
-
-## Tensor Operations
-
-The Eigen Tensor library provides a vast library of operations on Tensors:
-numerical operations such as addition and multiplication, geometry operations
-such as slicing and shuffling, etc. These operations are available as methods
-of the Tensor classes, and in some cases as operator overloads. For example
-the following code computes the elementwise addition of two tensors:
-
- Tensor<float, 3> t1(2, 3, 4);
- ...set some values in t1...
- Tensor<float, 3> t2(2, 3, 4);
- ...set some values in t2...
- // Set t3 to the element wise sum of t1 and t2
- Tensor<float, 3> t3 = t1 + t2;
-
-While the code above looks easy enough, it is important to understand that the
-expression `t1 + t2` is not actually adding the values of the tensors. The
-expression instead constructs a "tensor operator" object of the class
-TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
-`t1` and `t2`. This is a small C++ object that knows how to add
-`t1` and `t2`. It is only when the value of the expression is assigned
-to the tensor `t3` that the addition is actually performed. Technically,
-this happens through the overloading of `operator=()` in the Tensor class.
-
-This mechanism for computing tensor expressions allows for lazy evaluation and
-optimizations which are what make the tensor library very fast.
-
-Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f`
-is actually represented with the (approximate) tree of operators:
-
- TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
-
-
-### Tensor Operations and C++ "auto"
-
-Because Tensor operations create tensor operators, the C++ `auto` keyword
-does not have its intuitive meaning. Consider these 2 lines of code:
-
- Tensor<float, 3> t3 = t1 + t2;
- auto t4 = t1 + t2;
-
-In the first line we allocate the tensor `t3` and it will contain the
-result of the addition of `t1` and `t2`. In the second line, `t4`
-is actually the tree of tensor operators that will compute the addition of
-`t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get
-the values of its elements:
-
- Tensor<float, 3> t3 = t1 + t2;
- cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)
-
- auto t4 = t1 + t2;
- cout << t4(0, 0, 0); // Compilation error!
-
-When you use `auto` you do not get a Tensor as a result but instead a
-non-evaluated expression. So only use `auto` to delay evaluation.
-
-Unfortunately, there is no single underlying concrete type for holding
-non-evaluated expressions, hence you have to use auto in the case when you do
-want to hold non-evaluated expressions.
-
-When you need the results of set of tensor computations you have to assign the
-result to a Tensor that will be capable of holding onto them. This can be
-either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
-piece of memory. All the following will work:
-
- auto t4 = t1 + t2;
-
- Tensor<float, 3> result = t4; // Could also be: result(t4);
- cout << result(0, 0, 0);
-
- TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
- cout << result(0, 0, 0);
-
- TensorFixedSize<float, Sizes<size0, ...>> result = t4;
- cout << result(0, 0, 0);
-
-Until you need the results, you can keep the operation around, and even reuse
-it for additional operations. As long as you keep the expression as an
-operation, no computation is performed.
-
- // One way to compute exp((t1 + t2) * 0.2f);
- auto t3 = t1 + t2;
- auto t4 = t3 * 0.2f;
- auto t5 = t4.exp();
- Tensor<float, 3> result = t5;
-
- // Another way, exactly as efficient as the previous one:
- Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
-
-### Controlling When Expression are Evaluated
-
-There are several ways to control when expressions are evaluated:
-
-* Assignment to a Tensor, TensorFixedSize, or TensorMap.
-* Use of the eval() method.
-* Assignment to a TensorRef.
-
-#### Assigning to a Tensor, TensorFixedSize, or TensorMap.
-
-The most common way to evaluate an expression is to assign it to a Tensor. In
-the example below, the `auto` declarations make the intermediate values
-"Operations", not Tensors, and do not cause the expressions to be evaluated.
-The assignment to the Tensor `result` causes the evaluation of all the
-operations.
-
- auto t3 = t1 + t2; // t3 is an Operation.
- auto t4 = t3 * 0.2f; // t4 is an Operation.
- auto t5 = t4.exp(); // t5 is an Operation.
- Tensor<float, 3> result = t5; // The operations are evaluated.
-
-If you know the ranks and sizes of the Operation value you can assign the
-Operation to a TensorFixedSize instead of a Tensor, which is a bit more
-efficient.
-
- // We know that the result is a 4x4x2 tensor!
- TensorFixedSize<float, Sizes<4, 4, 2>> result = t5;
-
-Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
-tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
-have the rank and sizes of the expression that are assigned to them.
-
-#### Calling `eval()`.
-
-When you compute large composite expressions, you sometimes want to tell Eigen
-that an intermediate value in the expression tree is worth evaluating ahead of
-time. This is done by inserting a call to the `eval()` method of the
-expression Operation.
-
- // The previous example could have been written:
- Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
-
- // If you want to compute (t1 + t2) once ahead of time you can write:
- Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();
-
-Semantically, calling `eval()` is equivalent to materializing the value of
-the expression in a temporary Tensor of the right size. The code above in
-effect does:
-
- // .eval() knows the size!
- TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2;
- Tensor<float, 3> result = (tmp * 0.2f).exp();
-
-Note that the return value of `eval()` is itself an Operation, so the
-following code does not do what you may think:
-
- // Here t3 is an evaluation Operation. t3 has not been evaluated yet.
- auto t3 = (t1 + t2).eval();
-
- // You can use t3 in another expression. Still no evaluation.
- auto t4 = (t3 * 0.2f).exp();
-
- // The value is evaluated when you assign the Operation to a Tensor, using
- // an intermediate tensor to represent t3.x
- Tensor<float, 3> result = t4;
-
-While in the examples above calling `eval()` does not make a difference in
-performance, in other cases it can make a huge difference. In the expression
-below the `broadcast()` expression causes the `X.maximum()` expression
-to be evaluated many times:
-
- Tensor<...> X ...;
- Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
- * beta).exp();
-
-Inserting a call to `eval()` between the `maximum()` and
-`reshape()` calls guarantees that maximum() is only computed once and
-greatly speeds-up execution:
-
- Tensor<...> Y =
- ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
- * beta).exp();
-
-In the other example below, the tensor `Y` is both used in the expression
-and its assignment. This is an aliasing problem and if the evaluation is not
-done in the right order Y will be updated incrementally during the evaluation
-resulting in bogus results:
-
- Tensor<...> Y ...;
- Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));
-
-Inserting a call to `eval()` between the `sum()` and `reshape()`
-expressions ensures that the sum is computed before any updates to `Y` are
-done.
-
- Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
-
-Note that an eval around the full right hand side expression is not needed
-because the generated has to compute the i-th value of the right hand side
-before assigning it to the left hand side.
-
-However, if you were assigning the expression value to a shuffle of `Y`
-then you would need to force an eval for correctness by adding an `eval()`
-call for the right hand side:
-
- Y.shuffle(...) =
- (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
-
-
-#### Assigning to a `TensorRef`.
-
-If you need to access only a few elements from the value of an expression you
-can avoid materializing the value in a full tensor by using a TensorRef.
-
-A TensorRef is a small wrapper class for any Eigen Operation. It provides
-overloads for the `()` operator that let you access individual values in
-the expression. TensorRef is convenient, because the Operation themselves do
-not provide a way to access individual elements.
-
- // Create a TensorRef for the expression. The expression is not
- // evaluated yet.
- TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();
-
- // Use "ref" to access individual elements. The expression is evaluated
- // on the fly.
- float at_0 = ref(0, 0, 0);
- cout << ref(0, 1, 0);
-
-Only use TensorRef when you need a subset of the values of the expression.
-TensorRef only computes the values you access. However note that if you are
-going to access all the values it will be much faster to materialize the
-results in a Tensor first.
-
-In some cases, if the full Tensor result would be very large, you may save
-memory by accessing it as a TensorRef. But not always. So don't count on it.
-
-
-### Controlling How Expressions Are Evaluated
-
-The tensor library provides several implementations of the various operations
-such as contractions and convolutions. The implementations are optimized for
-different environments: single threaded on CPU, multi threaded on CPU, or on a
-GPU using cuda. Additional implementations may be added later.
-
-You can choose which implementation to use with the `device()` call. If
-you do not choose an implementation explicitly the default implementation that
-uses a single thread on the CPU is used.
-
-The default implementation has been optimized for recent Intel CPUs, taking
-advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
-library on ARM CPUs. Note that you need to pass compiler-dependent flags
-to enable the use of SSE, AVX, and other instructions.
-
-For example, the following code adds two tensors using the default
-single-threaded CPU implementation:
-
- Tensor<float, 2> a(30, 40);
- Tensor<float, 2> b(30, 40);
- Tensor<float, 2> c = a + b;
-
-To choose a different implementation you have to insert a `device()` call
-before the assignment of the result. For technical C++ reasons this requires
-that the Tensor for the result be declared on its own. This means that you
-have to know the size of the result.
-
- Eigen::Tensor<float, 2> c(30, 40);
- c.device(...) = a + b;
-
-The call to `device()` must be the last call on the left of the operator=.
-
-You must pass to the `device()` call an Eigen device object. There are
-presently three devices you can use: DefaultDevice, ThreadPoolDevice and
-GpuDevice.
-
-
-#### Evaluating With the DefaultDevice
-
-This is exactly the same as not inserting a `device()` call.
-
- DefaultDevice my_device;
- c.device(my_device) = a + b;
-
-#### Evaluating with a Thread Pool
-
- // Create the Eigen ThreadPoolDevice.
- Eigen::ThreadPoolDevice my_device(4 /* number of threads to use */);
-
- // Now just use the device when evaluating expressions.
- Eigen::Tensor<float, 2> c(30, 50);
- c.device(my_device) = a.contract(b, dot_product_dims);
-
-
-#### Evaluating On GPU
-
-This is presently a bit more complicated than just using a thread pool device.
-You need to create a GPU device but you also need to explicitly allocate the
-memory for tensors with cuda.
-
-
-## API Reference
-
-### Datatypes
-
-In the documentation of the tensor methods and Operation we mention datatypes
-that are tensor-type specific:
-
-#### `<Tensor-Type>::``Dimensions`
-
-Acts like an array of ints. Has an `int size` attribute, and can be
-indexed like an array to access individual values. Used to represent the
-dimensions of a tensor. See `dimensions()`.
-
-#### `<Tensor-Type>::``Index`
-
-Acts like an `int`. Used for indexing tensors along their dimensions. See
-`operator()`, `dimension()`, and `size()`.
-
-#### `<Tensor-Type>::``Scalar`
-
-Represents the datatype of individual tensor elements. For example, for a
-`Tensor<float>`, `Scalar` is the type `float`. See
-`setConstant()`.
-
-#### `<Operation>`
-
-We use this pseudo type to indicate that a tensor Operation is returned by a
-method. We indicate in the text the type and dimensions of the tensor that the
-Operation returns after evaluation.
-
-The Operation will have to be evaluated, for example by assigning it to a
-tensor, before you can access the values of the resulting tensor. You can also
-access the values through a TensorRef.
-
-
-## Built-in Tensor Methods
-
-These are usual C++ methods that act on tensors immediately. They are not
-Operations which provide delayed evaluation of their results. Unless specified
-otherwise, all the methods listed below are available on all tensor classes:
-Tensor, TensorFixedSize, and TensorMap.
-
-## Metadata
-
-### `int NumDimensions`
-
-Constant value indicating the number of dimensions of a Tensor. This is also
-known as the tensor "rank".
-
- Eigen::Tensor<float, 2> a(3, 4);
- cout << "Dims " << a.NumDimensions;
- => Dims 2
-
-### `Dimensions dimensions()`
-
-Returns an array-like object representing the dimensions of the tensor.
-The actual type of the `dimensions()` result is `<Tensor-Type>::``Dimensions`.
-
- Eigen::Tensor<float, 2> a(3, 4);
- const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
- cout << "Dim size: " << d.size << ", dim 0: " << d[0]
- << ", dim 1: " << d[1];
- => Dim size: 2, dim 0: 3, dim 1: 4
-
-If you use a C++11 compiler, you can use `auto` to simplify the code:
-
- const auto& d = a.dimensions();
- cout << "Dim size: " << d.size << ", dim 0: " << d[0]
- << ", dim 1: " << d[1];
- => Dim size: 2, dim 0: 3, dim 1: 4
-
-### `Index dimension(Index n)`
-
-Returns the n-th dimension of the tensor. The actual type of the
-`dimension()` result is `<Tensor-Type>::``Index`, but you can
-always use it like an int.
-
- Eigen::Tensor<float, 2> a(3, 4);
- int dim1 = a.dimension(1);
- cout << "Dim 1: " << dim1;
- => Dim 1: 4
-
-### `Index size()`
-
-Returns the total number of elements in the tensor. This is the product of all
-the tensor dimensions. The actual type of the `size()` result is
-`<Tensor-Type>::``Index`, but you can always use it like an int.
-
- Eigen::Tensor<float, 2> a(3, 4);
- cout << "Size: " << a.size();
- => Size: 12
-
-
-### Getting Dimensions From An Operation
-
-A few operations provide `dimensions()` directly,
-e.g. `TensorReslicingOp`. Most operations defer calculating dimensions
-until the operation is being evaluated. If you need access to the dimensions
-of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
-TensorRef above), which provides `dimensions()` and `dimension()` as
-above.
-
-TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
-templated contexts where the underlying object could be either a raw Tensor
-or some deferred operation (e.g. a slice of a Tensor). In this case, the
-template code can wrap the object in a TensorRef and reason about its
-dimensionality while remaining agnostic to the underlying type.
-
-
-## Constructors
-
-### Tensor
-
-Creates a tensor of the specified size. The number of arguments must be equal
-to the rank of the tensor. The content of the tensor is not initialized.
-
- Eigen::Tensor<float, 2> a(3, 4);
- cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
- => NumRows: 3 NumCols: 4
-
-### TensorFixedSize
-
-Creates a tensor of the specified size. The number of arguments in the Sizes<>
-template parameter determines the rank of the tensor. The content of the tensor
-is not initialized.
-
- Eigen::TensorFixedSize<float, Sizes<3, 4>> a;
- cout << "Rank: " << a.rank() << endl;
- => Rank: 2
- cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
- => NumRows: 3 NumCols: 4
-
-### TensorMap
-
-Creates a tensor mapping an existing array of data. The data must not be freed
-until the TensorMap is discarded, and the size of the data must be large enough
-to accommodate the coefficients of the tensor.
-
- float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
- Eigen::TensorMap<Tensor<float, 2>> a(data, 3, 4);
- cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
- => NumRows: 3 NumCols: 4
- cout << "a(1, 2): " << a(1, 2) << endl;
- => a(1, 2): 7
-
-
-## Contents Initialization
-
-When a new Tensor or a new TensorFixedSize are created, memory is allocated to
-hold all the tensor elements, but the memory is not initialized. Similarly,
-when a new TensorMap is created on top of non-initialized memory the memory its
-contents are not initialized.
-
-You can use one of the methods below to initialize the tensor memory. These
-have an immediate effect on the tensor and return the tensor itself as a
-result. These are not tensor Operations which delay evaluation.
-
-### `<Tensor-Type> setConstant(const Scalar& val)`
-
-Sets all elements of the tensor to the constant value `val`. `Scalar`
-is the type of data stored in the tensor. You can pass any value that is
-convertible to that type.
-
-Returns the tensor itself in case you want to chain another call.
-
- a.setConstant(12.3f);
- cout << "Constant: " << endl << a << endl << endl;
- =>
- Constant:
- 12.3 12.3 12.3 12.3
- 12.3 12.3 12.3 12.3
- 12.3 12.3 12.3 12.3
-
-Note that `setConstant()` can be used on any tensor where the element type
-has a copy constructor and an `operator=()`:
-
- Eigen::Tensor<string, 2> a(2, 3);
- a.setConstant("yolo");
- cout << "String tensor: " << endl << a << endl << endl;
- =>
- String tensor:
- yolo yolo yolo
- yolo yolo yolo
-
-
-### `<Tensor-Type> setZero()`
-
-Fills the tensor with zeros. Equivalent to `setConstant(Scalar(0))`.
-Returns the tensor itself in case you want to chain another call.
-
- a.setZero();
- cout << "Zeros: " << endl << a << endl << endl;
- =>
- Zeros:
- 0 0 0 0
- 0 0 0 0
- 0 0 0 0
-
-
-### `<Tensor-Type> setValues({..initializer_list})`
-
-Fills the tensor with explicit values specified in a std::initializer_list.
-The type of the initializer list depends on the type and rank of the tensor.
-
-If the tensor has rank N, the initializer list must be nested N times. The
-most deeply nested lists must contains P scalars of the Tensor type where P is
-the size of the last dimension of the Tensor.
-
-For example, for a `TensorFixedSize<float, 2, 3>` the initializer list must
-contains 2 lists of 3 floats each.
-
-`setValues()` returns the tensor itself in case you want to chain another
-call.
-
- Eigen::Tensor<float, 2> a(2, 3);
- a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
- cout << "a" << endl << a << endl << endl;
- =>
- a
- 0 1 2
- 3 4 5
-
-If a list is too short, the corresponding elements of the tensor will not be
-changed. This is valid at each level of nesting. For example the following
-code only sets the values of the first row of the tensor.
-
- Eigen::Tensor<int, 2> a(2, 3);
- a.setConstant(1000);
- a.setValues({{10, 20, 30}});
- cout << "a" << endl << a << endl << endl;
- =>
- a
- 10 20 30
- 1000 1000 1000
-
-### `<Tensor-Type> setRandom()`
-
-Fills the tensor with random values. Returns the tensor itself in case you
-want to chain another call.
-
- a.setRandom();
- cout << "Random: " << endl << a << endl << endl;
- =>
- Random:
- 0.680375 0.59688 -0.329554 0.10794
- -0.211234 0.823295 0.536459 -0.0452059
- 0.566198 -0.604897 -0.444451 0.257742
-
-You can customize `setRandom()` by providing your own random number
-generator as a template argument:
-
- a.setRandom<MyRandomGenerator>();
-
-Here, `MyRandomGenerator` must be a struct with the following member
-functions, where Scalar and Index are the same as `<Tensor-Type>::``Scalar`
-and `<Tensor-Type>::``Index`.
-
-See `struct UniformRandomGenerator` in TensorFunctors.h for an example.
-
- // Custom number generator for use with setRandom().
- struct MyRandomGenerator {
- // Default and copy constructors. Both are needed
- MyRandomGenerator() { }
- MyRandomGenerator(const MyRandomGenerator& ) { }
-
- // Return a random value to be used. "element_location" is the
- // location of the entry to set in the tensor, it can typically
- // be ignored.
- Scalar operator()(Eigen::DenseIndex element_location,
- Eigen::DenseIndex /*unused*/ = 0) const {
- return <randomly generated value of type T>;
- }
-
- // Same as above but generates several numbers at a time.
- typename internal::packet_traits<Scalar>::type packetOp(
- Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
- return <a packet of randomly generated values>;
- }
- };
-
-You can also use one of the 2 random number generators that are part of the
-tensor library:
-* UniformRandomGenerator
-* NormalRandomGenerator
-
-
-## Data Access
-
-The Tensor, TensorFixedSize, and TensorRef classes provide the following
-accessors to access the tensor coefficients:
-
- const Scalar& operator()(const array<Index, NumIndices>& indices)
- const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
- Scalar& operator()(const array<Index, NumIndices>& indices)
- Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
-
-The number of indices must be equal to the rank of the tensor. Moreover, these
-accessors are not available on tensor expressions. In order to access the
-values of a tensor expression, the expression must either be evaluated or
-wrapped in a TensorRef.
-
-
-### `Scalar* data()` and `const Scalar* data() const`
-
-Returns a pointer to the storage for the tensor. The pointer is const if the
-tensor was const. This allows direct access to the data. The layout of the
-data depends on the tensor layout: RowMajor or ColMajor.
-
-This access is usually only needed for special cases, for example when mixing
-Eigen Tensor code with other libraries.
-
-Scalar is the type of data stored in the tensor.
-
- Eigen::Tensor<float, 2> a(3, 4);
- float* a_data = a.data();
- a_data[0] = 123.45f;
- cout << "a(0, 0): " << a(0, 0);
- => a(0, 0): 123.45
-
-
-## Tensor Operations
-
-All the methods documented below return non evaluated tensor `Operations`.
-These can be chained: you can apply another Tensor Operation to the value
-returned by the method.
-
-The chain of Operation is evaluated lazily, typically when it is assigned to a
-tensor. See "Controlling when Expression are Evaluated" for more details about
-their evaluation.
-
-### `<Operation> constant(const Scalar& val)`
-
-Returns a tensor of the same type and dimensions as the original tensor but
-where all elements have the value `val`.
-
-This is useful, for example, when you want to add or subtract a constant from a
-tensor, or multiply every element of a tensor by a scalar.
-
- Eigen::Tensor<float, 2> a(2, 3);
- a.setConstant(1.0f);
- Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
- Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- cout << "c" << endl << c << endl << endl;
- =>
- a
- 1 1 1
- 1 1 1
-
- b
- 3 3 3
- 3 3 3
-
- c
- 0.6 0.6 0.6
- 0.6 0.6 0.6
-
-### `<Operation> random()`
-
-Returns a tensor of the same type and dimensions as the current tensor
-but where all elements have random values.
-
-This is for example useful to add random values to an existing tensor.
-The generation of random values can be customized in the same manner
-as for `setRandom()`.
-
- Eigen::Tensor<float, 2> a(2, 3);
- a.setConstant(1.0f);
- Eigen::Tensor<float, 2> b = a + a.random();
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 1 1 1
- 1 1 1
-
- b
- 1.68038 1.5662 1.82329
- 0.788766 1.59688 0.395103
-
-
-## Unary Element Wise Operations
-
-All these operations take a single input tensor as argument and return a tensor
-of the same type and dimensions as the tensor to which they are applied. The
-requested operations are applied to each element independently.
-
-### `<Operation> operator-()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the opposite values of the original tensor.
-
- Eigen::Tensor<float, 2> a(2, 3);
- a.setConstant(1.0f);
- Eigen::Tensor<float, 2> b = -a;
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 1 1 1
- 1 1 1
-
- b
- -1 -1 -1
- -1 -1 -1
-
-### `<Operation> sqrt()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the square roots of the original tensor.
-
-### `<Operation> rsqrt()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the inverse square roots of the original tensor.
-
-### `<Operation> square()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the squares of the original tensor values.
-
-### `<Operation> inverse()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the inverse of the original tensor values.
-
-### `<Operation> exp()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the exponential of the original tensor.
-
-### `<Operation> log()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the natural logarithms of the original tensor.
-
-### `<Operation> abs()`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the absolute values of the original tensor.
-
-### `<Operation> pow(Scalar exponent)`
-
-Returns a tensor of the same type and dimensions as the original tensor
-containing the coefficients of the original tensor to the power of the
-exponent.
-
-The type of the exponent, Scalar, is always the same as the type of the
-tensor coefficients. For example, only integer exponents can be used in
-conjuntion with tensors of integer values.
-
-You can use cast() to lift this restriction. For example this computes
-cubic roots of an int Tensor:
-
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{0, 1, 8}, {27, 64, 125}});
- Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 0 1 8
- 27 64 125
-
- b
- 0 1 2
- 3 4 5
-
-### `<Operation> operator * (Scalar scale)`
-
-Multiplies all the coefficients of the input tensor by the provided scale.
-
-### `<Operation> cwiseMax(Scalar threshold)`
-TODO
-
-### `<Operation> cwiseMin(Scalar threshold)`
-TODO
-
-### `<Operation> unaryExpr(const CustomUnaryOp& func)`
-TODO
-
-
-## Binary Element Wise Operations
-
-These operations take two input tensors as arguments. The 2 input tensors should
-be of the same type and dimensions. The result is a tensor of the same
-dimensions as the tensors to which they are applied, and unless otherwise
-specified it is also of the same type. The requested operations are applied to
-each pair of elements independently.
-
-### `<Operation> operator+(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise sums of the inputs.
-
-### `<Operation> operator-(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise differences of the inputs.
-
-### `<Operation> operator*(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise products of the inputs.
-
-### `<Operation> operator/(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise quotients of the inputs.
-
-This operator is not supported for integer types.
-
-### `<Operation> cwiseMax(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise maximums of the inputs.
-
-### `<Operation> cwiseMin(const OtherDerived& other)`
-
-Returns a tensor of the same type and dimensions as the input tensors
-containing the coefficient wise mimimums of the inputs.
-
-### `<Operation> Logical operators`
-
-The following logical operators are supported as well:
-
-* operator&&(const OtherDerived& other)
-* operator||(const OtherDerived& other)
-* operator<(const OtherDerived& other)
-* operator<=(const OtherDerived& other)
-* operator>(const OtherDerived& other)
-* operator>=(const OtherDerived& other)
-* operator==(const OtherDerived& other)
-* operator!=(const OtherDerived& other)
-
-They all return a tensor of boolean values.
-
-
-## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)
-
-Selection is a coefficient-wise ternary operator that is the tensor equivalent
-to the if-then-else operation.
-
- Tensor<bool, 3> if = ...;
- Tensor<float, 3> then = ...;
- Tensor<float, 3> else = ...;
- Tensor<float, 3> result = if.select(then, else);
-
-The 3 arguments must be of the same dimensions, which will also be the dimension
-of the result. The 'if' tensor must be of type boolean, the 'then' and the
-'else' tensor must be of the same type, which will also be the type of the
-result.
-
-Each coefficient in the result is equal to the corresponding coefficient in the
-'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
-resulting coefficient will come from the 'else' tensor.
-
-
-## Contraction
-
-Tensor *contractions* are a generalization of the matrix product to the
-multidimensional case.
-
- // Create 2 matrices using tensors of rank 2
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{1, 2, 3}, {6, 5, 4}});
- Eigen::Tensor<int, 2> b(3, 2);
- b.setValues({{1, 2}, {4, 5}, {5, 6}});
-
- // Compute the traditional matrix product
- Eigen::array<Eigen::IndexPair<int>, 1> product_dims = { Eigen::IndexPair<int>(1, 0) };
- Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);
-
- // Compute the product of the transpose of the matrices
- Eigen::array<Eigen::IndexPair<int>, 1> transposed_product_dims = { Eigen::IndexPair<int>(0, 1) };
- Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);
-
- // Contraction to scalar value using a double contraction.
- // First coordinate of both tensors are contracted as well as both second coordinates, i.e., this computes the sum of the squares of the elements.
- Eigen::array<Eigen::IndexPair<int>, 2> double_contraction_product_dims = { Eigen::IndexPair<int>(0, 0), Eigen::IndexPair<int>(1, 1) };
- Eigen::Tensor<int, 0> AdoubleContractedA = a.contract(a, double_contraction_product_dims);
-
- // Extracting the scalar value of the tensor contraction for further usage
- int value = AdoubleContractedA(0);
-
-## Reduction Operations
-
-A *Reduction* operation returns a tensor with fewer dimensions than the
-original tensor. The values in the returned tensor are computed by applying a
-*reduction operator* to slices of values from the original tensor. You specify
-the dimensions along which the slices are made.
-
-The Eigen Tensor library provides a set of predefined reduction operators such
-as `maximum()` and `sum()` and lets you define additional operators by
-implementing a few methods from a reductor template.
-
-### Reduction Dimensions
-
-All reduction operations take a single parameter of type
-`<TensorType>::``Dimensions` which can always be specified as an array of
-ints. These are called the "reduction dimensions." The values are the indices
-of the dimensions of the input tensor over which the reduction is done. The
-parameter can have at most as many element as the rank of the input tensor;
-each element must be less than the tensor rank, as it indicates one of the
-dimensions to reduce.
-
-Each dimension of the input tensor should occur at most once in the reduction
-dimensions as the implementation does not remove duplicates.
-
-The order of the values in the reduction dimensions does not affect the
-results, but the code may execute faster if you list the dimensions in
-increasing order.
-
-Example: Reduction along one dimension.
-
- // Create a tensor of 2 dimensions
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{1, 2, 3}, {6, 5, 4}});
- // Reduce it along the second dimension (1)...
- Eigen::array<int, 1> dims({1 /* dimension to reduce */});
- // ...using the "maximum" operator.
- // The result is a tensor with one dimension. The size of
- // that dimension is the same as the first (non-reduced) dimension of a.
- Eigen::Tensor<int, 1> b = a.maximum(dims);
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 1 2 3
- 6 5 4
-
- b
- 3
- 6
-
-Example: Reduction along two dimensions.
-
- Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
- a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
- {7.0f, 6.0f, 5.0f, 4.0f},
- {8.0f, 9.0f, 10.0f, 11.0f}},
- {{12.0f, 13.0f, 14.0f, 15.0f},
- {19.0f, 18.0f, 17.0f, 16.0f},
- {20.0f, 21.0f, 22.0f, 23.0f}}});
- // The tensor a has 3 dimensions. We reduce along the
- // first 2, resulting in a tensor with a single dimension
- // of size 4 (the last dimension of a.)
- // Note that we pass the array of reduction dimensions
- // directly to the maximum() call.
- Eigen::Tensor<float, 1, Eigen::ColMajor> b =
- a.maximum(Eigen::array<int, 2>({0, 1}));
- cout << "b" << endl << b << endl << endl;
- =>
- b
- 20
- 21
- 22
- 23
-
-#### Reduction along all dimensions
-
-As a special case, if you pass no parameter to a reduction operation the
-original tensor is reduced along *all* its dimensions. The result is a
-scalar, represented as a zero-dimension tensor.
-
- Eigen::Tensor<float, 3> a(2, 3, 4);
- a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
- {7.0f, 6.0f, 5.0f, 4.0f},
- {8.0f, 9.0f, 10.0f, 11.0f}},
- {{12.0f, 13.0f, 14.0f, 15.0f},
- {19.0f, 18.0f, 17.0f, 16.0f},
- {20.0f, 21.0f, 22.0f, 23.0f}}});
- // Reduce along all dimensions using the sum() operator.
- Eigen::Tensor<float, 0> b = a.sum();
- cout << "b" << endl << b << endl << endl;
- =>
- b
- 276
-
-
-### `<Operation> sum(const Dimensions& new_dims)`
-### `<Operation> sum()`
-
-Reduce a tensor using the sum() operator. The resulting values
-are the sum of the reduced values.
-
-### `<Operation> mean(const Dimensions& new_dims)`
-### `<Operation> mean()`
-
-Reduce a tensor using the mean() operator. The resulting values
-are the mean of the reduced values.
-
-### `<Operation> maximum(const Dimensions& new_dims)`
-### `<Operation> maximum()`
-
-Reduce a tensor using the maximum() operator. The resulting values are the
-largest of the reduced values.
-
-### `<Operation> minimum(const Dimensions& new_dims)`
-### `<Operation> minimum()`
-
-Reduce a tensor using the minimum() operator. The resulting values
-are the smallest of the reduced values.
-
-### `<Operation> prod(const Dimensions& new_dims)`
-### `<Operation> prod()`
-
-Reduce a tensor using the prod() operator. The resulting values
-are the product of the reduced values.
-
-### `<Operation> all(const Dimensions& new_dims)`
-### `<Operation> all()`
-Reduce a tensor using the all() operator. Casts tensor to bool and then checks
-whether all elements are true. Runs through all elements rather than
-short-circuiting, so may be significantly inefficient.
-
-### `<Operation> any(const Dimensions& new_dims)`
-### `<Operation> any()`
-Reduce a tensor using the any() operator. Casts tensor to bool and then checks
-whether any element is true. Runs through all elements rather than
-short-circuiting, so may be significantly inefficient.
-
-
-### `<Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)`
-
-Reduce a tensor using a user-defined reduction operator. See `SumReducer`
-in TensorFunctors.h for information on how to implement a reduction operator.
-
-
-## Scan Operations
-
-A *Scan* operation returns a tensor with the same dimensions as the original
-tensor. The operation performs an inclusive scan along the specified
-axis, which means it computes a running total along the axis for a given
-reduction operation.
-If the reduction operation corresponds to summation, then this computes the
-prefix sum of the tensor along the given axis.
-
-Example:
-dd a comment to this line
-
- // Create a tensor of 2 dimensions
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{1, 2, 3}, {4, 5, 6}});
- // Scan it along the second dimension (1) using summation
- Eigen::Tensor<int, 2> b = a.cumsum(1);
- // The result is a tensor with the same size as the input
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 1 2 3
- 4 5 6
-
- b
- 1 3 6
- 4 9 15
-
-### `<Operation> cumsum(const Index& axis)`
-
-Perform a scan by summing consecutive entries.
-
-### `<Operation> cumprod(const Index& axis)`
-
-Perform a scan by multiplying consecutive entries.
-
-
-## Convolutions
-
-### `<Operation> convolve(const Kernel& kernel, const Dimensions& dims)`
-
-Returns a tensor that is the output of the convolution of the input tensor with the kernel,
-along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
-which were part of the convolution will be reduced by the formula:
-output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
-The dimension sizes for dimensions that were not part of the convolution will remain the same.
-Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
-convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
-for the last dimension).
-
- // Compute convolution along the second and third dimension.
- Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
- Tensor<float, 2, DataLayout> kernel(2, 2);
- Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
- input.setRandom();
- kernel.setRandom();
-
- Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution.
- output = input.convolve(kernel, dims);
-
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 2; ++j) {
- for (int k = 0; k < 6; ++k) {
- for (int l = 0; l < 11; ++l) {
- const float result = output(i,j,k,l);
- const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
- input(i,j+1,k+0,l) * kernel(1,0) +
- input(i,j+0,k+1,l) * kernel(0,1) +
- input(i,j+1,k+1,l) * kernel(1,1);
- VERIFY_IS_APPROX(result, expected);
- }
- }
- }
- }
-
-
-## Geometrical Operations
-
-These operations return a Tensor with different dimensions than the original
-Tensor. They can be used to access slices of tensors, see them with different
-dimensions, or pad tensors with additional data.
-
-### `<Operation> reshape(const Dimensions& new_dims)`
-
-Returns a view of the input tensor that has been reshaped to the specified
-new dimensions. The argument new_dims is an array of Index values. The
-rank of the resulting tensor is equal to the number of elements in new_dims.
-
-The product of all the sizes in the new dimension array must be equal to
-the number of elements in the input tensor.
-
- // Increase the rank of the input tensor by introducing a new dimension
- // of size 1.
- Tensor<float, 2> input(7, 11);
- array<int, 3> three_dims{{7, 11, 1}};
- Tensor<float, 3> result = input.reshape(three_dims);
-
- // Decrease the rank of the input tensor by merging 2 dimensions;
- array<int, 1> one_dim{{7 * 11}};
- Tensor<float, 1> result = input.reshape(one_dim);
-
-This operation does not move any data in the input tensor, so the resulting
-contents of a reshaped Tensor depend on the data layout of the original Tensor.
-
-For example this is what happens when you `reshape()` a 2D ColMajor tensor
-to one dimension:
-
- Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
- a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
- Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
- Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
- cout << "b" << endl << b << endl;
- =>
- b
- 0
- 300
- 100
- 400
- 200
- 500
-
-This is what happens when the 2D Tensor is RowMajor:
-
- Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
- a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
- Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
- Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
- cout << "b" << endl << b << endl;
- =>
- b
- 0
- 100
- 200
- 300
- 400
- 500
-
-The reshape operation is a lvalue. In other words, it can be used on the left
-side of the assignment operator.
-
-The previous example can be rewritten as follow:
-
- Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
- a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
- Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
- Eigen::Tensor<float, 1, Eigen::ColMajor> b(6);
- b.reshape(two_dim) = a;
- cout << "b" << endl << b << endl;
- =>
- b
- 0
- 300
- 100
- 400
- 200
- 500
-
-Note that "b" itself was not reshaped but that instead the assignment is done to
-the reshape view of b.
-
-
-### `<Operation> shuffle(const Shuffle& shuffle)`
-
-Returns a copy of the input tensor whose dimensions have been
-reordered according to the specified permutation. The argument shuffle
-is an array of Index values. Its size is the rank of the input
-tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
-dimension of the output tensor equals to the size of the shuffle[i]-th
-dimension of the input tensor. For example:
-
- // Shuffle all dimensions to the left by 1.
- Tensor<float, 3> input(20, 30, 50);
- // ... set some values in input.
- Tensor<float, 3> output = input.shuffle({1, 2, 0})
-
- eigen_assert(output.dimension(0) == 30);
- eigen_assert(output.dimension(1) == 50);
- eigen_assert(output.dimension(2) == 20);
-
-Indices into the output tensor are shuffled accordingly to formulate
-indices into the input tensor. For example, one can assert in the above
-code snippet that:
-
- eigen_assert(output(3, 7, 11) == input(11, 3, 7));
-
-In general, one can assert that
-
- eigen_assert(output(..., indices[shuffle[i]], ...) ==
- input(..., indices[i], ...))
-
-The shuffle operation results in a lvalue, which means that it can be assigned
-to. In other words, it can be used on the left side of the assignment operator.
-
-Let's rewrite the previous example to take advantage of this feature:
-
- // Shuffle all dimensions to the left by 1.
- Tensor<float, 3> input(20, 30, 50);
- // ... set some values in input.
- Tensor<float, 3> output(30, 50, 20);
- output.shuffle({2, 0, 1}) = input;
-
-
-### `<Operation> stride(const Strides& strides)`
-
-Returns a view of the input tensor that strides (skips stride-1
-elements) along each of the dimensions. The argument strides is an
-array of Index values. The dimensions of the resulting tensor are
-ceil(input_dimensions[i] / strides[i]).
-
-For example this is what happens when you `stride()` a 2D tensor:
-
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
- Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
- Eigen::Tensor<int, 2> b = a.stride(strides);
- cout << "b" << endl << b << endl;
- =>
- b
- 0 200
- 900 1100
-
-It is possible to assign a tensor to a stride:
- Tensor<float, 3> input(20, 30, 50);
- // ... set some values in input.
- Tensor<float, 3> output(40, 90, 200);
- output.stride({2, 3, 4}) = input;
-
-
-### `<Operation> slice(const StartIndices& offsets, const Sizes& extents)`
-
-Returns a sub-tensor of the given tensor. For each dimension i, the slice is
-made of the coefficients stored between offset[i] and offset[i] + extents[i] in
-the input tensor.
-
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100}});
- Eigen::array<int, 2> offsets = {1, 0};
- Eigen::array<int, 2> extents = {2, 2};
- Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
- cout << "a" << endl << a << endl;
- =>
- a
- 0 100 200
- 300 400 500
- 600 700 800
- 900 1000 1100
- cout << "slice" << endl << slice << endl;
- =>
- slice
- 300 400
- 600 700
-
-
-### `<Operation> chip(const Index offset, const Index dim)`
-
-A chip is a special kind of slice. It is the subtensor at the given offset in
-the dimension dim. The returned tensor has one fewer dimension than the input
-tensor: the dimension dim is removed.
-
-For example, a matrix chip would be either a row or a column of the input
-matrix.
-
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100}});
- Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
- Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
- cout << "a" << endl << a << endl;
- =>
- a
- 0 100 200
- 300 400 500
- 600 700 800
- 900 1000 1100
- cout << "row_3" << endl << row_3 << endl;
- =>
- row_3
- 600 700 800
- cout << "col_2" << endl << col_2 << endl;
- =>
- col_2
- 100 400 700 1000
-
-It is possible to assign values to a tensor chip since the chip operation is a
-lvalue. For example:
-
- Eigen::Tensor<int, 1> a(3);
- a.setValues({{100, 200, 300}});
- Eigen::Tensor<int, 2> b(2, 3);
- b.setZero();
- b.chip(0, 0) = a;
- cout << "a" << endl << a << endl;
- =>
- a
- 100
- 200
- 300
- cout << "b" << endl << b << endl;
- =>
- b
- 100 200 300
- 0 0 0
-
-
-### `<Operation> reverse(const ReverseDimensions& reverse)`
-
-Returns a view of the input tensor that reverses the order of the coefficients
-along a subset of the dimensions. The argument reverse is an array of boolean
-values that indicates whether or not the order of the coefficients should be
-reversed along each of the dimensions. This operation preserves the dimensions
-of the input tensor.
-
-For example this is what happens when you `reverse()` the first dimension
-of a 2D tensor:
-
- Eigen::Tensor<int, 2> a(4, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500},
- {600, 700, 800}, {900, 1000, 1100}});
- Eigen::array<bool, 2> reverse({true, false});
- Eigen::Tensor<int, 2> b = a.reverse(reverse);
- cout << "a" << endl << a << endl << "b" << endl << b << endl;
- =>
- a
- 0 100 200
- 300 400 500
- 600 700 800
- 900 1000 1100
- b
- 900 1000 1100
- 600 700 800
- 300 400 500
- 0 100 200
-
-
-### `<Operation> broadcast(const Broadcast& broadcast)`
-
-Returns a view of the input tensor in which the input is replicated one to many
-times.
-The broadcast argument specifies how many copies of the input tensor need to be
-made in each of the dimensions.
-
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500}});
- Eigen::array<int, 2> bcast({3, 2});
- Eigen::Tensor<int, 2> b = a.broadcast(bcast);
- cout << "a" << endl << a << endl << "b" << endl << b << endl;
- =>
- a
- 0 100 200
- 300 400 500
- b
- 0 100 200 0 100 200
- 300 400 500 300 400 500
- 0 100 200 0 100 200
- 300 400 500 300 400 500
- 0 100 200 0 100 200
- 300 400 500 300 400 500
-
-### `<Operation> concatenate(const OtherDerived& other, Axis axis)`
-
-TODO
-
-### `<Operation> pad(const PaddingDimensions& padding)`
-
-Returns a view of the input tensor in which the input is padded with zeros.
-
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{0, 100, 200}, {300, 400, 500}});
- Eigen::array<pair<int, int>, 2> paddings;
- paddings[0] = make_pair(0, 1);
- paddings[1] = make_pair(2, 3);
- Eigen::Tensor<int, 2> b = a.pad(paddings);
- cout << "a" << endl << a << endl << "b" << endl << b << endl;
- =>
- a
- 0 100 200
- 300 400 500
- b
- 0 0 0 0
- 0 0 0 0
- 0 100 200 0
- 300 400 500 0
- 0 0 0 0
- 0 0 0 0
- 0 0 0 0
-
-
-### `<Operation> extract_patches(const PatchDims& patch_dims)`
-
-Returns a tensor of coefficient patches extracted from the input tensor, where
-each patch is of dimension specified by 'patch_dims'. The returned tensor has
-one greater dimension than the input tensor, which is used to index each patch.
-The patch index in the output tensor depends on the data layout of the input
-tensor: the patch index is the last dimension ColMajor layout, and the first
-dimension in RowMajor layout.
-
-For example, given the following input tensor:
-
- Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
- tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
- {4.0f, 5.0f, 6.0f, 7.0f},
- {8.0f, 9.0f, 10.0f, 11.0f}});
-
- cout << "tensor: " << endl << tensor << endl;
-=>
-tensor:
- 0 1 2 3
- 4 5 6 7
- 8 9 10 11
-
-Six 2x2 patches can be extracted and indexed using the following code:
-
- Eigen::Tensor<float, 3, DataLayout> patch;
- Eigen::array<ptrdiff_t, 2> patch_dims;
- patch_dims[0] = 2;
- patch_dims[1] = 2;
- patch = tensor.extract_patches(patch_dims);
- for (int k = 0; k < 6; ++k) {
- cout << "patch index: " << k << endl;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 2; ++j) {
- if (DataLayout == ColMajor) {
- cout << patch(i, j, k) << " ";
- } else {
- cout << patch(k, i, j) << " ";
- }
- }
- cout << endl;
- }
- }
-
-This code results in the following output when the data layout is ColMajor:
-
-patch index: 0
-0 1
-4 5
-patch index: 1
-4 5
-8 9
-patch index: 2
-1 2
-5 6
-patch index: 3
-5 6
-9 10
-patch index: 4
-2 3
-6 7
-patch index: 5
-6 7
-10 11
-
-This code results in the following output when the data layout is RowMajor:
-(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
-
-patch index: 0
-0 1
-4 5
-patch index: 1
-1 2
-5 6
-patch index: 2
-2 3
-6 7
-patch index: 3
-4 5
-8 9
-patch index: 4
-5 6
-9 10
-patch index: 5
-6 7
-10 11
-
-### `<Operation> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type)`
-
-Returns a tensor of coefficient image patches extracted from the input tensor,
-which is expected to have dimensions ordered as follows (depending on the data
-layout of the input tensor, and the number of additional dimensions 'N'):
-
-*) ColMajor
-1st dimension: channels (of size d)
-2nd dimension: rows (of size r)
-3rd dimension: columns (of size c)
-4th-Nth dimension: time (for video) or batch (for bulk processing).
-
-*) RowMajor (reverse order of ColMajor)
-1st-Nth dimension: time (for video) or batch (for bulk processing).
-N+1'th dimension: columns (of size c)
-N+2'th dimension: rows (of size r)
-N+3'th dimension: channels (of size d)
-
-The returned tensor has one greater dimension than the input tensor, which is
-used to index each patch. The patch index in the output tensor depends on the
-data layout of the input tensor: the patch index is the 4'th dimension in
-ColMajor layout, and the 4'th from the last dimension in RowMajor layout.
-
-For example, given the following input tensor with the following dimension
-sizes:
- *) depth: 2
- *) rows: 3
- *) columns: 5
- *) batch: 7
-
- Tensor<float, 4> tensor(2,3,5,7);
- Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
-
-2x2 image patches can be extracted and indexed using the following code:
-
-*) 2D patch: ColMajor (patch indexed by second-to-last dimension)
- Tensor<float, 5> twod_patch;
- twod_patch = tensor.extract_image_patches<2, 2>();
- // twod_patch.dimension(0) == 2
- // twod_patch.dimension(1) == 2
- // twod_patch.dimension(2) == 2
- // twod_patch.dimension(3) == 3*5
- // twod_patch.dimension(4) == 7
-
-*) 2D patch: RowMajor (patch indexed by the second dimension)
- Tensor<float, 5, RowMajor> twod_patch_row_major;
- twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
- // twod_patch_row_major.dimension(0) == 7
- // twod_patch_row_major.dimension(1) == 3*5
- // twod_patch_row_major.dimension(2) == 2
- // twod_patch_row_major.dimension(3) == 2
- // twod_patch_row_major.dimension(4) == 2
-
-## Special Operations
-
-### `<Operation> cast<T>()`
-
-Returns a tensor of type T with the same dimensions as the original tensor.
-The returned tensor contains the values of the original tensor converted to
-type T.
-
- Eigen::Tensor<float, 2> a(2, 3);
- Eigen::Tensor<int, 2> b = a.cast<int>();
-
-This can be useful for example if you need to do element-wise division of
-Tensors of integers. This is not currently supported by the Tensor library
-but you can easily cast the tensors to floats to do the division:
-
- Eigen::Tensor<int, 2> a(2, 3);
- a.setValues({{0, 1, 2}, {3, 4, 5}});
- Eigen::Tensor<int, 2> b =
- (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
- cout << "a" << endl << a << endl << endl;
- cout << "b" << endl << b << endl << endl;
- =>
- a
- 0 1 2
- 3 4 5
-
- b
- 0 0 1
- 1 2 2
-
-
-### `<Operation> eval()`
-
-TODO
-
-
-## Representation of scalar values
-
-Scalar values are often represented by tensors of size 1 and rank 0.For example
-Tensor<T, N>::maximum() currently returns a Tensor<T, 0>. Similarly, the inner
-product of 2 1d tensors (through contractions) returns a 0d tensor.
-
-## Limitations
-
-* The number of tensor dimensions is currently limited to 250 when using a
- compiler that supports cxx11. It is limited to only 5 for older compilers.
-* The IndexList class requires a cxx11 compliant compiler. You can use an
- array of indices instead if you don't have access to a modern compiler.
-* On GPUs only floating point values are properly tested and optimized for.
-* Complex and integer values are known to be broken on GPUs. If you try to use
- them you'll most likely end up triggering a static assertion failure such as
- EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
-
-
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
deleted file mode 100644
index 00295a2..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
+++ /dev/null
@@ -1,527 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
-#define EIGEN_CXX11_TENSOR_TENSOR_H
-
-namespace Eigen {
-
-/** \class Tensor
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The tensor class.
- *
- * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
- *
- * The %Tensor class encompasses only dynamic-size objects so far.
- *
- * The first two template parameters are required:
- * \tparam Scalar_ Numeric type, e.g. float, double, int or `std::complex<float>`.
- * User defined scalar types are supported as well (see \ref user_defined_scalars "here").
- * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
- *
- * The remaining template parameters are optional -- in most cases you don't have to worry about them.
- * \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either
- * \b #AutoAlign or \b #DontAlign.
- * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
- * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
- * Support for such operations (i.e. adding two tensors etc.) is planned.
- *
- * You can access elements of tensors using normal subscripting:
- *
- * \code
- * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
- * t(0, 1, 2, 3) = 42.0;
- * \endcode
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
- *
- * <i><b>Some notes:</b></i>
- *
- * <dl>
- * <dt><b>Relation to other parts of Eigen:</b></dt>
- * <dd>The midterm development goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
- * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
- * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
- * class does not provide any of these features and is only available as a stand-alone class that just allows for
- * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
- * change dramatically.</dd>
- * </dl>
- *
- * \ref TopicStorageOrders
- */
-
-template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
-class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
-{
- public:
- typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self;
- typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base;
- typedef typename Eigen::internal::nested<Self>::type Nested;
- typedef typename internal::traits<Self>::StorageKind StorageKind;
- typedef typename internal::traits<Self>::Index Index;
- typedef Scalar_ Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
- enum {
- IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign),
- Layout = Options_ & RowMajor ? RowMajor : ColMajor,
- CoordAccess = true,
- RawAccess = true
- };
-
- static const int Options = Options_;
- static const int NumIndices = NumIndices_;
- typedef DSizes<Index, NumIndices_> Dimensions;
-
- protected:
- TensorStorage<Scalar, Dimensions, Options> m_storage;
-
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomIndices>
- struct isOfNormalIndex{
- static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value;
- static const bool is_int = NumTraits<CustomIndices>::IsInteger;
- static const bool value = is_array | is_int;
- };
-#endif
-
- public:
- // Metadata
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
-
- // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- // work, because that uses base().coeffRef() - and we don't yet
- // implement a similar class hierarchy
- inline Self& base() { return *this; }
- inline const Self& base() const { return *this; }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- }
-#endif
-
- // normal indices
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
- {
- eigen_internal_assert(checkIndexRange(indices));
- return m_storage.data()[linearizedIndex(indices)];
- }
-
- // custom indices
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomIndices,
- EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
- >
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const
- {
- return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return m_storage.data()[0];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_storage.data()[index];
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- }
-#endif
-
- // normal indices
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
- {
- eigen_internal_assert(checkIndexRange(indices));
- return m_storage.data()[linearizedIndex(indices)];
- }
-
- // custom indices
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomIndices,
- EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
- >
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices)
- {
- return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return m_storage.data()[0];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_storage.data()[index];
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
- {
- return coeff(array<Index, 2>(i0, i1));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
- {
- return coeff(array<Index, 3>(i0, i1, i2));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
- {
- return coeff(array<Index, 4>(i0, i1, i2, i3));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
- {
- return coeff(array<Index, 5>(i0, i1, i2, i3, i4));
- }
-#endif
-
- // custom indices
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomIndices,
- EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
- >
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const
- {
- return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
- }
-#endif
-
- // normal indices
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
- {
- return coeff(indices);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return coeff(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeff();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
- {
- // The bracket operator is only for vectors, use the parenthesis operator instead.
- EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeff(index);
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
- {
- return coeffRef(array<Index, 2>(i0, i1));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
- {
- return coeffRef(array<Index, 3>(i0, i1, i2));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
- {
- return coeffRef(array<Index, 4>(i0, i1, i2, i3));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
- {
- return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4));
- }
-#endif
-
- // normal indices
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
- {
- return coeffRef(indices);
- }
-
- // custom indices
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomIndices,
- EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
- >
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices)
- {
- return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
- {
- eigen_assert(index >= 0 && index < size());
- return coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeffRef();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
- {
- // The bracket operator is only for vectors, use the parenthesis operator instead
- EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor()
- : m_storage()
- {
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor(const Self& other)
- : m_storage(other.m_storage)
- {
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions)
- : m_storage(firstDimension, otherDimensions...)
- {
- // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-#else
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1)
- : m_storage(dim1, array<Index, 1>(dim1))
- {
- EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2)
- : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2))
- {
- EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3)
- : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3))
- {
- EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4)
- : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4))
- {
- EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5)
- : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5))
- {
- EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-#endif
-
- /** Normal Dimension */
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions)
- : m_storage(internal::array_prod(dimensions), dimensions)
- {
- EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
- {
- typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
- Assign assign(*this, other.derived());
- resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- }
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other)
- {
- typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
- Assign assign(*this, other.derived());
- resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other)
- {
- typedef TensorAssignOp<Tensor, const Tensor> Assign;
- Assign assign(*this, other);
- resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other)
- {
- typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
- Assign assign(*this, other);
- resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- void resize(Index firstDimension, IndexTypes... otherDimensions)
- {
- // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
- }
-#endif
-
- /** Normal Dimension */
- EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions)
- {
- int i;
- Index size = Index(1);
- for (i = 0; i < NumIndices; i++) {
- internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
- size *= dimensions[i];
- }
- #ifdef EIGEN_INITIALIZE_COEFFS
- bool size_changed = size != this->size();
- m_storage.resize(size, dimensions);
- if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- #else
- m_storage.resize(size, dimensions);
- #endif
- }
-
- // Why this overload, DSizes is derived from array ??? //
- EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) {
- array<Index, NumIndices> dims;
- for (int i = 0; i < NumIndices; ++i) {
- dims[i] = dimensions[i];
- }
- resize(dims);
- }
-
- EIGEN_DEVICE_FUNC
- void resize()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- // Nothing to do: rank 0 tensors have fixed size
- }
-
- /** Custom Dimension */
-#ifdef EIGEN_HAS_SFINAE
- template<typename CustomDimension,
- EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) )
- >
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions)
- {
- resize(internal::customIndices2Array<Index,NumIndices>(dimensions));
- }
-#endif
-
-#ifndef EIGEN_EMULATE_CXX11_META_H
- template <typename std::ptrdiff_t... Indices>
- EIGEN_DEVICE_FUNC
- void resize(const Sizes<Indices...>& dimensions) {
- array<Index, NumIndices> dims;
- for (int i = 0; i < NumIndices; ++i) {
- dims[i] = static_cast<Index>(dimensions[i]);
- }
- resize(dims);
- }
-#else
- template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
- EIGEN_DEVICE_FUNC
- void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) {
- array<Index, NumIndices> dims;
- for (int i = 0; i < NumIndices; ++i) {
- dims[i] = static_cast<Index>(dimensions[i]);
- }
- resize(dims);
- }
-#endif
-
- protected:
-
- bool checkIndexRange(const array<Index, NumIndices>& indices) const
- {
- using internal::array_apply_and_reduce;
- using internal::array_zip_and_reduce;
- using internal::greater_equal_zero_op;
- using internal::logical_and_op;
- using internal::lesser_op;
-
- return
- // check whether the indices are all >= 0
- array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
- // check whether the indices fit in the dimensions
- array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
- {
- if (Options&RowMajor) {
- return m_storage.dimensions().IndexOfRowMajor(indices);
- } else {
- return m_storage.dimensions().IndexOfColMajor(indices);
- }
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
deleted file mode 100644
index d06f40c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
+++ /dev/null
@@ -1,299 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
-// Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
-#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
-
-namespace Eigen {
-namespace internal {
-
-/** \class TensorIndexTuple
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor + Index Tuple class.
- *
- *
- */
-template<typename XprType>
-struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
-{
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename XprType>
-struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
-{
- typedef const TensorIndexTupleOp<XprType>& type;
-};
-
-template<typename XprType>
-struct nested<TensorIndexTupleOp<XprType>, 1,
- typename eval<TensorIndexTupleOp<XprType> >::type>
-{
- typedef TensorIndexTupleOp<XprType> type;
-};
-
-} // end namespace internal
-
-template<typename XprType>
-class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
- typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
- : m_xpr(expr) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
-};
-
-// Eval as rvalue
-template<typename ArgType, typename Device>
-struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
-{
- typedef TensorIndexTupleOp<ArgType> XprType;
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
-
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
- static const int NumDims = internal::array_size<Dimensions>::value;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
- PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device) { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
- return m_impl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return CoeffReturnType(index, m_impl.coeff(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-namespace internal {
-
-/** \class TensorTupleIndex
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
- *
- */
-template<typename ReduceOp, typename Dims, typename XprType>
-struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
-{
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef Index Scalar;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename ReduceOp, typename Dims, typename XprType>
-struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
-{
- typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
-};
-
-template<typename ReduceOp, typename Dims, typename XprType>
-struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
- typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
-{
- typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
-};
-
-} // end namespace internal
-
-template<typename ReduceOp, typename Dims, typename XprType>
-class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
- typedef Index CoeffReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
- const ReduceOp& reduce_op,
- const int return_dim,
- const Dims& reduce_dims)
- : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- const ReduceOp& reduce_op() const { return m_reduce_op; }
-
- EIGEN_DEVICE_FUNC
- const Dims& reduce_dims() const { return m_reduce_dims; }
-
- EIGEN_DEVICE_FUNC
- int return_dim() const { return m_return_dim; }
-
- protected:
- typename XprType::Nested m_xpr;
- const ReduceOp m_reduce_op;
- const int m_return_dim;
- const Dims m_reduce_dims;
-};
-
-// Eval as rvalue
-template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
-{
- typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
- typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
- typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
- static const int NumDims = internal::array_size<InputDimensions>::value;
- typedef array<Index, NumDims> StrideDims;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
- PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
- BlockAccess = false,
- Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_orig_impl(op.expression(), device),
- m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
- m_return_dim(op.return_dim()) {
-
- gen_strides(m_orig_impl.dimensions(), m_strides);
- if (Layout == static_cast<int>(ColMajor)) {
- const Index total_size = internal::array_prod(m_orig_impl.dimensions());
- m_stride_mod = (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : total_size;
- } else {
- const Index total_size = internal::array_prod(m_orig_impl.dimensions());
- m_stride_mod = (m_return_dim > 0) ? m_strides[m_return_dim - 1] : total_size;
- }
- m_stride_div = m_strides[m_return_dim];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
- return m_impl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- const TupleType v = m_impl.coeff(index);
- return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double compute_cost = 1.0 +
- (m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>()));
- return m_orig_impl.costPerCoeff(vectorized) +
- m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost);
- }
-
- private:
- EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) {
- if (m_return_dim < 0) {
- return; // Won't be using the strides.
- }
- eigen_assert(m_return_dim < NumDims &&
- "Asking to convert index to a dimension outside of the rank");
-
- // Calculate m_stride_div and m_stride_mod, which are used to
- // calculate the value of an index w.r.t. the m_return_dim.
- if (Layout == static_cast<int>(ColMajor)) {
- strides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- strides[i] = strides[i-1] * dims[i-1];
- }
- } else {
- strides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- strides[i] = strides[i+1] * dims[i+1];
- }
- }
- }
-
- protected:
- TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
- TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
- const int m_return_dim;
- StrideDims m_strides;
- Index m_stride_mod;
- Index m_stride_div;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
deleted file mode 100644
index 166be20..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
+++ /dev/null
@@ -1,181 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
-#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
-
-namespace Eigen {
-
-/** \class TensorAssign
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The tensor assignment class.
- *
- * This class is represents the assignment of the values resulting from the evaluation of
- * the rhs expression to the memory locations denoted by the lhs expression.
- */
-namespace internal {
-template<typename LhsXprType, typename RhsXprType>
-struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
-{
- typedef typename LhsXprType::Scalar Scalar;
- typedef typename traits<LhsXprType>::StorageKind StorageKind;
- typedef typename promote_index_type<typename traits<LhsXprType>::Index,
- typename traits<RhsXprType>::Index>::type Index;
- typedef typename LhsXprType::Nested LhsNested;
- typedef typename RhsXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
- static const int Layout = internal::traits<LhsXprType>::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-template<typename LhsXprType, typename RhsXprType>
-struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense>
-{
- typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
-};
-
-template<typename LhsXprType, typename RhsXprType>
-struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type>
-{
- typedef TensorAssignOp<LhsXprType, RhsXprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename LhsXprType, typename RhsXprType>
-class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> >
-{
- public:
- typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}
-
- /** \returns the nested expressions */
- EIGEN_DEVICE_FUNC
- typename internal::remove_all<typename LhsXprType::Nested>::type&
- lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename RhsXprType::Nested>::type&
- rhsExpression() const { return m_rhs_xpr; }
-
- protected:
- typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr;
- const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr;
-};
-
-
-template<typename LeftArgType, typename RightArgType, typename Device>
-struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
-{
- typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
- m_leftImpl(op.lhsExpression(), device),
- m_rightImpl(op.rhsExpression(), device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
- {
- // The dimensions of the lhs and the rhs tensors should be equal to prevent
- // overflows and ensure the result is fully initialized.
- // TODO: use left impl instead if right impl dimensions are known at compile time.
- return m_rightImpl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
- m_leftImpl.evalSubExprsIfNeeded(NULL);
- // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
- // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
- // evaluation isn't supported and the caller still needs to manually assign the values generated
- // by the rhs to the lhs.
- return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_leftImpl.cleanup();
- m_rightImpl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
- m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
- const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
- const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
- m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
- }
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_leftImpl.coeff(index);
- }
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
- {
- return m_leftImpl.template packet<LoadMode>(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- // We assume that evalPacket or evalScalar is called to perform the
- // assignment and account for the cost of the write here, but reduce left
- // cost by one load because we are using m_leftImpl.coeffRef.
- TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
- return m_rightImpl.costPerCoeff(vectorized) +
- TensorOpCost(
- numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)),
- left.bytes_stored(), left.compute_cycles()) +
- TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
- }
-
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); }
-
- private:
- TensorEvaluator<LeftArgType, Device> m_leftImpl;
- TensorEvaluator<RightArgType, Device> m_rightImpl;
-};
-
-}
-
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
deleted file mode 100644
index f573608..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ /dev/null
@@ -1,1012 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_BASE_H
-#define EIGEN_CXX11_TENSOR_TENSOR_BASE_H
-
-// clang-format off
-
-namespace Eigen {
-
-/** \class TensorBase
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The tensor base class.
- *
- * This class is the common parent of the Tensor and TensorMap class, thus
- * making it possible to use either class interchangably in expressions.
- */
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-// FIXME Doxygen does not like the inheritance with different template parameters
-// Since there is no doxygen documentation inside, we disable it for now
-template<typename Derived>
-class TensorBase<Derived, ReadOnlyAccessors>
-{
- public:
- typedef internal::traits<Derived> DerivedTraits;
- typedef typename DerivedTraits::Scalar Scalar;
- typedef typename DerivedTraits::Index Index;
- typedef typename internal::remove_const<Scalar>::type CoeffReturnType;
- static const int NumDimensions = DerivedTraits::NumDimensions;
-
- // Generic nullary operation support.
- template <typename CustomNullaryOp> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<CustomNullaryOp, const Derived>
- nullaryExpr(const CustomNullaryOp& func) const {
- return TensorCwiseNullaryOp<CustomNullaryOp, const Derived>(derived(), func);
- }
-
- // Coefficient-wise nullary operators
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived>
- constant(const Scalar& value) const {
- return nullaryExpr(internal::scalar_constant_op<Scalar>(value));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived>
- random() const {
- return nullaryExpr(internal::UniformRandomGenerator<Scalar>());
- }
- template <typename RandomGenerator> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived>
- random(const RandomGenerator& gen = RandomGenerator()) const {
- return nullaryExpr(gen);
- }
-
- // Tensor generation
- template <typename Generator> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorGeneratorOp<Generator, const Derived>
- generate(const Generator& generator) const {
- return TensorGeneratorOp<Generator, const Derived>(derived(), generator);
- }
-
- // Generic unary operation support.
- template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>
- unaryExpr(const CustomUnaryOp& func) const {
- return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func);
- }
-
- // Coefficient-wise unary operators
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived>
- operator-() const {
- return unaryExpr(internal::scalar_opposite_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
- sqrt() const {
- return unaryExpr(internal::scalar_sqrt_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sign_op<Scalar>, const Derived>
- sign() const {
- return unaryExpr(internal::scalar_sign_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_rsqrt_op<Scalar>, const Derived>
- rsqrt() const {
- return unaryExpr(internal::scalar_rsqrt_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived>
- square() const {
- return unaryExpr(internal::scalar_square_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cube_op<Scalar>, const Derived>
- cube() const {
- return unaryExpr(internal::scalar_cube_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
- inverse() const {
- return unaryExpr(internal::scalar_inverse_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_tanh_op<Scalar>, const Derived>
- tanh() const {
- return unaryExpr(internal::scalar_tanh_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived>
- lgamma() const {
- return unaryExpr(internal::scalar_lgamma_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived>
- digamma() const {
- return unaryExpr(internal::scalar_digamma_op<Scalar>());
- }
-
- // igamma(a = this, x = other)
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
- igamma(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
- }
-
- // igammac(a = this, x = other)
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
- igammac(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
- }
-
- // zeta(x = this, q = other)
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const OtherDerived>
- zeta(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_zeta_op<Scalar>());
- }
-
- // polygamma(n = this, x = other)
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const Derived, const OtherDerived>
- polygamma(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_polygamma_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
- erf() const {
- return unaryExpr(internal::scalar_erf_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived>
- erfc() const {
- return unaryExpr(internal::scalar_erfc_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sigmoid_op<Scalar>, const Derived>
- sigmoid() const {
- return unaryExpr(internal::scalar_sigmoid_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived>
- exp() const {
- return unaryExpr(internal::scalar_exp_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived>
- log() const {
- return unaryExpr(internal::scalar_log_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log1p_op<Scalar>, const Derived>
- log1p() const {
- return unaryExpr(internal::scalar_log1p_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
- abs() const {
- return unaryExpr(internal::scalar_abs_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>
- conjugate() const {
- return unaryExpr(internal::scalar_conjugate_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >, const Derived>
- pow(Scalar exponent) const {
- return unaryExpr(internal::bind2nd_op<internal::scalar_pow_op<Scalar,Scalar> >(exponent));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>
- real() const {
- return unaryExpr(internal::scalar_real_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived>
- imag() const {
- return unaryExpr(internal::scalar_imag_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >, const Derived>
- operator+ (Scalar rhs) const {
- return unaryExpr(internal::bind2nd_op<internal::scalar_sum_op<Scalar,Scalar> >(rhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE friend
- const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_sum_op<Scalar> >, const Derived>
- operator+ (Scalar lhs, const Derived& rhs) {
- return rhs.unaryExpr(internal::bind1st_op<internal::scalar_sum_op<Scalar> >(lhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >, const Derived>
- operator- (Scalar rhs) const {
- EIGEN_STATIC_ASSERT((NumTraits<Scalar>::IsSigned || internal::is_same<Scalar, const std::complex<float> >::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
- return unaryExpr(internal::bind2nd_op<internal::scalar_difference_op<Scalar,Scalar> >(rhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE friend
- const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_difference_op<Scalar> >, const Derived>
- operator- (Scalar lhs, const Derived& rhs) {
- return rhs.unaryExpr(internal::bind1st_op<internal::scalar_difference_op<Scalar> >(lhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >, const Derived>
- operator* (Scalar rhs) const {
- return unaryExpr(internal::bind2nd_op<internal::scalar_product_op<Scalar,Scalar> >(rhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE friend
- const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_product_op<Scalar> >, const Derived>
- operator* (Scalar lhs, const Derived& rhs) {
- return rhs.unaryExpr(internal::bind1st_op<internal::scalar_product_op<Scalar> >(lhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >, const Derived>
- operator/ (Scalar rhs) const {
- return unaryExpr(internal::bind2nd_op<internal::scalar_quotient_op<Scalar,Scalar> >(rhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE friend
- const TensorCwiseUnaryOp<internal::bind1st_op<internal::scalar_quotient_op<Scalar> >, const Derived>
- operator/ (Scalar lhs, const Derived& rhs) {
- return rhs.unaryExpr(internal::bind1st_op<internal::scalar_quotient_op<Scalar> >(lhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_mod_op<Scalar>, const Derived>
- operator% (Scalar rhs) const {
- EIGEN_STATIC_ASSERT(NumTraits<Scalar>::IsInteger, YOU_MADE_A_PROGRAMMING_MISTAKE_TRY_MOD);
- return unaryExpr(internal::scalar_mod_op<Scalar>(rhs));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- cwiseMax(Scalar threshold) const {
- return cwiseMax(constant(threshold));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- cwiseMin(Scalar threshold) const {
- return cwiseMin(constant(threshold));
- }
-
- template <typename NewType> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorConversionOp<NewType, const Derived>
- cast() const {
- return TensorConversionOp<NewType, const Derived>(derived());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_round_op<Scalar>, const Derived>
- round() const {
- return unaryExpr(internal::scalar_round_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_ceil_op<Scalar>, const Derived>
- ceil() const {
- return unaryExpr(internal::scalar_ceil_op<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_floor_op<Scalar>, const Derived>
- floor() const {
- return unaryExpr(internal::scalar_floor_op<Scalar>());
- }
-
- // Generic binary operation support.
- template <typename CustomBinaryOp, typename OtherDerived> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>
- binaryExpr(const OtherDerived& other, const CustomBinaryOp& func) const {
- return TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other, func);
- }
-
- // Coefficient-wise binary operators.
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>
- operator+(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_sum_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>
- operator-(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_difference_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>
- operator*(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_product_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
- operator/(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_quotient_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
- cwiseMax(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_max_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
- cwiseMin(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_min_op<Scalar>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>
- operator&&(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_boolean_and_op());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>
- operator||(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_boolean_or_op());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived>
- operator^(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_boolean_xor_op());
- }
-
- // Comparisons and tests.
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const OtherDerived>
- operator<(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>());
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const OtherDerived>
- operator<=(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>());
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const OtherDerived>
- operator>(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>());
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const OtherDerived>
- operator>=(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const OtherDerived>
- operator==(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>());
- }
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived>
- operator!=(const OtherDerived& other) const {
- return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>());
- }
-
- // comparisons and tests for Scalars
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator<(Scalar threshold) const {
- return operator<(constant(threshold));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator<=(Scalar threshold) const {
- return operator<=(constant(threshold));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator>(Scalar threshold) const {
- return operator>(constant(threshold));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator>=(Scalar threshold) const {
- return operator>=(constant(threshold));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator==(Scalar threshold) const {
- return operator==(constant(threshold));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
- operator!=(Scalar threshold) const {
- return operator!=(constant(threshold));
- }
-
- // Checks
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isnan_op<Scalar>, const Derived>
- (isnan)() const {
- return unaryExpr(internal::scalar_isnan_op<Scalar>());
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isinf_op<Scalar>, const Derived>
- (isinf)() const {
- return unaryExpr(internal::scalar_isinf_op<Scalar>());
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isfinite_op<Scalar>, const Derived>
- (isfinite)() const {
- return unaryExpr(internal::scalar_isfinite_op<Scalar>());
- }
-
- // Coefficient-wise ternary operators.
- template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>
- select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const {
- return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
- }
-
- // Contractions.
- typedef Eigen::IndexPair<Index> DimensionPair;
-
- template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorContractionOp<const Dimensions, const Derived, const OtherDerived>
- contract(const OtherDerived& other, const Dimensions& dims) const {
- return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims);
- }
-
- // Convolutions.
- template<typename KernelDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>
- convolve(const KernelDerived& kernel, const Dimensions& dims) const {
- return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims);
- }
-
- // Fourier transforms
- template <int FFTDataType, int FFTDirection, typename FFT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>
- fft(const FFT& fft) const {
- return TensorFFTOp<const FFT, const Derived, FFTDataType, FFTDirection>(derived(), fft);
- }
-
- // Scan.
- typedef TensorScanOp<internal::SumReducer<CoeffReturnType>, const Derived> TensorScanSumOp;
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorScanSumOp
- cumsum(const Index& axis, bool exclusive = false) const {
- return TensorScanSumOp(derived(), axis, exclusive);
- }
-
- typedef TensorScanOp<internal::ProdReducer<CoeffReturnType>, const Derived> TensorScanProdOp;
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorScanProdOp
- cumprod(const Index& axis, bool exclusive = false) const {
- return TensorScanProdOp(derived(), axis, exclusive);
- }
-
- template <typename Reducer>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorScanOp<Reducer, const Derived>
- scan(const Index& axis, const Reducer& reducer, bool exclusive = false) const {
- return TensorScanOp<Reducer, const Derived>(derived(), axis, exclusive, reducer);
- }
-
- // Reductions.
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>
- sum(const Dims& dims) const {
- return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::SumReducer<CoeffReturnType>());
- }
-
- const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
- sum() const {
- DimensionList<Index, NumDimensions> in_dims;
- return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::SumReducer<CoeffReturnType>());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>
- mean(const Dims& dims) const {
- return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MeanReducer<CoeffReturnType>());
- }
-
- const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
- mean() const {
- DimensionList<Index, NumDimensions> in_dims;
- return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MeanReducer<CoeffReturnType>());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>
- prod(const Dims& dims) const {
- return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::ProdReducer<CoeffReturnType>());
- }
-
- const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
- prod() const {
- DimensionList<Index, NumDimensions> in_dims;
- return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::ProdReducer<CoeffReturnType>());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>
- maximum(const Dims& dims) const {
- return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<CoeffReturnType>());
- }
-
- const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
- maximum() const {
- DimensionList<Index, NumDimensions> in_dims;
- return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MaxReducer<CoeffReturnType>());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>
- minimum(const Dims& dims) const {
- return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MinReducer<CoeffReturnType>());
- }
-
- const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>
- minimum() const {
- DimensionList<Index, NumDimensions> in_dims;
- return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::AndReducer, const Dims, const TensorConversionOp<bool, const Derived> >
- all(const Dims& dims) const {
- return cast<bool>().reduce(dims, internal::AndReducer());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::AndReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> >
- all() const {
- DimensionList<Index, NumDimensions> in_dims;
- return cast<bool>().reduce(in_dims, internal::AndReducer());
- }
-
- template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::OrReducer, const Dims, const TensorConversionOp<bool, const Derived> >
- any(const Dims& dims) const {
- return cast<bool>().reduce(dims, internal::OrReducer());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<internal::OrReducer, const DimensionList<Index, NumDimensions>, const TensorConversionOp<bool, const Derived> >
- any() const {
- DimensionList<Index, NumDimensions> in_dims;
- return cast<bool>().reduce(in_dims, internal::OrReducer());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorTupleReducerOp<
- internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, NumDimensions>, const Derived>
- argmax() const {
- array<Index, NumDimensions> in_dims;
- for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
- return TensorTupleReducerOp<
- internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, NumDimensions>,
- const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorTupleReducerOp<
- internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, NumDimensions>, const Derived>
- argmin() const {
- array<Index, NumDimensions> in_dims;
- for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
- return TensorTupleReducerOp<
- internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, NumDimensions>,
- const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorTupleReducerOp<
- internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, 1>, const Derived>
- argmax(const int return_dim) const {
- array<Index, 1> in_dims;
- in_dims[0] = return_dim;
- return TensorTupleReducerOp<
- internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, 1>,
- const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorTupleReducerOp<
- internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, 1>, const Derived>
- argmin(const int return_dim) const {
- array<Index, 1> in_dims;
- in_dims[0] = return_dim;
- return TensorTupleReducerOp<
- internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
- const array<Index, 1>,
- const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
- }
-
- template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReductionOp<Reducer, const Dims, const Derived>
- reduce(const Dims& dims, const Reducer& reducer) const {
- return TensorReductionOp<Reducer, const Dims, const Derived>(derived(), dims, reducer);
- }
-
- template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorBroadcastingOp<const Broadcast, const Derived>
- broadcast(const Broadcast& broadcast) const {
- return TensorBroadcastingOp<const Broadcast, const Derived>(derived(), broadcast);
- }
-
- template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorConcatenationOp<Axis, const Derived, const OtherDerived>
- concatenate(const OtherDerived& other, Axis axis) const {
- return TensorConcatenationOp<Axis, const Derived, const OtherDerived>(derived(), other.derived(), axis);
- }
-
- template <typename PatchDims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorPatchOp<const PatchDims, const Derived>
- extract_patches(const PatchDims& patch_dims) const {
- return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
- extract_image_patches(const Index patch_rows = 1, const Index patch_cols = 1,
- const Index row_stride = 1, const Index col_stride = 1,
- const Index in_row_stride = 1, const Index in_col_stride = 1,
- const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
- return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
- in_row_stride, in_col_stride, 1, 1, padding_type, padding_value);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
- extract_image_patches(const Index patch_rows, const Index patch_cols,
- const Index row_stride, const Index col_stride,
- const Index in_row_stride, const Index in_col_stride,
- const Index row_inflate_stride, const Index col_inflate_stride,
- const Index padding_top, const Index padding_bottom,
- const Index padding_left,const Index padding_right,
- const Scalar padding_value) const {
- return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
- in_row_stride, in_col_stride, row_inflate_stride, col_inflate_stride,
- padding_top, padding_bottom, padding_left, padding_right, padding_value);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
- extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
- const Index plane_stride = 1, const Index row_stride = 1, const Index col_stride = 1,
- const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = Scalar(0)) const {
- return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, 1, 1, 1, padding_type, padding_value);
- }
-
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
- extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
- const Index plane_stride, const Index row_stride, const Index col_stride,
- const Index plane_inflate_stride, const Index row_inflate_stride, const Index col_inflate_stride,
- const Index padding_top_z, const Index padding_bottom_z,
- const Index padding_top, const Index padding_bottom,
- const Index padding_left, const Index padding_right, const Scalar padding_value = Scalar(0)) const {
- return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, plane_inflate_stride, row_inflate_stride, col_inflate_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right, padding_value);
- }
-
- // Morphing operators.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorLayoutSwapOp<const Derived>
- swap_layout() const {
- return TensorLayoutSwapOp<const Derived>(derived());
- }
- template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReshapingOp<const NewDimensions, const Derived>
- reshape(const NewDimensions& newDimensions) const {
- return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions);
- }
- template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorSlicingOp<const StartIndices, const Sizes, const Derived>
- slice(const StartIndices& startIndices, const Sizes& sizes) const {
- return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
- }
- template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
- stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
- return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
- const Derived>(derived(), startIndices, stopIndices, strides);
- }
- template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorChippingOp<DimId, const Derived>
- chip(const Index offset) const {
- return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorChippingOp<Dynamic, const Derived>
- chip(const Index offset, const Index dim) const {
- return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim);
- }
- template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReverseOp<const ReverseDimensions, const Derived>
- reverse(const ReverseDimensions& rev) const {
- return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev);
- }
- template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorPaddingOp<const PaddingDimensions, const Derived>
- pad(const PaddingDimensions& padding) const {
- return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, internal::scalar_cast_op<int, Scalar>()(0));
- }
- template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorPaddingOp<const PaddingDimensions, const Derived>
- pad(const PaddingDimensions& padding, const Scalar padding_value) const {
- return TensorPaddingOp<const PaddingDimensions, const Derived>(derived(), padding, padding_value);
- }
- template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorShufflingOp<const Shuffle, const Derived>
- shuffle(const Shuffle& shuffle) const {
- return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle);
- }
- template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorStridingOp<const Strides, const Derived>
- stride(const Strides& strides) const {
- return TensorStridingOp<const Strides, const Derived>(derived(), strides);
- }
- template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorInflationOp<const Strides, const Derived>
- inflate(const Strides& strides) const {
- return TensorInflationOp<const Strides, const Derived>(derived(), strides);
- }
-
- // Returns a tensor containing index/value tuples
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorIndexTupleOp<const Derived>
- index_tuples() const {
- return TensorIndexTupleOp<const Derived>(derived());
- }
-
- // Support for custom unary and binary operations
- template <typename CustomUnaryFunc>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCustomUnaryOp<const CustomUnaryFunc, const Derived> customOp(const CustomUnaryFunc& op) const {
- return TensorCustomUnaryOp<const CustomUnaryFunc, const Derived>(derived(), op);
- }
- template <typename OtherDerived, typename CustomBinaryFunc>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived> customOp(const OtherDerived& other, const CustomBinaryFunc& op) const {
- return TensorCustomBinaryOp<const CustomBinaryFunc, const Derived, const OtherDerived>(derived(), other, op);
- }
-
- // Force the evaluation of the expression.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorForcedEvalOp<const Derived> eval() const {
- return TensorForcedEvalOp<const Derived>(derived());
- }
-
- protected:
- template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor;
- template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize;
- template <typename OtherDerived, int AccessLevel> friend class TensorBase;
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
-};
-
-template<typename Derived, int AccessLevel = internal::accessors_level<Derived>::value>
-class TensorBase : public TensorBase<Derived, ReadOnlyAccessors> {
- public:
- typedef internal::traits<Derived> DerivedTraits;
- typedef typename DerivedTraits::Scalar Scalar;
- typedef typename DerivedTraits::Index Index;
- typedef Scalar CoeffReturnType;
- static const int NumDimensions = DerivedTraits::NumDimensions;
-
- template <typename Scalar, int NumIndices, int Options, typename IndexType> friend class Tensor;
- template <typename Scalar, typename Dimensions, int Option, typename IndexTypes> friend class TensorFixedSize;
- template <typename OtherDerived, int OtherAccessLevel> friend class TensorBase;
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& setZero() {
- return setConstant(Scalar(0));
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& setConstant(const Scalar& val) {
- return derived() = this->constant(val);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& setRandom() {
- return derived() = this->random();
- }
- template <typename RandomGenerator> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& setRandom() {
- return derived() = this->template random<RandomGenerator>();
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& setValues(
- const typename internal::Initializer<Derived, NumDimensions>::InitList& vals) {
- TensorEvaluator<Derived, DefaultDevice> eval(derived(), DefaultDevice());
- internal::initialize_tensor<Derived, NumDimensions>(eval, vals);
- return derived();
- }
-#endif // EIGEN_HAS_VARIADIC_TEMPLATES
-
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Derived& operator+=(const OtherDerived& other) {
- return derived() = derived() + other.derived();
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Derived& operator-=(const OtherDerived& other) {
- return derived() = derived() - other.derived();
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Derived& operator*=(const OtherDerived& other) {
- return derived() = derived() * other.derived();
- }
- template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Derived& operator/=(const OtherDerived& other) {
- return derived() = derived() / other.derived();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorLayoutSwapOp<const Derived>
- swap_layout() const {
- return TensorLayoutSwapOp<const Derived>(derived());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorLayoutSwapOp<Derived>
- swap_layout() {
- return TensorLayoutSwapOp<Derived>(derived());
- }
-
- template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorConcatenationOp<const Axis, const Derived, const OtherDerived>
- concatenate(const OtherDerived& other, const Axis& axis) const {
- return TensorConcatenationOp<const Axis, const Derived, const OtherDerived>(derived(), other, axis);
- }
- template <typename Axis, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorConcatenationOp<const Axis, Derived, OtherDerived>
- concatenate(const OtherDerived& other, const Axis& axis) {
- return TensorConcatenationOp<const Axis, Derived, OtherDerived>(derived(), other, axis);
- }
-
- template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReshapingOp<const NewDimensions, const Derived>
- reshape(const NewDimensions& newDimensions) const {
- return TensorReshapingOp<const NewDimensions, const Derived>(derived(), newDimensions);
- }
- template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorReshapingOp<const NewDimensions, Derived>
- reshape(const NewDimensions& newDimensions) {
- return TensorReshapingOp<const NewDimensions, Derived>(derived(), newDimensions);
- }
-
- template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorSlicingOp<const StartIndices, const Sizes, const Derived>
- slice(const StartIndices& startIndices, const Sizes& sizes) const {
- return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
- }
- template <typename StartIndices, typename Sizes> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorSlicingOp<const StartIndices, const Sizes, Derived>
- slice(const StartIndices& startIndices, const Sizes& sizes) {
- return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
- }
-
- template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, const Derived>
- stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) const {
- return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
- const Derived>(derived(), startIndices, stopIndices, strides);
- }
- template <typename StartIndices, typename StopIndices, typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides, Derived>
- stridedSlice(const StartIndices& startIndices, const StopIndices& stopIndices, const Strides& strides) {
- return TensorStridingSlicingOp<const StartIndices, const StopIndices, const Strides,
- Derived>(derived(), startIndices, stopIndices, strides);
- }
-
- template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorChippingOp<DimId, const Derived>
- chip(const Index offset) const {
- return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId);
- }
- template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorChippingOp<DimId, Derived>
- chip(const Index offset) {
- return TensorChippingOp<DimId, Derived>(derived(), offset, DimId);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorChippingOp<Dynamic, const Derived>
- chip(const Index offset, const Index dim) const {
- return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorChippingOp<Dynamic, Derived>
- chip(const Index offset, const Index dim) {
- return TensorChippingOp<Dynamic, Derived>(derived(), offset, dim);
- }
-
- template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorReverseOp<const ReverseDimensions, const Derived>
- reverse(const ReverseDimensions& rev) const {
- return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev);
- }
- template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorReverseOp<const ReverseDimensions, Derived>
- reverse(const ReverseDimensions& rev) {
- return TensorReverseOp<const ReverseDimensions, Derived>(derived(), rev);
- }
-
- template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorShufflingOp<const Shuffle, const Derived>
- shuffle(const Shuffle& shuffle) const {
- return TensorShufflingOp<const Shuffle, const Derived>(derived(), shuffle);
- }
- template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorShufflingOp<const Shuffle, Derived>
- shuffle(const Shuffle& shuffle) {
- return TensorShufflingOp<const Shuffle, Derived>(derived(), shuffle);
- }
-
- template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorStridingOp<const Strides, const Derived>
- stride(const Strides& strides) const {
- return TensorStridingOp<const Strides, const Derived>(derived(), strides);
- }
- template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorStridingOp<const Strides, Derived>
- stride(const Strides& strides) {
- return TensorStridingOp<const Strides, Derived>(derived(), strides);
- }
-
- // Select the device on which to evaluate the expression.
- template <typename DeviceType>
- TensorDevice<Derived, DeviceType> device(const DeviceType& device) {
- return TensorDevice<Derived, DeviceType>(device, derived());
- }
-
- protected:
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Derived& derived() { return *static_cast<Derived*>(this); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
-};
-#endif // EIGEN_PARSED_BY_DOXYGEN
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_BASE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
deleted file mode 100644
index 4cfe300..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h
+++ /dev/null
@@ -1,392 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
-
-namespace Eigen {
-
-/** \class TensorBroadcasting
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor broadcasting class.
- *
- *
- */
-namespace internal {
-template<typename Broadcast, typename XprType>
-struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Broadcast, typename XprType>
-struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
-{
- typedef const TensorBroadcastingOp<Broadcast, XprType>& type;
-};
-
-template<typename Broadcast, typename XprType>
-struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
-{
- typedef TensorBroadcastingOp<Broadcast, XprType> type;
-};
-
-template <typename Dims>
-struct is_input_scalar {
- static const bool value = false;
-};
-template <>
-struct is_input_scalar<Sizes<> > {
- static const bool value = true;
-};
-#ifndef EIGEN_EMULATE_CXX11_META_H
-template <typename std::size_t... Indices>
-struct is_input_scalar<Sizes<Indices...> > {
- static const bool value = (Sizes<Indices...>::total_size == 1);
-};
-#endif
-
-} // end namespace internal
-
-
-
-template<typename Broadcast, typename XprType>
-class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
- : m_xpr(expr), m_broadcast(broadcast) {}
-
- EIGEN_DEVICE_FUNC
- const Broadcast& broadcast() const { return m_broadcast; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const Broadcast m_broadcast;
-};
-
-
-// Eval as rvalue
-template<typename Broadcast, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
-{
- typedef TensorBroadcastingOp<Broadcast, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = true,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_broadcast(op.broadcast()),m_impl(op.expression(), device)
- {
- // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
- // and store the result in a scalar. Instead one should reshape the scalar into a a N-D
- // tensor with N >= 1 of 1 element first and then broadcast.
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
- const InputDimensions& input_dims = m_impl.dimensions();
- const Broadcast& broadcast = op.broadcast();
- for (int i = 0; i < NumDims; ++i) {
- eigen_assert(input_dims[i] > 0);
- m_dimensions[i] = input_dims[i] * broadcast[i];
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputStrides[0] = 1;
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
- }
- } else {
- m_inputStrides[NumDims-1] = 1;
- m_outputStrides[NumDims-1] = 1;
- for (int i = NumDims-2; i >= 0; --i) {
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
- {
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
- return m_impl.coeff(0);
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return coeffColMajor(index);
- } else {
- return coeffRowMajor(index);
- }
- }
-
- // TODO: attempt to speed this up. The integer divisions and modulo are slow
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
- {
- Index inputIndex = 0;
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
- eigen_assert(idx < m_impl.dimensions()[i]);
- inputIndex += idx * m_inputStrides[i];
- } else {
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
- } else {
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
- }
- }
- index -= idx * m_outputStrides[i];
- }
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
- eigen_assert(index < m_impl.dimensions()[0]);
- inputIndex += index;
- } else {
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
- eigen_assert(index % m_impl.dimensions()[0] == 0);
- } else {
- inputIndex += (index % m_impl.dimensions()[0]);
- }
- }
- return m_impl.coeff(inputIndex);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
- {
- Index inputIndex = 0;
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
- eigen_assert(idx < m_impl.dimensions()[i]);
- inputIndex += idx * m_inputStrides[i];
- } else {
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
- } else {
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
- }
- }
- index -= idx * m_outputStrides[i];
- }
- if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
- eigen_assert(index < m_impl.dimensions()[NumDims-1]);
- inputIndex += index;
- } else {
- if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
- eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
- } else {
- inputIndex += (index % m_impl.dimensions()[NumDims-1]);
- }
- }
- return m_impl.coeff(inputIndex);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
- {
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
- return internal::pset1<PacketReturnType>(m_impl.coeff(0));
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return packetColMajor<LoadMode>(index);
- } else {
- return packetRowMajor<LoadMode>(index);
- }
- }
-
- // Ignore the LoadMode and always use unaligned loads since we can't guarantee
- // the alignment at compile time.
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- const Index originalIndex = index;
-
- Index inputIndex = 0;
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
- eigen_assert(idx < m_impl.dimensions()[i]);
- inputIndex += idx * m_inputStrides[i];
- } else {
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
- } else {
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
- }
- }
- index -= idx * m_outputStrides[i];
- }
- Index innermostLoc;
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
- eigen_assert(index < m_impl.dimensions()[0]);
- innermostLoc = index;
- } else {
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
- eigen_assert(index % m_impl.dimensions()[0] == 0);
- innermostLoc = 0;
- } else {
- innermostLoc = index % m_impl.dimensions()[0];
- }
- }
- inputIndex += innermostLoc;
-
- // Todo: this could be extended to the second dimension if we're not
- // broadcasting alongside the first dimension, and so on.
- if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
- return m_impl.template packet<Unaligned>(inputIndex);
- } else {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- values[0] = m_impl.coeff(inputIndex);
- for (int i = 1; i < PacketSize; ++i) {
- values[i] = coeffColMajor(originalIndex+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- const Index originalIndex = index;
-
- Index inputIndex = 0;
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
- eigen_assert(idx < m_impl.dimensions()[i]);
- inputIndex += idx * m_inputStrides[i];
- } else {
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
- } else {
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
- }
- }
- index -= idx * m_outputStrides[i];
- }
- Index innermostLoc;
- if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
- eigen_assert(index < m_impl.dimensions()[NumDims-1]);
- innermostLoc = index;
- } else {
- if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
- eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
- innermostLoc = 0;
- } else {
- innermostLoc = index % m_impl.dimensions()[NumDims-1];
- }
- }
- inputIndex += innermostLoc;
-
- // Todo: this could be extended to the second dimension if we're not
- // broadcasting alongside the first dimension, and so on.
- if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
- return m_impl.template packet<Unaligned>(inputIndex);
- } else {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- values[0] = m_impl.coeff(inputIndex);
- for (int i = 1; i < PacketSize; ++i) {
- values[i] = coeffRowMajor(originalIndex+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- double compute_cost = TensorOpCost::AddCost<Index>();
- if (NumDims > 0) {
- for (int i = NumDims - 1; i > 0; --i) {
- compute_cost += TensorOpCost::DivCost<Index>();
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
- compute_cost +=
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
- } else {
- if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
- compute_cost += TensorOpCost::MulCost<Index>() +
- TensorOpCost::ModCost<Index>() +
- TensorOpCost::AddCost<Index>();
- }
- }
- compute_cost +=
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
- }
- }
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
-
- Broadcast functor() const { return m_broadcast; }
-
- protected:
- const Broadcast m_broadcast;
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
deleted file mode 100644
index 1ba7ef1..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
+++ /dev/null
@@ -1,384 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
-
-namespace Eigen {
-
-/** \class TensorKChippingReshaping
- * \ingroup CXX11_Tensor_Module
- *
- * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
- *
- *
- */
-
-namespace internal {
-template<DenseIndex DimId, typename XprType>
-struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions - 1;
- static const int Layout = XprTraits::Layout;
-};
-
-template<DenseIndex DimId, typename XprType>
-struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
-{
- typedef const TensorChippingOp<DimId, XprType>& type;
-};
-
-template<DenseIndex DimId, typename XprType>
-struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
-{
- typedef TensorChippingOp<DimId, XprType> type;
-};
-
-template <DenseIndex DimId>
-struct DimensionId
-{
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
- eigen_assert(dim == DimId);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
- return DimId;
- }
-};
-template <>
-struct DimensionId<Dynamic>
-{
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) {
- eigen_assert(dim >= 0);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
- return actual_dim;
- }
- private:
- const DenseIndex actual_dim;
-};
-
-
-} // end namespace internal
-
-
-
-template<DenseIndex DimId, typename XprType>
-class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
-{
- public:
- typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
- : m_xpr(expr), m_offset(offset), m_dim(dim) {
- }
-
- EIGEN_DEVICE_FUNC
- const Index offset() const { return m_offset; }
- EIGEN_DEVICE_FUNC
- const Index dim() const { return m_dim.actualDim(); }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other)
- {
- typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const Index m_offset;
- const internal::DimensionId<DimId> m_dim;
-};
-
-
-// Eval as rvalue
-template<DenseIndex DimId, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
-{
- typedef TensorChippingOp<DimId, ArgType> XprType;
- static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- static const int NumDims = NumInputDims-1;
- typedef typename XprType::Index Index;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
-
- enum {
- // Alignment can't be guaranteed at compile time since it depends on the
- // slice offsets.
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
- {
- EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
- eigen_assert(NumInputDims > m_dim.actualDim());
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
-
- int j = 0;
- for (int i = 0; i < NumInputDims; ++i) {
- if (i != m_dim.actualDim()) {
- m_dimensions[j] = input_dims[i];
- ++j;
- }
- }
-
- m_stride = 1;
- m_inputStride = 1;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < m_dim.actualDim(); ++i) {
- m_stride *= input_dims[i];
- m_inputStride *= input_dims[i];
- }
- } else {
- for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
- m_stride *= input_dims[i];
- m_inputStride *= input_dims[i];
- }
- }
- m_inputStride *= input_dims[m_dim.actualDim()];
- m_inputOffset = m_stride * op.offset();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(srcCoeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
- // m_stride is equal to 1, so let's avoid the integer division.
- eigen_assert(m_stride == 1);
- Index inputIndex = index * m_inputStride + m_inputOffset;
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = m_impl.coeff(inputIndex);
- inputIndex += m_inputStride;
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
- // m_stride is aways greater than index, so let's avoid the integer division.
- eigen_assert(m_stride > index);
- return m_impl.template packet<LoadMode>(index + m_inputOffset);
- } else {
- const Index idx = index / m_stride;
- const Index rem = index - idx * m_stride;
- if (rem + PacketSize <= m_stride) {
- Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
- return m_impl.template packet<LoadMode>(inputIndex);
- } else {
- // Cross the stride boundary. Fallback to slow path.
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index);
- ++index;
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- double cost = 0;
- if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
- m_dim.actualDim() == 0) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
- m_dim.actualDim() == NumInputDims - 1)) {
- cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
- } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
- m_dim.actualDim() == NumInputDims - 1) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
- m_dim.actualDim() == 0)) {
- cost += TensorOpCost::AddCost<Index>();
- } else {
- cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() +
- 3 * TensorOpCost::AddCost<Index>();
- }
-
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const {
- CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data());
- if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumDims) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) &&
- result) {
- return result + m_inputOffset;
- } else {
- return NULL;
- }
- }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
- {
- Index inputIndex;
- if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
- // m_stride is equal to 1, so let's avoid the integer division.
- eigen_assert(m_stride == 1);
- inputIndex = index * m_inputStride + m_inputOffset;
- } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
- // m_stride is aways greater than index, so let's avoid the integer division.
- eigen_assert(m_stride > index);
- inputIndex = index + m_inputOffset;
- } else {
- const Index idx = index / m_stride;
- inputIndex = idx * m_inputStride + m_inputOffset;
- index -= idx * m_stride;
- inputIndex += index;
- }
- return inputIndex;
- }
-
- Dimensions m_dimensions;
- Index m_stride;
- Index m_inputOffset;
- Index m_inputStride;
- TensorEvaluator<ArgType, Device> m_impl;
- const internal::DimensionId<DimId> m_dim;
- const Device& m_device;
-};
-
-
-// Eval as lvalue
-template<DenseIndex DimId, typename ArgType, typename Device>
-struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
- : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
-{
- typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
- typedef TensorChippingOp<DimId, ArgType> XprType;
- static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- static const int NumDims = NumInputDims-1;
- typedef typename XprType::Index Index;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(this->srcCoeff(index));
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
-
- if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) ||
- (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
- // m_stride is equal to 1, so let's avoid the integer division.
- eigen_assert(this->m_stride == 1);
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
- for (int i = 0; i < PacketSize; ++i) {
- this->m_impl.coeffRef(inputIndex) = values[i];
- inputIndex += this->m_inputStride;
- }
- } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) ||
- (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) {
- // m_stride is aways greater than index, so let's avoid the integer division.
- eigen_assert(this->m_stride > index);
- this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
- } else {
- const Index idx = index / this->m_stride;
- const Index rem = index - idx * this->m_stride;
- if (rem + PacketSize <= this->m_stride) {
- const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
- this->m_impl.template writePacket<StoreMode>(inputIndex, x);
- } else {
- // Cross stride boundary. Fallback to slow path.
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- for (int i = 0; i < PacketSize; ++i) {
- this->coeffRef(index) = values[i];
- ++index;
- }
- }
- }
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
deleted file mode 100644
index 59bf90d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h
+++ /dev/null
@@ -1,361 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
-
-namespace Eigen {
-
-/** \class TensorConcatenationOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor concatenation class.
- *
- *
- */
-namespace internal {
-template<typename Axis, typename LhsXprType, typename RhsXprType>
-struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef typename promote_storage_type<typename LhsXprType::Scalar,
- typename RhsXprType::Scalar>::ret Scalar;
- typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
- typename traits<RhsXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<LhsXprType>::Index,
- typename traits<RhsXprType>::Index>::type Index;
- typedef typename LhsXprType::Nested LhsNested;
- typedef typename RhsXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- static const int NumDimensions = traits<LhsXprType>::NumDimensions;
- static const int Layout = traits<LhsXprType>::Layout;
- enum { Flags = 0 };
-};
-
-template<typename Axis, typename LhsXprType, typename RhsXprType>
-struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense>
-{
- typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type;
-};
-
-template<typename Axis, typename LhsXprType, typename RhsXprType>
-struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type>
-{
- typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type;
-};
-
-} // end namespace internal
-
-
-template<typename Axis, typename LhsXprType, typename RhsXprType>
-class TensorConcatenationOp : public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors>
-{
- public:
- typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar;
- typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind;
- typedef typename internal::traits<TensorConcatenationOp>::Index Index;
- typedef typename internal::nested<TensorConcatenationOp>::type Nested;
- typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
- typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis)
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename LhsXprType::Nested>::type&
- lhsExpression() const { return m_lhs_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename RhsXprType::Nested>::type&
- rhsExpression() const { return m_rhs_xpr; }
-
- EIGEN_DEVICE_FUNC const Axis& axis() const { return m_axis; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const TensorConcatenationOp& other)
- {
- typedef TensorAssignOp<TensorConcatenationOp, const TensorConcatenationOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorConcatenationOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename LhsXprType::Nested m_lhs_xpr;
- typename RhsXprType::Nested m_rhs_xpr;
- const Axis m_axis;
-};
-
-
-// Eval as rvalue
-template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
-struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
-{
- typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
- static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- eigen_assert(0 <= m_axis && m_axis < NumDims);
- const Dimensions& lhs_dims = m_leftImpl.dimensions();
- const Dimensions& rhs_dims = m_rightImpl.dimensions();
- {
- int i = 0;
- for (; i < m_axis; ++i) {
- eigen_assert(lhs_dims[i] > 0);
- eigen_assert(lhs_dims[i] == rhs_dims[i]);
- m_dimensions[i] = lhs_dims[i];
- }
- eigen_assert(lhs_dims[i] > 0); // Now i == m_axis.
- eigen_assert(rhs_dims[i] > 0);
- m_dimensions[i] = lhs_dims[i] + rhs_dims[i];
- for (++i; i < NumDims; ++i) {
- eigen_assert(lhs_dims[i] > 0);
- eigen_assert(lhs_dims[i] == rhs_dims[i]);
- m_dimensions[i] = lhs_dims[i];
- }
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_leftStrides[0] = 1;
- m_rightStrides[0] = 1;
- m_outputStrides[0] = 1;
-
- for (int j = 1; j < NumDims; ++j) {
- m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1];
- m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1];
- m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1];
- }
- } else {
- m_leftStrides[NumDims - 1] = 1;
- m_rightStrides[NumDims - 1] = 1;
- m_outputStrides[NumDims - 1] = 1;
-
- for (int j = NumDims - 2; j >= 0; --j) {
- m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1];
- m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1];
- m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear?
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/)
- {
- m_leftImpl.evalSubExprsIfNeeded(NULL);
- m_rightImpl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
- {
- m_leftImpl.cleanup();
- m_rightImpl.cleanup();
- }
-
- // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow.
- // See CL/76180724 comments for more ideas.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- // Collect dimension-wise indices (subs).
- array<Index, NumDims> subs;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- subs[i] = index / m_outputStrides[i];
- index -= subs[i] * m_outputStrides[i];
- }
- subs[0] = index;
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- subs[i] = index / m_outputStrides[i];
- index -= subs[i] * m_outputStrides[i];
- }
- subs[NumDims - 1] = index;
- }
-
- const Dimensions& left_dims = m_leftImpl.dimensions();
- if (subs[m_axis] < left_dims[m_axis]) {
- Index left_index;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- left_index = subs[0];
- for (int i = 1; i < NumDims; ++i) {
- left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
- }
- } else {
- left_index = subs[NumDims - 1];
- for (int i = NumDims - 2; i >= 0; --i) {
- left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
- }
- }
- return m_leftImpl.coeff(left_index);
- } else {
- subs[m_axis] -= left_dims[m_axis];
- const Dimensions& right_dims = m_rightImpl.dimensions();
- Index right_index;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- right_index = subs[0];
- for (int i = 1; i < NumDims; ++i) {
- right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
- }
- } else {
- right_index = subs[NumDims - 1];
- for (int i = NumDims - 2; i >= 0; --i) {
- right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
- }
- }
- return m_rightImpl.coeff(right_index);
- }
- }
-
- // TODO(phli): Add a real vectorization.
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
- EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
-
- EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
- for (int i = 0; i < packetSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
- 2 * TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>() +
- TensorOpCost::ModCost<Index>());
- const double lhs_size = m_leftImpl.dimensions().TotalSize();
- const double rhs_size = m_rightImpl.dimensions().TotalSize();
- return (lhs_size / (lhs_size + rhs_size)) *
- m_leftImpl.costPerCoeff(vectorized) +
- (rhs_size / (lhs_size + rhs_size)) *
- m_rightImpl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_leftStrides;
- array<Index, NumDims> m_rightStrides;
- TensorEvaluator<LeftArgType, Device> m_leftImpl;
- TensorEvaluator<RightArgType, Device> m_rightImpl;
- const Axis m_axis;
-};
-
-// Eval as lvalue
-template<typename Axis, typename LeftArgType, typename RightArgType, typename Device>
- struct TensorEvaluator<TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
- : public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
-{
- typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base;
- typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
- typedef typename Base::Dimensions Dimensions;
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(XprType& op, const Device& device)
- : Base(op, device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(Layout) == static_cast<int>(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- // Collect dimension-wise indices (subs).
- array<Index, Base::NumDims> subs;
- for (int i = Base::NumDims - 1; i > 0; --i) {
- subs[i] = index / this->m_outputStrides[i];
- index -= subs[i] * this->m_outputStrides[i];
- }
- subs[0] = index;
-
- const Dimensions& left_dims = this->m_leftImpl.dimensions();
- if (subs[this->m_axis] < left_dims[this->m_axis]) {
- Index left_index = subs[0];
- for (int i = 1; i < Base::NumDims; ++i) {
- left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i];
- }
- return this->m_leftImpl.coeffRef(left_index);
- } else {
- subs[this->m_axis] -= left_dims[this->m_axis];
- const Dimensions& right_dims = this->m_rightImpl.dimensions();
- Index right_index = subs[0];
- for (int i = 1; i < Base::NumDims; ++i) {
- right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i];
- }
- return this->m_rightImpl.coeffRef(right_index);
- }
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
- EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize());
-
- EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- for (int i = 0; i < packetSize; ++i) {
- coeffRef(index+i) = values[i];
- }
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
deleted file mode 100644
index 20b29e5..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
+++ /dev/null
@@ -1,628 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
-
-namespace Eigen {
-
-/** \class TensorContraction
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor contraction class.
- *
- *
- */
-namespace internal {
-
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
- typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar;
-
- typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
- typename traits<RhsXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<LhsXprType>::Index,
- typename traits<RhsXprType>::Index>::type Index;
- typedef typename LhsXprType::Nested LhsNested;
- typedef typename RhsXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
-
- // From NumDims below.
- static const int NumDimensions = traits<RhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
- static const int Layout = traits<LhsXprType>::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense>
-{
- typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type;
-};
-
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type>
-{
- typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type;
-};
-
-template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_>
-struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > {
- typedef Indices_ Indices;
- typedef LeftArgType_ LeftArgType;
- typedef RightArgType_ RightArgType;
- typedef Device_ Device;
-
- // From NumDims below.
- static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
-};
-
-} // end namespace internal
-
-template<typename Indices, typename LhsXprType, typename RhsXprType>
-class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
- typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType,
- typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
- const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims)
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {}
-
- EIGEN_DEVICE_FUNC
- const Indices& indices() const { return m_indices; }
-
- /** \returns the nested expressions */
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename LhsXprType::Nested>::type&
- lhsExpression() const { return m_lhs_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename RhsXprType::Nested>::type&
- rhsExpression() const { return m_rhs_xpr; }
-
- protected:
- typename LhsXprType::Nested m_lhs_xpr;
- typename RhsXprType::Nested m_rhs_xpr;
- const Indices m_indices;
-};
-
-
-template<typename Derived>
-struct TensorContractionEvaluatorBase
-{
- typedef typename internal::traits<Derived>::Indices Indices;
- typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
- typedef typename internal::traits<Derived>::RightArgType RightArgType;
- typedef typename internal::traits<Derived>::Device Device;
-
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::Index Index;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- enum {
- IsAligned = true,
- PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = true
- };
-
- // Most of the code is assuming that both input tensors are ColMajor. If the
- // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
- // If we want to compute A * B = C, where A is LHS and B is RHS, the code
- // will pretend B is LHS and A is RHS.
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
-
- static const int LDims =
- internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
- static const int RDims =
- internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
- static const int ContractDims = internal::array_size<Indices>::value;
- static const int NumDims = LDims + RDims - 2 * ContractDims;
-
- typedef array<Index, ContractDims> contract_t;
- typedef array<Index, LDims - ContractDims> left_nocontract_t;
- typedef array<Index, RDims - ContractDims> right_nocontract_t;
-
- typedef DSizes<Index, NumDims> Dimensions;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorContractionEvaluatorBase(const XprType& op, const Device& device)
- : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
- op.lhsExpression(), op.rhsExpression()), device),
- m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
- op.rhsExpression(), op.lhsExpression()), device),
- m_device(device),
- m_result(NULL) {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
- static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
- YOU_MADE_A_PROGRAMMING_MISTAKE);
-
-
- DSizes<Index, LDims> eval_left_dims;
- DSizes<Index, RDims> eval_right_dims;
- array<IndexPair<Index>, ContractDims> eval_op_indices;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- // For ColMajor, we keep using the existing dimensions
- for (int i = 0; i < LDims; i++) {
- eval_left_dims[i] = m_leftImpl.dimensions()[i];
- }
- for (int i = 0; i < RDims; i++) {
- eval_right_dims[i] = m_rightImpl.dimensions()[i];
- }
- // We keep the pairs of contracting indices.
- for (int i = 0; i < ContractDims; i++) {
- eval_op_indices[i].first = op.indices()[i].first;
- eval_op_indices[i].second = op.indices()[i].second;
- }
- } else {
- // For RowMajor, we need to reverse the existing dimensions
- for (int i = 0; i < LDims; i++) {
- eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
- }
- for (int i = 0; i < RDims; i++) {
- eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
- }
- // We need to flip all the pairs of contracting indices as well as
- // reversing the dimensions.
- for (int i = 0; i < ContractDims; i++) {
- eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
- eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
- }
- }
-
- // Check for duplicate axes and make sure the first index in eval_op_indices
- // is increasing. Using O(n^2) sorting is OK since ContractDims is small
- for (int i = 0; i < ContractDims; i++) {
- for (int j = i + 1; j < ContractDims; j++) {
- eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
- eval_op_indices[j].second != eval_op_indices[i].second &&
- "contraction axes should be unique");
- if (eval_op_indices[j].first < eval_op_indices[i].first) {
- numext::swap(eval_op_indices[j], eval_op_indices[i]);
- }
- }
- }
-
- array<Index, LDims> lhs_strides;
- lhs_strides[0] = 1;
- for (int i = 0; i < LDims-1; ++i) {
- lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
- }
-
- array<Index, RDims> rhs_strides;
- rhs_strides[0] = 1;
- for (int i = 0; i < RDims-1; ++i) {
- rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
- }
-
- if (m_i_strides.size() > 0) m_i_strides[0] = 1;
- if (m_j_strides.size() > 0) m_j_strides[0] = 1;
- if (m_k_strides.size() > 0) m_k_strides[0] = 1;
-
- m_i_size = 1;
- m_j_size = 1;
- m_k_size = 1;
-
- // To compute the dimension, we simply concatenate the non-contracting
- // dimensions of the left and then the right tensor. Additionally, we also
- // compute the strides corresponding to the left non-contracting
- // dimensions and right non-contracting dimensions.
- m_lhs_inner_dim_contiguous = true;
- int dim_idx = 0;
- unsigned int nocontract_idx = 0;
-
- for (int i = 0; i < LDims; i++) {
- // find if we are contracting on index i of left tensor
- bool contracting = false;
- for (int j = 0; j < ContractDims; j++) {
- if (eval_op_indices[j].first == i) {
- contracting = true;
- break;
- }
- }
- if (!contracting) {
- // add dimension size to output dimensions
- m_dimensions[dim_idx] = eval_left_dims[i];
- m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
- if (dim_idx != i) {
- m_lhs_inner_dim_contiguous = false;
- }
- if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
- m_i_strides[nocontract_idx+1] =
- m_i_strides[nocontract_idx] * eval_left_dims[i];
- } else {
- m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
- }
- dim_idx++;
- nocontract_idx++;
- }
- }
-
- nocontract_idx = 0;
- for (int i = 0; i < RDims; i++) {
- bool contracting = false;
- // find if we are contracting on index i of right tensor
- for (int j = 0; j < ContractDims; j++) {
- if (eval_op_indices[j].second == i) {
- contracting = true;
- break;
- }
- }
- if (!contracting) {
- m_dimensions[dim_idx] = eval_right_dims[i];
- if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
- m_j_strides[nocontract_idx+1] =
- m_j_strides[nocontract_idx] * eval_right_dims[i];
- } else {
- m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
- }
- m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
- dim_idx++;
- nocontract_idx++;
- }
- }
-
- // Now compute the strides corresponding to the contracting dimensions. We
- // assumed above that non-contracting axes are represented in the same order
- // in the matrix as they are in the tensor. This is not the case for
- // contracting axes. As the contracting axes must be of the same size in
- // each tensor, we'll only look at the first tensor here.
- m_rhs_inner_dim_contiguous = true;
- m_rhs_inner_dim_reordered = false;
- for (int i = 0; i < ContractDims; i++) {
- Index left = eval_op_indices[i].first;
- Index right = eval_op_indices[i].second;
-
- Index size = eval_left_dims[left];
- eigen_assert(size == eval_right_dims[right] &&
- "Contraction axes must be same size");
-
- if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) {
- m_k_strides[i+1] = m_k_strides[i] * size;
- } else {
- m_k_size = m_k_strides[i] * size;
- }
- m_left_contracting_strides[i] = lhs_strides[left];
- m_right_contracting_strides[i] = rhs_strides[right];
-
- if (i > 0 && right < eval_op_indices[i-1].second) {
- m_rhs_inner_dim_reordered = true;
- }
- if (right != i) {
- m_rhs_inner_dim_contiguous = false;
- }
- }
-
- // If the layout is RowMajor, we need to reverse the m_dimensions
- if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) {
- for (int i = 0, j = NumDims - 1; i < j; i++, j--) {
- numext::swap(m_dimensions[i], m_dimensions[j]);
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
- m_leftImpl.evalSubExprsIfNeeded(NULL);
- m_rightImpl.evalSubExprsIfNeeded(NULL);
- if (data) {
- evalTo(data);
- return false;
- } else {
- m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
- evalTo(m_result);
- return true;
- }
- }
-
- EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const {
- if (this->m_lhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_reordered) {
- static_cast<const Derived*>(this)->template evalProduct<true, true, true, Unaligned>(buffer);
- }
- else {
- static_cast<const Derived*>(this)->template evalProduct<true, true, false, Unaligned>(buffer);
- }
- }
- else {
- if (this->m_rhs_inner_dim_reordered) {
- static_cast<const Derived*>(this)->template evalProduct<true, false, true, Unaligned>(buffer);
- }
- else {
- static_cast<const Derived*>(this)->template evalProduct<true, false, false, Unaligned>(buffer);
- }
- }
- }
- else {
- if (this->m_rhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_reordered) {
- static_cast<const Derived*>(this)->template evalProduct<false, true, true, Unaligned>(buffer);
- }
- else {
- static_cast<const Derived*>(this)->template evalProduct<false, true, false, Unaligned>(buffer);
- }
- }
- else {
- if (this->m_rhs_inner_dim_reordered) {
- static_cast<const Derived*>(this)->template evalProduct<false, false, true, Unaligned>(buffer);
- }
- else {
- static_cast<const Derived*>(this)->template evalProduct<false, false, false, Unaligned>(buffer);
- }
- }
- }
- }
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- EIGEN_DEVICE_FUNC void evalGemv(Scalar* buffer) const {
- const Index rows = m_i_size;
- const Index cols = m_k_size;
-
- typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
- typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
- typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
- typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
- const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
- const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
- const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned;
- const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned;
- typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
- LeftEvaluator, left_nocontract_t,
- contract_t, lhs_packet_size,
- lhs_inner_dim_contiguous,
- false, lhs_alignment> LhsMapper;
-
- typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
- RightEvaluator, right_nocontract_t,
- contract_t, rhs_packet_size,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
-
- LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides,
- m_left_contracting_strides, m_k_strides);
- RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides,
- m_right_contracting_strides, m_k_strides);
-
- const Scalar alpha(1);
- const Index resIncr(1);
-
- // zero out the result buffer (which must be of size at least rows * sizeof(Scalar)
- m_device.memset(buffer, 0, rows * sizeof(Scalar));
-
- internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run(
- rows, cols, lhs, rhs,
- buffer, resIncr, alpha);
- }
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- EIGEN_DEVICE_FUNC void evalGemm(Scalar* buffer) const {
- // columns in left side, rows in right side
- const Index k = this->m_k_size;
-
- // rows in left side
- const Index m = this->m_i_size;
-
- // columns in right side
- const Index n = this->m_j_size;
-
- // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
- this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
-
- // define mr, nr, and all of my data mapper types
- typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
- typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
- typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
-
- const Index nr = Traits::nr;
- const Index mr = Traits::mr;
-
- typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
- typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
-
- const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
- const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
-
- typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
- LeftEvaluator, left_nocontract_t,
- contract_t, lhs_packet_size,
- lhs_inner_dim_contiguous,
- false, Unaligned> LhsMapper;
-
- typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
- RightEvaluator, right_nocontract_t,
- contract_t, rhs_packet_size,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, Unaligned> RhsMapper;
-
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
-
- // Declare GEBP packing and kernel structs
- internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, ColMajor> pack_lhs;
- internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs;
-
- internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
-
- // initialize data mappers
- LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
- this->m_left_contracting_strides, this->m_k_strides);
-
- RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
- this->m_right_contracting_strides, this->m_k_strides);
-
- OutputMapper output(buffer, m);
-
- // Sizes of the blocks to load in cache. See the Goto paper for details.
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, 1);
- const Index kc = blocking.kc();
- const Index mc = numext::mini(m, blocking.mc());
- const Index nc = numext::mini(n, blocking.nc());
- const Index sizeA = mc * kc;
- const Index sizeB = kc * nc;
-
- LhsScalar* blockA = static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar)));
- RhsScalar* blockB = static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar)));
-
- for(Index i2=0; i2<m; i2+=mc)
- {
- const Index actual_mc = numext::mini(i2+mc,m)-i2;
- for (Index k2 = 0; k2 < k; k2 += kc) {
- // make sure we don't overshoot right edge of left matrix, then pack vertical panel
- const Index actual_kc = numext::mini(k2 + kc, k) - k2;
- pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0);
-
- // series of horizontal blocks
- for (Index j2 = 0; j2 < n; j2 += nc) {
- // make sure we don't overshoot right edge of right matrix, then pack block
- const Index actual_nc = numext::mini(j2 + nc, n) - j2;
- pack_rhs(blockB, rhs.getSubMapper(k2, j2), actual_kc, actual_nc, 0, 0);
-
- // call gebp (matrix kernel)
- // The parameters here are copied from Eigen's GEMM implementation
- gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0);
- }
- }
- }
-
- this->m_device.deallocate(blockA);
- this->m_device.deallocate(blockB);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_leftImpl.cleanup();
- m_rightImpl.cleanup();
-
- if (m_result != NULL) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- return m_result[index];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
- return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return m_result; }
-
- protected:
- // Prevent assignment
- TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&);
- Dimensions m_dimensions;
-
- contract_t m_k_strides;
- contract_t m_left_contracting_strides;
- contract_t m_right_contracting_strides;
-
- bool m_lhs_inner_dim_contiguous;
- bool m_rhs_inner_dim_contiguous;
- bool m_rhs_inner_dim_reordered;
-
- left_nocontract_t m_i_strides;
- right_nocontract_t m_j_strides;
- left_nocontract_t m_left_nocontract_strides;
- right_nocontract_t m_right_nocontract_strides;
-
- Index m_i_size;
- Index m_j_size;
- Index m_k_size;
-
- TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
- TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
- const Device& m_device;
- Scalar* m_result;
-};
-
-
-// evaluator for default device
-template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
-struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
- public TensorContractionEvaluatorBase<
- TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
- typedef TensorContractionEvaluatorBase<Self> Base;
-
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::Index Index;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- enum {
- Layout = TensorEvaluator<LeftArgType, Device>::Layout
- };
-
- // Most of the code is assuming that both input tensors are ColMajor. If the
- // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
- // If we want to compute A * B = C, where A is LHS and B is RHS, the code
- // will pretend B is LHS and A is RHS.
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
-
- static const int LDims =
- internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
- static const int RDims =
- internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
- static const int ContractDims = internal::array_size<Indices>::value;
-
- typedef array<Index, ContractDims> contract_t;
- typedef array<Index, LDims - ContractDims> left_nocontract_t;
- typedef array<Index, RDims - ContractDims> right_nocontract_t;
-
- static const int NumDims = LDims + RDims - 2 * ContractDims;
-
- // Could we use NumDimensions here?
- typedef DSizes<Index, NumDims> Dimensions;
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
- Base(op, device) { }
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- EIGEN_DEVICE_FUNC void evalProduct(Scalar* buffer) const {
- if (this->m_j_size == 1) {
- this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
- return;
- }
-
- this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h
deleted file mode 100644
index 5cf7b4f..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h
+++ /dev/null
@@ -1,56 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
-
-
-namespace Eigen {
-namespace internal {
-
-enum {
- ShardByRow = 0,
- ShardByCol = 1
-};
-
-
-// Default Blocking Strategy
-template <typename LhsMapper, typename RhsMapper, typename Index, int ShardingType=ShardByCol>
-class TensorContractionBlocking {
- public:
-
- typedef typename LhsMapper::Scalar LhsScalar;
- typedef typename RhsMapper::Scalar RhsScalar;
-
- EIGEN_DEVICE_FUNC TensorContractionBlocking(Index k, Index m, Index n, Index num_threads = 1) :
- kc_(k), mc_(m), nc_(n)
- {
- if (ShardingType == ShardByCol) {
- computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, mc_, nc_, num_threads);
- }
- else {
- computeProductBlockingSizes<LhsScalar, RhsScalar, 1>(kc_, nc_, mc_, num_threads);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index kc() const { return kc_; }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index mc() const { return mc_; }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index nc() const { return nc_; }
-
- private:
- Index kc_;
- Index mc_;
- Index nc_;
-};
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_BLOCKING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h
deleted file mode 100644
index d65dbb4..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h
+++ /dev/null
@@ -1,1391 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-// Copyright (C) 2015 Navdeep Jaitly <ndjaitly@google.com>
-// Copyright (C) 2014 Eric Martin <eric@ericmart.in>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
-
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
-
-namespace Eigen {
-
-template<typename Scalar, typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper, bool needs_edge_check>
-__device__ EIGEN_STRONG_INLINE void
-EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output, Scalar* lhs_shmem, Scalar* rhs_shmem,
- const Index m_size, const Index n_size, const Index k_size) {
-
- const Index m_block_idx = blockIdx.x;
- const Index n_block_idx = blockIdx.y;
-
- const Index base_m = 64 * m_block_idx;
- const Index base_n = 64 * n_block_idx;
-
- // declare and initialize 64 registers for output 8x8 block
-
- // prefetch registers
- Scalar lhs_pf0;
- Scalar lhs_pf1;
- Scalar lhs_pf2;
- Scalar lhs_pf3;
- Scalar lhs_pf4;
- Scalar lhs_pf5;
- Scalar lhs_pf6;
- Scalar lhs_pf7;
-
- Scalar rhs_pf0;
- Scalar rhs_pf1;
- Scalar rhs_pf2;
- Scalar rhs_pf3;
- Scalar rhs_pf4;
- Scalar rhs_pf5;
- Scalar rhs_pf6;
- Scalar rhs_pf7;
-
- // shared memory is formatted
- // (contract idx in block, nocontract idx in block, block idx)
- // where block idx is column major. This transposition limits the number of
- // bank conflicts when reading the LHS. The core idea is that since the contracting
- // index is shared by both sides, then the contracting index should be in threadIdx.x.
-
- // On the LHS, we pad each row inside of each block with an extra element. This makes
- // each block 8 rows of 9 elements, which is 72 elements. This gives no bank conflicts
- // on writes and very few 2-way conflicts on reads. There is an 8x8 grid of these blocks.
-
- // On the RHS we just add 8 padding elements to the end of each block. This gives no bank
- // conflicts on writes and also none on reads.
-
- // storage indices
- const Index lhs_store_idx_base = threadIdx.y * 72 + threadIdx.x * 9 + threadIdx.z;
- const Index rhs_store_idx_base = threadIdx.y * 72 + threadIdx.z * 8 + threadIdx.x;
-
- const Index lhs_store_idx_0 = lhs_store_idx_base + 576 * 0;
- const Index lhs_store_idx_1 = lhs_store_idx_base + 576 * 1;
- const Index lhs_store_idx_2 = lhs_store_idx_base + 576 * 2;
- const Index lhs_store_idx_3 = lhs_store_idx_base + 576 * 3;
- const Index lhs_store_idx_4 = lhs_store_idx_base + 576 * 4;
- const Index lhs_store_idx_5 = lhs_store_idx_base + 576 * 5;
- const Index lhs_store_idx_6 = lhs_store_idx_base + 576 * 6;
- const Index lhs_store_idx_7 = lhs_store_idx_base + 576 * 7;
-
- const Index rhs_store_idx_0 = rhs_store_idx_base + 576 * 0;
- const Index rhs_store_idx_1 = rhs_store_idx_base + 576 * 1;
- const Index rhs_store_idx_2 = rhs_store_idx_base + 576 * 2;
- const Index rhs_store_idx_3 = rhs_store_idx_base + 576 * 3;
- const Index rhs_store_idx_4 = rhs_store_idx_base + 576 * 4;
- const Index rhs_store_idx_5 = rhs_store_idx_base + 576 * 5;
- const Index rhs_store_idx_6 = rhs_store_idx_base + 576 * 6;
- const Index rhs_store_idx_7 = rhs_store_idx_base + 576 * 7;
-
- // in the loading code, the following variables are important:
- // threadIdx.x: the vertical position in an 8x8 block
- // threadIdx.y: the vertical index of the 8x8 block in the grid
- // threadIdx.z: the horizontal position in an 8x8 block
- // k: the horizontal index of the 8x8 block in the grid
- //
- // The k parameter is implicit (it was the loop counter for a loop that went
- // from 0 to <8, but now that loop is unrolled in the below code.
-
- const Index load_idx_vert = threadIdx.x + 8 * threadIdx.y;
- const Index lhs_vert = base_m + load_idx_vert;
-
-#define prefetchIntoRegisters(base_k) \
- { \
- lhs_pf0 = conv(0); \
- lhs_pf1 = conv(0); \
- lhs_pf2 = conv(0); \
- lhs_pf3 = conv(0); \
- lhs_pf4 = conv(0); \
- lhs_pf5 = conv(0); \
- lhs_pf6 = conv(0); \
- lhs_pf7 = conv(0); \
- \
- rhs_pf0 = conv(0); \
- rhs_pf1 = conv(0); \
- rhs_pf2 = conv(0); \
- rhs_pf3 = conv(0); \
- rhs_pf4 = conv(0); \
- rhs_pf5 = conv(0); \
- rhs_pf6 = conv(0); \
- rhs_pf7 = conv(0); \
- \
- if (!needs_edge_check || lhs_vert < m_size) { \
- const Index lhs_horiz_0 = base_k + threadIdx.z + 0 * 8; \
- const Index lhs_horiz_1 = base_k + threadIdx.z + 1 * 8; \
- const Index lhs_horiz_2 = base_k + threadIdx.z + 2 * 8; \
- const Index lhs_horiz_3 = base_k + threadIdx.z + 3 * 8; \
- const Index lhs_horiz_4 = base_k + threadIdx.z + 4 * 8; \
- const Index lhs_horiz_5 = base_k + threadIdx.z + 5 * 8; \
- const Index lhs_horiz_6 = base_k + threadIdx.z + 6 * 8; \
- const Index lhs_horiz_7 = base_k + threadIdx.z + 7 * 8; \
- \
- if (!needs_edge_check || lhs_horiz_7 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
- lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
- lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
- lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \
- lhs_pf7 = lhs(lhs_vert, lhs_horiz_7); \
- } else if (lhs_horiz_6 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
- lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
- lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
- lhs_pf6 = lhs(lhs_vert, lhs_horiz_6); \
- } else if (lhs_horiz_5 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
- lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
- lhs_pf5 = lhs(lhs_vert, lhs_horiz_5); \
- } else if (lhs_horiz_4 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
- lhs_pf4 = lhs(lhs_vert, lhs_horiz_4); \
- } else if (lhs_horiz_3 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- lhs_pf3 = lhs(lhs_vert, lhs_horiz_3); \
- } else if (lhs_horiz_2 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- lhs_pf2 = lhs(lhs_vert, lhs_horiz_2); \
- } else if (lhs_horiz_1 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- lhs_pf1 = lhs(lhs_vert, lhs_horiz_1); \
- } else if (lhs_horiz_0 < k_size) { \
- lhs_pf0 = lhs(lhs_vert, lhs_horiz_0); \
- } \
- } \
- \
- const Index rhs_vert = base_k + load_idx_vert; \
- if (!needs_edge_check || rhs_vert < k_size) { \
- const Index rhs_horiz_0 = base_n + threadIdx.z + 0 * 8; \
- const Index rhs_horiz_1 = base_n + threadIdx.z + 1 * 8; \
- const Index rhs_horiz_2 = base_n + threadIdx.z + 2 * 8; \
- const Index rhs_horiz_3 = base_n + threadIdx.z + 3 * 8; \
- const Index rhs_horiz_4 = base_n + threadIdx.z + 4 * 8; \
- const Index rhs_horiz_5 = base_n + threadIdx.z + 5 * 8; \
- const Index rhs_horiz_6 = base_n + threadIdx.z + 6 * 8; \
- const Index rhs_horiz_7 = base_n + threadIdx.z + 7 * 8; \
- \
- if (rhs_horiz_7 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
- rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
- rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
- rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \
- rhs_pf7 = rhs(rhs_vert, rhs_horiz_7); \
- } else if (rhs_horiz_6 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
- rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
- rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
- rhs_pf6 = rhs(rhs_vert, rhs_horiz_6); \
- } else if (rhs_horiz_5 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
- rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
- rhs_pf5 = rhs(rhs_vert, rhs_horiz_5); \
- } else if (rhs_horiz_4 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
- rhs_pf4 = rhs(rhs_vert, rhs_horiz_4); \
- } else if (rhs_horiz_3 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- rhs_pf3 = rhs(rhs_vert, rhs_horiz_3); \
- } else if (rhs_horiz_2 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- rhs_pf2 = rhs(rhs_vert, rhs_horiz_2); \
- } else if (rhs_horiz_1 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- rhs_pf1 = rhs(rhs_vert, rhs_horiz_1); \
- } else if (rhs_horiz_0 < n_size) { \
- rhs_pf0 = rhs(rhs_vert, rhs_horiz_0); \
- } \
- } \
- } \
-
-#define writeRegToShmem(_) \
- lhs_shmem[lhs_store_idx_0] = lhs_pf0; \
- rhs_shmem[rhs_store_idx_0] = rhs_pf0; \
- \
- lhs_shmem[lhs_store_idx_1] = lhs_pf1; \
- rhs_shmem[rhs_store_idx_1] = rhs_pf1; \
- \
- lhs_shmem[lhs_store_idx_2] = lhs_pf2; \
- rhs_shmem[rhs_store_idx_2] = rhs_pf2; \
- \
- lhs_shmem[lhs_store_idx_3] = lhs_pf3; \
- rhs_shmem[rhs_store_idx_3] = rhs_pf3; \
- \
- lhs_shmem[lhs_store_idx_4] = lhs_pf4; \
- rhs_shmem[rhs_store_idx_4] = rhs_pf4; \
- \
- lhs_shmem[lhs_store_idx_5] = lhs_pf5; \
- rhs_shmem[rhs_store_idx_5] = rhs_pf5; \
- \
- lhs_shmem[lhs_store_idx_6] = lhs_pf6; \
- rhs_shmem[rhs_store_idx_6] = rhs_pf6; \
- \
- lhs_shmem[lhs_store_idx_7] = lhs_pf7; \
- rhs_shmem[rhs_store_idx_7] = rhs_pf7; \
-
- // declare and initialize result array
-#define res(i, j) _res_##i##j
-#define initResultRow(i) \
- Scalar res(i, 0) = conv(0); \
- Scalar res(i, 1) = conv(0); \
- Scalar res(i, 2) = conv(0); \
- Scalar res(i, 3) = conv(0); \
- Scalar res(i, 4) = conv(0); \
- Scalar res(i, 5) = conv(0); \
- Scalar res(i, 6) = conv(0); \
- Scalar res(i, 7) = conv(0); \
-
- internal::scalar_cast_op<int, Scalar> conv;
- initResultRow(0);
- initResultRow(1);
- initResultRow(2);
- initResultRow(3);
- initResultRow(4);
- initResultRow(5);
- initResultRow(6);
- initResultRow(7);
-#undef initResultRow
-
- for (Index base_k = 0; base_k < k_size; base_k += 64) {
- // wait for previous iteration to finish with shmem. Despite common sense,
- // the code is a bit faster with this here then at bottom of loop
- __syncthreads();
-
- prefetchIntoRegisters(base_k);
- writeRegToShmem();
-
- #undef prefetchIntoRegisters
- #undef writeRegToShmem
-
- // wait for shared mem packing to be done before starting computation
- __syncthreads();
-
- // compute 8x8 matrix product by outer product. This involves packing one column
- // of LHS and one row of RHS into registers (takes 16 registers).
-
-#define lcol(i) _lcol##i
- Scalar lcol(0);
- Scalar lcol(1);
- Scalar lcol(2);
- Scalar lcol(3);
- Scalar lcol(4);
- Scalar lcol(5);
- Scalar lcol(6);
- Scalar lcol(7);
-
-#define rrow(j) _rrow##j
- Scalar rrow(0);
- Scalar rrow(1);
- Scalar rrow(2);
- Scalar rrow(3);
- Scalar rrow(4);
- Scalar rrow(5);
- Scalar rrow(6);
- Scalar rrow(7);
-
- // Now x corresponds to k, y to m, and z to n
- const Scalar* lhs_block = &lhs_shmem[threadIdx.x + 9 * threadIdx.y];
- const Scalar* rhs_block = &rhs_shmem[threadIdx.x + 8 * threadIdx.z];
-
-#define lhs_element(i, j) lhs_block[72 * ((i) + 8 * (j))]
-#define rhs_element(i, j) rhs_block[72 * ((i) + 8 * (j))]
-
-#define loadData(i, j) \
- lcol(0) = lhs_element(0, j); \
- rrow(0) = rhs_element(i, 0); \
- lcol(1) = lhs_element(1, j); \
- rrow(1) = rhs_element(i, 1); \
- lcol(2) = lhs_element(2, j); \
- rrow(2) = rhs_element(i, 2); \
- lcol(3) = lhs_element(3, j); \
- rrow(3) = rhs_element(i, 3); \
- lcol(4) = lhs_element(4, j); \
- rrow(4) = rhs_element(i, 4); \
- lcol(5) = lhs_element(5, j); \
- rrow(5) = rhs_element(i, 5); \
- lcol(6) = lhs_element(6, j); \
- rrow(6) = rhs_element(i, 6); \
- lcol(7) = lhs_element(7, j); \
- rrow(7) = rhs_element(i, 7); \
-
-#define computeCol(j) \
- res(0, j) += lcol(0) * rrow(j); \
- res(1, j) += lcol(1) * rrow(j); \
- res(2, j) += lcol(2) * rrow(j); \
- res(3, j) += lcol(3) * rrow(j); \
- res(4, j) += lcol(4) * rrow(j); \
- res(5, j) += lcol(5) * rrow(j); \
- res(6, j) += lcol(6) * rrow(j); \
- res(7, j) += lcol(7) * rrow(j); \
-
-#define computePass(i) \
- loadData(i, i); \
- \
- computeCol(0); \
- computeCol(1); \
- computeCol(2); \
- computeCol(3); \
- computeCol(4); \
- computeCol(5); \
- computeCol(6); \
- computeCol(7); \
-
- computePass(0);
- computePass(1);
- computePass(2);
- computePass(3);
- computePass(4);
- computePass(5);
- computePass(6);
- computePass(7);
-
-#undef lcol
-#undef rrow
-#undef lhs_element
-#undef rhs_element
-#undef loadData
-#undef computeCol
-#undef computePass
- } // end loop over k
-
- // we've now iterated over all of the large (ie width 64) k blocks and
- // accumulated results in registers. At this point thread (x, y, z) contains
- // the sum across all big k blocks of the product of little k block of index (x, y)
- // with block of index (y, z). To compute the final output, we need to reduce
- // the 8 threads over y by summation.
-#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask)
-
-#define reduceRow(i, mask) \
- shuffleInc(i, 0, mask); \
- shuffleInc(i, 1, mask); \
- shuffleInc(i, 2, mask); \
- shuffleInc(i, 3, mask); \
- shuffleInc(i, 4, mask); \
- shuffleInc(i, 5, mask); \
- shuffleInc(i, 6, mask); \
- shuffleInc(i, 7, mask); \
-
-#define reduceMatrix(mask) \
- reduceRow(0, mask); \
- reduceRow(1, mask); \
- reduceRow(2, mask); \
- reduceRow(3, mask); \
- reduceRow(4, mask); \
- reduceRow(5, mask); \
- reduceRow(6, mask); \
- reduceRow(7, mask); \
-
- // actually perform the reduction, now each thread of index (_, y, z)
- // contains the correct values in its registers that belong in the output
- // block
- reduceMatrix(1);
- reduceMatrix(2);
- reduceMatrix(4);
-
-#undef shuffleInc
-#undef reduceRow
-#undef reduceMatrix
-
- // now we need to copy the 64 values into main memory. We can't split work
- // among threads because all variables are in registers. There's 2 ways
- // to do this:
- // (1) have 1 thread do 64 writes from registers into global memory
- // (2) have 1 thread do 64 writes into shared memory, and then 8 threads
- // each do 8 writes into global memory. We can just overwrite the shared
- // memory from the problem we just solved.
- // (2) is slightly faster than (1) due to less branching and more ILP
-
- // TODO: won't yield much gain, but could just use currently unused shared mem
- // and then we won't have to sync
- // wait for shared mem to be out of use
- __syncthreads();
-
-#define writeResultShmem(i, j) \
- lhs_shmem[i + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j] = res(i, j); \
-
-#define writeRow(i) \
- writeResultShmem(i, 0); \
- writeResultShmem(i, 1); \
- writeResultShmem(i, 2); \
- writeResultShmem(i, 3); \
- writeResultShmem(i, 4); \
- writeResultShmem(i, 5); \
- writeResultShmem(i, 6); \
- writeResultShmem(i, 7); \
-
- if (threadIdx.x == 0) {
- writeRow(0);
- writeRow(1);
- writeRow(2);
- writeRow(3);
- writeRow(4);
- writeRow(5);
- writeRow(6);
- writeRow(7);
- }
-#undef writeResultShmem
-#undef writeRow
-
- const int max_i_write = numext::mini((int)((m_size - base_m - threadIdx.y + 7) / 8), 8);
- const int max_j_write = numext::mini((int)((n_size - base_n - threadIdx.z + 7) / 8), 8);
-
- if (threadIdx.x < max_i_write) {
- if (max_j_write == 8) {
- // TODO: can i trade bank conflicts for coalesced writes?
- Scalar val0 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 0];
- Scalar val1 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 1];
- Scalar val2 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 2];
- Scalar val3 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 3];
- Scalar val4 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 4];
- Scalar val5 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 5];
- Scalar val6 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 6];
- Scalar val7 = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * 7];
-
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 0) = val0;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 1) = val1;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 2) = val2;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 3) = val3;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 4) = val4;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 5) = val5;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 6) = val6;
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * 7) = val7;
- } else {
-#pragma unroll 7
- for (int j = 0; j < max_j_write; j++) {
- Scalar val = lhs_shmem[threadIdx.x + 8 * threadIdx.y + 64 * threadIdx.z + 512 * j];
- output(base_m + threadIdx.y + 8 * threadIdx.x, base_n + threadIdx.z + 8 * j) = val;
- }
- }
- }
-#undef res
-}
-
-
-template<typename Scalar, typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper>
-__global__ void
-__launch_bounds__(512)
-EigenContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output,
- const Index m_size, const Index n_size, const Index k_size) {
- __shared__ Scalar lhs_shmem[72 * 64];
- __shared__ Scalar rhs_shmem[72 * 64];
-
- const Index m_block_idx = blockIdx.x;
- const Index n_block_idx = blockIdx.y;
-
- const Index base_m = 64 * m_block_idx;
- const Index base_n = 64 * n_block_idx;
-
- if (base_m + 63 < m_size && base_n + 63 < n_size) {
- EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size);
- } else {
- EigenContractionKernelInternal<Scalar, Index, LhsMapper, RhsMapper, OutputMapper, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size);
- }
-}
-
-
-template<typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY,
- bool CHECK_RHS_BOUNDARY>
-__device__ EIGEN_STRONG_INLINE void
-EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output, float2 lhs_shmem2[][16],
- float2 rhs_shmem2[][8], const Index m_size,
- const Index n_size, const Index k_size,
- const Index base_m, const Index base_n) {
- typedef float Scalar;
-
- // prefetch registers
- float4 lhs_pf0, rhs_pf0;
-
- float4 results[4];
- for (int i=0; i < 4; i++) {
- results[i].x = results[i].y = results[i].z = results[i].w = 0;
- }
-
-
-#define prefetch_lhs(reg, row, col) \
- if (!CHECK_LHS_BOUNDARY) { \
- if (col < k_size) { \
- reg =lhs.loadPacket<Unaligned>(row, col); \
- } \
- } else { \
- if (col < k_size) { \
- if (row + 3 < m_size) { \
- reg =lhs.loadPacket<Unaligned>(row, col); \
- } else if (row + 2 < m_size) { \
- reg.x =lhs(row + 0, col); \
- reg.y =lhs(row + 1, col); \
- reg.z =lhs(row + 2, col); \
- } else if (row + 1 < m_size) { \
- reg.x =lhs(row + 0, col); \
- reg.y =lhs(row + 1, col); \
- } else if (row < m_size) { \
- reg.x =lhs(row + 0, col); \
- } \
- } \
- } \
-
-
- Index lhs_vert = base_m+threadIdx.x*4;
-
- for (Index k = 0; k < k_size; k += 16) {
- lhs_pf0 = internal::pset1<float4>(0);
- rhs_pf0 = internal::pset1<float4>(0);
-
- Index lhs_horiz = threadIdx.y+k;
- prefetch_lhs(lhs_pf0, lhs_vert, lhs_horiz)
-
- Index rhs_vert = k+(threadIdx.x%4)*4;
- Index rhs_horiz0 = (threadIdx.x>>2)+threadIdx.y*4+base_n;
-
- if (!CHECK_RHS_BOUNDARY) {
- if ((rhs_vert + 3) < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
- } else if (rhs_vert + 2 < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
- } else if (rhs_vert + 1 < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- } else if (rhs_vert < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- }
- } else {
- if (rhs_horiz0 < n_size) {
- if ((rhs_vert + 3) < k_size) {
- rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
- } else if ((rhs_vert + 2) < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
- } else if ((rhs_vert + 1) < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- } else if (rhs_vert < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- }
- }
- }
- float x1, x2 ;
- // the following can be a bitwise operation..... some day.
- if((threadIdx.x%8) < 4) {
- x1 = rhs_pf0.y;
- x2 = rhs_pf0.w;
- } else {
- x1 = rhs_pf0.x;
- x2 = rhs_pf0.z;
- }
- x1 = __shfl_xor(x1, 4);
- x2 = __shfl_xor(x2, 4);
- if((threadIdx.x%8) < 4) {
- rhs_pf0.y = x1;
- rhs_pf0.w = x2;
- } else {
- rhs_pf0.x = x1;
- rhs_pf0.z = x2;
- }
-
- // We have 64 features.
- // Row 0 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 0, 1.
- // Row 1 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 2, 3.
- // ...
- // Row 31 -> times (0, 4, 8, 12, 1, 5, 9, 13) for features 62, 63
- // Row 32 -> times (2, 6, 10, 14, 3, 7, 11, 15) for features 0, 1
- // ...
- rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2][threadIdx.x%8] = make_float2(rhs_pf0.x, rhs_pf0.y);
- rhs_shmem2[(threadIdx.x>>3)+ threadIdx.y*2+32][threadIdx.x%8] = make_float2(rhs_pf0.z, rhs_pf0.w);
-
- // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
- // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
- // ...
- // Row 15 (time 15) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61)
- // Row 16 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63)
- // ...
-
- lhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(lhs_pf0.x, lhs_pf0.y);
- lhs_shmem2[threadIdx.y+16][threadIdx.x] = make_float2(lhs_pf0.z, lhs_pf0.w);
-
-
-#define add_vals(fl1, fl2, fr1, fr2)\
- results[0].x += fl1.x * fr1.x;\
- results[0].y += fl1.y * fr1.x;\
- results[0].z += fl2.x * fr1.x;\
- results[0].w += fl2.y * fr1.x;\
-\
- results[1].x += fl1.x * fr1.y;\
- results[1].y += fl1.y * fr1.y;\
- results[1].z += fl2.x * fr1.y;\
- results[1].w += fl2.y * fr1.y;\
-\
- results[2].x += fl1.x * fr2.x;\
- results[2].y += fl1.y * fr2.x;\
- results[2].z += fl2.x * fr2.x;\
- results[2].w += fl2.y * fr2.x;\
-\
- results[3].x += fl1.x * fr2.y;\
- results[3].y += fl1.y * fr2.y;\
- results[3].z += fl2.x * fr2.y;\
- results[3].w += fl2.y * fr2.y;\
-
- __syncthreads();
-
- // Do the multiplies.
- #pragma unroll
- for (int koff = 0; koff < 16; koff ++) {
- // 32 x threads.
- float2 fl1 = lhs_shmem2[koff][threadIdx.x];
- float2 fl2 = lhs_shmem2[koff + 16][threadIdx.x];
-
- int start_feature = threadIdx.y * 4;
- float2 fr1 = rhs_shmem2[(start_feature>>1) + 32*((koff%4)/2)][koff/4 + (koff%2)*4];
- float2 fr2 = rhs_shmem2[(start_feature>>1) + 1 + 32*((koff%4)/2)][koff/4 + (koff%2)*4];
-
- add_vals(fl1, fl2, fr1, fr2)
- }
- __syncthreads();
- }
-
-#undef prefetch_lhs
-#undef add_vals
-
- Index horiz_base = threadIdx.y*4+base_n;
- if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
- for (int i = 0; i < 4; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- } else if (!CHECK_RHS_BOUNDARY) {
- // CHECK LHS
- if (lhs_vert + 3 < m_size) {
- for (int i = 0; i < 4; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- } else if (lhs_vert + 2 < m_size) {
- for (int i = 0; i < 4; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- }
- } else if (lhs_vert + 1 < m_size) {
- for (int i = 0; i < 4; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- }
- } else if (lhs_vert < m_size) {
- for (int i = 0; i < 4; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- }
- }
- } else if (!CHECK_LHS_BOUNDARY) {
- // CHECK RHS
- /*
- int ncols_rem = fminf(n_size- horiz_base, 4);
- for (int i = 0; i < ncols_rem; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }*/
- for (int i = 0; i < 4; i++) {
- if (horiz_base+i < n_size) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- }
- } else {
- // CHECK both boundaries.
- for (int i = 0; i < 4; i++) {
- if (horiz_base+i < n_size) {
- if (lhs_vert < m_size)
- output(lhs_vert, horiz_base + i) = results[i].x;
- if (lhs_vert + 1 < m_size)
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- if (lhs_vert + 2 < m_size)
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- if (lhs_vert + 3 < m_size)
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- }
- }
-}
-
-
-template<typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper, bool CHECK_LHS_BOUNDARY,
- bool CHECK_RHS_BOUNDARY>
-__device__ EIGEN_STRONG_INLINE void
-EigenFloatContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output, float2 lhs_shmem2[][32],
- float2 rhs_shmem2[][8], const Index m_size,
- const Index n_size, const Index k_size,
- const Index base_m, const Index base_n) {
- typedef float Scalar;
-
- // prefetch registers
- float4 lhs_pf0, lhs_pf1, lhs_pf2, lhs_pf3;
- float4 rhs_pf0, rhs_pf1;
-
- float4 results[8];
- for (int i=0; i < 8; i++) {
- results[i].x = results[i].y = results[i].z = results[i].w = 0;
- }
-
-
- Index lhs_vert = base_m+threadIdx.x*4+(threadIdx.y%4)*32;
- for (Index k = 0; k < k_size; k += 32) {
- lhs_pf0 = internal::pset1<float4>(0);
- lhs_pf1 = internal::pset1<float4>(0);
- lhs_pf2 = internal::pset1<float4>(0);
- lhs_pf3 = internal::pset1<float4>(0);
-
- rhs_pf0 = internal::pset1<float4>(0);
- rhs_pf1 = internal::pset1<float4>(0);
-
- if (!CHECK_LHS_BOUNDARY) {
- if ((threadIdx.y/4+k+24) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
- lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
- } else if ((threadIdx.y/4+k+16) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
- } else if ((threadIdx.y/4+k+8) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- } else if ((threadIdx.y/4+k) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- }
- } else {
- // just CHECK_LHS_BOUNDARY
- if (lhs_vert + 3 < m_size) {
- if ((threadIdx.y/4+k+24) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
- lhs_pf3 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+24));
- } else if ((threadIdx.y/4+k+16) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- lhs_pf2 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+16));
- } else if ((threadIdx.y/4+k+8) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- lhs_pf1 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k+8));
- } else if ((threadIdx.y/4+k) < k_size) {
- lhs_pf0 =lhs.loadPacket<Unaligned>(lhs_vert, (threadIdx.y/4+k));
- }
- } else if (lhs_vert + 2 < m_size) {
- if ((threadIdx.y/4+k+24) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
- lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16));
- lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
- lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24));
- lhs_pf3.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+24));
- } else if ((threadIdx.y/4+k+16) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
- lhs_pf2.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+16));
- } else if ((threadIdx.y/4+k+8) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- lhs_pf1.z =lhs(lhs_vert + 2, (threadIdx.y/4+k+8));
- } else if ((threadIdx.y/4+k) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf0.z =lhs(lhs_vert + 2, (threadIdx.y/4+k));
- }
- } else if (lhs_vert + 1 < m_size) {
- if ((threadIdx.y/4+k+24) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
- lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
- lhs_pf3.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+24));
- } else if ((threadIdx.y/4+k+16) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- lhs_pf2.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+16));
- } else if ((threadIdx.y/4+k+8) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf1.y =lhs(lhs_vert + 1, (threadIdx.y/4+k+8));
- } else if ((threadIdx.y/4+k) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf0.y =lhs(lhs_vert + 1, (threadIdx.y/4+k));
- }
- } else if (lhs_vert < m_size) {
- if ((threadIdx.y/4+k+24) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- lhs_pf3.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+24));
- } else if ((threadIdx.y/4+k+16) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- lhs_pf2.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+16));
- } else if ((threadIdx.y/4+k+8) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- lhs_pf1.x =lhs(lhs_vert + 0, (threadIdx.y/4+k+8));
- } else if ((threadIdx.y/4+k) < k_size) {
- lhs_pf0.x =lhs(lhs_vert + 0, (threadIdx.y/4+k));
- }
- }
- }
- __syncthreads();
- Index rhs_vert = k+threadIdx.x*4;
- Index rhs_horiz0 = threadIdx.y*2+base_n;
- Index rhs_horiz1 = threadIdx.y*2+1+base_n;
- if (!CHECK_RHS_BOUNDARY) {
- if ((rhs_vert + 3) < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
- rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
- } else if (rhs_vert + 2 < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
- rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1);
- } else if (rhs_vert + 1 < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
- } else if (rhs_vert < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- }
- } else {
- if (rhs_horiz1 < n_size) {
- if ((rhs_vert + 3) < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
- rhs_pf1 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz1);
- } else if (rhs_vert + 2 < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
- rhs_pf1.z = rhs(rhs_vert + 2, rhs_horiz1);
- } else if (k+threadIdx.x*4 + 1 < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- rhs_pf1.y = rhs(rhs_vert + 1, rhs_horiz1);
- } else if (k+threadIdx.x*4 < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf1.x = rhs(rhs_vert, rhs_horiz1);
- }
- } else if (rhs_horiz0 < n_size) {
- if ((rhs_vert + 3) < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0 = rhs.loadPacket<Unaligned>(rhs_vert, rhs_horiz0);
- } else if ((rhs_vert + 2) < k_size) {
- // just CHECK_RHS_BOUNDARY
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- rhs_pf0.z = rhs(rhs_vert + 2, rhs_horiz0);
- } else if ((rhs_vert + 1) < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- rhs_pf0.y = rhs(rhs_vert + 1, rhs_horiz0);
- } else if (rhs_vert < k_size) {
- rhs_pf0.x = rhs(rhs_vert, rhs_horiz0);
- }
- }
- }
- __syncthreads();
- // Loaded. Do computation
- // Row 0 -> times (0, 4, 8, .. 28) for features 0, 1.
- // Row 1 -> times (0, 4, 8, .. 28) for features 2, 3.
- // ..
- // Row 31 -> times (0, 4, 8, .. 28) for features 62, 63
- rhs_shmem2[threadIdx.y][threadIdx.x] = make_float2(rhs_pf0.x, rhs_pf1.x);
- // Row 32 -> times (1, 5, 9, .. 29) for features 0, 1.
- // Row 33 -> times (1, 5, 9, .. 29) for features 2, 3.
- // ..
- rhs_shmem2[threadIdx.y+32][threadIdx.x] = make_float2(rhs_pf0.y, rhs_pf1.y);
- // Row 64 -> times (2, 6, 10, .. 30) for features 0, 1.
- // Row 65 -> times (2, 6, 10, .. 30) for features 2, 3.
- rhs_shmem2[threadIdx.y+64][threadIdx.x] = make_float2(rhs_pf0.z, rhs_pf1.z);
- // Row 96 -> times (3, 7, 11, .. 31) for features 0, 1.
- // Row 97 -> times (3, 7, 11, .. 31) for features 2, 3.
- rhs_shmem2[threadIdx.y+96][threadIdx.x] = make_float2(rhs_pf0.w, rhs_pf1.w);
-
- // LHS.
- // Row 0 (time 0) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125)
- // Row 1 (time 1) -> features (0, 1), (4, 5), .. (28, 29), (32, 33), .. (60, 61) .. (124, 125)
- // ...
- // Row 8 (time 0) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127)
- // Row 15 (time 7) -> features (2, 3), (6, 7), .. (30, 31), (34, 35), .. (62, 63) .. (126, 127)
-
-
-#define add_vals(a_feat1, a_feat2, f1, f2, f3, f4)\
- results[0].x += a_feat1.x * f1.x;\
- results[1].x += a_feat1.x * f1.y;\
- results[2].x += a_feat1.x * f2.x;\
- results[3].x += a_feat1.x * f2.y;\
- results[4].x += a_feat1.x * f3.x;\
- results[5].x += a_feat1.x * f3.y;\
- results[6].x += a_feat1.x * f4.x;\
- results[7].x += a_feat1.x * f4.y;\
-\
- results[0].y += a_feat1.y * f1.x;\
- results[1].y += a_feat1.y * f1.y;\
- results[2].y += a_feat1.y * f2.x;\
- results[3].y += a_feat1.y * f2.y;\
- results[4].y += a_feat1.y * f3.x;\
- results[5].y += a_feat1.y * f3.y;\
- results[6].y += a_feat1.y * f4.x;\
- results[7].y += a_feat1.y * f4.y;\
-\
- results[0].z += a_feat2.x * f1.x;\
- results[1].z += a_feat2.x * f1.y;\
- results[2].z += a_feat2.x * f2.x;\
- results[3].z += a_feat2.x * f2.y;\
- results[4].z += a_feat2.x * f3.x;\
- results[5].z += a_feat2.x * f3.y;\
- results[6].z += a_feat2.x * f4.x;\
- results[7].z += a_feat2.x * f4.y;\
-\
- results[0].w += a_feat2.y * f1.x;\
- results[1].w += a_feat2.y * f1.y;\
- results[2].w += a_feat2.y * f2.x;\
- results[3].w += a_feat2.y * f2.y;\
- results[4].w += a_feat2.y * f3.x;\
- results[5].w += a_feat2.y * f3.y;\
- results[6].w += a_feat2.y * f4.x;\
- results[7].w += a_feat2.y * f4.y;\
-
- lhs_shmem2[threadIdx.y/4][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.x, lhs_pf0.y);
- lhs_shmem2[threadIdx.y/4+8][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.x, lhs_pf1.y);
- lhs_shmem2[threadIdx.y/4+16][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.x, lhs_pf2.y);
- lhs_shmem2[threadIdx.y/4+24][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.x, lhs_pf3.y);
-
- lhs_shmem2[threadIdx.y/4 + 32][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf0.z, lhs_pf0.w);
- lhs_shmem2[threadIdx.y/4 + 40][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf1.z, lhs_pf1.w);
- lhs_shmem2[threadIdx.y/4 + 48][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf2.z, lhs_pf2.w);
- lhs_shmem2[threadIdx.y/4 + 56][threadIdx.x+(threadIdx.y%4)*8] = make_float2(lhs_pf3.z, lhs_pf3.w);
-
- __syncthreads();
-
- // Do the multiplies.
- #pragma unroll
- for (int koff = 0; koff < 32; koff ++) {
- float2 a3 = lhs_shmem2[koff][threadIdx.x + (threadIdx.y % 4) * 8];
- float2 a4 = lhs_shmem2[koff + 32][threadIdx.x + (threadIdx.y % 4) * 8];
-
- // first feature is at (threadIdx.y/4) * 8 last is at start + 8.
- int start_feature = (threadIdx.y / 4) * 8;
-
- float2 br1 = rhs_shmem2[start_feature/2 + (koff % 4) * 32][koff/4];
- float2 br2 = rhs_shmem2[start_feature/2 + 1 + (koff % 4) * 32][koff/4];
- float2 br3 = rhs_shmem2[start_feature/2 + 2 + (koff % 4) * 32][koff/4];
- float2 br4 = rhs_shmem2[start_feature/2 + 3 + (koff % 4) * 32][koff/4];
-
- add_vals(a3, a4, br1, br2, br3, br4)
- }
- __syncthreads();
- } // end loop over k
-
-
- __syncthreads();
- Index horiz_base = (threadIdx.y/4)*8+base_n;
- if (!CHECK_LHS_BOUNDARY && !CHECK_RHS_BOUNDARY) {
- for (int i = 0; i < 8; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- } else if (!CHECK_RHS_BOUNDARY) {
- if (lhs_vert + 3 < m_size) {
- for (int i = 0; i < 8; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- } else if (lhs_vert + 2 < m_size) {
- for (int i = 0; i < 8; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- }
- } else if (lhs_vert + 1 < m_size) {
- for (int i = 0; i < 8; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- }
- } else if (lhs_vert < m_size) {
- for (int i = 0; i < 8; i++) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- }
- }
- } else if (!CHECK_LHS_BOUNDARY) {
- // CHECK BOUNDARY_B
- for (int i = 0; i < 8; i++) {
- if (horiz_base + i < n_size) {
- output(lhs_vert, horiz_base + i) = results[i].x;
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- }
- } else {
- // CHECK both boundaries.
- for (int i = 0; i < 8; i++) {
- if (horiz_base + i < n_size) {
- if (lhs_vert < m_size)
- output(lhs_vert, horiz_base + i) = results[i].x;
- if (lhs_vert + 1 < m_size)
- output(lhs_vert + 1, horiz_base + i) = results[i].y;
- if (lhs_vert + 2 < m_size)
- output(lhs_vert + 2, horiz_base + i) = results[i].z;
- if (lhs_vert + 3 < m_size)
- output(lhs_vert + 3, horiz_base + i) = results[i].w;
- }
- }
- }
-}
-
-
-template<typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper>
-__global__ void
-__launch_bounds__(256)
-EigenFloatContractionKernel(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output,
- const Index m_size, const Index n_size, const Index k_size) {
- __shared__ float2 lhs_shmem[64*32];
- __shared__ float2 rhs_shmem[128*8];
-
- typedef float2 LHS_MEM[64][32];
- typedef float2 RHS_MEM[128][8];
-
- typedef float2 LHS_MEM16x16[32][16];
- typedef float2 RHS_MEM16x16[64][8];
-
- const Index m_block_idx = blockIdx.x;
- const Index n_block_idx = blockIdx.y;
-
- const Index base_m = 128 * m_block_idx;
- const Index base_n = 64 * n_block_idx;
-
- bool check_rhs = (base_n + 63) >= n_size;
- bool check_lhs128 = (base_m + 127) >= m_size;
-
- if (!check_rhs) {
- if (!check_lhs128) {
- // >= 128 rows left
- EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(
- lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
- } else {
- EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(
- lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
- }
- } else {
- if (!check_lhs128) {
- // >= 128 rows left
- EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(
- lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
- } else {
- EigenFloatContractionKernelInternal<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(
- lhs, rhs, output, *((LHS_MEM *) lhs_shmem), *((RHS_MEM *) rhs_shmem), m_size, n_size, k_size, base_m, base_n);
- }
- }
-}
-
-template<typename Index, typename LhsMapper,
- typename RhsMapper, typename OutputMapper>
-__global__ void
-__launch_bounds__(256)
-EigenFloatContractionKernel16x16(const LhsMapper lhs, const RhsMapper rhs,
- const OutputMapper output,
- const Index m_size, const Index n_size, const Index k_size) {
- __shared__ float2 lhs_shmem[32][16];
- __shared__ float2 rhs_shmem[64][8];
-
- const Index m_block_idx = blockIdx.x;
- const Index n_block_idx = blockIdx.y;
-
- const Index base_m = 64 * m_block_idx;
- const Index base_n = 64 * n_block_idx;
-
- if (base_m + 63 < m_size) {
- if (base_n + 63 < n_size) {
- EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
- } else {
- EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, false, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
- }
- } else {
- if (base_n + 63 < n_size) {
- EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, false>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
- } else {
- EigenFloatContractionKernelInternal16x16<Index, LhsMapper, RhsMapper, OutputMapper, true, true>(lhs, rhs, output, lhs_shmem, rhs_shmem, m_size, n_size, k_size, base_m, base_n);
- }
- }
-}
-
-
-template<typename Indices, typename LeftArgType, typename RightArgType>
-struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> :
- public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, GpuDevice> > {
-
- typedef GpuDevice Device;
-
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
- typedef TensorContractionEvaluatorBase<Self> Base;
-
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::Index Index;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
-
- enum {
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- };
-
- // Most of the code is assuming that both input tensors are ColMajor. If the
- // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
- // If we want to compute A * B = C, where A is LHS and B is RHS, the code
- // will pretend B is LHS and A is RHS.
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
-
- static const int LDims =
- internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
- static const int RDims =
- internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
- static const int ContractDims = internal::array_size<Indices>::value;
-
- typedef array<Index, LDims> left_dim_mapper_t;
- typedef array<Index, RDims> right_dim_mapper_t;
-
- typedef array<Index, ContractDims> contract_t;
- typedef array<Index, LDims - ContractDims> left_nocontract_t;
- typedef array<Index, RDims - ContractDims> right_nocontract_t;
-
- static const int NumDims = LDims + RDims - 2 * ContractDims;
-
- typedef DSizes<Index, NumDims> Dimensions;
-
- // typedefs needed in evalTo
- typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
- typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
-
- typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
- typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
-
- typedef typename LeftEvaluator::Dimensions LeftDimensions;
- typedef typename RightEvaluator::Dimensions RightDimensions;
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
- Base(op, device) {}
-
- // We need to redefine this method to make nvcc happy
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
- this->m_leftImpl.evalSubExprsIfNeeded(NULL);
- this->m_rightImpl.evalSubExprsIfNeeded(NULL);
- if (data) {
- evalTo(data);
- return false;
- } else {
- this->m_result = static_cast<Scalar *>(this->m_device.allocate(this->dimensions().TotalSize() * sizeof(Scalar)));
- evalTo(this->m_result);
- return true;
- }
- }
-
- void evalTo(Scalar* buffer) const {
- if (this->m_lhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_reordered) {
- evalTyped<true, true, true, Unaligned>(buffer);
- }
- else {
- evalTyped<true, true, false, Unaligned>(buffer);
- }
- }
- else {
- if (this->m_rhs_inner_dim_reordered) {
- evalTyped<true, false, true, Unaligned>(buffer);
- }
- else {
- evalTyped<true, false, false, Unaligned>(buffer);
- }
- }
- }
- else {
- if (this->m_rhs_inner_dim_contiguous) {
- if (this->m_rhs_inner_dim_reordered) {
- evalTyped<false, true, true, Unaligned>(buffer);
- }
- else {
- evalTyped<false, true, false, Unaligned>(buffer);
- }
- }
- else {
- if (this->m_rhs_inner_dim_reordered) {
- evalTyped<false, false, true, Unaligned>(buffer);
- }
- else {
- evalTyped<false, false, false, Unaligned>(buffer);
- }
- }
- }
- }
-
- template <typename LhsScalar, typename RhsScalar, typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels {
- static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) {
- const Index m_blocks = (m + 63) / 64;
- const Index n_blocks = (n + 63) / 64;
- const dim3 num_blocks(m_blocks, n_blocks, 1);
- const dim3 block_size(8, 8, 8);
- LAUNCH_CUDA_KERNEL((EigenContractionKernel<Scalar, Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
- }
- };
-
- template <typename Index, typename LhsMapper, typename RhsMapper, typename OutputMapper> struct LaunchKernels<float, float, Index, LhsMapper, RhsMapper, OutputMapper> {
- static void Run(const LhsMapper& lhs, const RhsMapper& rhs, const OutputMapper& output, Index m, Index n, Index k, const GpuDevice& device) {
- if (m < 768 || n < 768) {
- const Index m_blocks = (m + 63) / 64;
- const Index n_blocks = (n + 63) / 64;
- const dim3 num_blocks(m_blocks, n_blocks, 1);
- const dim3 block_size(16, 16, 1);
- LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel16x16<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
- } else {
- const Index m_blocks = (m + 127) / 128;
- const Index n_blocks = (n + 63) / 64;
- const dim3 num_blocks(m_blocks, n_blocks, 1);
- const dim3 block_size(8, 32, 1);
- LAUNCH_CUDA_KERNEL((EigenFloatContractionKernel<Index, LhsMapper, RhsMapper, OutputMapper>), num_blocks, block_size, 0, device, lhs, rhs, output, m, n, k);
- }
- }
- };
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- void evalTyped(Scalar* buffer) const {
- // columns in left side, rows in right side
- const Index k = this->m_k_size;
- EIGEN_UNUSED_VARIABLE(k)
-
- // rows in left side
- const Index m = this->m_i_size;
-
- // columns in right side
- const Index n = this->m_j_size;
-
- // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
- this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
-
- typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
- LeftEvaluator, left_nocontract_t,
- contract_t, 4,
- lhs_inner_dim_contiguous,
- false, Unaligned> LhsMapper;
-
- typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
- RightEvaluator, right_nocontract_t,
- contract_t, 4,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, Unaligned> RhsMapper;
-
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
-
-
- // initialize data mappers
- LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
- this->m_left_contracting_strides, this->m_k_strides);
-
- RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
- this->m_right_contracting_strides, this->m_k_strides);
-
- OutputMapper output(buffer, m);
-
- setCudaSharedMemConfig(cudaSharedMemBankSizeEightByte);
- LaunchKernels<LhsScalar, RhsScalar, Index, LhsMapper, RhsMapper, OutputMapper>::Run(lhs, rhs, output, m, n, k, this->m_device);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_USE_GPU and __CUDACC__
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_CUDA_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
deleted file mode 100644
index 9b2cb3f..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
+++ /dev/null
@@ -1,467 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
-
-namespace Eigen {
-
-namespace internal {
-
-enum {
- Rhs = 0,
- Lhs = 1
-};
-
-/*
- * Implementation of the Eigen blas_data_mapper class for tensors.
- */
-
-template <typename Tensor, bool HasRawAccess> struct CoeffLoader {
- enum {
- DirectOffsets = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) {
- eigen_assert(false && "unsupported");
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); }
-
- template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
- {
- return m_tensor.template packet<LoadMode>(index);
- }
-
-
- private:
- const Tensor m_tensor;
-};
-
-template <typename Tensor> struct CoeffLoader<Tensor, true> {
- enum {
- DirectOffsets = true
- };
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {}
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
- m_data += offset;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); }
-
- template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
- {
- return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index);
- }
- private:
- typedef typename Tensor::Scalar Scalar;
- const Scalar* m_data;
-};
-
-template<typename Scalar, typename Index, int side,
- typename Tensor,
- typename nocontract_t, typename contract_t,
- int packet_size, bool inner_dim_contiguous, int Alignment>
-class SimpleTensorContractionMapper {
- public:
- EIGEN_DEVICE_FUNC
- SimpleTensorContractionMapper(const Tensor& tensor,
- const nocontract_t& nocontract_strides,
- const nocontract_t& ij_strides,
- const contract_t& contract_strides,
- const contract_t& k_strides) :
- m_tensor(tensor),
- m_nocontract_strides(nocontract_strides),
- m_ij_strides(ij_strides),
- m_contract_strides(contract_strides),
- m_k_strides(k_strides) { }
-
- enum {
- DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess>::DirectOffsets
- };
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
- m_tensor.offsetBuffer(offset);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar operator()(Index row) const {
- // column major assumption
- return operator()(row, 0);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const {
- return m_tensor.coeff(computeIndex(row, col));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const {
- const bool left = (side == Lhs);
- Index nocontract_val = left ? row : col;
- Index linidx = 0;
- for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
- const Index idx = nocontract_val / m_ij_strides[i];
- linidx += idx * m_nocontract_strides[i];
- nocontract_val -= idx * m_ij_strides[i];
- }
- if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
- if (side == Lhs && inner_dim_contiguous) {
- eigen_assert(m_nocontract_strides[0] == 1);
- linidx += nocontract_val;
- } else {
- linidx += nocontract_val * m_nocontract_strides[0];
- }
- }
-
- Index contract_val = left ? col : row;
- if(array_size<contract_t>::value > 0) {
- for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
- const Index idx = contract_val / m_k_strides[i];
- linidx += idx * m_contract_strides[i];
- contract_val -= idx * m_k_strides[i];
- }
-
- if (side == Rhs && inner_dim_contiguous) {
- eigen_assert(m_contract_strides[0] == 1);
- linidx += contract_val;
- } else {
- linidx += contract_val * m_contract_strides[0];
- }
- }
-
- return linidx;
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const {
- const bool left = (side == Lhs);
- Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
- Index linidx[2] = {0, 0};
- if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
- for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
- const Index idx0 = nocontract_val[0] / m_ij_strides[i];
- const Index idx1 = nocontract_val[1] / m_ij_strides[i];
- linidx[0] += idx0 * m_nocontract_strides[i];
- linidx[1] += idx1 * m_nocontract_strides[i];
- nocontract_val[0] -= idx0 * m_ij_strides[i];
- nocontract_val[1] -= idx1 * m_ij_strides[i];
- }
- if (side == Lhs && inner_dim_contiguous) {
- eigen_assert(m_nocontract_strides[0] == 1);
- linidx[0] += nocontract_val[0];
- linidx[1] += nocontract_val[1];
- } else {
- linidx[0] += nocontract_val[0] * m_nocontract_strides[0];
- linidx[1] += nocontract_val[1] * m_nocontract_strides[0];
- }
- }
-
- Index contract_val[2] = {left ? col : row, left ? col : row + distance};
- if (array_size<contract_t>::value> 0) {
- for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
- const Index idx0 = contract_val[0] / m_k_strides[i];
- const Index idx1 = contract_val[1] / m_k_strides[i];
- linidx[0] += idx0 * m_contract_strides[i];
- linidx[1] += idx1 * m_contract_strides[i];
- contract_val[0] -= idx0 * m_k_strides[i];
- contract_val[1] -= idx1 * m_k_strides[i];
- }
-
- if (side == Rhs && inner_dim_contiguous) {
- eigen_assert(m_contract_strides[0] == 1);
- linidx[0] += contract_val[0];
- linidx[1] += contract_val[1];
- } else {
- linidx[0] += contract_val[0] * m_contract_strides[0];
- linidx[1] += contract_val[1] * m_contract_strides[0];
- }
- }
- return IndexPair<Index>(linidx[0], linidx[1]);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const {
- // Only claim alignment when we can compute the actual stride (ie when we're
- // dealing with the lhs with inner_dim_contiguous. This is because the
- // matrix-vector product relies on the stride when dealing with aligned inputs.
- return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size;
- }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const {
- return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1;
- }
-
- protected:
- CoeffLoader<Tensor, Tensor::RawAccess> m_tensor;
- const nocontract_t m_nocontract_strides;
- const nocontract_t m_ij_strides;
- const contract_t m_contract_strides;
- const contract_t m_k_strides;
-};
-
-
-template<typename Scalar, typename Index, int side,
- typename Tensor,
- typename nocontract_t, typename contract_t,
- int packet_size, bool inner_dim_contiguous,
- bool inner_dim_reordered, int Alignment>
-class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment>
-{
- public:
- typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> ParentMapper;
-
- EIGEN_DEVICE_FUNC
- BaseTensorContractionMapper(const Tensor& tensor,
- const nocontract_t& nocontract_strides,
- const nocontract_t& ij_strides,
- const contract_t& contract_strides,
- const contract_t& k_strides) :
- ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
-
- typedef typename Tensor::PacketReturnType Packet;
- typedef typename unpacket_traits<Packet>::half HalfPacket;
-
- template <int AlignmentType>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
- // whole method makes column major assumption
-
- // don't need to add offsets for now (because operator handles that)
- // current code assumes packet size must be a multiple of 2
- EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) {
- const Index index = this->computeIndex(i, j);
- eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1);
- return this->m_tensor.template packet<AlignmentType>(index);
- }
-
- const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1);
- const Index first = indexPair.first;
- const Index last = indexPair.second;
-
- // We can always do optimized packet reads from left hand side right now, because
- // the vertical matrix dimension on the left hand side is never contracting.
- // On the right hand side we need to check if the contracting dimensions may have
- // been shuffled first.
- if (Tensor::PacketAccess &&
- (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) &&
- (last - first) == (packet_size - 1)) {
-
- return this->m_tensor.template packet<AlignmentType>(first);
- }
-
- EIGEN_ALIGN_MAX Scalar data[packet_size];
-
- data[0] = this->m_tensor.coeff(first);
- for (Index k = 1; k < packet_size - 1; k += 2) {
- const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1);
- data[k] = this->m_tensor.coeff(internal_pair.first);
- data[k + 1] = this->m_tensor.coeff(internal_pair.second);
- }
- data[packet_size - 1] = this->m_tensor.coeff(last);
-
- return pload<Packet>(data);
- }
-
- template <int AlignmentType>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
- // whole method makes column major assumption
-
- // don't need to add offsets for now (because operator handles that)
- const Index half_packet_size = unpacket_traits<HalfPacket>::size;
- if (half_packet_size == packet_size) {
- return loadPacket<AlignmentType>(i, j);
- }
- EIGEN_ALIGN_MAX Scalar data[half_packet_size];
- for (Index k = 0; k < half_packet_size; k++) {
- data[k] = operator()(i + k, j);
- }
- return pload<HalfPacket>(data);
- }
-};
-
-
-template<typename Scalar, typename Index, int side,
- typename Tensor,
- typename nocontract_t, typename contract_t,
- bool inner_dim_contiguous,
- bool inner_dim_reordered, int Alignment>
-class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment>
-{
- public:
- typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> ParentMapper;
-
- EIGEN_DEVICE_FUNC
- BaseTensorContractionMapper(const Tensor& tensor,
- const nocontract_t& nocontract_strides,
- const nocontract_t& ij_strides,
- const contract_t& contract_strides,
- const contract_t& k_strides) :
- ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
-
- typedef typename Tensor::PacketReturnType Packet;
- template <int> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
- EIGEN_ALIGN_MAX Scalar data[1];
- data[0] = this->m_tensor.coeff(this->computeIndex(i, j));
- return pload<typename Tensor::PacketReturnType>(data);
- }
- template <int> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const {
- return loadPacket(i, j);
- }
-};
-
-
-template<typename Scalar, typename Index, int side,
- typename Tensor,
- typename nocontract_t, typename contract_t,
- int packet_size,
- bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
-class TensorContractionSubMapper {
- public:
- typedef typename Tensor::PacketReturnType Packet;
- typedef typename unpacket_traits<Packet>::half HalfPacket;
-
- typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
- typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
- typedef Self LinearMapper;
-
- enum {
- // We can use direct offsets iff the parent mapper supports then and we can compute the strides.
- // TODO: we should also enable direct offsets for the Rhs case.
- UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0)
- };
-
- EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
- : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) {
- // Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute
- // this offset every time we attempt to access a coefficient.
- if (UseDirectOffsets) {
- Index stride = m_base_mapper.stride();
- m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
- if (UseDirectOffsets) {
- return m_base_mapper(i, 0);
- }
- return m_base_mapper(i + m_vert_offset, m_horiz_offset);
- }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
- if (UseDirectOffsets) {
- return m_base_mapper(i, j);
- }
- return m_base_mapper(i + m_vert_offset, j + m_horiz_offset);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
- if (UseDirectOffsets) {
- return m_base_mapper.template loadPacket<Alignment>(i, 0);
- }
- return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
- }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
- if (UseDirectOffsets) {
- return m_base_mapper.template loadPacket<Alignment>(i, j);
- }
- return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, j + m_horiz_offset);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
- if (UseDirectOffsets) {
- return m_base_mapper.template loadHalfPacket<Alignment>(i, 0);
- }
- return m_base_mapper.template loadHalfPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const {
- if (UseDirectOffsets) {
- m_base_mapper.storePacket(i, 0, p);
- }
- m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
- if (UseDirectOffsets) {
- return LinearMapper(m_base_mapper, i, j);
- }
- return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset);
- }
-
- template <typename PacketT, int AlignmentType>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const {
- EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
- const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned;
- if (UseDirectOffsets) {
- return m_base_mapper.template loadPacket<ActualAlignment>(i, 0);
- }
- return m_base_mapper.template loadPacket<ActualAlignment>(i + m_vert_offset, m_horiz_offset);
- }
-
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const {
- return false;
- }
-
- private:
- ParentMapper m_base_mapper;
- const Index m_vert_offset;
- const Index m_horiz_offset;
-};
-
-
-template<typename Scalar_, typename Index, int side,
- typename Tensor,
- typename nocontract_t, typename contract_t,
- int packet_size,
- bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
-class TensorContractionInputMapper
- : public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> {
-
- public:
- typedef Scalar_ Scalar;
- typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base;
- typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
- typedef SubMapper VectorMapper;
-
- EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor,
- const nocontract_t& nocontract_strides,
- const nocontract_t& ij_strides,
- const contract_t& contract_strides,
- const contract_t& k_strides)
- : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
- return SubMapper(*this, i, j);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
- return VectorMapper(*this, i, j);
- }
-};
-
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
deleted file mode 100644
index c70dea0..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
+++ /dev/null
@@ -1,1043 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
-
-// evaluator for thread pool device
-#ifdef EIGEN_USE_THREADS
-
-namespace Eigen {
-
-#ifdef EIGEN_USE_SIMPLE_THREAD_POOL
-namespace internal {
-
-template<typename LhsScalar, typename LhsMapper, typename Index>
-struct packLhsArg {
- LhsScalar* blockA;
- const LhsMapper& lhs;
- const Index m_start;
- const Index k_start;
- const Index mc;
- const Index kc;
-};
-
-template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
-struct packRhsAndKernelArg {
- const MaxSizeVector<LhsScalar*>* blockAs;
- RhsScalar* blockB;
- const RhsMapper& rhs;
- OutputMapper& output;
- const Index m;
- const Index k;
- const Index n;
- const Index mc;
- const Index kc;
- const Index nc;
- const Index num_threads;
- const Index num_blockAs;
- const Index max_m;
- const Index k_block_idx;
- const Index m_block_idx;
- const Index n_block_idx;
- const Index m_blocks;
- const Index n_blocks;
- MaxSizeVector<Notification*>* kernel_notifications;
- const MaxSizeVector<Notification*>* lhs_notifications;
- const bool need_to_pack;
-};
-
-} // end namespace internal
-#endif // EIGEN_USE_SIMPLE_THREAD_POOL
-
-template<typename Indices, typename LeftArgType, typename RightArgType>
-struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
- public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
-
- typedef ThreadPoolDevice Device;
-
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
- typedef TensorContractionEvaluatorBase<Self> Base;
-
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::Index Index;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- enum {
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- };
-
- // Most of the code is assuming that both input tensors are ColMajor. If the
- // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
- // If we want to compute A * B = C, where A is LHS and B is RHS, the code
- // will pretend B is LHS and A is RHS.
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
- typedef typename internal::conditional<
- static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
-
- static const int LDims =
- internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
- static const int RDims =
- internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
- static const int ContractDims = internal::array_size<Indices>::value;
-
- typedef array<Index, LDims> left_dim_mapper_t;
- typedef array<Index, RDims> right_dim_mapper_t;
-
- typedef array<Index, ContractDims> contract_t;
- typedef array<Index, LDims - ContractDims> left_nocontract_t;
- typedef array<Index, RDims - ContractDims> right_nocontract_t;
-
- static const int NumDims = LDims + RDims - 2 * ContractDims;
-
- typedef DSizes<Index, NumDims> Dimensions;
-
- // typedefs needed in evalTo
- typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
- typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
- typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
-
- typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
- typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
-
- TensorEvaluator(const XprType& op, const Device& device) :
- Base(op, device) {}
-
-#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
- bool rhs_inner_dim_reordered, int Alignment>
- void evalProduct(Scalar* buffer) const {
- typedef internal::TensorContractionInputMapper<
- LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
- contract_t, internal::packet_traits<LhsScalar>::size,
- lhs_inner_dim_contiguous, false, Unaligned>
- LhsMapper;
- typedef internal::TensorContractionInputMapper<
- RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
- contract_t, internal::packet_traits<RhsScalar>::size,
- rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
- RhsMapper;
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
- typedef internal::gemm_pack_lhs<LhsScalar, Index,
- typename LhsMapper::SubMapper, Traits::mr,
- Traits::LhsProgress, ColMajor>
- LhsPacker;
- typedef internal::gemm_pack_rhs<
- RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
- RhsPacker;
- typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
- Traits::mr, Traits::nr, false, false>
- GebpKernel;
-
- const Index m = this->m_i_size;
- const Index n = this->m_j_size;
- const Index k = this->m_k_size;
- if (m == 0 || n == 0 || k == 0) return;
-
- // Compute a set of algorithm parameters:
- // - kernel block sizes (bm, bn, bk)
- // - task grain sizes (number of kernels executed per task: gm, gn)
- // - number of threads
- // - sharding by row/column
- // - parallel packing or first lhs then rhs
- // and some derived parameters:
- // - number of tasks (nm, nn, nk)
- // - number of kernels (nm0, nn0)
- // Unfortunately, all these parameters are tightly interdependent.
- // So in some cases we first compute approximate values, then compute other
- // values based on these approximations and then refine the approximations.
-
- // There are lots of heuristics here. There is some reasoning behind them,
- // but ultimately they are just tuned on contraction benchmarks for
- // different input configurations, thread counts and instruction sets.
- // So feel free to question any of them.
-
- // Compute whether we want to shard by row or by column.
- // This is a first approximation, it will be refined later. Since we don't
- // know number of threads yet we use 2, because what's we are most
- // interested in at this point is whether it makes sense to use
- // parallelization at all or not.
- bool shard_by_col = shardByCol(m, n, 2);
-
- // First approximation of kernel blocking sizes.
- // Again, we don't know number of threads yet, so we use 2.
- Index bm, bn, bk;
- if (shard_by_col) {
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
- internal::ShardByCol>
- blocking(k, m, n, 2);
- bm = blocking.mc();
- bn = blocking.nc();
- bk = blocking.kc();
- } else {
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
- internal::ShardByRow>
- blocking(k, m, n, 2);
- bm = blocking.mc();
- bn = blocking.nc();
- bk = blocking.kc();
- }
-
- // Compute optimal number of threads.
- // Note: we use bk instead of k here because we are interested in amount of
- // _parallelizable_ computations, and computations are not parallelizable
- // across k dimension.
- const TensorOpCost cost =
- contractionCost(m, n, bm, bn, bk, shard_by_col, false);
- int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
- static_cast<double>(n) * m, cost, this->m_device.numThreads());
-
- // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
- // model is not tuned. Remove this when the cost model is tuned.
- if (n == 1) num_threads = 1;
-
- if (num_threads == 1) {
- // The single-threaded algorithm should be faster in this case.
- if (n == 1)
- this->template evalGemv<lhs_inner_dim_contiguous,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, Alignment>(buffer);
- else
- this->template evalGemm<lhs_inner_dim_contiguous,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, Alignment>(buffer);
- return;
- }
-
- // Now that we know number of threads, recalculate sharding and blocking.
- shard_by_col = shardByCol(m, n, num_threads);
- if (shard_by_col) {
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
- internal::ShardByCol>
- blocking(k, m, n, num_threads);
- bm = blocking.mc();
- bn = blocking.nc();
- bk = blocking.kc();
- } else {
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
- internal::ShardByRow>
- blocking(k, m, n, num_threads);
- bm = blocking.mc();
- bn = blocking.nc();
- bk = blocking.kc();
- }
-
- // Number of kernels for each dimension.
- Index nm0 = divup(m, bm);
- Index nn0 = divup(n, bn);
- Index nk = divup(k, bk);
-
- // Calculate task grain size (number of kernels executed per task).
- // This task size coarsening serves two purposes:
- // 1. It reduces per-task overheads including synchronization overheads.
- // 2. It allows to use caches better (reuse the same packed rhs in several
- // consecutive kernels).
- Index gm = 1;
- Index gn = 1;
- // If we are sharding by column, then we prefer to reduce rows first.
- if (shard_by_col) {
- gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
- gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
- } else {
- gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
- gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
- }
- // Number of tasks in each dimension.
- Index nm = divup(nm0, gm);
- Index nn = divup(nn0, gn);
-
- // Last by not least, decide whether we want to issue both lhs and rhs
- // packing in parallel; or issue lhs packing first, and then issue rhs
- // packing when lhs packing completes (for !shard_by_col lhs and rhs are
- // swapped). Parallel packing allows more parallelism (for both packing and
- // kernels), while sequential packing provides better locality (once
- // a thread finishes rhs packing it proceed to kernels with that rhs).
- // First, we are interested in parallel packing if there are few tasks.
- bool parallel_pack = num_threads >= nm * nn;
- // Also do parallel packing if all data fits into L2$.
- if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
- l2CacheSize() * num_threads)
- parallel_pack = true;
- // But don't do it if we will use each rhs only once. Locality seems to be
- // more important in this case.
- if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
-
- LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides,
- this->m_i_strides, this->m_left_contracting_strides,
- this->m_k_strides);
-
- RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides,
- this->m_j_strides, this->m_right_contracting_strides,
- this->m_k_strides);
-
- Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
- OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
- k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
- shard_by_col, parallel_pack)
- .run();
- }
-
- // Context coordinates a single parallel gemm operation.
- template <typename LhsPacker, typename RhsPacker, typename GebpKernel,
- typename LhsMapper, typename RhsMapper, typename OutputMapper>
- class Context {
- public:
- Context(const Device& device, int num_threads, LhsMapper& lhs,
- RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
- Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
- Index gn, Index nm0, Index nn0, bool shard_by_col,
- bool parallel_pack)
- : device_(device),
- lhs_(lhs),
- rhs_(rhs),
- buffer_(buffer),
- output_(buffer, tm),
- num_threads_(num_threads),
- shard_by_col_(shard_by_col),
- parallel_pack_(parallel_pack),
- m_(tm),
- n_(tn),
- k_(tk),
- bm_(bm),
- bn_(bn),
- bk_(bk),
- nm_(nm),
- nn_(nn),
- nk_(nk),
- gm_(gm),
- gn_(gn),
- nm0_(nm0),
- nn0_(nn0)
- {
- for (Index x = 0; x < P; x++) {
- // Normal number of notifications for k slice switch is
- // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
- // nm_ + nn_ notifications, because they will not receive notifications
- // from preceeding kernels.
- state_switch_[x] =
- x == 0
- ? 1
- : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
- (x == P - 1 ? nm_ * nn_ : 0);
- state_packing_ready_[x] =
- parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
- state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
- for (Index m = 0; m < nm_; m++) {
- state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
- // Kernels generally receive 3 notifications (previous kernel + 2
- // packing), but the first slice won't get notifications from previous
- // kernels.
- for (Index n = 0; n < nn_; n++)
- state_kernel_[x][m][n].store(
- (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
- std::memory_order_relaxed);
- }
- }
-
- // Allocate memory for packed rhs/lhs matrices.
- size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
- size_t lhs_size =
- divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
- size_t rhs_size =
- divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
- packed_mem_ = static_cast<char*>(internal::aligned_malloc(
- (nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
- char* mem = static_cast<char*>(packed_mem_);
- for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) {
- packed_lhs_[x].resize(nm0_);
- for (Index m = 0; m < nm0_; m++) {
- packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
- mem += lhs_size;
- }
- packed_rhs_[x].resize(nn0_);
- for (Index n = 0; n < nn0_; n++) {
- packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
- mem += rhs_size;
- }
- }
- }
-
- ~Context() {
- for (Index x = 0; x < P; x++) {
- for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
- delete[] state_kernel_[x];
- }
- internal::aligned_free(packed_mem_);
- }
-
- void run() {
- // Kick off packing of the first slice.
- signal_switch(0, 1);
- // Wait for overall completion.
- // TODO(dvyukov): this wait can lead to deadlock.
- // If nthreads contractions are concurrently submitted from worker
- // threads, this wait will block all worker threads and the system will
- // deadlock.
- done_.Wait();
- }
-
- private:
- Notification done_;
- const Device& device_;
- LhsMapper& lhs_;
- RhsMapper& rhs_;
- Scalar* const buffer_;
- OutputMapper output_;
- const int num_threads_;
- const bool shard_by_col_;
- const bool parallel_pack_;
- // Matrix sizes.
- const Index m_;
- const Index n_;
- const Index k_;
- // Block sizes.
- const Index bm_;
- const Index bn_;
- const Index bk_;
- // Number of tasks.
- const Index nm_;
- const Index nn_;
- const Index nk_;
- // Task grain sizes (number of kernels executed per task).
- const Index gm_;
- const Index gn_;
- // Number of blocks (this is different from ni_/nn_ because of task size
- // coarsening).
- const Index nm0_;
- const Index nn0_;
-
- // Parallelization strategy.
- //
- // Blocks related to the same k block can run in parallel because they write
- // to different output blocks. So we parallelize within k slices, this
- // gives us parallelism level of m x n. Before we can start any kernels
- // related to k-th slice, we need to issue m lhs packing tasks and n rhs
- // packing tasks.
- //
- // However, there is a bottleneck when we are finishing kernels for k-th
- // slice (at the very end there is only 1 runnable kernel). To mitigate this
- // bottleneck we allow kernels from k-th and k+1-th slices to run in
- // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
- // output block, so they must not run in parallel.
- //
- // This gives us the following dependency graph.
- // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
- // packing tasks.
- // Kernel (m, n, k) can start when:
- // - kernel (m, n, k-1) has finished
- // - lhs packing (m, k) has finished
- // - rhs packing (n, k) has finished
- // Lhs/rhs packing can start when:
- // - all k-1 packing has finished (artificially imposed to limit amount of
- // parallel packing)
- //
- // On top of that we limit runnable tasks to two consecutive k slices.
- // This is done to limit amount of memory we need for packed lhs/rhs
- // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
- //
- // state_switch_ tracks when we are ready to switch to the next k slice.
- // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
- // These variable are rolling over 3 consecutive k slices: first two we are
- // actively executing + one to track completion of kernels in the second
- // slice.
- static const Index P = 3;
- void* packed_mem_;
- std::vector<LhsScalar*> packed_lhs_[P - 1];
- std::vector<RhsScalar*> packed_rhs_[P - 1];
- std::atomic<uint8_t>** state_kernel_[P];
- // state_switch_ is frequently modified by worker threads, while other
- // fields are read-only after constructor. Let's move it to a separate cache
- // line to reduce cache-coherency traffic.
- char pad_[128];
- std::atomic<Index> state_packing_ready_[P];
- std::atomic<Index> state_switch_[P];
-
- void pack_lhs(Index m, Index k) {
- const Index mend = m * gm_ + gm(m);
- for (Index m1 = m * gm_; m1 < mend; m1++)
- LhsPacker()(packed_lhs_[k % (P - 1)][m1],
- lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
-
- if (!parallel_pack_ && shard_by_col_) {
- signal_packing(k);
- } else {
- signal_switch(k + 1);
- for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
- }
- }
-
- void pack_rhs(Index n, Index k) {
- const Index nend = n * gn_ + gn(n);
- for (Index n1 = n * gn_; n1 < nend; n1++) {
- if (k == 0) {
- // Zero the output memory in parallel.
- // On 10000x2x10000 mm zeroing can easily take half of time.
- // Zero (bn x m) row. Safe to do here because all kernels that will
- // write to this memory depend on completion of this task.
- // Note: don't call device_.memset() here. device_.memset() blocks on
- // thread pool worker thread, which can lead to underutilization and
- // deadlocks.
- memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
- }
- RhsPacker()(packed_rhs_[k % (P - 1)][n1],
- rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
- }
-
- if (parallel_pack_ || shard_by_col_) {
- signal_switch(k + 1);
- for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
- } else {
- signal_packing(k);
- }
- }
-
- void kernel(Index m, Index n, Index k) {
- // Note: order of iteration matters here. Iteration over m is innermost
- // because we want to reuse the same packed rhs in consequetive tasks
- // (rhs fits into L2$ while lhs only into L3$).
- const Index nend = n * gn_ + gn(n);
- const Index mend = m * gm_ + gm(m);
- if (shard_by_col_) {
- for (Index n1 = n * gn_; n1 < nend; n1++) {
- for (Index m1 = m * gm_; m1 < mend; m1++)
- GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
- packed_lhs_[k % (P - 1)][m1],
- packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
- Scalar(1), -1, -1, 0, 0);
- }
- } else {
- for (Index m1 = m * gm_; m1 < mend; m1++)
- for (Index n1 = n * gn_; n1 < nend; n1++) {
- GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
- packed_lhs_[k % (P - 1)][m1],
- packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
- Scalar(1), -1, -1, 0, 0);
- }
- }
- signal_kernel(m, n, k + 1, false);
- signal_switch(k + 2);
- }
-
- void signal_packing(Index k) {
- eigen_assert(!parallel_pack_);
- Index s = state_packing_ready_[k % P].fetch_sub(1);
- eigen_assert(s > 0);
- if (s != 1) return;
- state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
- enqueue_packing(k, shard_by_col_);
- }
-
- void signal_kernel(Index m, Index n, Index k, bool sync) {
- std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
- Index s = state->load();
- eigen_assert(s > 0);
- if (s != 1 && state->fetch_sub(1) != 1) return;
- state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
- if (sync)
- kernel(m, n, k);
- else
- device_.enqueueNoNotification([=]() { kernel(m, n, k); });
- }
-
- void signal_switch(Index k, Index v = 1) {
- Index s = state_switch_[k % P].fetch_sub(v);
- eigen_assert(s >= v);
- if (s != v) return;
-
- // Ready to switch to the next k slice.
- // Reset counter for the next iteration.
- state_switch_[k % P] =
- (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
- nm_ * nn_;
- if (k < nk_) {
- // Issue lhs/rhs packing. Their completion will in turn kick off
- // kernels.
- if (parallel_pack_) {
- enqueue_packing(k, !shard_by_col_);
- enqueue_packing(k, shard_by_col_);
- } else if (shard_by_col_) {
- enqueue_packing(k, false);
- } else {
- enqueue_packing(k, true);
- }
-
- // Termination handling.
- // Because kernel completion signals k + 2 switch, we need to finish nk
- // + 2 slices without issuing any tasks on nk + 1 slice. So here we
- // pretend that all nk + 1 packing tasks just finish instantly; so that
- // nk + 2 switch only waits for completion of nk kernels.
- } else if (k == nk_) {
- signal_switch(k + 1,
- parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
- } else {
- done_.Notify();
- }
- }
-
- // Enqueue all rhs/lhs packing for k-th slice.
- void enqueue_packing(Index k, bool rhs) {
- enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
- }
-
- void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
- if (end - start == 1) {
- if (rhs)
- pack_rhs(start, k);
- else
- pack_lhs(start, k);
- } else {
- Index mid = (start + end) / 2;
- device_.enqueueNoNotification(
- [=]() { enqueue_packing_helper(mid, end, k, rhs); });
- device_.enqueueNoNotification(
- [=]() { enqueue_packing_helper(start, mid, k, rhs); });
- }
- }
-
- // Block sizes with accounting for potentially incomplete last block.
- Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
- Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
- Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
- // Task grain sizes accounting for potentially incomplete last task.
- Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
- Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
-
- Context(const Context&) = delete;
- void operator=(const Context&) = delete;
- };
-
- // Decide whether we want to shard m x n contraction by columns or by rows.
- static bool shardByCol(Index m, Index n, Index num_threads) {
- // Note: we are comparing both n and m against Traits::nr, it is not
- // a mistake. We are trying to figure out how both n and m will fit into
- // the main sharding dimension.
-
- // Sharding by column is the default
- // ... unless there is enough data for vectorization over rows
- if (m / num_threads >= Traits::nr &&
- // and not enough data for vectorization over columns
- (n / num_threads < Traits::nr ||
- // ... or barely enough data for vectorization over columns,
- // but it is not evenly dividable across threads
- (n / num_threads < 4 * Traits::nr &&
- (n % (num_threads * Traits::nr)) != 0 &&
- // ... and it is evenly dividable across threads for rows
- ((m % (num_threads * Traits::nr)) == 0 ||
- // .. or it is not evenly dividable for both dimensions but
- // there is much more data over rows so that corner effects are
- // mitigated.
- (m / n >= 6)))))
- return false;
- // Wait, or if matrices are just substantially prolonged over the other
- // dimension.
- if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
- return true;
- }
-
- Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
- int num_threads, bool shard_by_col) const {
- Index gm = 1;
- Index gm1 = 1;
- Index nm0 = divup(m, bm);
- Index nm1 = nm0;
- for (;;) {
- // Find the next candidate for m grain size. It needs to result in
- // different number of blocks. E.g. if we have 10 kernels, we want to try
- // 5 and 10, but not 6, 7, 8 and 9.
- while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
- if (gm1 > nm0) break;
- // Check the candidate.
- int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
- shard_by_col);
- if (res < 0) break;
- nm1 = divup(nm0, gm1);
- if (res == 0) continue;
- // Commit new grain size.
- gm = gm1;
- }
- return gm;
- }
-
- Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
- int num_threads, bool shard_by_col) const {
- Index gn = 1;
- Index gn1 = 1;
- Index nn0 = divup(n, bn);
- Index nn1 = nn0;
- for (;;) {
- while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
- if (gn1 > nn0) break;
- int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
- shard_by_col);
- if (res < 0) break;
- nn1 = divup(nn0, gn1);
- if (res == 0) continue;
- gn = gn1;
- }
- return gn;
- }
-
- // checkGrain checks whether grain (gm, gn) is suitable and is better than
- // (oldgm, oldgn).
- int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
- Index gn, Index oldgm, Index oldgn, int num_threads,
- bool shard_by_col) const {
- const TensorOpCost cost =
- contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
- double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
- static_cast<double>(bm) * gm * bn * gn, cost);
- // If the task is too small, then we agree on it regardless of anything
- // else. Otherwise synchronization overheads will dominate.
- if (taskSize < 1) return 1;
- // If it is too large, then we reject it and all larger tasks.
- if (taskSize > 2) return -1;
- // Now we are in presumably good task size range.
- // The main deciding factor here is parallelism. Consider that we have 12
- // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
- // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
- // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
- // us parallelism of 1 (we can load all cores).
- Index nm0 = divup(m, bm);
- Index nn0 = divup(n, bn);
- Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
- double new_parallelism = static_cast<double>(new_tasks) /
- (divup<int>(new_tasks, num_threads) * num_threads);
- Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
- double old_parallelism = static_cast<double>(old_tasks) /
- (divup<int>(old_tasks, num_threads) * num_threads);
- if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
- return 0;
- }
-
-#else // EIGEN_USE_SIMPLE_THREAD_POOL
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- void evalProduct(Scalar* buffer) const {
- if (this->m_j_size == 1) {
- this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
- return;
- }
-
- evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
- }
-
- template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
- void evalGemm(Scalar* buffer) const {
- // columns in left side, rows in right side
- const Index k = this->m_k_size;
-
- // rows in left side
- const Index m = this->m_i_size;
-
- // columns in right side
- const Index n = this->m_j_size;
-
- // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
- this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
-
-
- const int lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
- const int rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
-
- typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
- LeftEvaluator, left_nocontract_t,
- contract_t, lhs_packet_size,
- lhs_inner_dim_contiguous,
- false, Unaligned> LhsMapper;
-
- typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
- RightEvaluator, right_nocontract_t,
- contract_t, rhs_packet_size,
- rhs_inner_dim_contiguous,
- rhs_inner_dim_reordered, Unaligned> RhsMapper;
-
- typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
-
- // TODO: packing could be faster sometimes if we supported row major tensor mappers
- typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
- Traits::LhsProgress, ColMajor> LhsPacker;
- typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
-
- // TODO: replace false, false with conjugate values?
- typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
- Traits::mr, Traits::nr, false, false> GebpKernel;
-
- typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
- typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
-
- // initialize data mappers
- LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
- this->m_left_contracting_strides, this->m_k_strides);
-
- RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
- this->m_right_contracting_strides, this->m_k_strides);
-
- OutputMapper output(buffer, m);
-
- // compute block sizes (which depend on number of threads)
- const Index num_threads = this->m_device.numThreads();
- internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads);
- Index mc = blocking.mc();
- Index nc = blocking.nc();
- Index kc = blocking.kc();
- eigen_assert(mc <= m);
- eigen_assert(nc <= n);
- eigen_assert(kc <= k);
-
-#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
- const Index k_blocks = CEIL_DIV(k, kc);
- const Index n_blocks = CEIL_DIV(n, nc);
- const Index m_blocks = CEIL_DIV(m, mc);
- const Index sizeA = mc * kc;
- const Index sizeB = kc * nc;
-
- /* cout << "m: " << m << " n: " << n << " k: " << k << endl;
- cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
- cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
- cout << "num threads: " << num_threads << endl;
- */
-
- // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
- // aren't 16 byte aligned segfaults will happen due to SIMD instructions
- // note: You can get away with allocating just a single blockA and offsets and meet the
- // the alignment requirements with the assumption that
- // (Traits::mr * sizeof(ResScalar)) % 16 == 0
- const Index numBlockAs = numext::mini(num_threads, m_blocks);
- MaxSizeVector<LhsScalar *> blockAs(num_threads);
- for (int i = 0; i < num_threads; i++) {
- blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
- }
-
- // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
- // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
- // Other options: (1) reuse memory when a thread finishes. con: tricky
- // (2) allocate block B memory in each thread. con: overhead
- MaxSizeVector<RhsScalar *> blockBs(n_blocks);
- for (int i = 0; i < n_blocks; i++) {
- blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
- }
-
- // lhs_notifications starts with all null Notifications
- MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr);
-
- // this should really be numBlockAs * n_blocks;
- const Index num_kernel_notifications = num_threads * n_blocks;
- MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications,
- nullptr);
-
- for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
- const Index k_start = k_block_idx * kc;
- // make sure we don't overshoot right edge of left matrix
- const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
-
- for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
- const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
-
- for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
- const Index m_start = mt_block_idx * mc;
- const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
- eigen_assert(actual_mc > 0);
-
- Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
-
- for (int i = 0; i < n_blocks; ++i) {
- Index notification_id = (blockAId * n_blocks + i);
- // Wait for any current kernels using this slot to complete
- // before using it.
- if (kernel_notifications[notification_id]) {
- wait_until_ready(kernel_notifications[notification_id]);
- delete kernel_notifications[notification_id];
- }
- kernel_notifications[notification_id] = new Notification();
- }
- const packLArg arg = {
- blockAs[blockAId], // blockA
- lhs, // lhs
- m_start, // m
- k_start, // k
- actual_mc, // mc
- actual_kc, // kc
- };
-
- // Delete any existing notification since we may be
- // replacing it. The algorithm should ensure that there are
- // no existing waiters on this notification.
- delete lhs_notifications[blockAId];
- lhs_notifications[blockAId] =
- this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
- }
-
- // now start kernels.
- const Index m_base_start = m_block_idx * mc;
- const bool need_to_pack = m_block_idx == 0;
-
- for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
- const Index n_start = n_block_idx * nc;
- const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
-
- // first make sure the previous kernels are all done before overwriting rhs. Also wait if
- // we're going to start new k. In both cases need_to_pack is true.
- if (need_to_pack) {
- for (Index i = num_blocks; i < num_threads; ++i) {
- Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
- Index future_id = (blockAId * n_blocks + n_block_idx);
- wait_until_ready(kernel_notifications[future_id]);
- }
- }
-
- packRKArg arg = {
- &blockAs, // blockA
- blockBs[n_block_idx], // blockB
- rhs, // rhs
- output, // output
- m_base_start, // m
- k_start, // k
- n_start, // n
- mc, // mc
- actual_kc, // kc
- actual_nc, // nc
- num_threads,
- numBlockAs,
- m,
- k_block_idx,
- m_block_idx,
- n_block_idx, // n_block_idx
- m_blocks, // m_blocks
- n_blocks, // n_blocks
- &kernel_notifications, // kernel notifications
- &lhs_notifications, // lhs notifications
- need_to_pack, // need_to_pack
- };
-
- // We asynchronously kick off this function, which ends up
- // notifying the appropriate kernel_notifications objects,
- // which this thread waits on before exiting.
- this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
- }
- }
- }
-
- // Make sure all the kernels are done.
- for (size_t i = 0; i < kernel_notifications.size(); ++i) {
- wait_until_ready(kernel_notifications[i]);
- delete kernel_notifications[i];
- }
-
- // No need to wait for lhs notifications since they should have
- // already been waited on. Just clean them up.
- for (size_t i = 0; i < lhs_notifications.size(); ++i) {
- delete lhs_notifications[i];
- }
-
- // deallocate all of the memory for both A and B's
- for (size_t i = 0; i < blockAs.size(); i++) {
- this->m_device.deallocate(blockAs[i]);
- }
- for (size_t i = 0; i < blockBs.size(); i++) {
- this->m_device.deallocate(blockBs[i]);
- }
-
-#undef CEIL_DIV
- }
-
- /*
- * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
- * the LHS block, check that all of the kernels that worked on the same
- * mt_block_idx in the previous m_block are done.
- */
- template <typename packLArg, typename LhsPacker>
- static void packLhs(const packLArg arg) {
- // perform actual packing
- LhsPacker pack_lhs;
- pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
- }
-
- /*
- * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
- * all kernels in the previous block are done.
- * Then for each LHS future, we wait on the future and then call GEBP
- * on the area packed by the future (which starts at
- * blockA + future_idx * mt * kc) on the LHS and with the full packed
- * RHS block.
- * The output of this GEBP is written to output(m + i * mt, n).
- */
- template <typename packRKArg, typename RhsPacker, typename GebpKernel>
- static void packRhsAndKernel(packRKArg arg) {
- if (arg.need_to_pack) {
- RhsPacker pack_rhs;
- pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
- }
-
- GebpKernel gebp;
- for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
- const Index m_base_start = arg.m + arg.mc*mt_block_idx;
- if (m_base_start < arg.max_m) {
- Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
- wait_until_ready((*arg.lhs_notifications)[blockAId]);
- const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
- gebp(arg.output.getSubMapper(m_base_start, arg.n),
- (*arg.blockAs)[blockAId], arg.blockB,
- actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0);
-
- // Notify that the kernel is done.
- const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
- (*arg.kernel_notifications)[set_idx]->Notify();
- }
- }
- }
-#endif // EIGEN_USE_SIMPLE_THREAD_POOL
-
- TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
- bool shard_by_col, bool prepacked) const {
- const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
- PacketType<RhsScalar, Device>::size);
- const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
- const double kd = static_cast<double>(bk);
- // Peak VFMA bandwidth is 0.5. However if we have not enough data for
- // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
- // experimentally.
- double computeBandwidth = bk == 1 ? 4.0 :
- (shard_by_col ? bn : bm) < Traits::nr ||
- (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
-#ifndef EIGEN_VECTORIZE_FMA
- // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
- // However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
- // so overall bandwidth is 1.0.
- if (computeBandwidth == 0.5) computeBandwidth = 1.0;
-#endif
- // Computations.
- TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
- // Output stores.
- cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
- if (prepacked) {
- // Packing and kernels are executed in different tasks. When we calculate
- // task grain size we look only at kernel cost assuming that kernel
- // is more expensive than packing.
- return cost;
- }
- // Lhs/rhs loads + computations.
- TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
- TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
- // Lhs packing memory cost does not contribute considerably to overall
- // execution time because lhs is prefetched early and accessed sequentially.
- if (shard_by_col)
- lhsCost.dropMemoryCost();
- else
- rhsCost.dropMemoryCost();
- return cost + lhsCost + rhsCost;
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_USE_THREADS
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h
deleted file mode 100644
index 860a694..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h
+++ /dev/null
@@ -1,279 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
-
-namespace Eigen {
-
-/** \class TensorConversionOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor conversion class. This class makes it possible to vectorize
- * type casting operations when the number of scalars per packet in the source
- * and the destination type differ
- */
-namespace internal {
-template<typename TargetType, typename XprType>
-struct traits<TensorConversionOp<TargetType, XprType> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef TargetType Scalar;
- typedef typename traits<XprType>::StorageKind StorageKind;
- typedef typename traits<XprType>::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = traits<XprType>::NumDimensions;
- static const int Layout = traits<XprType>::Layout;
- enum { Flags = 0 };
-};
-
-template<typename TargetType, typename XprType>
-struct eval<TensorConversionOp<TargetType, XprType>, Eigen::Dense>
-{
- typedef const TensorConversionOp<TargetType, XprType>& type;
-};
-
-template<typename TargetType, typename XprType>
-struct nested<TensorConversionOp<TargetType, XprType>, 1, typename eval<TensorConversionOp<TargetType, XprType> >::type>
-{
- typedef TensorConversionOp<TargetType, XprType> type;
-};
-
-} // end namespace internal
-
-
-template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
-struct PacketConverter {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketConverter(const TensorEvaluator& impl)
- : m_impl(impl) {}
-
- template<int LoadMode, typename Index>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
- return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index));
- }
-
- private:
- const TensorEvaluator& m_impl;
-};
-
-
-template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
-struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketConverter(const TensorEvaluator& impl)
- : m_impl(impl) {}
-
- template<int LoadMode, typename Index>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
- const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
-
- SrcPacket src1 = m_impl.template packet<LoadMode>(index);
- SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize);
- TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2);
- return result;
- }
-
- private:
- const TensorEvaluator& m_impl;
-};
-
-template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
-struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketConverter(const TensorEvaluator& impl)
- : m_impl(impl) {}
-
- template<int LoadMode, typename Index>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
- const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
-
- SrcPacket src1 = m_impl.template packet<LoadMode>(index);
- SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize);
- SrcPacket src3 = m_impl.template packet<LoadMode>(index + 2 * SrcPacketSize);
- SrcPacket src4 = m_impl.template packet<LoadMode>(index + 3 * SrcPacketSize);
- TgtPacket result = internal::pcast<SrcPacket, TgtPacket>(src1, src2, src3, src4);
- return result;
- }
-
- private:
- const TensorEvaluator& m_impl;
-};
-
-template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
-struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 1, 2> {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketConverter(const TensorEvaluator& impl)
- : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {}
-
- template<int LoadMode, typename Index>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const {
- const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
- // Only call m_impl.packet() when we have direct access to the underlying data. This
- // ensures that we don't compute the subexpression twice. We may however load some
- // coefficients twice, but in practice this doesn't negatively impact performance.
- if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) {
- // Force unaligned memory loads since we can't ensure alignment anymore
- return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<Unaligned>(index));
- } else {
- const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
- typedef typename internal::unpacket_traits<SrcPacket>::type SrcType;
- typedef typename internal::unpacket_traits<TgtPacket>::type TgtType;
- internal::scalar_cast_op<SrcType, TgtType> converter;
- EIGEN_ALIGN_MAX typename internal::unpacket_traits<TgtPacket>::type values[TgtPacketSize];
- for (int i = 0; i < TgtPacketSize; ++i) {
- values[i] = converter(m_impl.coeff(index+i));
- }
- TgtPacket rslt = internal::pload<TgtPacket>(values);
- return rslt;
- }
- }
-
- private:
- const TensorEvaluator& m_impl;
- const typename TensorEvaluator::Index m_maxIndex;
-};
-
-template<typename TargetType, typename XprType>
-class TensorConversionOp : public TensorBase<TensorConversionOp<TargetType, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename internal::traits<TensorConversionOp>::Scalar Scalar;
- typedef typename internal::traits<TensorConversionOp>::StorageKind StorageKind;
- typedef typename internal::traits<TensorConversionOp>::Index Index;
- typedef typename internal::nested<TensorConversionOp>::type Nested;
- typedef Scalar CoeffReturnType;
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr)
- : m_xpr(xpr) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
-};
-
-template <bool SameType, typename Eval, typename Scalar> struct ConversionSubExprEval {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar*) {
- impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-};
-
-template <typename Eval, typename Scalar> struct ConversionSubExprEval<true, Eval, Scalar> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Eval& impl, Scalar* data) {
- return impl.evalSubExprsIfNeeded(data);
- }
-};
-
-
-// Eval as rvalue
-template<typename TargetType, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device>
-{
- typedef TensorConversionOp<TargetType, ArgType> XprType;
- typedef typename XprType::Index Index;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
- typedef TargetType Scalar;
- typedef TargetType CoeffReturnType;
- typedef typename internal::remove_all<typename internal::traits<ArgType>::Scalar>::type SrcType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename PacketType<SrcType, Device>::type PacketSourceType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = true,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data)
- {
- return ConversionSubExprEval<internal::is_same<TargetType, SrcType>::value, TensorEvaluator<ArgType, Device>, Scalar>::run(m_impl, data);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup()
- {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- internal::scalar_cast_op<SrcType, TargetType> converter;
- return converter(m_impl.coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- const bool Vectorizable = TensorEvaluator<ArgType, Device>::PacketAccess &
- internal::type_casting_traits<SrcType, TargetType>::VectorizedCast;
- return PacketConv<LoadMode, Vectorizable>::run(m_impl, index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double cast_cost = TensorOpCost::CastCost<SrcType, TargetType>();
- if (vectorized) {
- const double SrcCoeffRatio =
- internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio;
- const double TgtCoeffRatio =
- internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio;
- return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) +
- TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize));
- } else {
- return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost);
- }
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- template <int LoadMode, bool ActuallyVectorize>
- struct PacketConv {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) {
- internal::scalar_cast_op<SrcType, TargetType> converter;
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = converter(impl.coeff(index+i));
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- };
-
- template <int LoadMode>
- struct PacketConv<LoadMode, true> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType run(const TensorEvaluator<ArgType, Device>& impl, Index index) {
- const int SrcCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::SrcCoeffRatio;
- const int TgtCoeffRatio = internal::type_casting_traits<SrcType, TargetType>::TgtCoeffRatio;
- PacketConverter<TensorEvaluator<ArgType, Device>, PacketSourceType, PacketReturnType,
- SrcCoeffRatio, TgtCoeffRatio> converter(impl);
- return converter.template packet<LoadMode>(index);
- }
- };
-
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
deleted file mode 100644
index abdf742..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
+++ /dev/null
@@ -1,1104 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
-
-namespace Eigen {
-
-/** \class TensorConvolution
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor convolution class.
- *
- *
- */
-namespace internal {
-
-template <typename Index, typename InputDims, int NumKernelDims, int Layout>
-class IndexMapper {
- public:
- IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
- const array<Index, NumKernelDims>& indices) {
-
- array<Index, NumDims> dimensions = input_dims;
- for (int i = 0; i < NumKernelDims; ++i) {
- const Index index = indices[i];
- const Index input_dim = input_dims[index];
- const Index kernel_dim = kernel_dims[i];
- const Index result_dim = input_dim - kernel_dim + 1;
- dimensions[index] = result_dim;
- }
-
- array<Index, NumDims> inputStrides;
- array<Index, NumDims> outputStrides;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- inputStrides[0] = 1;
- outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
- outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
- }
- } else {
- inputStrides[NumDims - 1] = 1;
- outputStrides[NumDims - 1] = 1;
- for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) {
- inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
- outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1];
- }
- }
-
- array<Index, NumDims> cudaInputDimensions;
- array<Index, NumDims> cudaOutputDimensions;
- array<Index, NumDims> tmp = dimensions;
- array<Index, NumDims> ordering;
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- for (int i = 0; i < NumKernelDims; ++i) {
- const Index index = i + offset;
- ordering[index] = indices[i];
- tmp[indices[i]] = -1;
- cudaInputDimensions[index] = input_dims[indices[i]];
- cudaOutputDimensions[index] = dimensions[indices[i]];
- }
-
- int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? NumKernelDims
- : 0;
- for (int i = 0; i < NumDims; ++i) {
- if (tmp[i] >= 0) {
- ordering[written] = i;
- cudaInputDimensions[written] = input_dims[i];
- cudaOutputDimensions[written] = dimensions[i];
- ++written;
- }
- }
-
- for (int i = 0; i < NumDims; ++i) {
- m_inputStrides[i] = inputStrides[ordering[i]];
- m_outputStrides[i] = outputStrides[ordering[i]];
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumDims; ++i) {
- if (i > NumKernelDims) {
- m_cudaInputStrides[i] =
- m_cudaInputStrides[i - 1] * cudaInputDimensions[i - 1];
- m_cudaOutputStrides[i] =
- m_cudaOutputStrides[i - 1] * cudaOutputDimensions[i - 1];
- } else {
- m_cudaInputStrides[i] = 1;
- m_cudaOutputStrides[i] = 1;
- }
- }
- } else {
- for (int i = NumDims - 1; i >= 0; --i) {
- if (i + 1 < offset) {
- m_cudaInputStrides[i] =
- m_cudaInputStrides[i + 1] * cudaInputDimensions[i + 1];
- m_cudaOutputStrides[i] =
- m_cudaOutputStrides[i + 1] * cudaOutputDimensions[i + 1];
- } else {
- m_cudaInputStrides[i] = 1;
- m_cudaOutputStrides[i] = 1;
- }
- }
- }
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const {
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
- const Index idx = p / m_cudaInputStrides[d];
- inputIndex += idx * m_inputStrides[d];
- p -= idx * m_cudaInputStrides[d];
- }
- inputIndex += p * m_inputStrides[NumKernelDims];
- } else {
- std::ptrdiff_t limit = 0;
- if (NumKernelDims < NumDims) {
- limit = NumDims - NumKernelDims - 1;
- }
- for (int d = 0; d < limit; ++d) {
- const Index idx = p / m_cudaInputStrides[d];
- inputIndex += idx * m_inputStrides[d];
- p -= idx * m_cudaInputStrides[d];
- }
- inputIndex += p * m_inputStrides[limit];
- }
- return inputIndex;
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const {
- Index outputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
- const Index idx = p / m_cudaOutputStrides[d];
- outputIndex += idx * m_outputStrides[d];
- p -= idx * m_cudaOutputStrides[d];
- }
- outputIndex += p * m_outputStrides[NumKernelDims];
- } else {
- std::ptrdiff_t limit = 0;
- if (NumKernelDims < NumDims) {
- limit = NumDims - NumKernelDims - 1;
- }
- for (int d = 0; d < limit; ++d) {
- const Index idx = p / m_cudaOutputStrides[d];
- outputIndex += idx * m_outputStrides[d];
- p -= idx * m_cudaOutputStrides[d];
- }
- outputIndex += p * m_outputStrides[limit];
- }
- return outputIndex;
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_inputStrides[offset];
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_outputStrides[offset];
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] +
- k * m_inputStrides[offset + 2];
- }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : NumDims - NumKernelDims;
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] +
- k * m_outputStrides[offset + 2];
- }
-
- private:
- static const int NumDims = internal::array_size<InputDims>::value;
- array<Index, NumDims> m_inputStrides;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_cudaInputStrides;
- array<Index, NumDims> m_cudaOutputStrides;
-};
-
-
-
-template<typename Dimensions, typename InputXprType, typename KernelXprType>
-struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef typename promote_storage_type<typename InputXprType::Scalar,
- typename KernelXprType::Scalar>::ret Scalar;
- typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
- typename traits<KernelXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<InputXprType>::Index,
- typename traits<KernelXprType>::Index>::type Index;
- typedef typename InputXprType::Nested LhsNested;
- typedef typename KernelXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- static const int NumDimensions = traits<InputXprType>::NumDimensions;
- static const int Layout = traits<InputXprType>::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-template<typename Dimensions, typename InputXprType, typename KernelXprType>
-struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
-{
- typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
-};
-
-template<typename Dimensions, typename InputXprType, typename KernelXprType>
-struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
-{
- typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename Indices, typename InputXprType, typename KernelXprType>
-class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
- typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
- : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Indices& indices() const { return m_indices; }
-
- /** \returns the nested expressions */
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const typename internal::remove_all<typename InputXprType::Nested>::type&
- inputExpression() const { return m_input_xpr; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const typename internal::remove_all<typename KernelXprType::Nested>::type&
- kernelExpression() const { return m_kernel_xpr; }
-
- protected:
- typename InputXprType::Nested m_input_xpr;
- typename KernelXprType::Nested m_kernel_xpr;
- const Indices m_indices;
-};
-
-
-template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
-struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
-{
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
-
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
- static const int NumKernelDims = internal::array_size<Indices>::value;
- typedef typename XprType::Index Index;
- typedef DSizes<Index, NumDims> Dimensions;
-
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<InputArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
- const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputStride[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1];
- }
- } else {
- m_inputStride[NumDims - 1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1];
- }
- }
-
- m_dimensions = m_inputImpl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumKernelDims; ++i) {
- const Index index = op.indices()[i];
- const Index input_dim = input_dims[index];
- const Index kernel_dim = kernel_dims[i];
- const Index result_dim = input_dim - kernel_dim + 1;
- m_dimensions[index] = result_dim;
- if (i > 0) {
- m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1];
- } else {
- m_kernelStride[0] = 1;
- }
- m_indexStride[i] = m_inputStride[index];
- }
-
- m_outputStride[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1];
- }
- } else {
- for (int i = NumKernelDims - 1; i >= 0; --i) {
- const Index index = op.indices()[i];
- const Index input_dim = input_dims[index];
- const Index kernel_dim = kernel_dims[i];
- const Index result_dim = input_dim - kernel_dim + 1;
- m_dimensions[index] = result_dim;
- if (i < NumKernelDims - 1) {
- m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1];
- } else {
- m_kernelStride[NumKernelDims - 1] = 1;
- }
- m_indexStride[i] = m_inputStride[index];
- }
-
- m_outputStride[NumDims - 1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- m_inputImpl.evalSubExprsIfNeeded(NULL);
- preloadKernel();
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_inputImpl.cleanup();
- if (m_local_kernel) {
- m_device.deallocate((void*)m_kernel);
- m_local_kernel = false;
- }
- m_kernel = NULL;
- }
-
- void evalTo(typename XprType::Scalar* buffer) {
- evalSubExprsIfNeeded(NULL);
- for (int i = 0; i < dimensions().TotalSize(); ++i) {
- buffer[i] += coeff(i);
- }
- cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- CoeffReturnType result = CoeffReturnType(0);
- convolve(firstInput(index), 0, NumKernelDims-1, result);
- return result;
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
- {
- Index indices[2] = {index, index+PacketSize-1};
- Index startInputs[2] = {0, 0};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx0 = indices[0] / m_outputStride[i];
- const Index idx1 = indices[1] / m_outputStride[i];
- startInputs[0] += idx0 * m_inputStride[i];
- startInputs[1] += idx1 * m_inputStride[i];
- indices[0] -= idx0 * m_outputStride[i];
- indices[1] -= idx1 * m_outputStride[i];
- }
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx0 = indices[0] / m_outputStride[i];
- const Index idx1 = indices[1] / m_outputStride[i];
- startInputs[0] += idx0 * m_inputStride[i];
- startInputs[1] += idx1 * m_inputStride[i];
- indices[0] -= idx0 * m_outputStride[i];
- indices[1] -= idx1 * m_outputStride[i];
- }
- }
- startInputs[0] += indices[0];
- startInputs[1] += indices[1];
-
- if (startInputs[1]-startInputs[0] == PacketSize-1) {
- PacketReturnType result = internal::pset1<PacketReturnType>(0);
- convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
- return result;
- } else {
- EIGEN_ALIGN_MAX Scalar data[PacketSize];
- data[0] = Scalar(0);
- convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
- for (int i = 1; i < PacketSize-1; ++i) {
- data[i] = Scalar(0);
- convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
- }
- data[PacketSize-1] = Scalar(0);
- convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
- return internal::pload<PacketReturnType>(data);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
- // We ignore the use of fused multiply-add.
- const double convolve_compute_cost =
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
- const double firstIndex_compute_cost =
- NumDims *
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>());
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
- m_kernelImpl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
- PacketSize));
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- private:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
- Index startInput = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStride[i];
- startInput += idx * m_inputStride[i];
- index -= idx * m_outputStride[i];
- }
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStride[i];
- startInput += idx * m_inputStride[i];
- index -= idx * m_outputStride[i];
- }
- }
- startInput += index;
- return startInput;
- }
-
- EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
- const Index input = firstIndex + j * m_indexStride[DimIndex];
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
- if (DimIndex > 0) {
- convolve(input, kernel, DimIndex-1, accum);
- } else {
- accum += m_inputImpl.coeff(input) * m_kernel[kernel];
- }
- }
- }
-
- template <typename Packet>
- EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
- const Index input = firstIndex + j * m_indexStride[DimIndex];
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
- if (DimIndex > 0) {
- convolvePacket(input, kernel, DimIndex-1, accum);
- } else {
- accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
- // expression that needs to be evaluated)
- const Scalar* in_place = m_kernelImpl.data();
- if (in_place) {
- m_kernel = in_place;
- m_local_kernel = false;
- } else {
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
- Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
- EvalTo evalToTmp(local, m_kernelArg);
- const bool PacketAccess = internal::IsVectorizable<Device, KernelArgType>::value;
- internal::TensorExecutor<const EvalTo, Device, PacketAccess>::run(evalToTmp, m_device);
-
- m_kernel = local;
- m_local_kernel = true;
- }
- }
-
- array<Index, NumDims> m_inputStride;
- array<Index, NumDims> m_outputStride;
-
- array<Index, NumKernelDims> m_indexStride;
- array<Index, NumKernelDims> m_kernelStride;
- TensorEvaluator<InputArgType, Device> m_inputImpl;
- TensorEvaluator<KernelArgType, Device> m_kernelImpl;
- Dimensions m_dimensions;
-
- KernelArgType m_kernelArg;
- const Scalar* m_kernel;
- bool m_local_kernel;
- const Device& m_device;
-};
-
-
-
-
-// Use an optimized implementation of the evaluation code for GPUs whenever possible.
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
-
-template <int StaticKernelSize>
-struct GetKernelSize {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
- return StaticKernelSize;
- }
-};
-template <>
-struct GetKernelSize<Dynamic> {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
- return kernelSize;
- }
-};
-
-template <typename InputEvaluator, typename Index, typename InputDims,
- int StaticKernelSize>
-__global__ void EigenConvolutionKernel1D(
- InputEvaluator eval,
- const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout>
- indexMapper,
- const float* __restrict kernel, const int numPlanes, const int numX,
- const int maxX, const int kernelSize, float* buffer) {
- extern __shared__ float s[];
-
- const int first_x = blockIdx.x * maxX;
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
- const int num_x_output = last_x - first_x + 1;
-
- const int first_plane = blockIdx.y * blockDim.y;
- const int plane_stride = blockDim.y * gridDim.y;
-
- for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
- // Load inputs to shared memory
- const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
- const int plane_kernel_offset = threadIdx.y * num_x_input;
- #pragma unroll
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
- const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x);
- s[i + plane_kernel_offset] = eval.coeff(tensor_index);
- }
-
- __syncthreads();
-
- // Compute the convolution
- const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
-
- #pragma unroll
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
- const int kernel_offset = plane_kernel_offset + i;
- float result = 0.0f;
- #pragma unroll
- for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
- result += s[k + kernel_offset] * kernel[k];
- }
- const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x);
- buffer[tensor_index] = result;
- }
- __syncthreads();
- }
-};
-
-template <typename InputEvaluator, typename Index, typename InputDims,
- int StaticKernelSizeX, int StaticKernelSizeY>
-__global__ void EigenConvolutionKernel2D(
- InputEvaluator eval,
- const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout>
- indexMapper,
- const float* __restrict kernel, const int numPlanes, const int numX,
- const int maxX, const int numY, const int maxY, const int kernelSizeX,
- const int kernelSizeY, float* buffer) {
- extern __shared__ float s[];
-
- const int first_x = blockIdx.x * maxX;
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
- const int num_x_output = last_x - first_x + 1;
-
- const int first_y = blockIdx.y * maxY;
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
- const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
- const int num_y_output = last_y - first_y + 1;
-
- const int first_plane = blockIdx.z * blockDim.z;
- const int plane_stride = blockDim.z * gridDim.z;
-
- for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
-
- const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
- const int plane_kernel_offset = threadIdx.z * num_y_input;
-
- // Load inputs to shared memory
- #pragma unroll
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
- const int input_offset = num_x_input * (j + plane_kernel_offset);
- #pragma unroll
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
- const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y);
- s[i + input_offset] = eval.coeff(tensor_index);
- }
- }
-
- __syncthreads();
-
- // Convolution
- const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
-
- #pragma unroll
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
- #pragma unroll
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
- float result = 0.0f;
- #pragma unroll
- for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
- const int kernel_offset = kernelSizeX * l;
- const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
- #pragma unroll
- for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
- result += s[k + input_offset] * kernel[k + kernel_offset];
- }
- }
- const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
- buffer[tensor_index] = result;
- }
- }
-
- __syncthreads();
- }
-};
-
-template <typename InputEvaluator, typename Index, typename InputDims>
-__global__ void EigenConvolutionKernel3D(
- InputEvaluator eval,
- const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout>
- indexMapper,
- const float* __restrict kernel, const size_t numPlanes, const size_t numX,
- const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
- const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
- const size_t kernelSizeZ, float* buffer) {
- extern __shared__ float s[];
-
- // Load inputs to shared memory
- const int first_x = blockIdx.x * maxX;
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
- const int num_x_input = last_x - first_x + kernelSizeX;
-
- const int first_y = blockIdx.y * maxY;
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
- const int num_y_input = last_y - first_y + kernelSizeY;
-
- const int first_z = blockIdx.z * maxZ;
- const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
- const int num_z_input = last_z - first_z + kernelSizeZ;
-
- for (int p = 0; p < numPlanes; ++p) {
-
- const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
- const int plane_kernel_offset = 0;
-
- for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
- const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
- s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
- }
- }
- }
-
- __syncthreads();
-
- // Convolution
- const int num_z_output = last_z - first_z + 1;
- const int num_y_output = last_y - first_y + 1;
- const int num_x_output = last_x - first_x + 1;
- const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
-
- for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
- float result = 0.0f;
- for (int n = 0; n < kernelSizeZ; ++n) {
- for (int m = 0; m < kernelSizeY; ++m) {
- for (int l = 0; l < kernelSizeX; ++l) {
- result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
- }
- }
- }
- const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
- buffer[tensor_index] = result;
- }
- }
- }
- __syncthreads();
- }
-};
-
-
-
-template<typename Indices, typename InputArgType, typename KernelArgType>
-struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
-{
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
-
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
- static const int NumKernelDims = internal::array_size<Indices>::value;
- typedef typename XprType::Index Index;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
-
- enum {
- IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
- PacketAccess = false,
- Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
- : m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
- const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
-
- m_dimensions = m_inputImpl.dimensions();
- for (int i = 0; i < NumKernelDims; ++i) {
- const Index index = op.indices()[i];
- const Index input_dim = input_dims[index];
- const Index kernel_dim = kernel_dims[i];
- const Index result_dim = input_dim - kernel_dim + 1;
- m_dimensions[index] = result_dim;
- }
- }
-
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
- typedef typename InputArgType::Scalar Scalar;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
- preloadKernel();
- m_inputImpl.evalSubExprsIfNeeded(NULL);
- if (data) {
- executeEval(data);
- return false;
- } else {
- m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
- executeEval(m_buf);
- return true;
- }
- }
-
- EIGEN_STRONG_INLINE void cleanup() {
- m_inputImpl.cleanup();
- if (m_buf) {
- m_device.deallocate(m_buf);
- m_buf = NULL;
- }
- if (m_local_kernel) {
- m_device.deallocate((void*)m_kernel);
- m_local_kernel = false;
- }
- m_kernel = NULL;
- }
-
- EIGEN_STRONG_INLINE void preloadKernel() {
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
- // expression that needs to be evaluated)
- const Scalar* in_place = m_kernelImpl.data();
- if (in_place) {
- m_kernel = in_place;
- m_local_kernel = false;
- } else {
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
- Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
- EvalTo evalToTmp(local, m_kernelArg);
- const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value;
- internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device);
-
- m_kernel = local;
- m_local_kernel = true;
- }
- }
-
- static unsigned int ceil(unsigned int num, unsigned int denom) {
- const unsigned int rounded_toward_zero = num / denom;
- if (num > rounded_toward_zero * denom) {
- return rounded_toward_zero + 1;
- }
- return rounded_toward_zero;
- }
-
- void executeEval(Scalar* data) const {
- typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
-
- const int maxSharedMem = m_device.sharedMemPerBlock();
- const int maxThreadsPerBlock = m_device.maxCudaThreadsPerBlock();
- const int maxBlocksPerProcessor = m_device.maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock;
- const int numMultiProcessors = m_device.getNumCudaMultiProcessors();
- const int warpSize = 32;
-
- switch (NumKernelDims) {
- case 1: {
- const int kernel_size = m_kernelImpl.dimensions().TotalSize();
-
- const int numX = dimensions()[m_indices[0]];
- const int numP = dimensions().TotalSize() / numX;
- int maxX;
- dim3 block_size;
-
- const int single_stride_dim =
- static_cast<int>(Layout) == static_cast<int>(ColMajor)
- ? 0
- : m_inputImpl.dimensions().rank() - 1;
- if (m_indices[0] == single_stride_dim) {
- // Maximum the reuse
- const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
- maxX = numext::mini<int>(inner_dim, numX);
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
- block_size.x = numext::mini(maxThreadsPerBlock, maxX);
- block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP);
- }
- else {
- // Read as much as possible alongside the inner most dimension, that is the plane
- const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
- const int maxP = numext::mini<int>(inner_dim, numP);
- maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
-
- block_size.x = numext::mini(warpSize, maxX);
- block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP);
- }
-
- const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
- assert(shared_mem <= maxSharedMem);
-
- const int num_x_blocks = ceil(numX, maxX);
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
- const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
-
- dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y)));
-
-
- //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
-
- const array<Index, 1> indices(m_indices[0]);
- const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
- internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(
- m_inputImpl.dimensions(), kernel_dims, indices);
- switch(kernel_size) {
- case 4: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
- break;
- }
- case 7: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
- break;
- }
- default: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
- }
- }
- break;
- }
-
- case 2: {
- const int idxX =
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
- const int idxY =
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
-
- const int numX = dimensions()[m_indices[idxX]];
- const int numY = dimensions()[m_indices[idxY]];
- const int numP = dimensions().TotalSize() / (numX*numY);
-
- const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
-
- // Snap maxX to warp size
- int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
- const int maxX = numext::mini<int>(inner_dim, numX);
- const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
-
- dim3 block_size;
- block_size.x = numext::mini(1024, maxX);
- block_size.y = numext::mini<int>(1024/block_size.x, maxY);
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP);
-
- const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
- assert(shared_mem <= maxSharedMem);
-
- const int num_x_blocks = ceil(numX, maxX);
- const int num_y_blocks = ceil(numY, maxY);
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
- const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
-
- dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z)));
-
-
- //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
-
- const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]);
- const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX],
- m_kernelImpl.dimensions()[idxY]);
- internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(
- m_inputImpl.dimensions(), kernel_dims, indices);
- switch (kernel_size_x) {
- case 4: {
- switch (kernel_size_y) {
- case 7: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
- break;
- }
- default: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
- break;
- }
- }
- break;
- }
- case 7: {
- switch (kernel_size_y) {
- case 4: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
- break;
- }
- default: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
- break;
- }
- }
- break;
- }
- default: {
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
- break;
- }
- }
- break;
- }
-
- case 3: {
- const int idxX =
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
- const int idxY =
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
- const int idxZ =
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
-
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
- const int kernel_size_z = m_kernelImpl.dimensions()[idxZ];
-
- const int numX = dimensions()[m_indices[idxX]];
- const int numY = dimensions()[m_indices[idxY]];
- const int numZ = dimensions()[m_indices[idxZ]];
- const int numP = dimensions().TotalSize() / (numX*numY*numZ);
-
- const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
- const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
- const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
-
- dim3 block_size;
- block_size.x = numext::mini(32, maxX);
- block_size.y = numext::mini(32, maxY);
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ);
- dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
-
- const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
- assert(shared_mem <= maxSharedMem);
-
- //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
- const array<Index, 3> indices(m_indices[idxX], m_indices[idxY],
- m_indices[idxZ]);
- const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX],
- m_kernelImpl.dimensions()[idxY],
- m_kernelImpl.dimensions()[idxZ]);
- internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
- m_inputImpl.dimensions(), kernel_dims, indices);
-
- LAUNCH_CUDA_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
- break;
- }
-
- default: {
- EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- eigen_assert(m_buf);
- eigen_assert(index < m_dimensions.TotalSize());
- return m_buf[index];
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
- {
- eigen_assert(m_buf);
- eigen_assert(index < m_dimensions.TotalSize());
- return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
- // model.
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
- // We ignore the use of fused multiply-add.
- const double convolve_compute_cost =
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
- const double firstIndex_compute_cost =
- NumDims *
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>());
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
- m_kernelImpl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
- PacketSize));
- }
-
- private:
- // No assignment (copies are needed by the kernels)
- TensorEvaluator& operator = (const TensorEvaluator&);
-
- TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
- TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
- KernelArgType m_kernelArg;
- Indices m_indices;
- Dimensions m_dimensions;
- Scalar* m_buf;
- const Scalar* m_kernel;
- bool m_local_kernel;
-
- const GpuDevice& m_device;
-};
-#endif
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
deleted file mode 100644
index 83c449c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
+++ /dev/null
@@ -1,212 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
-#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
-
-namespace Eigen {
-
-/** \class TensorEvaluator
- * \ingroup CXX11_Tensor_Module
- *
- * \brief A cost model used to limit the number of threads used for evaluating
- * tensor expression.
- *
- */
-
-// Class storing the cost of evaluating a tensor expression in terms of the
-// estimated number of operand bytes loads, bytes stored, and compute cycles.
-class TensorOpCost {
- public:
- // TODO(rmlarsen): Fix the scalar op costs in Eigen proper. Even a simple
- // model based on minimal reciprocal throughput numbers from Intel or
- // Agner Fog's tables would be better than what is there now.
- template <typename ArgType>
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int MulCost() {
- return internal::functor_traits<
- internal::scalar_product_op<ArgType, ArgType> >::Cost;
- }
- template <typename ArgType>
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int AddCost() {
- return internal::functor_traits<internal::scalar_sum_op<ArgType> >::Cost;
- }
- template <typename ArgType>
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int DivCost() {
- return internal::functor_traits<
- internal::scalar_quotient_op<ArgType, ArgType> >::Cost;
- }
- template <typename ArgType>
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int ModCost() {
- return internal::functor_traits<internal::scalar_mod_op<ArgType> >::Cost;
- }
- template <typename SrcType, typename TargetType>
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int CastCost() {
- return internal::functor_traits<
- internal::scalar_cast_op<SrcType, TargetType> >::Cost;
- }
-
- EIGEN_DEVICE_FUNC
- TensorOpCost() : bytes_loaded_(0), bytes_stored_(0), compute_cycles_(0) {}
- EIGEN_DEVICE_FUNC
- TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles)
- : bytes_loaded_(bytes_loaded),
- bytes_stored_(bytes_stored),
- compute_cycles_(compute_cycles) {}
-
- EIGEN_DEVICE_FUNC
- TensorOpCost(double bytes_loaded, double bytes_stored, double compute_cycles,
- bool vectorized, double packet_size)
- : bytes_loaded_(bytes_loaded),
- bytes_stored_(bytes_stored),
- compute_cycles_(vectorized ? compute_cycles / packet_size
- : compute_cycles) {
- eigen_assert(bytes_loaded >= 0 && (numext::isfinite)(bytes_loaded));
- eigen_assert(bytes_stored >= 0 && (numext::isfinite)(bytes_stored));
- eigen_assert(compute_cycles >= 0 && (numext::isfinite)(compute_cycles));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_loaded() const {
- return bytes_loaded_;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double bytes_stored() const {
- return bytes_stored_;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double compute_cycles() const {
- return compute_cycles_;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double total_cost(
- double load_cost, double store_cost, double compute_cost) const {
- return load_cost * bytes_loaded_ + store_cost * bytes_stored_ +
- compute_cost * compute_cycles_;
- }
-
- // Drop memory access component. Intended for cases when memory accesses are
- // sequential or are completely masked by computations.
- EIGEN_DEVICE_FUNC void dropMemoryCost() {
- bytes_loaded_ = 0;
- bytes_stored_ = 0;
- }
-
- // TODO(rmlarsen): Define min in terms of total cost, not elementwise.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMin(
- const TensorOpCost& rhs) const {
- double bytes_loaded = numext::mini(bytes_loaded_, rhs.bytes_loaded());
- double bytes_stored = numext::mini(bytes_stored_, rhs.bytes_stored());
- double compute_cycles = numext::mini(compute_cycles_, rhs.compute_cycles());
- return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles);
- }
-
- // TODO(rmlarsen): Define max in terms of total cost, not elementwise.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost cwiseMax(
- const TensorOpCost& rhs) const {
- double bytes_loaded = numext::maxi(bytes_loaded_, rhs.bytes_loaded());
- double bytes_stored = numext::maxi(bytes_stored_, rhs.bytes_stored());
- double compute_cycles = numext::maxi(compute_cycles_, rhs.compute_cycles());
- return TensorOpCost(bytes_loaded, bytes_stored, compute_cycles);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator+=(
- const TensorOpCost& rhs) {
- bytes_loaded_ += rhs.bytes_loaded();
- bytes_stored_ += rhs.bytes_stored();
- compute_cycles_ += rhs.compute_cycles();
- return *this;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost& operator*=(double rhs) {
- bytes_loaded_ *= rhs;
- bytes_stored_ *= rhs;
- compute_cycles_ *= rhs;
- return *this;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator+(
- TensorOpCost lhs, const TensorOpCost& rhs) {
- lhs += rhs;
- return lhs;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*(
- TensorOpCost lhs, double rhs) {
- lhs *= rhs;
- return lhs;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE friend TensorOpCost operator*(
- double lhs, TensorOpCost rhs) {
- rhs *= lhs;
- return rhs;
- }
-
- friend std::ostream& operator<<(std::ostream& os, const TensorOpCost& tc) {
- return os << "[bytes_loaded = " << tc.bytes_loaded()
- << ", bytes_stored = " << tc.bytes_stored()
- << ", compute_cycles = " << tc.compute_cycles() << "]";
- }
-
- private:
- double bytes_loaded_;
- double bytes_stored_;
- double compute_cycles_;
-};
-
-// TODO(rmlarsen): Implement a policy that chooses an "optimal" number of theads
-// in [1:max_threads] instead of just switching multi-threading off for small
-// work units.
-template <typename Device>
-class TensorCostModel {
- public:
- // Scaling from Eigen compute cost to device cycles.
- static const int kDeviceCyclesPerComputeCycle = 1;
-
- // Costs in device cycles.
- static const int kStartupCycles = 100000;
- static const int kPerThreadCycles = 100000;
- static const int kTaskSize = 40000;
-
- // Returns the number of threads in [1:max_threads] to use for
- // evaluating an expression with the given output size and cost per
- // coefficient.
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads(
- double output_size, const TensorOpCost& cost_per_coeff, int max_threads) {
- double cost = totalCost(output_size, cost_per_coeff);
- int threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9;
- return numext::mini(max_threads, numext::maxi(1, threads));
- }
-
- // taskSize assesses parallel task size.
- // Value of 1.0 means ideal parallel task size. Values < 1.0 mean that task
- // granularity needs to be increased to mitigate parallelization overheads.
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double taskSize(
- double output_size, const TensorOpCost& cost_per_coeff) {
- return totalCost(output_size, cost_per_coeff) / kTaskSize;
- }
-
- private:
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost(
- double output_size, const TensorOpCost& cost_per_coeff) {
- // Cost of memory fetches from L2 cache. 64 is typical cache line size.
- // 11 is L2 cache latency on Haswell.
- // We don't know whether data is in L1, L2 or L3. But we are most interested
- // in single-threaded computational time around 100us-10ms (smaller time
- // is too small for parallelization, larger time is not intersting
- // either because we are probably using all available threads already).
- // And for the target time range, L2 seems to be what matters. Data set
- // fitting into L1 is too small to take noticeable time. Data set fitting
- // only into L3 presumably will take more than 10ms to load and process.
- const double kLoadCycles = 1.0 / 64 * 11;
- const double kStoreCycles = 1.0 / 64 * 11;
- // Scaling from Eigen compute cost to device cycles.
- return output_size *
- cost_per_coeff.total_cost(kLoadCycles, kStoreCycles,
- kDeviceCyclesPerComputeCycle);
- }
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h
deleted file mode 100644
index e020d07..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h
+++ /dev/null
@@ -1,313 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
-#define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
-
-namespace Eigen {
-
-/** \class TensorCustomUnaryOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor custom class.
- *
- *
- */
-namespace internal {
-template<typename CustomUnaryFunc, typename XprType>
-struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
-{
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::StorageKind StorageKind;
- typedef typename XprType::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = traits<XprType>::NumDimensions;
- static const int Layout = traits<XprType>::Layout;
-};
-
-template<typename CustomUnaryFunc, typename XprType>
-struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense>
-{
- typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>& type;
-};
-
-template<typename CustomUnaryFunc, typename XprType>
-struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
-{
- typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename CustomUnaryFunc, typename XprType>
-class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename internal::nested<TensorCustomUnaryOp>::type Nested;
- typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind;
- typedef typename internal::traits<TensorCustomUnaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func)
- : m_expr(expr), m_func(func) {}
-
- EIGEN_DEVICE_FUNC
- const CustomUnaryFunc& func() const { return m_func; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_expr; }
-
- protected:
- typename XprType::Nested m_expr;
- const CustomUnaryFunc m_func;
-};
-
-
-// Eval as rvalue
-template<typename CustomUnaryFunc, typename XprType, typename Device>
-struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device>
-{
- typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType;
- typedef typename internal::traits<ArgType>::Index Index;
- static const int NumDims = internal::traits<ArgType>::NumDimensions;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename internal::remove_const<typename ArgType::Scalar>::type Scalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = (internal::packet_traits<Scalar>::size > 1),
- BlockAccess = false,
- Layout = TensorEvaluator<XprType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device)
- : m_op(op), m_device(device), m_result(NULL)
- {
- m_dimensions = op.func().dimensions(op.expression());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- if (data) {
- evalTo(data);
- return false;
- } else {
- m_result = static_cast<CoeffReturnType*>(
- m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
- evalTo(m_result);
- return true;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- if (m_result != NULL) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- return m_result[index];
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
- return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- // TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
-
- protected:
- EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
- TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
- data, m_dimensions);
- m_op.func().eval(m_op.expression(), result, m_device);
- }
-
- Dimensions m_dimensions;
- const ArgType m_op;
- const Device& m_device;
- CoeffReturnType* m_result;
-};
-
-
-
-/** \class TensorCustomBinaryOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor custom class.
- *
- *
- */
-namespace internal {
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
-struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
-{
- typedef typename internal::promote_storage_type<typename LhsXprType::Scalar,
- typename RhsXprType::Scalar>::ret Scalar;
- typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
- typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
- typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
- typename traits<RhsXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<LhsXprType>::Index,
- typename traits<RhsXprType>::Index>::type Index;
- typedef typename LhsXprType::Nested LhsNested;
- typedef typename RhsXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- static const int NumDimensions = traits<LhsXprType>::NumDimensions;
- static const int Layout = traits<LhsXprType>::Layout;
-};
-
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
-struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense>
-{
- typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type;
-};
-
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
-struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
-{
- typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
-class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType;
- typedef typename internal::nested<TensorCustomBinaryOp>::type Nested;
- typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind;
- typedef typename internal::traits<TensorCustomBinaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func)
-
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {}
-
- EIGEN_DEVICE_FUNC
- const CustomBinaryFunc& func() const { return m_func; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename LhsXprType::Nested>::type&
- lhsExpression() const { return m_lhs_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename RhsXprType::Nested>::type&
- rhsExpression() const { return m_rhs_xpr; }
-
- protected:
- typename LhsXprType::Nested m_lhs_xpr;
- typename RhsXprType::Nested m_rhs_xpr;
- const CustomBinaryFunc m_func;
-};
-
-
-// Eval as rvalue
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device>
-struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device>
-{
- typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType;
- typedef typename internal::traits<XprType>::Index Index;
- static const int NumDims = internal::traits<XprType>::NumDimensions;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = (internal::packet_traits<Scalar>::size > 1),
- BlockAccess = false,
- Layout = TensorEvaluator<LhsXprType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_op(op), m_device(device), m_result(NULL)
- {
- m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression());
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- if (data) {
- evalTo(data);
- return false;
- } else {
- m_result = static_cast<Scalar *>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
- evalTo(m_result);
- return true;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- if (m_result != NULL) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- return m_result[index];
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
- return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- // TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_result; }
-
- protected:
- EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
- TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
- m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
- }
-
- Dimensions m_dimensions;
- const XprType m_op;
- const Device& m_device;
- CoeffReturnType* m_result;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h
deleted file mode 100644
index 29e50a3..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h
+++ /dev/null
@@ -1,68 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
-#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
-
-namespace Eigen {
-
-/** \class TensorDevice
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Pseudo expression providing an operator = that will evaluate its argument
- * on the specified computing 'device' (GPU, thread pool, ...)
- *
- * Example:
- * C.device(EIGEN_GPU) = A + B;
- *
- * Todo: operator *= and /=.
- */
-
-template <typename ExpressionType, typename DeviceType> class TensorDevice {
- public:
- TensorDevice(const DeviceType& device, ExpressionType& expression) : m_device(device), m_expression(expression) {}
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE TensorDevice& operator=(const OtherDerived& other) {
- typedef TensorAssignOp<ExpressionType, const OtherDerived> Assign;
- Assign assign(m_expression, other);
- internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE TensorDevice& operator+=(const OtherDerived& other) {
- typedef typename OtherDerived::Scalar Scalar;
- typedef TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ExpressionType, const OtherDerived> Sum;
- Sum sum(m_expression, other);
- typedef TensorAssignOp<ExpressionType, const Sum> Assign;
- Assign assign(m_expression, sum);
- internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_STRONG_INLINE TensorDevice& operator-=(const OtherDerived& other) {
- typedef typename OtherDerived::Scalar Scalar;
- typedef TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const ExpressionType, const OtherDerived> Difference;
- Difference difference(m_expression, other);
- typedef TensorAssignOp<ExpressionType, const Difference> Assign;
- Assign assign(m_expression, difference);
- internal::TensorExecutor<const Assign, DeviceType>::run(assign, m_device);
- return *this;
- }
-
- protected:
- const DeviceType& m_device;
- ExpressionType& m_expression;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h
deleted file mode 100644
index 4f5767b..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h
+++ /dev/null
@@ -1,337 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H)
-#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
-
-namespace Eigen {
-
-static const int kCudaScratchSize = 1024;
-
-// This defines an interface that GPUDevice can take to use
-// CUDA streams underneath.
-class StreamInterface {
- public:
- virtual ~StreamInterface() {}
-
- virtual const cudaStream_t& stream() const = 0;
- virtual const cudaDeviceProp& deviceProperties() const = 0;
-
- // Allocate memory on the actual device where the computation will run
- virtual void* allocate(size_t num_bytes) const = 0;
- virtual void deallocate(void* buffer) const = 0;
-
- // Return a scratchpad buffer of size 1k
- virtual void* scratchpad() const = 0;
-
- // Return a semaphore. The semaphore is initially initialized to 0, and
- // each kernel using it is responsible for resetting to 0 upon completion
- // to maintain the invariant that the semaphore is always equal to 0 upon
- // each kernel start.
- virtual unsigned int* semaphore() const = 0;
-};
-
-static cudaDeviceProp* m_deviceProperties;
-static bool m_devicePropInitialized = false;
-
-static void initializeDeviceProp() {
- if (!m_devicePropInitialized) {
- // Attempts to ensure proper behavior in the case of multiple threads
- // calling this function simultaneously. This would be trivial to
- // implement if we could use std::mutex, but unfortunately mutex don't
- // compile with nvcc, so we resort to atomics and thread fences instead.
- // Note that if the caller uses a compiler that doesn't support c++11 we
- // can't ensure that the initialization is thread safe.
-#if __cplusplus >= 201103L
- static std::atomic<bool> first(true);
- if (first.exchange(false)) {
-#else
- static bool first = true;
- if (first) {
- first = false;
-#endif
- // We're the first thread to reach this point.
- int num_devices;
- cudaError_t status = cudaGetDeviceCount(&num_devices);
- if (status != cudaSuccess) {
- std::cerr << "Failed to get the number of CUDA devices: "
- << cudaGetErrorString(status)
- << std::endl;
- assert(status == cudaSuccess);
- }
- m_deviceProperties = new cudaDeviceProp[num_devices];
- for (int i = 0; i < num_devices; ++i) {
- status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
- if (status != cudaSuccess) {
- std::cerr << "Failed to initialize CUDA device #"
- << i
- << ": "
- << cudaGetErrorString(status)
- << std::endl;
- assert(status == cudaSuccess);
- }
- }
-
-#if __cplusplus >= 201103L
- std::atomic_thread_fence(std::memory_order_release);
-#endif
- m_devicePropInitialized = true;
- } else {
- // Wait for the other thread to inititialize the properties.
- while (!m_devicePropInitialized) {
-#if __cplusplus >= 201103L
- std::atomic_thread_fence(std::memory_order_acquire);
-#endif
- sleep(1);
- }
- }
- }
-}
-
-static const cudaStream_t default_stream = cudaStreamDefault;
-
-class CudaStreamDevice : public StreamInterface {
- public:
- // Use the default stream on the current device
- CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
- cudaGetDevice(&device_);
- initializeDeviceProp();
- }
- // Use the default stream on the specified device
- CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
- initializeDeviceProp();
- }
- // Use the specified stream. Note that it's the
- // caller responsibility to ensure that the stream can run on
- // the specified device. If no device is specified the code
- // assumes that the stream is associated to the current gpu device.
- CudaStreamDevice(const cudaStream_t* stream, int device = -1)
- : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
- if (device < 0) {
- cudaGetDevice(&device_);
- } else {
- int num_devices;
- cudaError_t err = cudaGetDeviceCount(&num_devices);
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- assert(device < num_devices);
- device_ = device;
- }
- initializeDeviceProp();
- }
-
- virtual ~CudaStreamDevice() {
- if (scratch_) {
- deallocate(scratch_);
- }
- }
-
- const cudaStream_t& stream() const { return *stream_; }
- const cudaDeviceProp& deviceProperties() const {
- return m_deviceProperties[device_];
- }
- virtual void* allocate(size_t num_bytes) const {
- cudaError_t err = cudaSetDevice(device_);
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- void* result;
- err = cudaMalloc(&result, num_bytes);
- assert(err == cudaSuccess);
- assert(result != NULL);
- return result;
- }
- virtual void deallocate(void* buffer) const {
- cudaError_t err = cudaSetDevice(device_);
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- assert(buffer != NULL);
- err = cudaFree(buffer);
- assert(err == cudaSuccess);
- }
-
- virtual void* scratchpad() const {
- if (scratch_ == NULL) {
- scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int));
- }
- return scratch_;
- }
-
- virtual unsigned int* semaphore() const {
- if (semaphore_ == NULL) {
- char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize;
- semaphore_ = reinterpret_cast<unsigned int*>(scratch);
- cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- }
- return semaphore_;
- }
-
- private:
- const cudaStream_t* stream_;
- int device_;
- mutable void* scratch_;
- mutable unsigned int* semaphore_;
-};
-
-struct GpuDevice {
- // The StreamInterface is not owned: the caller is
- // responsible for its initialization and eventual destruction.
- explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) {
- eigen_assert(stream);
- }
- explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) {
- eigen_assert(stream);
- }
- // TODO(bsteiner): This is an internal API, we should not expose it.
- EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
- return stream_->stream();
- }
-
- EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
- return stream_->allocate(num_bytes);
- }
-
- EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
- stream_->deallocate(buffer);
- }
-
- EIGEN_STRONG_INLINE void* scratchpad() const {
- return stream_->scratchpad();
- }
-
- EIGEN_STRONG_INLINE unsigned int* semaphore() const {
- return stream_->semaphore();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
-#ifndef __CUDA_ARCH__
- cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
- stream_->stream());
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
-#else
- eigen_assert(false && "The default device should be used instead to generate kernel code");
-#endif
- }
-
- EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
- cudaError_t err =
- cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- }
-
- EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
- cudaError_t err =
- cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
-#ifndef __CUDA_ARCH__
- cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
- EIGEN_UNUSED_VARIABLE(err)
- assert(err == cudaSuccess);
-#else
- eigen_assert(false && "The default device should be used instead to generate kernel code");
-#endif
- }
-
- EIGEN_STRONG_INLINE size_t numThreads() const {
- // FIXME
- return 32;
- }
-
- EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
- // FIXME
- return 48*1024;
- }
-
- EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
- // We won't try to take advantage of the l2 cache for the time being, and
- // there is no l3 cache on cuda devices.
- return firstLevelCacheSize();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
-#if defined(__CUDACC__) && !defined(__CUDA_ARCH__)
- cudaError_t err = cudaStreamSynchronize(stream_->stream());
- if (err != cudaSuccess) {
- std::cerr << "Error detected in CUDA stream: "
- << cudaGetErrorString(err)
- << std::endl;
- assert(err == cudaSuccess);
- }
-#else
- assert(false && "The default device should be used instead to generate kernel code");
-#endif
- }
-
- EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const {
- return stream_->deviceProperties().multiProcessorCount;
- }
- EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const {
- return stream_->deviceProperties().maxThreadsPerBlock;
- }
- EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const {
- return stream_->deviceProperties().maxThreadsPerMultiProcessor;
- }
- EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
- return stream_->deviceProperties().sharedMemPerBlock;
- }
- EIGEN_STRONG_INLINE int majorDeviceVersion() const {
- return stream_->deviceProperties().major;
- }
- EIGEN_STRONG_INLINE int minorDeviceVersion() const {
- return stream_->deviceProperties().minor;
- }
-
- EIGEN_STRONG_INLINE int maxBlocks() const {
- return max_blocks_;
- }
-
- // This function checks if the CUDA runtime recorded an error for the
- // underlying stream device.
- inline bool ok() const {
-#ifdef __CUDACC__
- cudaError_t error = cudaStreamQuery(stream_->stream());
- return (error == cudaSuccess) || (error == cudaErrorNotReady);
-#else
- return false;
-#endif
- }
-
- private:
- const StreamInterface* stream_;
- int max_blocks_;
-};
-
-#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
- (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
- assert(cudaGetLastError() == cudaSuccess);
-
-
-// FIXME: Should be device and kernel specific.
-#ifdef __CUDACC__
-static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
-#ifndef __CUDA_ARCH__
- cudaError_t status = cudaDeviceSetSharedMemConfig(config);
- EIGEN_UNUSED_VARIABLE(status)
- assert(status == cudaSuccess);
-#else
- EIGEN_UNUSED_VARIABLE(config)
-#endif
-}
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h
deleted file mode 100644
index 9d14139..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h
+++ /dev/null
@@ -1,81 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
-#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
-
-
-namespace Eigen {
-
-// Default device for the machine (typically a single cpu core)
-struct DefaultDevice {
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
- return internal::aligned_malloc(num_bytes);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
- internal::aligned_free(buffer);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
- ::memcpy(dst, src, n);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
- memcpy(dst, src, n);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
- memcpy(dst, src, n);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
- ::memset(buffer, c, n);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
-#ifndef __CUDA_ARCH__
- // Running on the host CPU
- return 1;
-#else
- // Running on a CUDA device
- return 32;
-#endif
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
-#ifndef __CUDA_ARCH__
- // Running on the host CPU
- return l1CacheSize();
-#else
- // Running on a CUDA device, return the amount of shared memory available.
- return 48*1024;
-#endif
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
-#ifndef __CUDA_ARCH__
- // Running single threaded on the host CPU
- return l3CacheSize();
-#else
- // Running on a CUDA device
- return firstLevelCacheSize();
-#endif
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
-#ifndef __CUDA_ARCH__
- // Running single threaded on the host CPU
- // Should return an enum that encodes the ISA supported by the CPU
- return 1;
-#else
- // Running on a CUDA device
- return __CUDA_ARCH__ / 100;
-#endif
- }
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_DEFAULT_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
deleted file mode 100644
index 7c03989..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h
+++ /dev/null
@@ -1,122 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
-
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
-#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
-
-namespace Eigen {
-struct SyclDevice {
- /// class members
- /// sycl queue
- mutable cl::sycl::queue m_queue;
- /// std::map is the container used to make sure that we create only one buffer
- /// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
- /// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
- mutable std::map<const void *, std::shared_ptr<void>> buffer_map;
- /// creating device by using selector
- template<typename dev_Selector> SyclDevice(dev_Selector s)
- :
-#ifdef EIGEN_EXCEPTIONS
- m_queue(cl::sycl::queue(s, [=](cl::sycl::exception_list l) {
- for (const auto& e : l) {
- try {
- std::rethrow_exception(e);
- } catch (cl::sycl::exception e) {
- std::cout << e.what() << std::endl;
- }
- }
- }))
-#else
- m_queue(cl::sycl::queue(s))
-#endif
- {}
- // destructor
- ~SyclDevice() { deallocate_all(); }
-
- template <typename T> void deallocate(T *p) const {
- auto it = buffer_map.find(p);
- if (it != buffer_map.end()) {
- buffer_map.erase(it);
- internal::aligned_free(p);
- }
- }
- void deallocate_all() const {
- std::map<const void *, std::shared_ptr<void>>::iterator it=buffer_map.begin();
- while (it!=buffer_map.end()) {
- auto p=it->first;
- buffer_map.erase(it);
- internal::aligned_free(const_cast<void*>(p));
- it=buffer_map.begin();
- }
- buffer_map.clear();
- }
-
- /// creation of sycl accessor for a buffer. This function first tries to find
- /// the buffer in the buffer_map. If found it gets the accessor from it, if not,
- ///the function then adds an entry by creating a sycl buffer for that particular pointer.
- template <cl::sycl::access::mode AcMd, typename T> inline cl::sycl::accessor<T, 1, AcMd, cl::sycl::access::target::global_buffer>
- get_sycl_accessor(size_t num_bytes, cl::sycl::handler &cgh, const T * ptr) const {
- return (get_sycl_buffer<T>(num_bytes, ptr)->template get_access<AcMd, cl::sycl::access::target::global_buffer>(cgh));
- }
-
- template<typename T> inline std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> add_sycl_buffer(const T *ptr, size_t num_bytes) const {
- using Type = cl::sycl::buffer<T, 1>;
- std::pair<std::map<const void *, std::shared_ptr<void>>::iterator,bool> ret = buffer_map.insert(std::pair<const void *, std::shared_ptr<void>>(ptr, std::shared_ptr<void>(new Type(cl::sycl::range<1>(num_bytes)),
- [](void *dataMem) { delete static_cast<Type*>(dataMem); })));
- (static_cast<Type*>(buffer_map.at(ptr).get()))->set_final_data(nullptr);
- return ret;
- }
-
- template <typename T> inline cl::sycl::buffer<T, 1>* get_sycl_buffer(size_t num_bytes,const T * ptr) const {
- return static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(ptr, num_bytes).first->second.get());
- }
-
- /// allocating memory on the cpu
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void *allocate(size_t) const {
- return internal::aligned_malloc(8);
- }
-
- // some runtime conditions that can be applied here
- bool isDeviceSuitable() const { return true; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void *dst, const void *src, size_t n) const {
- ::memcpy(dst, src, n);
- }
-
- template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(T *dst, const T *src, size_t n) const {
- auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(add_sycl_buffer(dst, n).first->second.get()))-> template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
- memcpy(host_acc.get_pointer(), src, n);
- }
- /// whith the current implementation of sycl, the data is copied twice from device to host. This will be fixed soon.
- template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(T *dst, const T *src, size_t n) const {
- auto it = buffer_map.find(src);
- if (it != buffer_map.end()) {
- auto host_acc= (static_cast<cl::sycl::buffer<T, 1>*>(it->second.get()))-> template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::host_buffer>();
- memcpy(dst,host_acc.get_pointer(), n);
- } else{
- eigen_assert("no device memory found. The memory might be destroyed before creation");
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void *buffer, int c, size_t n) const {
- ::memset(buffer, c, n);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
- return 1;
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
deleted file mode 100644
index 17f0466..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
+++ /dev/null
@@ -1,282 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#if defined(EIGEN_USE_THREADS) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H)
-#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H
-
-namespace Eigen {
-
-// Use the SimpleThreadPool by default. We'll switch to the new non blocking
-// thread pool later.
-#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
-template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>;
-typedef NonBlockingThreadPool ThreadPool;
-#else
-template <typename Env> using ThreadPoolTempl = SimpleThreadPoolTempl<Env>;
-typedef SimpleThreadPool ThreadPool;
-#endif
-
-
-// Barrier is an object that allows one or more threads to wait until
-// Notify has been called a specified number of times.
-class Barrier {
- public:
- Barrier(unsigned int count) : state_(count << 1), notified_(false) {
- eigen_assert(((count << 1) >> 1) == count);
- }
- ~Barrier() {
- eigen_assert((state_>>1) == 0);
- }
-
- void Notify() {
- unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
- if (v != 1) {
- eigen_assert(((v + 2) & ~1) != 0);
- return; // either count has not dropped to 0, or waiter is not waiting
- }
- std::unique_lock<std::mutex> l(mu_);
- eigen_assert(!notified_);
- notified_ = true;
- cv_.notify_all();
- }
-
- void Wait() {
- unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
- if ((v >> 1) == 0) return;
- std::unique_lock<std::mutex> l(mu_);
- while (!notified_) {
- cv_.wait(l);
- }
- }
-
- private:
- std::mutex mu_;
- std::condition_variable cv_;
- std::atomic<unsigned int> state_; // low bit is waiter flag
- bool notified_;
-};
-
-
-// Notification is an object that allows a user to to wait for another
-// thread to signal a notification that an event has occurred.
-//
-// Multiple threads can wait on the same Notification object,
-// but only one caller must call Notify() on the object.
-struct Notification : Barrier {
- Notification() : Barrier(1) {};
-};
-
-
-// Runs an arbitrary function and then calls Notify() on the passed in
-// Notification.
-template <typename Function, typename... Args> struct FunctionWrapperWithNotification
-{
- static void run(Notification* n, Function f, Args... args) {
- f(args...);
- if (n) {
- n->Notify();
- }
- }
-};
-
-template <typename Function, typename... Args> struct FunctionWrapperWithBarrier
-{
- static void run(Barrier* b, Function f, Args... args) {
- f(args...);
- if (b) {
- b->Notify();
- }
- }
-};
-
-template <typename SyncType>
-static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) {
- if (n) {
- n->Wait();
- }
-}
-
-
-// Build a thread pool device on top the an existing pool of threads.
-struct ThreadPoolDevice {
- // The ownership of the thread pool remains with the caller.
- ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores) : pool_(pool), num_threads_(num_cores) { }
-
- EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
- return internal::aligned_malloc(num_bytes);
- }
-
- EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
- internal::aligned_free(buffer);
- }
-
- EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
- ::memcpy(dst, src, n);
- }
- EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
- memcpy(dst, src, n);
- }
- EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
- memcpy(dst, src, n);
- }
-
- EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
- ::memset(buffer, c, n);
- }
-
- EIGEN_STRONG_INLINE int numThreads() const {
- return num_threads_;
- }
-
- EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
- return l1CacheSize();
- }
-
- EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
- // The l3 cache size is shared between all the cores.
- return l3CacheSize() / num_threads_;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
- // Should return an enum that encodes the ISA supported by the CPU
- return 1;
- }
-
- template <class Function, class... Args>
- EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
- Notification* n = new Notification();
- pool_->Schedule(std::bind(&FunctionWrapperWithNotification<Function, Args...>::run, n, f, args...));
- return n;
- }
-
- template <class Function, class... Args>
- EIGEN_STRONG_INLINE void enqueue_with_barrier(Barrier* b,
- Function&& f,
- Args&&... args) const {
- pool_->Schedule(std::bind(
- &FunctionWrapperWithBarrier<Function, Args...>::run, b, f, args...));
- }
-
- template <class Function, class... Args>
- EIGEN_STRONG_INLINE void enqueueNoNotification(Function&& f, Args&&... args) const {
- pool_->Schedule(std::bind(f, args...));
- }
-
- // Returns a logical thread index between 0 and pool_->NumThreads() - 1 if
- // called from one of the threads in pool_. Returns -1 otherwise.
- EIGEN_STRONG_INLINE int currentThreadId() const {
- return pool_->CurrentThreadId();
- }
-
- // parallelFor executes f with [0, n) arguments in parallel and waits for
- // completion. F accepts a half-open interval [first, last).
- // Block size is choosen based on the iteration cost and resulting parallel
- // efficiency. If block_align is not nullptr, it is called to round up the
- // block size.
- void parallelFor(Index n, const TensorOpCost& cost,
- std::function<Index(Index)> block_align,
- std::function<void(Index, Index)> f) const {
- typedef TensorCostModel<ThreadPoolDevice> CostModel;
- if (n <= 1 || numThreads() == 1 ||
- CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) {
- f(0, n);
- return;
- }
-
- // Calculate block size based on (1) the iteration cost and (2) parallel
- // efficiency. We want blocks to be not too small to mitigate
- // parallelization overheads; not too large to mitigate tail
- // effect and potential load imbalance and we also want number
- // of blocks to be evenly dividable across threads.
-
- double block_size_f = 1.0 / CostModel::taskSize(1, cost);
- const Index max_oversharding_factor = 4;
- Index block_size = numext::mini(
- n, numext::maxi<Index>(divup<Index>(n, max_oversharding_factor * numThreads()),
- block_size_f));
- const Index max_block_size = numext::mini(n, 2 * block_size);
- if (block_align) {
- Index new_block_size = block_align(block_size);
- eigen_assert(new_block_size >= block_size);
- block_size = numext::mini(n, new_block_size);
- }
- Index block_count = divup(n, block_size);
- // Calculate parallel efficiency as fraction of total CPU time used for
- // computations:
- double max_efficiency =
- static_cast<double>(block_count) /
- (divup<int>(block_count, numThreads()) * numThreads());
- // Now try to increase block size up to max_block_size as long as it
- // doesn't decrease parallel efficiency.
- for (Index prev_block_count = block_count;
- max_efficiency < 1.0 && prev_block_count > 1;) {
- // This is the next block size that divides size into a smaller number
- // of blocks than the current block_size.
- Index coarser_block_size = divup(n, prev_block_count - 1);
- if (block_align) {
- Index new_block_size = block_align(coarser_block_size);
- eigen_assert(new_block_size >= coarser_block_size);
- coarser_block_size = numext::mini(n, new_block_size);
- }
- if (coarser_block_size > max_block_size) {
- break; // Reached max block size. Stop.
- }
- // Recalculate parallel efficiency.
- const Index coarser_block_count = divup(n, coarser_block_size);
- eigen_assert(coarser_block_count < prev_block_count);
- prev_block_count = coarser_block_count;
- const double coarser_efficiency =
- static_cast<double>(coarser_block_count) /
- (divup<int>(coarser_block_count, numThreads()) * numThreads());
- if (coarser_efficiency + 0.01 >= max_efficiency) {
- // Taking it.
- block_size = coarser_block_size;
- block_count = coarser_block_count;
- if (max_efficiency < coarser_efficiency) {
- max_efficiency = coarser_efficiency;
- }
- }
- }
-
- // Recursively divide size into halves until we reach block_size.
- // Division code rounds mid to block_size, so we are guaranteed to get
- // block_count leaves that do actual computations.
- Barrier barrier(static_cast<unsigned int>(block_count));
- std::function<void(Index, Index)> handleRange;
- handleRange = [=, &handleRange, &barrier, &f](Index first, Index last) {
- if (last - first <= block_size) {
- // Single block or less, execute directly.
- f(first, last);
- barrier.Notify();
- return;
- }
- // Split into halves and submit to the pool.
- Index mid = first + divup((last - first) / 2, block_size) * block_size;
- pool_->Schedule([=, &handleRange]() { handleRange(mid, last); });
- pool_->Schedule([=, &handleRange]() { handleRange(first, mid); });
- };
- handleRange(0, n);
- barrier.Wait();
- }
-
- // Convenience wrapper for parallelFor that does not align blocks.
- void parallelFor(Index n, const TensorOpCost& cost,
- std::function<void(Index, Index)> f) const {
- parallelFor(n, cost, nullptr, std::move(f));
- }
-
- private:
- ThreadPoolInterface* pool_;
- int num_threads_;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_THREAD_POOL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h
deleted file mode 100644
index 1a30e45..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
-#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
-
-namespace Eigen {
-
-/** \internal
- *
- * \class TensorDimensionList
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Special case of tensor index list used to list all the dimensions of a tensor of rank n.
- *
- * \sa Tensor
- */
-
-template <typename Index, std::size_t Rank> struct DimensionList {
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- const Index operator[] (const Index i) const { return i; }
-};
-
-namespace internal {
-
-template<typename Index, std::size_t Rank> struct array_size<DimensionList<Index, Rank> > {
- static const size_t value = Rank;
-};
-template<typename Index, std::size_t Rank> struct array_size<const DimensionList<Index, Rank> > {
- static const size_t value = Rank;
-};
-
-template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(DimensionList<Index, Rank>&) {
- return n;
-}
-template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(const DimensionList<Index, Rank>&) {
- return n;
-}
-
-
-#if EIGEN_HAS_CONSTEXPR
-template <typename Index, std::size_t Rank>
-struct index_known_statically_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_known_statically_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct all_indices_known_statically_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_eq_impl<DimensionList<Index, Rank> > {
- static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i == value;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_eq_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i == value;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_ne_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i != value;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_ne_impl<const DimensionList<Index, Rank> > {
- static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i != value;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_gt_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i > value;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_gt_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i > value;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_lt_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i < value;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return i < value;
- }
-};
-
-#else
-template <typename Index, std::size_t Rank>
-struct index_known_statically_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_known_statically_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct all_indices_known_statically_impl<DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct all_indices_known_statically_impl<const DimensionList<Index, Rank> > {
- EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE bool run() {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct indices_statically_known_to_increase_impl<DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
- return true;
- }
-};
-template <typename Index, std::size_t Rank>
-struct indices_statically_known_to_increase_impl<const DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
- return true;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_eq_impl<DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_eq_impl<const DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_ne_impl<DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex){
- return false;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_ne_impl<const DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_gt_impl<DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_gt_impl<const DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-
-template <typename Index, std::size_t Rank>
-struct index_statically_lt_impl<DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-template <typename Index, std::size_t Rank>
-struct index_statically_lt_impl<const DimensionList<Index, Rank> > {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex, const DenseIndex) {
- return false;
- }
-};
-#endif
-
-} // end namespace internal
-} // end namespace Eigen
-
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSION_LIST_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h
deleted file mode 100644
index 451940d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h
+++ /dev/null
@@ -1,428 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
-
-
-namespace Eigen {
-
-/** \internal
- *
- * \class TensorDimensions
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Set of classes used to encode and store the dimensions of a Tensor.
- *
- * The Sizes class encodes as part of the type the number of dimensions and the
- * sizes corresponding to each dimension. It uses no storage space since it is
- * entirely known at compile time.
- * The DSizes class is its dynamic sibling: the number of dimensions is known
- * at compile time but the sizes are set during execution.
- *
- * \sa Tensor
- */
-
-// Boilerplate code
-namespace internal {
-
-template<std::size_t n, typename Dimension> struct dget {
- static const std::size_t value = get<n, Dimension>::value;
-};
-
-
-template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
-struct fixed_size_tensor_index_linearization_helper
-{
- template <typename Dimensions> EIGEN_DEVICE_FUNC
- static inline Index run(array<Index, NumIndices> const& indices,
- const Dimensions& dimensions)
- {
- return array_get<RowMajor ? n - 1 : (NumIndices - n)>(indices) +
- dget<RowMajor ? n - 1 : (NumIndices - n), Dimensions>::value *
- fixed_size_tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
- }
-};
-
-template<typename Index, std::size_t NumIndices, bool RowMajor>
-struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
-{
- template <typename Dimensions> EIGEN_DEVICE_FUNC
- static inline Index run(array<Index, NumIndices> const&, const Dimensions&)
- {
- return 0;
- }
-};
-
-template<typename Index, std::size_t n>
-struct fixed_size_tensor_index_extraction_helper
-{
- template <typename Dimensions> EIGEN_DEVICE_FUNC
- static inline Index run(const Index index,
- const Dimensions& dimensions)
- {
- const Index mult = (index == n-1) ? 1 : 0;
- return array_get<n-1>(dimensions) * mult +
- fixed_size_tensor_index_extraction_helper<Index, n - 1>::run(index, dimensions);
- }
-};
-
-template<typename Index>
-struct fixed_size_tensor_index_extraction_helper<Index, 0>
-{
- template <typename Dimensions> EIGEN_DEVICE_FUNC
- static inline Index run(const Index,
- const Dimensions&)
- {
- return 0;
- }
- };
-
-} // end namespace internal
-
-
-// Fixed size
-#ifndef EIGEN_EMULATE_CXX11_META_H
-template <typename std::ptrdiff_t... Indices>
-struct Sizes : internal::numeric_list<std::ptrdiff_t, Indices...> {
- typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base;
- static const std::ptrdiff_t total_size = internal::arg_prod(Indices...);
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t rank() const {
- return Base::count;
- }
-
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t TotalSize() {
- return internal::arg_prod(Indices...);
- }
-
- EIGEN_DEVICE_FUNC Sizes() { }
- template <typename DenseIndex>
- explicit EIGEN_DEVICE_FUNC Sizes(const array<DenseIndex, Base::count>& /*indices*/) {
- // todo: add assertion
- }
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template <typename... DenseIndex> EIGEN_DEVICE_FUNC Sizes(DenseIndex...) { }
- explicit EIGEN_DEVICE_FUNC Sizes(std::initializer_list<std::ptrdiff_t> /*l*/) {
- // todo: add assertion
- }
-#endif
-
- template <typename T> Sizes& operator = (const T& /*other*/) {
- // add assertion failure if the size of other is different
- return *this;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::size_t index) const {
- return internal::fixed_size_tensor_index_extraction_helper<std::ptrdiff_t, Base::count>::run(index, *this);
- }
-
- template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
- return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *static_cast<const Base*>(this));
- }
- template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
- return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *static_cast<const Base*>(this));
- }
-};
-
-namespace internal {
-template <typename std::ptrdiff_t... Indices>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<Indices...>&) {
- return Sizes<Indices...>::total_size;
-}
-}
-
-#else
-
-template <std::size_t n>
-struct non_zero_size {
- typedef internal::type2val<std::size_t, n> type;
-};
-template <>
-struct non_zero_size<0> {
- typedef internal::null_type type;
-};
-
-template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0, std::size_t V5=0> struct Sizes {
- typedef typename internal::make_type_list<typename non_zero_size<V1>::type, typename non_zero_size<V2>::type, typename non_zero_size<V3>::type, typename non_zero_size<V4>::type, typename non_zero_size<V5>::type >::type Base;
- static const size_t count = Base::count;
- static const std::size_t total_size = internal::arg_prod<Base>::value;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
- return count;
- }
-
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t TotalSize() {
- return internal::arg_prod<Base>::value;
- }
-
- Sizes() { }
- template <typename DenseIndex>
- explicit Sizes(const array<DenseIndex, Base::count>& /*indices*/) {
- // todo: add assertion
- }
- template <typename T> Sizes& operator = (const T& /*other*/) {
- // add assertion failure if the size of other is different
- return *this;
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template <typename... DenseIndex> Sizes(DenseIndex... /*indices*/) { }
- explicit Sizes(std::initializer_list<std::size_t>) {
- // todo: add assertion
- }
-#else
- EIGEN_DEVICE_FUNC explicit Sizes(const DenseIndex) {
- }
- EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex) {
- }
- EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex) {
- }
- EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) {
- }
- EIGEN_DEVICE_FUNC Sizes(const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex, const DenseIndex) {
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index operator[] (const Index index) const {
- switch (index) {
- case 0:
- return internal::get<0, Base>::value;
- case 1:
- return internal::get<1, Base>::value;
- case 2:
- return internal::get<2, Base>::value;
- case 3:
- return internal::get<3, Base>::value;
- case 4:
- return internal::get<4, Base>::value;
- default:
- eigen_assert(false && "index overflow");
- return static_cast<Index>(-1);
- }
- }
-
- template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
- return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *reinterpret_cast<const Base*>(this));
- }
- template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
- return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *reinterpret_cast<const Base*>(this));
- }
-};
-
-namespace internal {
-template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) {
- return Sizes<V1, V2, V3, V4, V5>::total_size;
-}
-}
-
-#endif
-
-// Boilerplate
-namespace internal {
-template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
-struct tensor_index_linearization_helper
-{
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const& dimensions)
- {
- return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
- array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
- tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
- }
-};
-
-template<typename Index, std::size_t NumIndices, bool RowMajor>
-struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
-{
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Index run(array<Index, NumIndices> const& indices, array<Index, NumIndices> const&)
- {
- return array_get<RowMajor ? 0 : NumIndices - 1>(indices);
- }
-};
-} // end namespace internal
-
-
-
-// Dynamic size
-template <typename DenseIndex, int NumDims>
-struct DSizes : array<DenseIndex, NumDims> {
- typedef array<DenseIndex, NumDims> Base;
- static const int count = NumDims;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
- return NumDims;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex TotalSize() const {
- return (NumDims == 0) ? 1 : internal::array_prod(*static_cast<const Base*>(this));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DSizes() {
- for (int i = 0 ; i < NumDims; ++i) {
- (*this)[i] = 0;
- }
- }
- EIGEN_DEVICE_FUNC explicit DSizes(const array<DenseIndex, NumDims>& a) : Base(a) { }
-
- EIGEN_DEVICE_FUNC explicit DSizes(const DenseIndex i0) {
- eigen_assert(NumDims == 1);
- (*this)[0] = i0;
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE explicit DSizes(DenseIndex firstDimension, DenseIndex secondDimension, IndexTypes... otherDimensions) : Base({{firstDimension, secondDimension, otherDimensions...}}) {
- EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 2 == NumDims, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-#else
- EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1) {
- eigen_assert(NumDims == 2);
- (*this)[0] = i0;
- (*this)[1] = i1;
- }
- EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2) {
- eigen_assert(NumDims == 3);
- (*this)[0] = i0;
- (*this)[1] = i1;
- (*this)[2] = i2;
- }
- EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3) {
- eigen_assert(NumDims == 4);
- (*this)[0] = i0;
- (*this)[1] = i1;
- (*this)[2] = i2;
- (*this)[3] = i3;
- }
- EIGEN_DEVICE_FUNC DSizes(const DenseIndex i0, const DenseIndex i1, const DenseIndex i2, const DenseIndex i3, const DenseIndex i4) {
- eigen_assert(NumDims == 5);
- (*this)[0] = i0;
- (*this)[1] = i1;
- (*this)[2] = i2;
- (*this)[3] = i3;
- (*this)[4] = i4;
- }
-#endif
-
- EIGEN_DEVICE_FUNC DSizes& operator = (const array<DenseIndex, NumDims>& other) {
- *static_cast<Base*>(this) = other;
- return *this;
- }
-
- // A constexpr would be so much better here
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfColMajor(const array<DenseIndex, NumDims>& indices) const {
- return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, false>::run(indices, *static_cast<const Base*>(this));
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex IndexOfRowMajor(const array<DenseIndex, NumDims>& indices) const {
- return internal::tensor_index_linearization_helper<DenseIndex, NumDims, NumDims - 1, true>::run(indices, *static_cast<const Base*>(this));
- }
-};
-
-
-
-
-// Boilerplate
-namespace internal {
-template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
-struct tensor_vsize_index_linearization_helper
-{
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const& dimensions)
- {
- return array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
- array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
- tensor_vsize_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
- }
-};
-
-template<typename Index, std::size_t NumIndices, bool RowMajor>
-struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor>
-{
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Index run(array<Index, NumIndices> const& indices, std::vector<DenseIndex> const&)
- {
- return array_get<RowMajor ? 0 : NumIndices - 1>(indices);
- }
-};
-} // end namespace internal
-
-
-namespace internal {
-
-template <typename DenseIndex, int NumDims> struct array_size<const DSizes<DenseIndex, NumDims> > {
- static const size_t value = NumDims;
-};
-template <typename DenseIndex, int NumDims> struct array_size<DSizes<DenseIndex, NumDims> > {
- static const size_t value = NumDims;
-};
-#ifndef EIGEN_EMULATE_CXX11_META_H
-template <typename std::ptrdiff_t... Indices> struct array_size<const Sizes<Indices...> > {
-static const std::ptrdiff_t value = Sizes<Indices...>::count;
-};
-template <typename std::ptrdiff_t... Indices> struct array_size<Sizes<Indices...> > {
-static const std::ptrdiff_t value = Sizes<Indices...>::count;
-};
-template <std::ptrdiff_t n, typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<Indices...>&) {
- return get<n, internal::numeric_list<std::size_t, Indices...> >::value;
-}
-template <std::ptrdiff_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<>&) {
- eigen_assert(false && "should never be called");
- return -1;
-}
-#else
-template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > {
- static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
-};
-template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > {
- static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
-};
-template <std::size_t n, std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_get(const Sizes<V1,V2,V3,V4,V5>&) {
- return get<n, typename Sizes<V1,V2,V3,V4,V5>::Base>::value;
-}
-
-#endif
-
-
-template <typename Dims1, typename Dims2, size_t n, size_t m>
-struct sizes_match_below_dim {
- static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) {
- return false;
- }
-};
-template <typename Dims1, typename Dims2, size_t n>
-struct sizes_match_below_dim<Dims1, Dims2, n, n> {
- static EIGEN_DEVICE_FUNC inline bool run(Dims1& dims1, Dims2& dims2) {
- return (array_get<n-1>(dims1) == array_get<n-1>(dims2)) &
- sizes_match_below_dim<Dims1, Dims2, n-1, n-1>::run(dims1, dims2);
- }
-};
-template <typename Dims1, typename Dims2>
-struct sizes_match_below_dim<Dims1, Dims2, 0, 0> {
- static EIGEN_DEVICE_FUNC inline bool run(Dims1&, Dims2&) {
- return true;
- }
-};
-
-} // end namespace internal
-
-
-template <typename Dims1, typename Dims2>
-EIGEN_DEVICE_FUNC bool dimensions_match(Dims1& dims1, Dims2& dims2) {
- return internal::sizes_match_below_dim<Dims1, Dims2, internal::array_size<Dims1>::value, internal::array_size<Dims2>::value>::run(dims1, dims2);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_DIMENSIONS_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
deleted file mode 100644
index 0698713..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h
+++ /dev/null
@@ -1,181 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
-#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
-
-namespace Eigen {
-
-/** \class TensorForcedEval
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor reshaping class.
- *
- *
- */
-namespace internal {
-template<typename XprType, template <class> class MakePointer_>
-struct traits<TensorEvalToOp<XprType, MakePointer_> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-
- enum {
- Flags = 0
- };
- template <class T>
- struct MakePointer {
- // Intermediate typedef to workaround MSVC issue.
- typedef MakePointer_<T> MakePointerT;
- typedef typename MakePointerT::Type Type;
- };
-};
-
-template<typename XprType, template <class> class MakePointer_>
-struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense>
-{
- typedef const TensorEvalToOp<XprType, MakePointer_>& type;
-};
-
-template<typename XprType, template <class> class MakePointer_>
-struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type>
-{
- typedef TensorEvalToOp<XprType, MakePointer_> type;
-};
-
-} // end namespace internal
-
-
-
-
-template<typename XprType, template <class> class MakePointer_>
-class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename MakePointer_<CoeffReturnType>::Type PointerType;
- typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr)
- : m_xpr(expr), m_buffer(buffer) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; }
-
- protected:
- typename XprType::Nested m_xpr;
- PointerType m_buffer;
-};
-
-
-
-template<typename ArgType, typename Device, template <class> class MakePointer_>
-struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device>
-{
- typedef TensorEvalToOp<ArgType, MakePointer_> XprType;
- typedef typename ArgType::Scalar Scalar;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
- typedef typename XprType::Index Index;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = true
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_device(device),
- m_buffer(op.buffer()), m_op(op), m_expression(op.expression())
- { }
-
- // Used for accessor extraction in SYCL Managed TensorMap:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& op() const {
- return m_op;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~TensorEvaluator() {
- }
-
- typedef typename internal::traits<const TensorEvalToOp<ArgType, MakePointer_> >::template MakePointer<CoeffReturnType>::Type DevicePointer;
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(DevicePointer scalar) {
- EIGEN_UNUSED_VARIABLE(scalar);
- eigen_assert(scalar == NULL);
- return m_impl.evalSubExprsIfNeeded(m_buffer);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
- m_buffer[i] = m_impl.coeff(i);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
- internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_buffer[index];
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- // We assume that evalPacket or evalScalar is called to perform the
- // assignment and account for the cost of the write here.
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC DevicePointer data() const { return m_buffer; }
- ArgType expression() const { return m_expression; }
-
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
- /// added for sycl in order to construct the buffer from the sycl device
- const Device& device() const{return m_device;}
-
- private:
- TensorEvaluator<ArgType, Device> m_impl;
- const Device& m_device;
- DevicePointer m_buffer;
- const XprType& m_op;
- const ArgType m_expression;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
deleted file mode 100644
index 834ce07..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h
+++ /dev/null
@@ -1,633 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
-#define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
-
-namespace Eigen {
-
-/** \class TensorEvaluator
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The tensor evaluator classes.
- *
- * These classes are responsible for the evaluation of the tensor expression.
- *
- * TODO: add support for more types of expressions, in particular expressions
- * leading to lvalues (slicing, reshaping, etc...)
- */
-
-// Generic evaluator
-template<typename Derived, typename Device>
-struct TensorEvaluator
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename Derived::Dimensions Dimensions;
-
- // NumDimensions is -1 for variable dim tensors
- static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
- internal::traits<Derived>::NumDimensions : 0;
-
- enum {
- IsAligned = Derived::IsAligned,
- PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
- Layout = Derived::Layout,
- CoordAccess = NumCoords > 0,
- RawAccess = true
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
- : m_data(const_cast<typename internal::traits<Derived>::template MakePointer<Scalar>::Type>(m.data())), m_dims(m.dimensions()), m_device(device), m_impl(m)
- { }
-
- // Used for accessor extraction in SYCL Managed TensorMap:
- const Derived& derived() const { return m_impl; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* dest) {
- if (dest) {
- m_device.memcpy((void*)dest, m_data, sizeof(Scalar) * m_dims.TotalSize());
- return false;
- }
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- eigen_assert(m_data);
- return m_data[index];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
- eigen_assert(m_data);
- return m_data[index];
- }
-
- template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketReturnType packet(Index index) const
- {
- return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
- eigen_assert(m_data);
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return m_data[m_dims.IndexOfColMajor(coords)];
- } else {
- return m_data[m_dims.IndexOfRowMajor(coords)];
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<DenseIndex, NumCoords>& coords) {
- eigen_assert(m_data);
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return m_data[m_dims.IndexOfColMajor(coords)];
- } else {
- return m_data[m_dims.IndexOfRowMajor(coords)];
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
- internal::unpacket_traits<PacketReturnType>::size);
- }
-
- EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<Scalar>::Type data() const { return m_data; }
-
- /// required by sycl in order to construct sycl buffer from raw pointer
- const Device& device() const{return m_device;}
-
- protected:
- typename internal::traits<Derived>::template MakePointer<Scalar>::Type m_data;
- Dimensions m_dims;
- const Device& m_device;
- const Derived& m_impl;
-};
-
-namespace {
-template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T loadConstant(const T* address) {
- return *address;
-}
-// Use the texture cache on CUDA devices whenever possible
-#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
-template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-float loadConstant(const float* address) {
- return __ldg(address);
-}
-template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-double loadConstant(const double* address) {
- return __ldg(address);
-}
-template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-Eigen::half loadConstant(const Eigen::half* address) {
- return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x)));
-}
-#endif
-}
-
-
-// Default evaluator for rvalues
-template<typename Derived, typename Device>
-struct TensorEvaluator<const Derived, Device>
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename Derived::Dimensions Dimensions;
-
- // NumDimensions is -1 for variable dim tensors
- static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
- internal::traits<Derived>::NumDimensions : 0;
-
- enum {
- IsAligned = Derived::IsAligned,
- PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
- Layout = Derived::Layout,
- CoordAccess = NumCoords > 0,
- RawAccess = true
- };
-
- // Used for accessor extraction in SYCL Managed TensorMap:
- const Derived& derived() const { return m_impl; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
- : m_data(m.data()), m_dims(m.dimensions()), m_device(device), m_impl(m)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
- m_device.memcpy((void*)data, m_data, m_dims.TotalSize() * sizeof(Scalar));
- return false;
- }
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- eigen_assert(m_data);
- return loadConstant(m_data+index);
- }
-
- template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketReturnType packet(Index index) const
- {
- return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
- eigen_assert(m_data);
- const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
- : m_dims.IndexOfRowMajor(coords);
- return loadConstant(m_data+index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
- internal::unpacket_traits<PacketReturnType>::size);
- }
-
- EIGEN_DEVICE_FUNC typename internal::traits<Derived>::template MakePointer<const Scalar>::Type data() const { return m_data; }
-
- /// added for sycl in order to construct the buffer from the sycl device
- const Device& device() const{return m_device;}
-
- protected:
- typename internal::traits<Derived>::template MakePointer<const Scalar>::Type m_data;
- Dimensions m_dims;
- const Device& m_device;
- const Derived& m_impl;
-};
-
-
-
-
-// -------------------- CwiseNullaryOp --------------------
-
-template<typename NullaryOp, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
-{
- typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType;
-
- enum {
- IsAligned = true,
- PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC
- TensorEvaluator(const XprType& op, const Device& device)
- : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper()
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) { return true; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
-
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_wrapper(m_functor, index);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
- internal::unpacket_traits<PacketReturnType>::size);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
-
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ArgType, Device>& impl() const { return m_argImpl; }
- /// required by sycl in order to extract the accessor
- NullaryOp functor() const { return m_functor; }
-
-
- private:
- const NullaryOp m_functor;
- TensorEvaluator<ArgType, Device> m_argImpl;
- const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
-};
-
-
-
-// -------------------- CwiseUnaryOp --------------------
-
-template<typename UnaryOp, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
-{
- typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess & internal::functor_traits<UnaryOp>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
- : m_functor(op.functor()),
- m_argImpl(op.nestedExpression(), device)
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- m_argImpl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_argImpl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_functor(m_argImpl.coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
- return m_argImpl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
-
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ArgType, Device> & impl() const { return m_argImpl; }
- /// added for sycl in order to construct the buffer from sycl device
- UnaryOp functor() const { return m_functor; }
-
-
- private:
- const UnaryOp m_functor;
- TensorEvaluator<ArgType, Device> m_argImpl;
-};
-
-
-// -------------------- CwiseBinaryOp --------------------
-
-template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device>
-struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device>
-{
- typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType;
-
- enum {
- IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess &
- internal::functor_traits<BinaryOp>::PacketAccess,
- Layout = TensorEvaluator<LeftArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
- : m_functor(op.functor()),
- m_leftImpl(op.lhsExpression(), device),
- m_rightImpl(op.rhsExpression(), device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
- eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
- typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
- {
- // TODO: use right impl instead if right impl dimensions are known at compile time.
- return m_leftImpl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
- m_leftImpl.evalSubExprsIfNeeded(NULL);
- m_rightImpl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_leftImpl.cleanup();
- m_rightImpl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index));
- }
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
- return m_leftImpl.costPerCoeff(vectorized) +
- m_rightImpl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }
- /// required by sycl in order to extract the accessor
- BinaryOp functor() const { return m_functor; }
-
- private:
- const BinaryOp m_functor;
- TensorEvaluator<LeftArgType, Device> m_leftImpl;
- TensorEvaluator<RightArgType, Device> m_rightImpl;
-};
-
-// -------------------- CwiseTernaryOp --------------------
-
-template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device>
-struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device>
-{
- typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType;
-
- enum {
- IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned,
- PacketAccess = TensorEvaluator<Arg1Type, Device>::PacketAccess & TensorEvaluator<Arg2Type, Device>::PacketAccess & TensorEvaluator<Arg3Type, Device>::PacketAccess &
- internal::functor_traits<TernaryOp>::PacketAccess,
- Layout = TensorEvaluator<Arg1Type, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
- : m_functor(op.functor()),
- m_arg1Impl(op.arg1Expression(), device),
- m_arg2Impl(op.arg2Expression(), device),
- m_arg3Impl(op.arg3Expression(), device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
- typename internal::traits<Arg2Type>::StorageKind>::value),
- STORAGE_KIND_MUST_MATCH)
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
- typename internal::traits<Arg3Type>::StorageKind>::value),
- STORAGE_KIND_MUST_MATCH)
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
- typename internal::traits<Arg2Type>::Index>::value),
- STORAGE_INDEX_MUST_MATCH)
- EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
- typename internal::traits<Arg3Type>::Index>::value),
- STORAGE_INDEX_MUST_MATCH)
-
- eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
- typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
- {
- // TODO: use arg2 or arg3 dimensions if they are known at compile time.
- return m_arg1Impl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
- m_arg1Impl.evalSubExprsIfNeeded(NULL);
- m_arg2Impl.evalSubExprsIfNeeded(NULL);
- m_arg3Impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_arg1Impl.cleanup();
- m_arg2Impl.cleanup();
- m_arg3Impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
- }
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index),
- m_arg2Impl.template packet<LoadMode>(index),
- m_arg3Impl.template packet<LoadMode>(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double functor_cost = internal::functor_traits<TernaryOp>::Cost;
- return m_arg1Impl.costPerCoeff(vectorized) +
- m_arg2Impl.costPerCoeff(vectorized) +
- m_arg3Impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return NULL; }
-
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<Arg1Type, Device> & arg1Impl() const { return m_arg1Impl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<Arg2Type, Device>& arg2Impl() const { return m_arg2Impl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<Arg3Type, Device>& arg3Impl() const { return m_arg3Impl; }
-
- private:
- const TernaryOp m_functor;
- TensorEvaluator<Arg1Type, Device> m_arg1Impl;
- TensorEvaluator<Arg2Type, Device> m_arg2Impl;
- TensorEvaluator<Arg3Type, Device> m_arg3Impl;
-};
-
-
-// -------------------- SelectOp --------------------
-
-template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device>
-struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
-{
- typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType;
- typedef typename XprType::Scalar Scalar;
-
- enum {
- IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & TensorEvaluator<ElseArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & TensorEvaluator<ElseArgType, Device>::PacketAccess &
- internal::packet_traits<Scalar>::HasBlend,
- Layout = TensorEvaluator<IfArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
- : m_condImpl(op.ifExpression(), device),
- m_thenImpl(op.thenExpression(), device),
- m_elseImpl(op.elseExpression(), device)
- {
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
- eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions()));
- eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions()));
- }
-
- typedef typename XprType::Index Index;
- typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
- typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
- {
- // TODO: use then or else impl instead if they happen to be known at compile time.
- return m_condImpl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
- m_condImpl.evalSubExprsIfNeeded(NULL);
- m_thenImpl.evalSubExprsIfNeeded(NULL);
- m_elseImpl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_condImpl.cleanup();
- m_thenImpl.cleanup();
- m_elseImpl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
- {
- return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index);
- }
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
- {
- internal::Selector<PacketSize> select;
- for (Index i = 0; i < PacketSize; ++i) {
- select.select[i] = m_condImpl.coeff(index+i);
- }
- return internal::pblend(select,
- m_thenImpl.template packet<LoadMode>(index),
- m_elseImpl.template packet<LoadMode>(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- return m_condImpl.costPerCoeff(vectorized) +
- m_thenImpl.costPerCoeff(vectorized)
- .cwiseMax(m_elseImpl.costPerCoeff(vectorized));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return NULL; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<IfArgType, Device> & cond_impl() const { return m_condImpl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ThenArgType, Device>& then_impl() const { return m_thenImpl; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ElseArgType, Device>& else_impl() const { return m_elseImpl; }
-
- private:
- TensorEvaluator<IfArgType, Device> m_condImpl;
- TensorEvaluator<ThenArgType, Device> m_thenImpl;
- TensorEvaluator<ElseArgType, Device> m_elseImpl;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
deleted file mode 100644
index f01d77c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h
+++ /dev/null
@@ -1,288 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
-#define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
-
-namespace Eigen {
-
-/** \class TensorExecutor
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The tensor executor class.
- *
- * This class is responsible for launch the evaluation of the expression on
- * the specified computing device.
- */
-namespace internal {
-
-// Default strategy: the expression is evaluated with a single cpu thread.
-template<typename Expression, typename Device, bool Vectorizable>
-class TensorExecutor
-{
- public:
- typedef typename Expression::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(const Expression& expr, const Device& device = Device())
- {
- TensorEvaluator<Expression, Device> evaluator(expr, device);
- const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
- if (needs_assign)
- {
- const Index size = array_prod(evaluator.dimensions());
- for (Index i = 0; i < size; ++i) {
- evaluator.evalScalar(i);
- }
- }
- evaluator.cleanup();
- }
-};
-
-
-template<typename Expression>
-class TensorExecutor<Expression, DefaultDevice, true>
-{
- public:
- typedef typename Expression::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(const Expression& expr, const DefaultDevice& device = DefaultDevice())
- {
- TensorEvaluator<Expression, DefaultDevice> evaluator(expr, device);
- const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
- if (needs_assign)
- {
- const Index size = array_prod(evaluator.dimensions());
- const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size;
- // Give the compiler a strong hint to unroll the loop. But don't insist
- // on unrolling, because if the function is expensive the compiler should not
- // unroll the loop at the expense of inlining.
- const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize;
- for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) {
- for (Index j = 0; j < 4; j++) {
- evaluator.evalPacket(i + j * PacketSize);
- }
- }
- const Index VectorizedSize = (size / PacketSize) * PacketSize;
- for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
- evaluator.evalPacket(i);
- }
- for (Index i = VectorizedSize; i < size; ++i) {
- evaluator.evalScalar(i);
- }
- }
- evaluator.cleanup();
- }
-};
-
-
-
-// Multicore strategy: the index space is partitioned and each partition is executed on a single core
-#ifdef EIGEN_USE_THREADS
-template <typename Evaluator, typename Index, bool Vectorizable>
-struct EvalRange {
- static void run(Evaluator* evaluator_in, const Index first, const Index last) {
- Evaluator evaluator = *evaluator_in;
- eigen_assert(last >= first);
- for (Index i = first; i < last; ++i) {
- evaluator.evalScalar(i);
- }
- }
-
- static Index alignBlockSize(Index size) {
- return size;
- }
-};
-
-template <typename Evaluator, typename Index>
-struct EvalRange<Evaluator, Index, true> {
- static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
-
- static void run(Evaluator* evaluator_in, const Index first, const Index last) {
- Evaluator evaluator = *evaluator_in;
- eigen_assert(last >= first);
- Index i = first;
- if (last - first >= PacketSize) {
- eigen_assert(first % PacketSize == 0);
- Index last_chunk_offset = last - 4 * PacketSize;
- // Give the compiler a strong hint to unroll the loop. But don't insist
- // on unrolling, because if the function is expensive the compiler should not
- // unroll the loop at the expense of inlining.
- for (; i <= last_chunk_offset; i += 4*PacketSize) {
- for (Index j = 0; j < 4; j++) {
- evaluator.evalPacket(i + j * PacketSize);
- }
- }
- last_chunk_offset = last - PacketSize;
- for (; i <= last_chunk_offset; i += PacketSize) {
- evaluator.evalPacket(i);
- }
- }
- for (; i < last; ++i) {
- evaluator.evalScalar(i);
- }
- }
-
- static Index alignBlockSize(Index size) {
- // Align block size to packet size and account for unrolling in run above.
- if (size >= 16 * PacketSize) {
- return (size + 4 * PacketSize - 1) & ~(4 * PacketSize - 1);
- }
- // Aligning to 4 * PacketSize would increase block size by more than 25%.
- return (size + PacketSize - 1) & ~(PacketSize - 1);
- }
-};
-
-template <typename Expression, bool Vectorizable>
-class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
- public:
- typedef typename Expression::Index Index;
- static inline void run(const Expression& expr, const ThreadPoolDevice& device)
- {
- typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
- Evaluator evaluator(expr, device);
- const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
- if (needs_assign)
- {
- const Index size = array_prod(evaluator.dimensions());
-#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL)
- device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
- EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize,
- [&evaluator](Index first, Index last) {
- EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, first, last);
- });
-#else
- size_t num_threads = device.numThreads();
- if (num_threads > 1) {
- num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
- size, evaluator.costPerCoeff(Vectorizable), num_threads);
- }
- if (num_threads == 1) {
- EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
- } else {
- const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
- Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
- const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
- const Index numblocks = size / blocksize;
-
- Barrier barrier(numblocks);
- for (int i = 0; i < numblocks; ++i) {
- device.enqueue_with_barrier(
- &barrier, &EvalRange<Evaluator, Index, Vectorizable>::run,
- &evaluator, i * blocksize, (i + 1) * blocksize);
- }
- if (numblocks * blocksize < size) {
- EvalRange<Evaluator, Index, Vectorizable>::run(
- &evaluator, numblocks * blocksize, size);
- }
- barrier.Wait();
- }
-#endif // defined(!EIGEN_USE_SIMPLE_THREAD_POOL)
- }
- evaluator.cleanup();
- }
-};
-#endif // EIGEN_USE_THREADS
-
-
-// GPU: the evaluation of the expression is offloaded to a GPU.
-#if defined(EIGEN_USE_GPU)
-
-template <typename Expression, bool Vectorizable>
-class TensorExecutor<Expression, GpuDevice, Vectorizable> {
- public:
- typedef typename Expression::Index Index;
- static void run(const Expression& expr, const GpuDevice& device);
-};
-
-
-#if defined(__CUDACC__)
-template <typename Evaluator, typename Index, bool Vectorizable>
-struct EigenMetaKernelEval {
- static __device__ EIGEN_ALWAYS_INLINE
- void run(Evaluator& eval, Index first, Index last, Index step_size) {
- for (Index i = first; i < last; i += step_size) {
- eval.evalScalar(i);
- }
- }
-};
-
-template <typename Evaluator, typename Index>
-struct EigenMetaKernelEval<Evaluator, Index, true> {
- static __device__ EIGEN_ALWAYS_INLINE
- void run(Evaluator& eval, Index first, Index last, Index step_size) {
- const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
- const Index vectorized_size = (last / PacketSize) * PacketSize;
- const Index vectorized_step_size = step_size * PacketSize;
-
- // Use the vector path
- for (Index i = first * PacketSize; i < vectorized_size;
- i += vectorized_step_size) {
- eval.evalPacket(i);
- }
- for (Index i = vectorized_size + first; i < last; i += step_size) {
- eval.evalScalar(i);
- }
- }
-};
-
-template <typename Evaluator, typename Index>
-__global__ void
-__launch_bounds__(1024)
-EigenMetaKernel(Evaluator eval, Index size) {
-
- const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
- const Index step_size = blockDim.x * gridDim.x;
-
- const bool vectorizable = Evaluator::PacketAccess & Evaluator::IsAligned;
- EigenMetaKernelEval<Evaluator, Index, vectorizable>::run(eval, first_index, size, step_size);
-}
-
-/*static*/
-template <typename Expression, bool Vectorizable>
-inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
- const Expression& expr, const GpuDevice& device) {
- TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
- const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
- if (needs_assign) {
- const int block_size = device.maxCudaThreadsPerBlock();
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / block_size;
- const Index size = array_prod(evaluator.dimensions());
- // Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
- const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);
-
- LAUNCH_CUDA_KERNEL(
- (EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
- num_blocks, block_size, 0, device, evaluator, size);
- }
- evaluator.cleanup();
-}
-
-#endif // __CUDACC__
-#endif // EIGEN_USE_GPU
-
-// SYCL Executor policy
-#ifdef EIGEN_USE_SYCL
-
-template <typename Expression, bool Vectorizable>
-class TensorExecutor<Expression, SyclDevice, Vectorizable> {
-public:
- static inline void run(const Expression &expr, const SyclDevice &device) {
- // call TensorSYCL module
- TensorSycl::run(expr, device);
- }
-};
-
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h
deleted file mode 100644
index 85dfc7a..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h
+++ /dev/null
@@ -1,371 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
-#define EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
-
-namespace Eigen {
-
-/** \class TensorExpr
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor expression classes.
- *
- * The TensorCwiseNullaryOp class applies a nullary operators to an expression.
- * This is typically used to generate constants.
- *
- * The TensorCwiseUnaryOp class represents an expression where a unary operator
- * (e.g. cwiseSqrt) is applied to an expression.
- *
- * The TensorCwiseBinaryOp class represents an expression where a binary
- * operator (e.g. addition) is applied to a lhs and a rhs expression.
- *
- */
-namespace internal {
-template<typename NullaryOp, typename XprType>
-struct traits<TensorCwiseNullaryOp<NullaryOp, XprType> >
- : traits<XprType>
-{
- typedef traits<XprType> XprTraits;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::Nested XprTypeNested;
- typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-} // end namespace internal
-
-
-
-template<typename NullaryOp, typename XprType>
-class TensorCwiseNullaryOp : public TensorBase<TensorCwiseNullaryOp<NullaryOp, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef TensorCwiseNullaryOp<NullaryOp, XprType> Nested;
- typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorCwiseNullaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseNullaryOp(const XprType& xpr, const NullaryOp& func = NullaryOp())
- : m_xpr(xpr), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- nestedExpression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- const NullaryOp& functor() const { return m_functor; }
-
- protected:
- typename XprType::Nested m_xpr;
- const NullaryOp m_functor;
-};
-
-
-
-namespace internal {
-template<typename UnaryOp, typename XprType>
-struct traits<TensorCwiseUnaryOp<UnaryOp, XprType> >
- : traits<XprType>
-{
- // TODO(phli): Add InputScalar, InputPacket. Check references to
- // current Scalar/Packet to see if the intent is Input or Output.
- typedef typename result_of<UnaryOp(typename XprType::Scalar)>::type Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprType::Nested XprTypeNested;
- typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename UnaryOp, typename XprType>
-struct eval<TensorCwiseUnaryOp<UnaryOp, XprType>, Eigen::Dense>
-{
- typedef const TensorCwiseUnaryOp<UnaryOp, XprType>& type;
-};
-
-template<typename UnaryOp, typename XprType>
-struct nested<TensorCwiseUnaryOp<UnaryOp, XprType>, 1, typename eval<TensorCwiseUnaryOp<UnaryOp, XprType> >::type>
-{
- typedef TensorCwiseUnaryOp<UnaryOp, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename UnaryOp, typename XprType>
-class TensorCwiseUnaryOp : public TensorBase<TensorCwiseUnaryOp<UnaryOp, XprType>, ReadOnlyAccessors>
-{
- public:
- // TODO(phli): Add InputScalar, InputPacket. Check references to
- // current Scalar/Packet to see if the intent is Input or Output.
- typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef Scalar CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorCwiseUnaryOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorCwiseUnaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
- : m_xpr(xpr), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC
- const UnaryOp& functor() const { return m_functor; }
-
- /** \returns the nested expression */
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- nestedExpression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const UnaryOp m_functor;
-};
-
-
-namespace internal {
-template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
-struct traits<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs
- // are different.
- // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to
- // current Scalar/Packet to see if the intent is Inputs or Output.
- typedef typename result_of<
- BinaryOp(typename LhsXprType::Scalar,
- typename RhsXprType::Scalar)>::type Scalar;
- typedef traits<LhsXprType> XprTraits;
- typedef typename promote_storage_type<
- typename traits<LhsXprType>::StorageKind,
- typename traits<RhsXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<
- typename traits<LhsXprType>::Index,
- typename traits<RhsXprType>::Index>::type Index;
- typedef typename LhsXprType::Nested LhsNested;
- typedef typename RhsXprType::Nested RhsNested;
- typedef typename remove_reference<LhsNested>::type _LhsNested;
- typedef typename remove_reference<RhsNested>::type _RhsNested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
-struct eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, Eigen::Dense>
-{
- typedef const TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>& type;
-};
-
-template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
-struct nested<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, 1, typename eval<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> >::type>
-{
- typedef TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename BinaryOp, typename LhsXprType, typename RhsXprType>
-class TensorCwiseBinaryOp : public TensorBase<TensorCwiseBinaryOp<BinaryOp, LhsXprType, RhsXprType>, ReadOnlyAccessors>
-{
- public:
- // TODO(phli): Add Lhs/RhsScalar, Lhs/RhsPacket. Check references to
- // current Scalar/Packet to see if the intent is Inputs or Output.
- typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef Scalar CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorCwiseBinaryOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorCwiseBinaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const BinaryOp& func = BinaryOp())
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC
- const BinaryOp& functor() const { return m_functor; }
-
- /** \returns the nested expressions */
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename LhsXprType::Nested>::type&
- lhsExpression() const { return m_lhs_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename RhsXprType::Nested>::type&
- rhsExpression() const { return m_rhs_xpr; }
-
- protected:
- typename LhsXprType::Nested m_lhs_xpr;
- typename RhsXprType::Nested m_rhs_xpr;
- const BinaryOp m_functor;
-};
-
-
-namespace internal {
-template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
-struct traits<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >
-{
- // Type promotion to handle the case where the types of the args are different.
- typedef typename result_of<
- TernaryOp(typename Arg1XprType::Scalar,
- typename Arg2XprType::Scalar,
- typename Arg3XprType::Scalar)>::type Scalar;
- typedef traits<Arg1XprType> XprTraits;
- typedef typename traits<Arg1XprType>::StorageKind StorageKind;
- typedef typename traits<Arg1XprType>::Index Index;
- typedef typename Arg1XprType::Nested Arg1Nested;
- typedef typename Arg2XprType::Nested Arg2Nested;
- typedef typename Arg3XprType::Nested Arg3Nested;
- typedef typename remove_reference<Arg1Nested>::type _Arg1Nested;
- typedef typename remove_reference<Arg2Nested>::type _Arg2Nested;
- typedef typename remove_reference<Arg3Nested>::type _Arg3Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-
- enum {
- Flags = 0
- };
-};
-
-template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
-struct eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, Eigen::Dense>
-{
- typedef const TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>& type;
-};
-
-template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
-struct nested<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, 1, typename eval<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> >::type>
-{
- typedef TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType>
-class TensorCwiseTernaryOp : public TensorBase<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef Scalar CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorCwiseTernaryOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorCwiseTernaryOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCwiseTernaryOp(const Arg1XprType& arg1, const Arg2XprType& arg2, const Arg3XprType& arg3, const TernaryOp& func = TernaryOp())
- : m_arg1_xpr(arg1), m_arg2_xpr(arg2), m_arg3_xpr(arg3), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC
- const TernaryOp& functor() const { return m_functor; }
-
- /** \returns the nested expressions */
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename Arg1XprType::Nested>::type&
- arg1Expression() const { return m_arg1_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename Arg2XprType::Nested>::type&
- arg2Expression() const { return m_arg2_xpr; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename Arg3XprType::Nested>::type&
- arg3Expression() const { return m_arg3_xpr; }
-
- protected:
- typename Arg1XprType::Nested m_arg1_xpr;
- typename Arg2XprType::Nested m_arg2_xpr;
- typename Arg3XprType::Nested m_arg3_xpr;
- const TernaryOp m_functor;
-};
-
-
-namespace internal {
-template<typename IfXprType, typename ThenXprType, typename ElseXprType>
-struct traits<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >
- : traits<ThenXprType>
-{
- typedef typename traits<ThenXprType>::Scalar Scalar;
- typedef traits<ThenXprType> XprTraits;
- typedef typename promote_storage_type<typename traits<ThenXprType>::StorageKind,
- typename traits<ElseXprType>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<ElseXprType>::Index,
- typename traits<ThenXprType>::Index>::type Index;
- typedef typename IfXprType::Nested IfNested;
- typedef typename ThenXprType::Nested ThenNested;
- typedef typename ElseXprType::Nested ElseNested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename IfXprType, typename ThenXprType, typename ElseXprType>
-struct eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, Eigen::Dense>
-{
- typedef const TensorSelectOp<IfXprType, ThenXprType, ElseXprType>& type;
-};
-
-template<typename IfXprType, typename ThenXprType, typename ElseXprType>
-struct nested<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, 1, typename eval<TensorSelectOp<IfXprType, ThenXprType, ElseXprType> >::type>
-{
- typedef TensorSelectOp<IfXprType, ThenXprType, ElseXprType> type;
-};
-
-} // end namespace internal
-
-
-template<typename IfXprType, typename ThenXprType, typename ElseXprType>
-class TensorSelectOp : public TensorBase<TensorSelectOp<IfXprType, ThenXprType, ElseXprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorSelectOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::promote_storage_type<typename ThenXprType::CoeffReturnType,
- typename ElseXprType::CoeffReturnType>::ret CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorSelectOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorSelectOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorSelectOp>::Index Index;
-
- EIGEN_DEVICE_FUNC
- TensorSelectOp(const IfXprType& a_condition,
- const ThenXprType& a_then,
- const ElseXprType& a_else)
- : m_condition(a_condition), m_then(a_then), m_else(a_else)
- { }
-
- EIGEN_DEVICE_FUNC
- const IfXprType& ifExpression() const { return m_condition; }
-
- EIGEN_DEVICE_FUNC
- const ThenXprType& thenExpression() const { return m_then; }
-
- EIGEN_DEVICE_FUNC
- const ElseXprType& elseExpression() const { return m_else; }
-
- protected:
- typename IfXprType::Nested m_condition;
- typename ThenXprType::Nested m_then;
- typename ElseXprType::Nested m_else;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_EXPR_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
deleted file mode 100644
index 08eb559..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
+++ /dev/null
@@ -1,651 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Jianwei Cui <thucjw@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H
-#define EIGEN_CXX11_TENSOR_TENSOR_FFT_H
-
-// This code requires the ability to initialize arrays of constant
-// values directly inside a class.
-#if __cplusplus >= 201103L || EIGEN_COMP_MSVC >= 1900
-
-namespace Eigen {
-
-/** \class TensorFFT
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor FFT class.
- *
- * TODO:
- * Vectorize the Cooley Tukey and the Bluestein algorithm
- * Add support for multithreaded evaluation
- * Improve the performance on GPU
- */
-
-template <bool NeedUprade> struct MakeComplex {
- template <typename T>
- EIGEN_DEVICE_FUNC
- T operator() (const T& val) const { return val; }
-};
-
-template <> struct MakeComplex<true> {
- template <typename T>
- EIGEN_DEVICE_FUNC
- std::complex<T> operator() (const T& val) const { return std::complex<T>(val, 0); }
-};
-
-template <> struct MakeComplex<false> {
- template <typename T>
- EIGEN_DEVICE_FUNC
- std::complex<T> operator() (const std::complex<T>& val) const { return val; }
-};
-
-template <int ResultType> struct PartOf {
- template <typename T> T operator() (const T& val) const { return val; }
-};
-
-template <> struct PartOf<RealPart> {
- template <typename T> T operator() (const std::complex<T>& val) const { return val.real(); }
-};
-
-template <> struct PartOf<ImagPart> {
- template <typename T> T operator() (const std::complex<T>& val) const { return val.imag(); }
-};
-
-namespace internal {
-template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
-struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits<XprType> {
- typedef traits<XprType> XprTraits;
- typedef typename NumTraits<typename XprTraits::Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- typedef typename XprTraits::Scalar InputScalar;
- typedef typename conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
-struct eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, Eigen::Dense> {
- typedef const TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>& type;
-};
-
-template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
-struct nested<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection>, 1, typename eval<TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> >::type> {
- typedef TensorFFTOp<FFT, XprType, FFTResultType, FFTDirection> type;
-};
-
-} // end namespace internal
-
-template <typename FFT, typename XprType, int FFTResultType, int FFTDir>
-class TensorFFTOp : public TensorBase<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir>, ReadOnlyAccessors> {
- public:
- typedef typename Eigen::internal::traits<TensorFFTOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
- typedef OutputScalar CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorFFTOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorFFTOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorFFTOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFFTOp(const XprType& expr, const FFT& fft)
- : m_xpr(expr), m_fft(fft) {}
-
- EIGEN_DEVICE_FUNC
- const FFT& fft() const { return m_fft; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type& expression() const {
- return m_xpr;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const FFT m_fft;
-};
-
-// Eval as rvalue
-template <typename FFT, typename ArgType, typename Device, int FFTResultType, int FFTDir>
-struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, Device> {
- typedef TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
- typedef internal::traits<XprType> XprTraits;
- typedef typename XprTraits::Scalar InputScalar;
- typedef typename internal::conditional<FFTResultType == RealPart || FFTResultType == ImagPart, RealScalar, ComplexScalar>::type OutputScalar;
- typedef OutputScalar CoeffReturnType;
- typedef typename PacketType<OutputScalar, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = true,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) {
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- for (int i = 0; i < NumDims; ++i) {
- eigen_assert(input_dims[i] > 0);
- m_dimensions[i] = input_dims[i];
- }
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_strides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
- }
- } else {
- m_strides[NumDims - 1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
- }
- }
- m_size = m_dimensions.TotalSize();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
- return m_dimensions;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(OutputScalar* data) {
- m_impl.evalSubExprsIfNeeded(NULL);
- if (data) {
- evalToBuf(data);
- return false;
- } else {
- m_data = (CoeffReturnType*)m_device.allocate(sizeof(CoeffReturnType) * m_size);
- evalToBuf(m_data);
- return true;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- if (m_data) {
- m_device.deallocate(m_data);
- m_data = NULL;
- }
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const {
- return m_data[index];
- }
-
- template <int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType
- packet(Index index) const {
- return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; }
-
-
- private:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(OutputScalar* data) {
- const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value;
- ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size);
-
- for (Index i = 0; i < m_size; ++i) {
- buf[i] = MakeComplex<internal::is_same<InputScalar, RealScalar>::value>()(m_impl.coeff(i));
- }
-
- for (size_t i = 0; i < m_fft.size(); ++i) {
- Index dim = m_fft[i];
- eigen_assert(dim >= 0 && dim < NumDims);
- Index line_len = m_dimensions[dim];
- eigen_assert(line_len >= 1);
- ComplexScalar* line_buf = (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * line_len);
- const bool is_power_of_two = isPowerOfTwo(line_len);
- const Index good_composite = is_power_of_two ? 0 : findGoodComposite(line_len);
- const Index log_len = is_power_of_two ? getLog2(line_len) : getLog2(good_composite);
-
- ComplexScalar* a = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
- ComplexScalar* b = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * good_composite);
- ComplexScalar* pos_j_base_powered = is_power_of_two ? NULL : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * (line_len + 1));
- if (!is_power_of_two) {
- // Compute twiddle factors
- // t_n = exp(sqrt(-1) * pi * n^2 / line_len)
- // for n = 0, 1,..., line_len-1.
- // For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2
- pos_j_base_powered[0] = ComplexScalar(1, 0);
- if (line_len > 1) {
- const RealScalar pi_over_len(EIGEN_PI / line_len);
- const ComplexScalar pos_j_base = ComplexScalar(
- std::cos(pi_over_len), std::sin(pi_over_len));
- pos_j_base_powered[1] = pos_j_base;
- if (line_len > 2) {
- const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base;
- for (int j = 2; j < line_len + 1; ++j) {
- pos_j_base_powered[j] = pos_j_base_powered[j - 1] *
- pos_j_base_powered[j - 1] /
- pos_j_base_powered[j - 2] * pos_j_base_sq;
- }
- }
- }
- }
-
- for (Index partial_index = 0; partial_index < m_size / line_len; ++partial_index) {
- const Index base_offset = getBaseOffsetFromIndex(partial_index, dim);
-
- // get data into line_buf
- const Index stride = m_strides[dim];
- if (stride == 1) {
- memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar));
- } else {
- Index offset = base_offset;
- for (int j = 0; j < line_len; ++j, offset += stride) {
- line_buf[j] = buf[offset];
- }
- }
-
- // processs the line
- if (is_power_of_two) {
- processDataLineCooleyTukey(line_buf, line_len, log_len);
- }
- else {
- processDataLineBluestein(line_buf, line_len, good_composite, log_len, a, b, pos_j_base_powered);
- }
-
- // write back
- if (FFTDir == FFT_FORWARD && stride == 1) {
- memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar));
- } else {
- Index offset = base_offset;
- const ComplexScalar div_factor = ComplexScalar(1.0 / line_len, 0);
- for (int j = 0; j < line_len; ++j, offset += stride) {
- buf[offset] = (FFTDir == FFT_FORWARD) ? line_buf[j] : line_buf[j] * div_factor;
- }
- }
- }
- m_device.deallocate(line_buf);
- if (!is_power_of_two) {
- m_device.deallocate(a);
- m_device.deallocate(b);
- m_device.deallocate(pos_j_base_powered);
- }
- }
-
- if(!write_to_out) {
- for (Index i = 0; i < m_size; ++i) {
- data[i] = PartOf<FFTResultType>()(buf[i]);
- }
- m_device.deallocate(buf);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static bool isPowerOfTwo(Index x) {
- eigen_assert(x > 0);
- return !(x & (x - 1));
- }
-
- // The composite number for padding, used in Bluestein's FFT algorithm
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index findGoodComposite(Index n) {
- Index i = 2;
- while (i < 2 * n - 1) i *= 2;
- return i;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static Index getLog2(Index m) {
- Index log2m = 0;
- while (m >>= 1) log2m++;
- return log2m;
- }
-
- // Call Cooley Tukey algorithm directly, data length must be power of 2
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineCooleyTukey(ComplexScalar* line_buf, Index line_len, Index log_len) {
- eigen_assert(isPowerOfTwo(line_len));
- scramble_FFT(line_buf, line_len);
- compute_1D_Butterfly<FFTDir>(line_buf, line_len, log_len);
- }
-
- // Call Bluestein's FFT algorithm, m is a good composite number greater than (2 * n - 1), used as the padding length
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void processDataLineBluestein(ComplexScalar* line_buf, Index line_len, Index good_composite, Index log_len, ComplexScalar* a, ComplexScalar* b, const ComplexScalar* pos_j_base_powered) {
- Index n = line_len;
- Index m = good_composite;
- ComplexScalar* data = line_buf;
-
- for (Index i = 0; i < n; ++i) {
- if(FFTDir == FFT_FORWARD) {
- a[i] = data[i] * numext::conj(pos_j_base_powered[i]);
- }
- else {
- a[i] = data[i] * pos_j_base_powered[i];
- }
- }
- for (Index i = n; i < m; ++i) {
- a[i] = ComplexScalar(0, 0);
- }
-
- for (Index i = 0; i < n; ++i) {
- if(FFTDir == FFT_FORWARD) {
- b[i] = pos_j_base_powered[i];
- }
- else {
- b[i] = numext::conj(pos_j_base_powered[i]);
- }
- }
- for (Index i = n; i < m - n; ++i) {
- b[i] = ComplexScalar(0, 0);
- }
- for (Index i = m - n; i < m; ++i) {
- if(FFTDir == FFT_FORWARD) {
- b[i] = pos_j_base_powered[m-i];
- }
- else {
- b[i] = numext::conj(pos_j_base_powered[m-i]);
- }
- }
-
- scramble_FFT(a, m);
- compute_1D_Butterfly<FFT_FORWARD>(a, m, log_len);
-
- scramble_FFT(b, m);
- compute_1D_Butterfly<FFT_FORWARD>(b, m, log_len);
-
- for (Index i = 0; i < m; ++i) {
- a[i] *= b[i];
- }
-
- scramble_FFT(a, m);
- compute_1D_Butterfly<FFT_REVERSE>(a, m, log_len);
-
- //Do the scaling after ifft
- for (Index i = 0; i < m; ++i) {
- a[i] /= m;
- }
-
- for (Index i = 0; i < n; ++i) {
- if(FFTDir == FFT_FORWARD) {
- data[i] = a[i] * numext::conj(pos_j_base_powered[i]);
- }
- else {
- data[i] = a[i] * pos_j_base_powered[i];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static void scramble_FFT(ComplexScalar* data, Index n) {
- eigen_assert(isPowerOfTwo(n));
- Index j = 1;
- for (Index i = 1; i < n; ++i){
- if (j > i) {
- std::swap(data[j-1], data[i-1]);
- }
- Index m = n >> 1;
- while (m >= 2 && j > m) {
- j -= m;
- m >>= 1;
- }
- j += m;
- }
- }
-
- template <int Dir>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_2(ComplexScalar* data) {
- ComplexScalar tmp = data[1];
- data[1] = data[0] - data[1];
- data[0] += tmp;
- }
-
- template <int Dir>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_4(ComplexScalar* data) {
- ComplexScalar tmp[4];
- tmp[0] = data[0] + data[1];
- tmp[1] = data[0] - data[1];
- tmp[2] = data[2] + data[3];
- if (Dir == FFT_FORWARD) {
- tmp[3] = ComplexScalar(0.0, -1.0) * (data[2] - data[3]);
- } else {
- tmp[3] = ComplexScalar(0.0, 1.0) * (data[2] - data[3]);
- }
- data[0] = tmp[0] + tmp[2];
- data[1] = tmp[1] + tmp[3];
- data[2] = tmp[0] - tmp[2];
- data[3] = tmp[1] - tmp[3];
- }
-
- template <int Dir>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_8(ComplexScalar* data) {
- ComplexScalar tmp_1[8];
- ComplexScalar tmp_2[8];
-
- tmp_1[0] = data[0] + data[1];
- tmp_1[1] = data[0] - data[1];
- tmp_1[2] = data[2] + data[3];
- if (Dir == FFT_FORWARD) {
- tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, -1);
- } else {
- tmp_1[3] = (data[2] - data[3]) * ComplexScalar(0, 1);
- }
- tmp_1[4] = data[4] + data[5];
- tmp_1[5] = data[4] - data[5];
- tmp_1[6] = data[6] + data[7];
- if (Dir == FFT_FORWARD) {
- tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, -1);
- } else {
- tmp_1[7] = (data[6] - data[7]) * ComplexScalar(0, 1);
- }
- tmp_2[0] = tmp_1[0] + tmp_1[2];
- tmp_2[1] = tmp_1[1] + tmp_1[3];
- tmp_2[2] = tmp_1[0] - tmp_1[2];
- tmp_2[3] = tmp_1[1] - tmp_1[3];
- tmp_2[4] = tmp_1[4] + tmp_1[6];
-// SQRT2DIV2 = sqrt(2)/2
-#define SQRT2DIV2 0.7071067811865476
- if (Dir == FFT_FORWARD) {
- tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, -SQRT2DIV2);
- tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, -1);
- tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, -SQRT2DIV2);
- } else {
- tmp_2[5] = (tmp_1[5] + tmp_1[7]) * ComplexScalar(SQRT2DIV2, SQRT2DIV2);
- tmp_2[6] = (tmp_1[4] - tmp_1[6]) * ComplexScalar(0, 1);
- tmp_2[7] = (tmp_1[5] - tmp_1[7]) * ComplexScalar(-SQRT2DIV2, SQRT2DIV2);
- }
- data[0] = tmp_2[0] + tmp_2[4];
- data[1] = tmp_2[1] + tmp_2[5];
- data[2] = tmp_2[2] + tmp_2[6];
- data[3] = tmp_2[3] + tmp_2[7];
- data[4] = tmp_2[0] - tmp_2[4];
- data[5] = tmp_2[1] - tmp_2[5];
- data[6] = tmp_2[2] - tmp_2[6];
- data[7] = tmp_2[3] - tmp_2[7];
- }
-
- template <int Dir>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void butterfly_1D_merge(
- ComplexScalar* data, Index n, Index n_power_of_2) {
- // Original code:
- // RealScalar wtemp = std::sin(M_PI/n);
- // RealScalar wpi = -std::sin(2 * M_PI/n);
- const RealScalar wtemp = m_sin_PI_div_n_LUT[n_power_of_2];
- const RealScalar wpi = (Dir == FFT_FORWARD)
- ? m_minus_sin_2_PI_div_n_LUT[n_power_of_2]
- : -m_minus_sin_2_PI_div_n_LUT[n_power_of_2];
-
- const ComplexScalar wp(wtemp, wpi);
- const ComplexScalar wp_one = wp + ComplexScalar(1, 0);
- const ComplexScalar wp_one_2 = wp_one * wp_one;
- const ComplexScalar wp_one_3 = wp_one_2 * wp_one;
- const ComplexScalar wp_one_4 = wp_one_3 * wp_one;
- const Index n2 = n / 2;
- ComplexScalar w(1.0, 0.0);
- for (Index i = 0; i < n2; i += 4) {
- ComplexScalar temp0(data[i + n2] * w);
- ComplexScalar temp1(data[i + 1 + n2] * w * wp_one);
- ComplexScalar temp2(data[i + 2 + n2] * w * wp_one_2);
- ComplexScalar temp3(data[i + 3 + n2] * w * wp_one_3);
- w = w * wp_one_4;
-
- data[i + n2] = data[i] - temp0;
- data[i] += temp0;
-
- data[i + 1 + n2] = data[i + 1] - temp1;
- data[i + 1] += temp1;
-
- data[i + 2 + n2] = data[i + 2] - temp2;
- data[i + 2] += temp2;
-
- data[i + 3 + n2] = data[i + 3] - temp3;
- data[i + 3] += temp3;
- }
- }
-
- template <int Dir>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void compute_1D_Butterfly(
- ComplexScalar* data, Index n, Index n_power_of_2) {
- eigen_assert(isPowerOfTwo(n));
- if (n > 8) {
- compute_1D_Butterfly<Dir>(data, n / 2, n_power_of_2 - 1);
- compute_1D_Butterfly<Dir>(data + n / 2, n / 2, n_power_of_2 - 1);
- butterfly_1D_merge<Dir>(data, n, n_power_of_2);
- } else if (n == 8) {
- butterfly_8<Dir>(data);
- } else if (n == 4) {
- butterfly_4<Dir>(data);
- } else if (n == 2) {
- butterfly_2<Dir>(data);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getBaseOffsetFromIndex(Index index, Index omitted_dim) const {
- Index result = 0;
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > omitted_dim; --i) {
- const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
- const Index idx = index / partial_m_stride;
- index -= idx * partial_m_stride;
- result += idx * m_strides[i];
- }
- result += index;
- }
- else {
- for (Index i = 0; i < omitted_dim; ++i) {
- const Index partial_m_stride = m_strides[i] / m_dimensions[omitted_dim];
- const Index idx = index / partial_m_stride;
- index -= idx * partial_m_stride;
- result += idx * m_strides[i];
- }
- result += index;
- }
- // Value of index_coords[omitted_dim] is not determined to this step
- return result;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index getIndexFromOffset(Index base, Index omitted_dim, Index offset) const {
- Index result = base + offset * m_strides[omitted_dim] ;
- return result;
- }
-
- protected:
- Index m_size;
- const FFT& m_fft;
- Dimensions m_dimensions;
- array<Index, NumDims> m_strides;
- TensorEvaluator<ArgType, Device> m_impl;
- CoeffReturnType* m_data;
- const Device& m_device;
-
- // This will support a maximum FFT size of 2^32 for each dimension
- // m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2;
- const RealScalar m_sin_PI_div_n_LUT[32] = {
- RealScalar(0.0),
- RealScalar(-2),
- RealScalar(-0.999999999999999),
- RealScalar(-0.292893218813453),
- RealScalar(-0.0761204674887130),
- RealScalar(-0.0192147195967696),
- RealScalar(-0.00481527332780311),
- RealScalar(-0.00120454379482761),
- RealScalar(-3.01181303795779e-04),
- RealScalar(-7.52981608554592e-05),
- RealScalar(-1.88247173988574e-05),
- RealScalar(-4.70619042382852e-06),
- RealScalar(-1.17654829809007e-06),
- RealScalar(-2.94137117780840e-07),
- RealScalar(-7.35342821488550e-08),
- RealScalar(-1.83835707061916e-08),
- RealScalar(-4.59589268710903e-09),
- RealScalar(-1.14897317243732e-09),
- RealScalar(-2.87243293150586e-10),
- RealScalar( -7.18108232902250e-11),
- RealScalar(-1.79527058227174e-11),
- RealScalar(-4.48817645568941e-12),
- RealScalar(-1.12204411392298e-12),
- RealScalar(-2.80511028480785e-13),
- RealScalar(-7.01277571201985e-14),
- RealScalar(-1.75319392800498e-14),
- RealScalar(-4.38298482001247e-15),
- RealScalar(-1.09574620500312e-15),
- RealScalar(-2.73936551250781e-16),
- RealScalar(-6.84841378126949e-17),
- RealScalar(-1.71210344531737e-17),
- RealScalar(-4.28025861329343e-18)
- };
-
- // m_minus_sin_2_PI_div_n_LUT[i] = -std::sin(2 * M_PI / std::pow(2,i));
- const RealScalar m_minus_sin_2_PI_div_n_LUT[32] = {
- RealScalar(0.0),
- RealScalar(0.0),
- RealScalar(-1.00000000000000e+00),
- RealScalar(-7.07106781186547e-01),
- RealScalar(-3.82683432365090e-01),
- RealScalar(-1.95090322016128e-01),
- RealScalar(-9.80171403295606e-02),
- RealScalar(-4.90676743274180e-02),
- RealScalar(-2.45412285229123e-02),
- RealScalar(-1.22715382857199e-02),
- RealScalar(-6.13588464915448e-03),
- RealScalar(-3.06795676296598e-03),
- RealScalar(-1.53398018628477e-03),
- RealScalar(-7.66990318742704e-04),
- RealScalar(-3.83495187571396e-04),
- RealScalar(-1.91747597310703e-04),
- RealScalar(-9.58737990959773e-05),
- RealScalar(-4.79368996030669e-05),
- RealScalar(-2.39684498084182e-05),
- RealScalar(-1.19842249050697e-05),
- RealScalar(-5.99211245264243e-06),
- RealScalar(-2.99605622633466e-06),
- RealScalar(-1.49802811316901e-06),
- RealScalar(-7.49014056584716e-07),
- RealScalar(-3.74507028292384e-07),
- RealScalar(-1.87253514146195e-07),
- RealScalar(-9.36267570730981e-08),
- RealScalar(-4.68133785365491e-08),
- RealScalar(-2.34066892682746e-08),
- RealScalar(-1.17033446341373e-08),
- RealScalar(-5.85167231706864e-09),
- RealScalar(-2.92583615853432e-09)
- };
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_HAS_CONSTEXPR
-
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_FFT_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h
deleted file mode 100644
index fcee5f6..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h
+++ /dev/null
@@ -1,389 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
-#define EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
-
-namespace Eigen {
-
-/** \class TensorFixedSize
- * \ingroup CXX11_Tensor_Module
- *
- * \brief The fixed sized version of the tensor class.
- *
- * The fixed sized equivalent of
- * Eigen::Tensor<float, 3> t(3, 5, 7);
- * is
- * Eigen::TensorFixedSize<float, Size<3,5,7>> t;
- */
-
-template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
-class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> >
-{
- public:
- typedef TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> Self;
- typedef TensorBase<TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType> > Base;
- typedef typename Eigen::internal::nested<Self>::type Nested;
- typedef typename internal::traits<Self>::StorageKind StorageKind;
- typedef typename internal::traits<Self>::Index Index;
- typedef Scalar_ Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
- static const int Options = Options_;
-
- enum {
- IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0),
- Layout = Options_ & RowMajor ? RowMajor : ColMajor,
- CoordAccess = true,
- RawAccess = true
- };
-
- typedef Dimensions_ Dimensions;
- static const std::size_t NumIndices = Dimensions::count;
-
- protected:
- TensorStorage<Scalar, Dimensions, Options> m_storage;
-
- public:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
-
- // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
- // work, because that uses base().coeffRef() - and we don't yet
- // implement a similar class hierarchy
- inline Self& base() { return *this; }
- inline const Self& base() const { return *this; }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, IndexTypes... otherIndices) const
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeff(array<Index, NumIndices>{{firstIndex, otherIndices...}});
- }
-#endif
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
- {
- eigen_internal_assert(checkIndexRange(indices));
- return m_storage.data()[linearizedIndex(indices)];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_storage.data()[index];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& coeff() const
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return m_storage.data()[0];
- }
-
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices)
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeffRef(array<Index, NumIndices>{{firstIndex, otherIndices...}});
- }
-#endif
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
- {
- eigen_internal_assert(checkIndexRange(indices));
- return m_storage.data()[linearizedIndex(indices)];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_storage.data()[index];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return m_storage.data()[0];
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) const
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return this->operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}});
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
- {
- if (Options&RowMajor) {
- const Index index = i1 + i0 * m_storage.dimensions()[1];
- return m_storage.data()[index];
- } else {
- const Index index = i0 + i1 * m_storage.dimensions()[0];
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
- {
- if (Options&RowMajor) {
- const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0);
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2);
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
- {
- if (Options&RowMajor) {
- const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0));
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3));
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
- {
- if (Options&RowMajor) {
- const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)));
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4)));
- return m_storage.data()[index];
- }
- }
-#endif
-
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
- {
- eigen_assert(checkIndexRange(indices));
- return coeff(indices);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return coeff(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()() const
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeff();
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
- {
- // The bracket operator is only for vectors, use the parenthesis operator instead.
- EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeff(index);
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
- {
- // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}});
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
- {
- if (Options&RowMajor) {
- const Index index = i1 + i0 * m_storage.dimensions()[1];
- return m_storage.data()[index];
- } else {
- const Index index = i0 + i1 * m_storage.dimensions()[0];
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
- {
- if (Options&RowMajor) {
- const Index index = i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0);
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * i2);
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
- {
- if (Options&RowMajor) {
- const Index index = i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0));
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * i3));
- return m_storage.data()[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
- {
- if (Options&RowMajor) {
- const Index index = i4 + m_storage.dimensions()[4] * (i3 + m_storage.dimensions()[3] * (i2 + m_storage.dimensions()[2] * (i1 + m_storage.dimensions()[1] * i0)));
- return m_storage.data()[index];
- } else {
- const Index index = i0 + m_storage.dimensions()[0] * (i1 + m_storage.dimensions()[1] * (i2 + m_storage.dimensions()[2] * (i3 + m_storage.dimensions()[3] * i4)));
- return m_storage.data()[index];
- }
- }
-#endif
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
- {
- eigen_assert(checkIndexRange(indices));
- return coeffRef(indices);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index index)
- {
- eigen_assert(index >= 0 && index < size());
- return coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return coeffRef();
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator[](Index index)
- {
- // The bracket operator is only for vectors, use the parenthesis operator instead
- EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize()
- : m_storage()
- {
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize(const Self& other)
- : m_storage(other.m_storage)
- {
- }
-
-#if EIGEN_HAS_RVALUE_REFERENCES
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorFixedSize(Self&& other)
- : m_storage(other.m_storage)
- {
- }
-#endif
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
- {
- typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign;
- Assign assign(*this, other.derived());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- }
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize(const TensorBase<OtherDerived, WriteAccessors>& other)
- {
- typedef TensorAssignOp<TensorFixedSize, const OtherDerived> Assign;
- Assign assign(*this, other.derived());
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize& operator=(const TensorFixedSize& other)
- {
- // FIXME: check that the dimensions of other match the dimensions of *this.
- // Unfortunately this isn't possible yet when the rhs is an expression.
- typedef TensorAssignOp<Self, const TensorFixedSize> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorFixedSize& operator=(const OtherDerived& other)
- {
- // FIXME: check that the dimensions of other match the dimensions of *this.
- // Unfortunately this isn't possible yet when the rhs is an expression.
- typedef TensorAssignOp<Self, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE bool checkIndexRange(const array<Index, NumIndices>& /*indices*/) const
- {
- using internal::array_apply_and_reduce;
- using internal::array_zip_and_reduce;
- using internal::greater_equal_zero_op;
- using internal::logical_and_op;
- using internal::lesser_op;
-
- return true;
- // check whether the indices are all >= 0
- /* array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
- // check whether the indices fit in the dimensions
- array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());*/
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
- {
- if (Options&RowMajor) {
- return m_storage.dimensions().IndexOfRowMajor(indices);
- } else {
- return m_storage.dimensions().IndexOfColMajor(indices);
- }
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_FIXED_SIZE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h
deleted file mode 100644
index 8bece4e..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h
+++ /dev/null
@@ -1,169 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
-#define EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename XprType, template <class> class MakePointer_>
-struct traits<TensorForcedEvalOp<XprType, MakePointer_> >
-{
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename traits<XprType>::StorageKind StorageKind;
- typedef typename traits<XprType>::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-
- enum {
- Flags = 0
- };
- template <class T> struct MakePointer {
- // Intermediate typedef to workaround MSVC issue.
- typedef MakePointer_<T> MakePointerT;
- typedef typename MakePointerT::Type Type;
- };
-};
-
-template<typename XprType, template <class> class MakePointer_>
-struct eval<TensorForcedEvalOp<XprType, MakePointer_>, Eigen::Dense>
-{
- typedef const TensorForcedEvalOp<XprType, MakePointer_>& type;
-};
-
-template<typename XprType, template <class> class MakePointer_>
-struct nested<TensorForcedEvalOp<XprType, MakePointer_>, 1, typename eval<TensorForcedEvalOp<XprType, MakePointer_> >::type>
-{
- typedef TensorForcedEvalOp<XprType, MakePointer_> type;
-};
-
-} // end namespace internal
-
-
-
-// FIXME use proper doxygen documentation (e.g. \tparam MakePointer_)
-
-/** \class TensorForcedEvalOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor reshaping class.
- *
- *
- */
-/// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer.
-/// It is added due to the fact that for our device compiler `T*` is not allowed.
-/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`.
-/// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` .
-/// Therefore, by adding the default value, we managed to convert the type and it does not break any
-/// existing code as its default value is `T*`.
-template<typename XprType, template <class> class MakePointer_>
-class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType, MakePointer_>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorForcedEvalOp(const XprType& expr)
- : m_xpr(expr) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
-};
-
-
-template<typename ArgType, typename Device, template <class> class MakePointer_>
-struct TensorEvaluator<const TensorForcedEvalOp<ArgType, MakePointer_>, Device>
-{
- typedef TensorForcedEvalOp<ArgType, MakePointer_> XprType;
- typedef typename ArgType::Scalar Scalar;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
- typedef typename XprType::Index Index;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = true,
- PacketAccess = (PacketSize > 1),
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- RawAccess = true
- };
-
- EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
- /// op_ is used for sycl
- : m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL)
- { }
-
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
- const Index numValues = internal::array_prod(m_impl.dimensions());
- m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType));
- // Should initialize the memory in case we're dealing with non POD types.
- if (NumTraits<CoeffReturnType>::RequireInitialization) {
- for (Index i = 0; i < numValues; ++i) {
- new(m_buffer+i) CoeffReturnType();
- }
- }
- typedef TensorEvalToOp< const typename internal::remove_const<ArgType>::type > EvalTo;
- EvalTo evalToTmp(m_buffer, m_op);
- const bool PacketAccess = internal::IsVectorizable<Device, const ArgType>::value;
- internal::TensorExecutor<const EvalTo, typename internal::remove_const<Device>::type, PacketAccess>::run(evalToTmp, m_device);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_device.deallocate(m_buffer);
- m_buffer = NULL;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_buffer[index];
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC typename MakePointer<Scalar>::Type data() const { return m_buffer; }
-
- /// required by sycl in order to extract the sycl accessor
- const TensorEvaluator<ArgType, Device>& impl() { return m_impl; }
- /// used by sycl in order to build the sycl buffer
- const Device& device() const{return m_device;}
- private:
- TensorEvaluator<ArgType, Device> m_impl;
- const ArgType m_op;
- const Device& m_device;
- typename MakePointer<CoeffReturnType>::Type m_buffer;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_FORCED_EVAL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
deleted file mode 100644
index 52b803d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
+++ /dev/null
@@ -1,109 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
-
-namespace Eigen {
-
-// MakePointer class is used as a container of the adress space of the pointer
-// on the host and on the device. From the host side it generates the T* pointer
-// and when EIGEN_USE_SYCL is used it construct a buffer with a map_allocator to
-// T* m_data on the host. It is always called on the device.
-// Specialisation of MakePointer class for creating the sycl buffer with
-// map_allocator.
-template<typename T> struct MakePointer {
- typedef T* Type;
-};
-
-template<typename PlainObjectType, int Options_ = Unaligned, template <class> class MakePointer_ = MakePointer> class TensorMap;
-template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor;
-template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize;
-template<typename PlainObjectType> class TensorRef;
-template<typename Derived, int AccessLevel> class TensorBase;
-
-template<typename NullaryOp, typename PlainObjectType> class TensorCwiseNullaryOp;
-template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
-template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
-template<typename TernaryOp, typename Arg1XprType, typename Arg2XprType, typename Arg3XprType> class TensorCwiseTernaryOp;
-template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
-template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_ = MakePointer > class TensorReductionOp;
-template<typename XprType> class TensorIndexTupleOp;
-template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
-template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
-template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
-template<typename TargetType, typename XprType> class TensorConversionOp;
-template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
-template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
-template<typename PatchDim, typename XprType> class TensorPatchOp;
-template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp;
-template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
-template<DenseIndex DimId, typename XprType> class TensorChippingOp;
-template<typename NewDimensions, typename XprType> class TensorReshapingOp;
-template<typename XprType> class TensorLayoutSwapOp;
-template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
-template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
-template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
-template<typename Shuffle, typename XprType> class TensorShufflingOp;
-template<typename Strides, typename XprType> class TensorStridingOp;
-template<typename StartIndices, typename StopIndices, typename Strides, typename XprType> class TensorStridingSlicingOp;
-template<typename Strides, typename XprType> class TensorInflationOp;
-template<typename Generator, typename XprType> class TensorGeneratorOp;
-template<typename LeftXprType, typename RightXprType> class TensorAssignOp;
-template<typename Op, typename XprType> class TensorScanOp;
-
-template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp;
-template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp;
-
-template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorEvalToOp;
-template<typename XprType, template <class> class MakePointer_ = MakePointer> class TensorForcedEvalOp;
-
-template<typename ExpressionType, typename DeviceType> class TensorDevice;
-template<typename Derived, typename Device> struct TensorEvaluator;
-
-struct DefaultDevice;
-struct ThreadPoolDevice;
-struct GpuDevice;
-struct SyclDevice;
-
-enum FFTResultType {
- RealPart = 0,
- ImagPart = 1,
- BothParts = 2
-};
-
-enum FFTDirection {
- FFT_FORWARD = 0,
- FFT_REVERSE = 1
-};
-
-
-namespace internal {
-
-template <typename Device, typename Expression>
-struct IsVectorizable {
- static const bool value = TensorEvaluator<Expression, Device>::PacketAccess;
-};
-
-template <typename Expression>
-struct IsVectorizable<GpuDevice, Expression> {
- static const bool value = TensorEvaluator<Expression, GpuDevice>::PacketAccess &&
- TensorEvaluator<Expression, GpuDevice>::IsAligned;
-};
-
-template <typename Expression, typename Device,
- bool Vectorizable = IsVectorizable<Device, Expression>::value>
-class TensorExecutor;
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_FORWARD_DECLARATIONS_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
deleted file mode 100644
index d73f6dc..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
+++ /dev/null
@@ -1,489 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
-
-namespace Eigen {
-namespace internal {
-
-
-/** \internal
- * \brief Template functor to compute the modulo between an array and a scalar.
- */
-template <typename Scalar>
-struct scalar_mod_op {
- EIGEN_DEVICE_FUNC scalar_mod_op(const Scalar& divisor) : m_divisor(divisor) {}
- EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a % m_divisor; }
- const Scalar m_divisor;
-};
-template <typename Scalar>
-struct functor_traits<scalar_mod_op<Scalar> >
-{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; };
-
-
-/** \internal
- * \brief Template functor to compute the modulo between 2 arrays.
- */
-template <typename Scalar>
-struct scalar_mod2_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_mod2_op);
- EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a, const Scalar& b) const { return a % b; }
-};
-template <typename Scalar>
-struct functor_traits<scalar_mod2_op<Scalar> >
-{ enum { Cost = scalar_div_cost<Scalar,false>::value, PacketAccess = false }; };
-
-template <typename Scalar>
-struct scalar_fmod_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_fmod_op);
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar
- operator()(const Scalar& a, const Scalar& b) const {
- return numext::fmod(a, b);
- }
-};
-template <typename Scalar>
-struct functor_traits<scalar_fmod_op<Scalar> > {
- enum { Cost = 13, // Reciprocal throughput of FPREM on Haswell.
- PacketAccess = false };
-};
-
-
-/** \internal
- * \brief Template functor to compute the sigmoid of a scalar
- * \sa class CwiseUnaryOp, ArrayBase::sigmoid()
- */
-template <typename T>
-struct scalar_sigmoid_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
- const T one = T(1);
- return one / (one + numext::exp(-x));
- }
-
- template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Packet packetOp(const Packet& x) const {
- const Packet one = pset1<Packet>(T(1));
- return pdiv(one, padd(one, pexp(pnegate(x))));
- }
-};
-
-template <typename T>
-struct functor_traits<scalar_sigmoid_op<T> > {
- enum {
- Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
- PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
- packet_traits<T>::HasNegate && packet_traits<T>::HasExp
- };
-};
-
-
-template<typename Reducer, typename Device>
-struct reducer_traits {
- enum {
- Cost = 1,
- PacketAccess = false
- };
-};
-
-// Standard reduction functors
-template <typename T> struct SumReducer
-{
- static const bool PacketAccess = packet_traits<T>::HasAdd;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
- internal::scalar_sum_op<T> sum_op;
- *accum = sum_op(*accum, t);
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
- (*accum) = padd<Packet>(*accum, p);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- internal::scalar_cast_op<int, T> conv;
- return conv(0);
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
- return pset1<Packet>(initialize());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
- return accum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
- return vaccum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
- internal::scalar_sum_op<T> sum_op;
- return sum_op(saccum, predux(vaccum));
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<SumReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = PacketType<T, Device>::HasAdd
- };
-};
-
-
-template <typename T> struct MeanReducer
-{
- static const bool PacketAccess = packet_traits<T>::HasAdd && !NumTraits<T>::IsInteger;
- static const bool IsStateful = true;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- MeanReducer() : scalarCount_(0), packetCount_(0) { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) {
- internal::scalar_sum_op<T> sum_op;
- *accum = sum_op(*accum, t);
- scalarCount_++;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) {
- (*accum) = padd<Packet>(*accum, p);
- packetCount_++;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- internal::scalar_cast_op<int, T> conv;
- return conv(0);
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
- return pset1<Packet>(initialize());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
- return accum / scalarCount_;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
- return pdiv(vaccum, pset1<Packet>(packetCount_));
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
- internal::scalar_sum_op<T> sum_op;
- return sum_op(saccum, predux(vaccum)) / (scalarCount_ + packetCount_ * unpacket_traits<Packet>::size);
- }
-
- protected:
- DenseIndex scalarCount_;
- DenseIndex packetCount_;
-};
-
-template <typename T, typename Device>
-struct reducer_traits<MeanReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = PacketType<T, Device>::HasAdd
- };
-};
-
-
-template <typename T, bool IsMax = true, bool IsInteger = true>
-struct MinMaxBottomValue {
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
- return Eigen::NumTraits<T>::lowest();
- }
-};
-template <typename T>
-struct MinMaxBottomValue<T, true, false> {
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
- return -Eigen::NumTraits<T>::infinity();
- }
-};
-template <typename T>
-struct MinMaxBottomValue<T, false, true> {
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
- return Eigen::NumTraits<T>::highest();
- }
-};
-template <typename T>
-struct MinMaxBottomValue<T, false, false> {
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T bottom_value() {
- return Eigen::NumTraits<T>::infinity();
- }
-};
-
-
-template <typename T> struct MaxReducer
-{
- static const bool PacketAccess = packet_traits<T>::HasMax;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
- if (t > *accum) { *accum = t; }
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
- (*accum) = pmax<Packet>(*accum, p);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- return MinMaxBottomValue<T, true, Eigen::NumTraits<T>::IsInteger>::bottom_value();
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
- return pset1<Packet>(initialize());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
- return accum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
- return vaccum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
- return numext::maxi(saccum, predux_max(vaccum));
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<MaxReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = PacketType<T, Device>::HasMax
- };
-};
-
-
-template <typename T> struct MinReducer
-{
- static const bool PacketAccess = packet_traits<T>::HasMin;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
- if (t < *accum) { *accum = t; }
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
- (*accum) = pmin<Packet>(*accum, p);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- return MinMaxBottomValue<T, false, Eigen::NumTraits<T>::IsInteger>::bottom_value();
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
- return pset1<Packet>(initialize());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
- return accum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
- return vaccum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
- return numext::mini(saccum, predux_min(vaccum));
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<MinReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = PacketType<T, Device>::HasMin
- };
-};
-
-
-template <typename T> struct ProdReducer
-{
- static const bool PacketAccess = packet_traits<T>::HasMul;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
- internal::scalar_product_op<T> prod_op;
- (*accum) = prod_op(*accum, t);
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) const {
- (*accum) = pmul<Packet>(*accum, p);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- internal::scalar_cast_op<int, T> conv;
- return conv(1);
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
- return pset1<Packet>(initialize());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
- return accum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
- return vaccum;
- }
- template <typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
- internal::scalar_product_op<T> prod_op;
- return prod_op(saccum, predux_mul(vaccum));
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<ProdReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::MulCost,
- PacketAccess = PacketType<T, Device>::HasMul
- };
-};
-
-
-struct AndReducer
-{
- static const bool PacketAccess = false;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const {
- *accum = *accum && t;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const {
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const {
- return accum;
- }
-};
-
-template <typename Device>
-struct reducer_traits<AndReducer, Device> {
- enum {
- Cost = 1,
- PacketAccess = false
- };
-};
-
-
-struct OrReducer {
- static const bool PacketAccess = false;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(bool t, bool* accum) const {
- *accum = *accum || t;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool initialize() const {
- return false;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool finalize(bool accum) const {
- return accum;
- }
-};
-
-template <typename Device>
-struct reducer_traits<OrReducer, Device> {
- enum {
- Cost = 1,
- PacketAccess = false
- };
-};
-
-
-// Argmin/Argmax reducers
-template <typename T> struct ArgMaxTupleReducer
-{
- static const bool PacketAccess = false;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
- if (t.second > accum->second) { *accum = t; }
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- return T(0, NumTraits<typename T::second_type>::lowest());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
- return accum;
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<ArgMaxTupleReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = false
- };
-};
-
-
-template <typename T> struct ArgMinTupleReducer
-{
- static const bool PacketAccess = false;
- static const bool IsStateful = false;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const {
- if (t.second < accum->second) { *accum = t; }
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
- return T(0, NumTraits<typename T::second_type>::highest());
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
- return accum;
- }
-};
-
-template <typename T, typename Device>
-struct reducer_traits<ArgMinTupleReducer<T>, Device> {
- enum {
- Cost = NumTraits<T>::AddCost,
- PacketAccess = false
- };
-};
-
-
-template <typename T, typename Index, size_t NumDims>
-class GaussianGenerator {
- public:
- static const bool PacketAccess = false;
-
- EIGEN_DEVICE_FUNC GaussianGenerator(const array<T, NumDims>& means,
- const array<T, NumDims>& std_devs)
- : m_means(means)
- {
- for (size_t i = 0; i < NumDims; ++i) {
- m_two_sigmas[i] = std_devs[i] * std_devs[i] * 2;
- }
- }
-
- EIGEN_DEVICE_FUNC T operator()(const array<Index, NumDims>& coordinates) const {
- T tmp = T(0);
- for (size_t i = 0; i < NumDims; ++i) {
- T offset = coordinates[i] - m_means[i];
- tmp += offset * offset / m_two_sigmas[i];
- }
- return numext::exp(-tmp);
- }
-
- private:
- array<T, NumDims> m_means;
- array<T, NumDims> m_two_sigmas;
-};
-
-template <typename T, typename Index, size_t NumDims>
-struct functor_traits<GaussianGenerator<T, Index, NumDims> > {
- enum {
- Cost = NumDims * (2 * NumTraits<T>::AddCost + NumTraits<T>::MulCost +
- functor_traits<scalar_quotient_op<T, T> >::Cost) +
- functor_traits<scalar_exp_op<T> >::Cost,
- PacketAccess = GaussianGenerator<T, Index, NumDims>::PacketAccess
- };
-};
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
deleted file mode 100644
index e27753b..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h
+++ /dev/null
@@ -1,185 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
-#define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
-
-namespace Eigen {
-
-/** \class TensorGeneratorOp
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor generator class.
- *
- *
- */
-namespace internal {
-template<typename Generator, typename XprType>
-struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Generator, typename XprType>
-struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
-{
- typedef const TensorGeneratorOp<Generator, XprType>& type;
-};
-
-template<typename Generator, typename XprType>
-struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
-{
- typedef TensorGeneratorOp<Generator, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename Generator, typename XprType>
-class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
- : m_xpr(expr), m_generator(generator) {}
-
- EIGEN_DEVICE_FUNC
- const Generator& generator() const { return m_generator; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const Generator m_generator;
-};
-
-
-// Eval as rvalue
-template<typename Generator, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
-{
- typedef TensorGeneratorOp<Generator, ArgType> XprType;
- typedef typename XprType::Index Index;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
- static const int NumDims = internal::array_size<Dimensions>::value;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- enum {
- IsAligned = false,
- PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_generator(op.generator())
- {
- TensorEvaluator<ArgType, Device> impl(op.expression(), device);
- m_dimensions = impl.dimensions();
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_strides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
- }
- } else {
- m_strides[NumDims - 1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- array<Index, NumDims> coords;
- extract_coordinates(index, coords);
- return m_generator(coords);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
- EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+packetSize-1 < dimensions().TotalSize());
-
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
- for (int i = 0; i < packetSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool) const {
- // TODO(rmlarsen): This is just a placeholder. Define interface to make
- // generators return their cost.
- return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +
- TensorOpCost::MulCost<Scalar>());
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_strides[i];
- index -= idx * m_strides[i];
- coords[i] = idx;
- }
- coords[0] = index;
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_strides[i];
- index -= idx * m_strides[i];
- coords[i] = idx;
- }
- coords[NumDims-1] = index;
- }
- }
-
- Dimensions m_dimensions;
- array<Index, NumDims> m_strides;
- Generator m_generator;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h
deleted file mode 100644
index 665b861..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h
+++ /dev/null
@@ -1,33 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
-
-namespace Eigen {
-
-/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given tensors.
- *
- * This function computes the regularized incomplete beta function (integral).
- *
- */
-template <typename ADerived, typename BDerived, typename XDerived>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const
- TensorCwiseTernaryOp<internal::scalar_betainc_op<typename XDerived::Scalar>,
- const ADerived, const BDerived, const XDerived>
- betainc(const ADerived& a, const BDerived& b, const XDerived& x) {
- return TensorCwiseTernaryOp<
- internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived,
- const BDerived, const XDerived>(
- a, b, x, internal::scalar_betainc_op<typename XDerived::Scalar>());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_GLOBAL_FUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h
deleted file mode 100644
index a901c5d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h
+++ /dev/null
@@ -1,79 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_IO_H
-#define EIGEN_CXX11_TENSOR_TENSOR_IO_H
-
-namespace Eigen {
-
-namespace internal {
-
-// Print the tensor as a 2d matrix
-template <typename Tensor, int Rank>
-struct TensorPrinter {
- static void run (std::ostream& os, const Tensor& tensor) {
- typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar;
- typedef typename Tensor::Index Index;
- const Index total_size = internal::array_prod(tensor.dimensions());
- if (total_size > 0) {
- const Index first_dim = Eigen::internal::array_get<0>(tensor.dimensions());
- static const int layout = Tensor::Layout;
- Map<const Array<Scalar, Dynamic, Dynamic, layout> > matrix(const_cast<Scalar*>(tensor.data()), first_dim, total_size/first_dim);
- os << matrix;
- }
- }
-};
-
-
-// Print the tensor as a vector
-template <typename Tensor>
-struct TensorPrinter<Tensor, 1> {
- static void run (std::ostream& os, const Tensor& tensor) {
- typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar;
- typedef typename Tensor::Index Index;
- const Index total_size = internal::array_prod(tensor.dimensions());
- if (total_size > 0) {
- Map<const Array<Scalar, Dynamic, 1> > array(const_cast<Scalar*>(tensor.data()), total_size);
- os << array;
- }
- }
-};
-
-
-// Print the tensor as a scalar
-template <typename Tensor>
-struct TensorPrinter<Tensor, 0> {
- static void run (std::ostream& os, const Tensor& tensor) {
- os << tensor.coeff(0);
- }
-};
-}
-
-template <typename T>
-std::ostream& operator << (std::ostream& os, const TensorBase<T, ReadOnlyAccessors>& expr) {
- typedef TensorEvaluator<const TensorForcedEvalOp<const T>, DefaultDevice> Evaluator;
- typedef typename Evaluator::Dimensions Dimensions;
-
- // Evaluate the expression if needed
- TensorForcedEvalOp<const T> eval = expr.eval();
- Evaluator tensor(eval, DefaultDevice());
- tensor.evalSubExprsIfNeeded(NULL);
-
- // Print the result
- static const int rank = internal::array_size<Dimensions>::value;
- internal::TensorPrinter<Evaluator, rank>::run(os, tensor);
-
- // Cleanup.
- tensor.cleanup();
- return os;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_IO_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
deleted file mode 100644
index 566856e..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h
+++ /dev/null
@@ -1,509 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
-#define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
-
-namespace Eigen {
-
-/** \class TensorImagePatch
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Patch extraction specialized for image processing.
- * This assumes that the input has a least 3 dimensions ordered as follow:
- * 1st dimension: channels (of size d)
- * 2nd dimension: rows (of size r)
- * 3rd dimension: columns (of size c)
- * There can be additional dimensions such as time (for video) or batch (for
- * bulk processing after the first 3.
- * Calling the image patch code with patch_rows and patch_cols is equivalent
- * to calling the regular patch extraction code with parameters d, patch_rows,
- * patch_cols, and 1 for all the additional dimensions.
- */
-namespace internal {
-template<DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
-{
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions + 1;
- static const int Layout = XprTraits::Layout;
-};
-
-template<DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct eval<TensorImagePatchOp<Rows, Cols, XprType>, Eigen::Dense>
-{
- typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
-};
-
-template<DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
-{
- typedef TensorImagePatchOp<Rows, Cols, XprType> type;
-};
-
-} // end namespace internal
-
-template<DenseIndex Rows, DenseIndex Cols, typename XprType>
-class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorImagePatchOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
- DenseIndex row_strides, DenseIndex col_strides,
- DenseIndex in_row_strides, DenseIndex in_col_strides,
- DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
- PaddingType padding_type, Scalar padding_value)
- : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
- m_row_strides(row_strides), m_col_strides(col_strides),
- m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
- m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
- m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
- m_padding_type(padding_type), m_padding_value(padding_value) {}
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
- DenseIndex row_strides, DenseIndex col_strides,
- DenseIndex in_row_strides, DenseIndex in_col_strides,
- DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
- DenseIndex padding_top, DenseIndex padding_bottom,
- DenseIndex padding_left, DenseIndex padding_right,
- Scalar padding_value)
- : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
- m_row_strides(row_strides), m_col_strides(col_strides),
- m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
- m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
- m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
- m_padding_left(padding_left), m_padding_right(padding_right),
- m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
-
- EIGEN_DEVICE_FUNC
- DenseIndex patch_rows() const { return m_patch_rows; }
- EIGEN_DEVICE_FUNC
- DenseIndex patch_cols() const { return m_patch_cols; }
- EIGEN_DEVICE_FUNC
- DenseIndex row_strides() const { return m_row_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex col_strides() const { return m_col_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex in_row_strides() const { return m_in_row_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex in_col_strides() const { return m_in_col_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
- EIGEN_DEVICE_FUNC
- bool padding_explicit() const { return m_padding_explicit; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_top() const { return m_padding_top; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_bottom() const { return m_padding_bottom; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_left() const { return m_padding_left; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_right() const { return m_padding_right; }
- EIGEN_DEVICE_FUNC
- PaddingType padding_type() const { return m_padding_type; }
- EIGEN_DEVICE_FUNC
- Scalar padding_value() const { return m_padding_value; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const DenseIndex m_patch_rows;
- const DenseIndex m_patch_cols;
- const DenseIndex m_row_strides;
- const DenseIndex m_col_strides;
- const DenseIndex m_in_row_strides;
- const DenseIndex m_in_col_strides;
- const DenseIndex m_row_inflate_strides;
- const DenseIndex m_col_inflate_strides;
- const bool m_padding_explicit;
- const DenseIndex m_padding_top;
- const DenseIndex m_padding_bottom;
- const DenseIndex m_padding_left;
- const DenseIndex m_padding_right;
- const PaddingType m_padding_type;
- const Scalar m_padding_value;
-};
-
-// Eval as rvalue
-template<DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
-{
- typedef TensorImagePatchOp<Rows, Cols, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- static const int NumDims = NumInputDims + 1;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>,
- Device> Self;
- typedef TensorEvaluator<ArgType, Device> Impl;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- m_paddingValue = op.padding_value();
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
-
- // Caches a few variables.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputDepth = input_dims[0];
- m_inputRows = input_dims[1];
- m_inputCols = input_dims[2];
- } else {
- m_inputDepth = input_dims[NumInputDims-1];
- m_inputRows = input_dims[NumInputDims-2];
- m_inputCols = input_dims[NumInputDims-3];
- }
-
- m_row_strides = op.row_strides();
- m_col_strides = op.col_strides();
-
- // Input strides and effective input/patch size
- m_in_row_strides = op.in_row_strides();
- m_in_col_strides = op.in_col_strides();
- m_row_inflate_strides = op.row_inflate_strides();
- m_col_inflate_strides = op.col_inflate_strides();
- // The "effective" input rows and input cols are the input rows and cols
- // after inflating them with zeros.
- // For examples, a 2x3 matrix with row_inflate_strides and
- // col_inflate_strides of 2 comes from:
- // A B C
- // D E F
- //
- // to a matrix is 3 x 5:
- //
- // A . B . C
- // . . . . .
- // D . E . F
-
- m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
- m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
- m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
- m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
-
- if (op.padding_explicit()) {
- m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
- m_rowPaddingTop = op.padding_top();
- m_colPaddingLeft = op.padding_left();
- } else {
- // Computing padding from the type
- switch (op.padding_type()) {
- case PADDING_VALID:
- m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
- // Calculate the padding
- m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
- m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
- break;
- case PADDING_SAME:
- m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
- // Calculate the padding
- m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
- m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
- break;
- default:
- eigen_assert(false && "unexpected padding");
- }
- }
- eigen_assert(m_outputRows > 0);
- eigen_assert(m_outputCols > 0);
-
- // Dimensions for result of extraction.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- // ColMajor
- // 0: depth
- // 1: patch_rows
- // 2: patch_cols
- // 3: number of patches
- // 4 and beyond: anything else (such as batch).
- m_dimensions[0] = input_dims[0];
- m_dimensions[1] = op.patch_rows();
- m_dimensions[2] = op.patch_cols();
- m_dimensions[3] = m_outputRows * m_outputCols;
- for (int i = 4; i < NumDims; ++i) {
- m_dimensions[i] = input_dims[i-1];
- }
- } else {
- // RowMajor
- // NumDims-1: depth
- // NumDims-2: patch_rows
- // NumDims-3: patch_cols
- // NumDims-4: number of patches
- // NumDims-5 and beyond: anything else (such as batch).
- m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
- m_dimensions[NumDims-2] = op.patch_rows();
- m_dimensions[NumDims-3] = op.patch_cols();
- m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
- for (int i = NumDims-5; i >= 0; --i) {
- m_dimensions[i] = input_dims[i];
- }
- }
-
- // Strides for moving the patch in various dimensions.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_colStride = m_dimensions[1];
- m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
- m_otherStride = m_patchStride * m_dimensions[3];
- } else {
- m_colStride = m_dimensions[NumDims-2];
- m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
- m_otherStride = m_patchStride * m_dimensions[NumDims-4];
- }
-
- // Strides for navigating through the input tensor.
- m_rowInputStride = m_inputDepth;
- m_colInputStride = m_inputDepth * m_inputRows;
- m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
-
- // Fast representations of different variables.
- m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
- m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
- m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
- m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
- m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
- m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
-
- // Number of patches in the width dimension.
- m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
- } else {
- m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- // Patch index corresponding to the passed in index.
- const Index patchIndex = index / m_fastPatchStride;
- // Find the offset of the element wrt the location of the first element.
- const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
-
- // Other ways to index this element.
- const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
- const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
-
- // Calculate col index in the input original tensor.
- const Index colIndex = patch2DIndex / m_fastOutputRows;
- const Index colOffset = patchOffset / m_fastColStride;
- const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
- const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
- if (inputCol < 0 || inputCol >= m_input_cols_eff ||
- ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
- return Scalar(m_paddingValue);
- }
-
- // Calculate row index in the original input tensor.
- const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
- const Index rowOffset = patchOffset - colOffset * m_colStride;
- const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
- const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
- if (inputRow < 0 || inputRow >= m_input_rows_eff ||
- ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
- return Scalar(m_paddingValue);
- }
-
- const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
- const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
-
- const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
- return m_impl.coeff(inputIndex);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
- return packetWithPossibleZero(index);
- }
-
- const Index indices[2] = {index, index + PacketSize - 1};
- const Index patchIndex = indices[0] / m_fastPatchStride;
- if (patchIndex != indices[1] / m_fastPatchStride) {
- return packetWithPossibleZero(index);
- }
- const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
- eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
-
- // Find the offset of the element wrt the location of the first element.
- const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
- (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
-
- const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
- eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
-
- const Index colIndex = patch2DIndex / m_fastOutputRows;
- const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
-
- // Calculate col indices in the original input tensor.
- const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
- m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
- if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
- return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
- }
-
- if (inputCols[0] == inputCols[1]) {
- const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
- const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
- eigen_assert(rowOffsets[0] <= rowOffsets[1]);
- // Calculate col indices in the original input tensor.
- const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
- m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
-
- if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
- return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
- }
-
- if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
- // no padding
- const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
- const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
- const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
- return m_impl.template packet<Unaligned>(inputIndex);
- }
- }
-
- return packetWithPossibleZero(index);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
-
- Index rowPaddingTop() const { return m_rowPaddingTop; }
- Index colPaddingLeft() const { return m_colPaddingLeft; }
- Index outputRows() const { return m_outputRows; }
- Index outputCols() const { return m_outputCols; }
- Index userRowStride() const { return m_row_strides; }
- Index userColStride() const { return m_col_strides; }
- Index userInRowStride() const { return m_in_row_strides; }
- Index userInColStride() const { return m_in_col_strides; }
- Index rowInflateStride() const { return m_row_inflate_strides; }
- Index colInflateStride() const { return m_col_inflate_strides; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- // We conservatively estimate the cost for the code path where the computed
- // index is inside the original image and
- // TensorEvaluator<ArgType, Device>::CoordAccess is false.
- const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
- 6 * TensorOpCost::MulCost<Index>() +
- 8 * TensorOpCost::MulCost<Index>();
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
- {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- Dimensions m_dimensions;
-
- Index m_otherStride;
- Index m_patchStride;
- Index m_colStride;
- Index m_row_strides;
- Index m_col_strides;
-
- Index m_in_row_strides;
- Index m_in_col_strides;
- Index m_row_inflate_strides;
- Index m_col_inflate_strides;
-
- Index m_input_rows_eff;
- Index m_input_cols_eff;
- Index m_patch_rows_eff;
- Index m_patch_cols_eff;
-
- internal::TensorIntDivisor<Index> m_fastOtherStride;
- internal::TensorIntDivisor<Index> m_fastPatchStride;
- internal::TensorIntDivisor<Index> m_fastColStride;
- internal::TensorIntDivisor<Index> m_fastInflateRowStride;
- internal::TensorIntDivisor<Index> m_fastInflateColStride;
- internal::TensorIntDivisor<Index> m_fastInputColsEff;
-
- Index m_rowInputStride;
- Index m_colInputStride;
- Index m_patchInputStride;
-
- Index m_inputDepth;
- Index m_inputRows;
- Index m_inputCols;
-
- Index m_outputRows;
- Index m_outputCols;
-
- Index m_rowPaddingTop;
- Index m_colPaddingLeft;
-
- internal::TensorIntDivisor<Index> m_fastOutputRows;
- internal::TensorIntDivisor<Index> m_fastOutputDepth;
-
- Scalar m_paddingValue;
-
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h
deleted file mode 100644
index 3209fec..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h
+++ /dev/null
@@ -1,725 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
-#define EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
-
-
-#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
-
-#define EIGEN_HAS_INDEX_LIST
-
-namespace Eigen {
-
-/** \internal
- *
- * \class TensorIndexList
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Set of classes used to encode a set of Tensor dimensions/indices.
- *
- * The indices in the list can be known at compile time or at runtime. A mix
- * of static and dynamic indices can also be provided if needed. The tensor
- * code will attempt to take advantage of the indices that are known at
- * compile time to optimize the code it generates.
- *
- * This functionality requires a c++11 compliant compiler. If your compiler
- * is older you need to use arrays of indices instead.
- *
- * Several examples are provided in the cxx11_tensor_index_list.cpp file.
- *
- * \sa Tensor
- */
-
-template <DenseIndex n>
-struct type2index {
- static const DenseIndex value = n;
- EIGEN_DEVICE_FUNC constexpr operator DenseIndex() const { return n; }
- EIGEN_DEVICE_FUNC void set(DenseIndex val) {
- eigen_assert(val == n);
- }
-};
-
-// This can be used with IndexPairList to get compile-time constant pairs,
-// such as IndexPairList<type2indexpair<1,2>, type2indexpair<3,4>>().
-template <DenseIndex f, DenseIndex s>
-struct type2indexpair {
- static const DenseIndex first = f;
- static const DenseIndex second = s;
-
- constexpr EIGEN_DEVICE_FUNC operator IndexPair<DenseIndex>() const {
- return IndexPair<DenseIndex>(f, s);
- }
-
- EIGEN_DEVICE_FUNC void set(const IndexPair<DenseIndex>& val) {
- eigen_assert(val.first == f);
- eigen_assert(val.second == s);
- }
-};
-
-
-template<DenseIndex n> struct NumTraits<type2index<n> >
-{
- typedef DenseIndex Real;
- enum {
- IsComplex = 0,
- RequireInitialization = false,
- ReadCost = 1,
- AddCost = 1,
- MulCost = 1
- };
-
- EIGEN_DEVICE_FUNC static inline Real epsilon() { return 0; }
- EIGEN_DEVICE_FUNC static inline Real dummy_precision() { return 0; }
- EIGEN_DEVICE_FUNC static inline Real highest() { return n; }
- EIGEN_DEVICE_FUNC static inline Real lowest() { return n; }
-};
-
-namespace internal {
-template <typename T>
-EIGEN_DEVICE_FUNC void update_value(T& val, DenseIndex new_val) {
- val = new_val;
-}
-template <DenseIndex n>
-EIGEN_DEVICE_FUNC void update_value(type2index<n>& val, DenseIndex new_val) {
- val.set(new_val);
-}
-
-template <typename T>
-EIGEN_DEVICE_FUNC void update_value(T& val, IndexPair<DenseIndex> new_val) {
- val = new_val;
-}
-template <DenseIndex f, DenseIndex s>
-EIGEN_DEVICE_FUNC void update_value(type2indexpair<f, s>& val, IndexPair<DenseIndex> new_val) {
- val.set(new_val);
-}
-
-
-template <typename T>
-struct is_compile_time_constant {
- static constexpr bool value = false;
-};
-
-template <DenseIndex idx>
-struct is_compile_time_constant<type2index<idx> > {
- static constexpr bool value = true;
-};
-template <DenseIndex idx>
-struct is_compile_time_constant<const type2index<idx> > {
- static constexpr bool value = true;
-};
-template <DenseIndex idx>
-struct is_compile_time_constant<type2index<idx>& > {
- static constexpr bool value = true;
-};
-template <DenseIndex idx>
-struct is_compile_time_constant<const type2index<idx>& > {
- static constexpr bool value = true;
-};
-
-template <DenseIndex f, DenseIndex s>
-struct is_compile_time_constant<type2indexpair<f, s> > {
- static constexpr bool value = true;
-};
-template <DenseIndex f, DenseIndex s>
-struct is_compile_time_constant<const type2indexpair<f, s> > {
- static constexpr bool value = true;
-};
-template <DenseIndex f, DenseIndex s>
-struct is_compile_time_constant<type2indexpair<f, s>& > {
- static constexpr bool value = true;
-};
-template <DenseIndex f, DenseIndex s>
-struct is_compile_time_constant<const type2indexpair<f, s>& > {
- static constexpr bool value = true;
-};
-
-
-template<typename... T>
-struct IndexTuple;
-
-template<typename T, typename... O>
-struct IndexTuple<T, O...> {
- EIGEN_DEVICE_FUNC constexpr IndexTuple() : head(), others() { }
- EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v, const O... o) : head(v), others(o...) { }
-
- constexpr static int count = 1 + sizeof...(O);
- T head;
- IndexTuple<O...> others;
- typedef T Head;
- typedef IndexTuple<O...> Other;
-};
-
-template<typename T>
- struct IndexTuple<T> {
- EIGEN_DEVICE_FUNC constexpr IndexTuple() : head() { }
- EIGEN_DEVICE_FUNC constexpr IndexTuple(const T& v) : head(v) { }
-
- constexpr static int count = 1;
- T head;
- typedef T Head;
-};
-
-
-template<int N, typename... T>
-struct IndexTupleExtractor;
-
-template<int N, typename T, typename... O>
-struct IndexTupleExtractor<N, T, O...> {
-
- typedef typename IndexTupleExtractor<N-1, O...>::ValType ValType;
-
- EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) {
- return IndexTupleExtractor<N-1, O...>::get_val(val.others);
- }
-
- EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) {
- return IndexTupleExtractor<N-1, O...>::get_val(val.others);
- }
- template <typename V>
- EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) {
- IndexTupleExtractor<N-1, O...>::set_val(val.others, new_val);
- }
-
-};
-
-template<typename T, typename... O>
- struct IndexTupleExtractor<0, T, O...> {
-
- typedef T ValType;
-
- EIGEN_DEVICE_FUNC static constexpr ValType& get_val(IndexTuple<T, O...>& val) {
- return val.head;
- }
- EIGEN_DEVICE_FUNC static constexpr const ValType& get_val(const IndexTuple<T, O...>& val) {
- return val.head;
- }
- template <typename V>
- EIGEN_DEVICE_FUNC static void set_val(IndexTuple<T, O...>& val, V& new_val) {
- val.head = new_val;
- }
-};
-
-
-
-template <int N, typename T, typename... O>
-EIGEN_DEVICE_FUNC constexpr typename IndexTupleExtractor<N, T, O...>::ValType& array_get(IndexTuple<T, O...>& tuple) {
- return IndexTupleExtractor<N, T, O...>::get_val(tuple);
-}
-template <int N, typename T, typename... O>
-EIGEN_DEVICE_FUNC constexpr const typename IndexTupleExtractor<N, T, O...>::ValType& array_get(const IndexTuple<T, O...>& tuple) {
- return IndexTupleExtractor<N, T, O...>::get_val(tuple);
-}
-template <typename T, typename... O>
- struct array_size<IndexTuple<T, O...> > {
- static const size_t value = IndexTuple<T, O...>::count;
-};
-template <typename T, typename... O>
- struct array_size<const IndexTuple<T, O...> > {
- static const size_t value = IndexTuple<T, O...>::count;
-};
-
-
-
-
-template <DenseIndex Idx, typename ValueT>
-struct tuple_coeff {
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex i, const IndexTuple<T...>& t) {
- // return array_get<Idx>(t) * (i == Idx) + tuple_coeff<Idx-1>::get(i, t) * (i != Idx);
- return (i == Idx ? array_get<Idx>(t) : tuple_coeff<Idx-1, ValueT>::get(i, t));
- }
- template <typename... T>
- EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT& value) {
- if (i == Idx) {
- update_value(array_get<Idx>(t), value);
- } else {
- tuple_coeff<Idx-1, ValueT>::set(i, t, value);
- }
- }
-
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>& t) {
- return ((i == Idx) & is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value) ||
- tuple_coeff<Idx-1, ValueT>::value_known_statically(i, t);
- }
-
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>& t) {
- return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
- tuple_coeff<Idx-1, ValueT>::values_up_to_known_statically(t);
- }
-
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>& t) {
- return is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
- is_compile_time_constant<typename IndexTupleExtractor<Idx, T...>::ValType>::value &&
- array_get<Idx>(t) > array_get<Idx-1>(t) &&
- tuple_coeff<Idx-1, ValueT>::values_up_to_statically_known_to_increase(t);
- }
-};
-
-template <typename ValueT>
-struct tuple_coeff<0, ValueT> {
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr ValueT get(const DenseIndex /*i*/, const IndexTuple<T...>& t) {
- // eigen_assert (i == 0); // gcc fails to compile assertions in constexpr
- return array_get<0>(t)/* * (i == 0)*/;
- }
- template <typename... T>
- EIGEN_DEVICE_FUNC static void set(const DenseIndex i, IndexTuple<T...>& t, const ValueT value) {
- eigen_assert (i == 0);
- update_value(array_get<0>(t), value);
- }
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool value_known_statically(const DenseIndex i, const IndexTuple<T...>&) {
- return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value & (i == 0);
- }
-
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool values_up_to_known_statically(const IndexTuple<T...>&) {
- return is_compile_time_constant<typename IndexTupleExtractor<0, T...>::ValType>::value;
- }
-
- template <typename... T>
- EIGEN_DEVICE_FUNC static constexpr bool values_up_to_statically_known_to_increase(const IndexTuple<T...>&) {
- return true;
- }
-};
-} // namespace internal
-
-
-
-template<typename FirstType, typename... OtherTypes>
-struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> {
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex operator[] (const DenseIndex i) const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this);
- }
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr DenseIndex get(const DenseIndex i) const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::get(i, *this);
- }
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const DenseIndex value) {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::set(i, *this, value);
- }
-
- EIGEN_DEVICE_FUNC constexpr IndexList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { }
- EIGEN_DEVICE_FUNC constexpr IndexList(FirstType& first, OtherTypes... other) : internal::IndexTuple<FirstType, OtherTypes...>(first, other...) { }
- EIGEN_DEVICE_FUNC constexpr IndexList() : internal::IndexTuple<FirstType, OtherTypes...>() { }
-
- EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this);
- }
- EIGEN_DEVICE_FUNC constexpr bool all_values_known_statically() const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_known_statically(*this);
- }
-
- EIGEN_DEVICE_FUNC constexpr bool values_statically_known_to_increase() const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::values_up_to_statically_known_to_increase(*this);
- }
-};
-
-
-template<typename FirstType, typename... OtherTypes>
-constexpr IndexList<FirstType, OtherTypes...> make_index_list(FirstType val1, OtherTypes... other_vals) {
- return IndexList<FirstType, OtherTypes...>(val1, other_vals...);
-}
-
-
-template<typename FirstType, typename... OtherTypes>
-struct IndexPairList : internal::IndexTuple<FirstType, OtherTypes...> {
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr IndexPair<DenseIndex> operator[] (const DenseIndex i) const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, IndexPair<DenseIndex>>::get(i, *this);
- }
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC void set(const DenseIndex i, const IndexPair<DenseIndex> value) {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...>>::value-1, IndexPair<DenseIndex> >::set(i, *this, value);
- }
-
- EIGEN_DEVICE_FUNC constexpr IndexPairList(const internal::IndexTuple<FirstType, OtherTypes...>& other) : internal::IndexTuple<FirstType, OtherTypes...>(other) { }
- EIGEN_DEVICE_FUNC constexpr IndexPairList() : internal::IndexTuple<FirstType, OtherTypes...>() { }
-
- EIGEN_DEVICE_FUNC constexpr bool value_known_statically(const DenseIndex i) const {
- return internal::tuple_coeff<internal::array_size<internal::IndexTuple<FirstType, OtherTypes...> >::value-1, DenseIndex>::value_known_statically(i, *this);
- }
-};
-
-namespace internal {
-
-template<typename FirstType, typename... OtherTypes> size_t array_prod(const IndexList<FirstType, OtherTypes...>& sizes) {
- size_t result = 1;
- for (int i = 0; i < array_size<IndexList<FirstType, OtherTypes...> >::value; ++i) {
- result *= sizes[i];
- }
- return result;
-}
-
-template<typename FirstType, typename... OtherTypes> struct array_size<IndexList<FirstType, OtherTypes...> > {
- static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value;
-};
-template<typename FirstType, typename... OtherTypes> struct array_size<const IndexList<FirstType, OtherTypes...> > {
- static const size_t value = array_size<IndexTuple<FirstType, OtherTypes...> >::value;
-};
-
-template<typename FirstType, typename... OtherTypes> struct array_size<IndexPairList<FirstType, OtherTypes...> > {
- static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value;
-};
-template<typename FirstType, typename... OtherTypes> struct array_size<const IndexPairList<FirstType, OtherTypes...> > {
- static const size_t value = std::tuple_size<std::tuple<FirstType, OtherTypes...> >::value;
-};
-
-template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(IndexList<FirstType, OtherTypes...>& a) {
- return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a);
-}
-template<DenseIndex N, typename FirstType, typename... OtherTypes> EIGEN_DEVICE_FUNC constexpr DenseIndex array_get(const IndexList<FirstType, OtherTypes...>& a) {
- return IndexTupleExtractor<N, FirstType, OtherTypes...>::get_val(a);
-}
-
-template <typename T>
-struct index_known_statically_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_known_statically_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_known_statically_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i);
- }
-};
-
-
-template <typename T>
-struct all_indices_known_statically_impl {
- static constexpr bool run() {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct all_indices_known_statically_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return IndexList<FirstType, OtherTypes...>().all_values_known_statically();
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct all_indices_known_statically_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return IndexList<FirstType, OtherTypes...>().all_values_known_statically();
- }
-};
-
-
-template <typename T>
-struct indices_statically_known_to_increase_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
- struct indices_statically_known_to_increase_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase();
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
- struct indices_statically_known_to_increase_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run() {
- return Eigen::IndexList<FirstType, OtherTypes...>().values_statically_known_to_increase();
- }
-};
-
-
-template <typename Tx>
-struct index_statically_eq_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_eq_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) == value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_eq_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) == value);
- }
-};
-
-
-template <typename T>
-struct index_statically_ne_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_ne_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) != value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_ne_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) != value);
- }
-};
-
-
-template <typename T>
-struct index_statically_gt_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_gt_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) > value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_gt_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) > value);
- }
-};
-
-
-
-template <typename T>
-struct index_statically_lt_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_lt_impl<IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) < value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_statically_lt_impl<const IndexList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexList<FirstType, OtherTypes...>().get(i) < value);
- }
-};
-
-
-
-template <typename Tx>
-struct index_pair_first_statically_eq_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_pair_first_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_pair_first_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexPairList<FirstType, OtherTypes...>().operator[](i).first == value);
- }
-};
-
-
-
-template <typename Tx>
-struct index_pair_second_statically_eq_impl {
- EIGEN_DEVICE_FUNC static constexpr bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_pair_second_statically_eq_impl<IndexPairList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value);
- }
-};
-
-template <typename FirstType, typename... OtherTypes>
-struct index_pair_second_statically_eq_impl<const IndexPairList<FirstType, OtherTypes...> > {
- EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) {
- return IndexPairList<FirstType, OtherTypes...>().value_known_statically(i) &
- (IndexPairList<FirstType, OtherTypes...>().operator[](i).second == value);
- }
-};
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#else
-
-namespace Eigen {
-namespace internal {
-
-template <typename T>
-struct index_known_statically_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(const DenseIndex) {
- return false;
- }
-};
-
-template <typename T>
-struct all_indices_known_statically_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
- return false;
- }
-};
-
-template <typename T>
-struct indices_statically_known_to_increase_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run() {
- return false;
- }
-};
-
-template <typename T>
-struct index_statically_eq_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename T>
-struct index_statically_ne_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename T>
-struct index_statically_gt_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename T>
-struct index_statically_lt_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename Tx>
-struct index_pair_first_statically_eq_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-template <typename Tx>
-struct index_pair_second_statically_eq_impl {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool run(DenseIndex, DenseIndex) {
- return false;
- }
-};
-
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif
-
-
-namespace Eigen {
-namespace internal {
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_known_statically(DenseIndex i) {
- return index_known_statically_impl<T>::run(i);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool all_indices_known_statically() {
- return all_indices_known_statically_impl<T>::run();
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool indices_statically_known_to_increase() {
- return indices_statically_known_to_increase_impl<T>::run();
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_eq(DenseIndex i, DenseIndex value) {
- return index_statically_eq_impl<T>::run(i, value);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_ne(DenseIndex i, DenseIndex value) {
- return index_statically_ne_impl<T>::run(i, value);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_gt(DenseIndex i, DenseIndex value) {
- return index_statically_gt_impl<T>::run(i, value);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_statically_lt(DenseIndex i, DenseIndex value) {
- return index_statically_lt_impl<T>::run(i, value);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_first_statically_eq(DenseIndex i, DenseIndex value) {
- return index_pair_first_statically_eq_impl<T>::run(i, value);
-}
-
-template <typename T>
-static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR bool index_pair_second_statically_eq(DenseIndex i, DenseIndex value) {
- return index_pair_second_statically_eq_impl<T>::run(i, value);
-}
-
-} // end namespace internal
-} // end namespace Eigen
-
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_INDEX_LIST_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
deleted file mode 100644
index f391fb9..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h
+++ /dev/null
@@ -1,229 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
-
-namespace Eigen {
-
-/** \class TensorInflation
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor inflation class.
- *
- *
- */
-namespace internal {
-template<typename Strides, typename XprType>
-struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Strides, typename XprType>
-struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
-{
- typedef const TensorInflationOp<Strides, XprType>& type;
-};
-
-template<typename Strides, typename XprType>
-struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
-{
- typedef TensorInflationOp<Strides, XprType> type;
-};
-
-} // end namespace internal
-
-template<typename Strides, typename XprType>
-class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
- : m_xpr(expr), m_strides(strides) {}
-
- EIGEN_DEVICE_FUNC
- const Strides& strides() const { return m_strides; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const Strides m_strides;
-};
-
-// Eval as rvalue
-template<typename Strides, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
-{
- typedef TensorInflationOp<Strides, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_strides(op.strides())
- {
- m_dimensions = m_impl.dimensions();
- // Expand each dimension to the inflated dimension.
- for (int i = 0; i < NumDims; ++i) {
- m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
- }
-
- // Remember the strides for fast division.
- for (int i = 0; i < NumDims; ++i) {
- m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
- }
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_outputStrides[0] = 1;
- m_inputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- }
- } else { // RowMajor
- m_outputStrides[NumDims-1] = 1;
- m_inputStrides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- // Computes the input index given the output index. Returns true if the output
- // index doesn't fall into a hole.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
- {
- eigen_assert(index < dimensions().TotalSize());
- *inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- if (idx != idx / m_fastStrides[i] * m_strides[i]) {
- return false;
- }
- *inputIndex += idx / m_strides[i] * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- if (index != index / m_fastStrides[0] * m_strides[0]) {
- return false;
- }
- *inputIndex += index / m_strides[0];
- return true;
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
- if (idx != idx / m_fastStrides[i] * m_strides[i]) {
- return false;
- }
- *inputIndex += idx / m_strides[i] * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
- return false;
- }
- *inputIndex += index / m_strides[NumDims - 1];
- }
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- Index inputIndex = 0;
- if (getInputIndex(index, &inputIndex)) {
- return m_impl.coeff(inputIndex);
- } else {
- return Scalar(0);
- }
- }
-
- // TODO(yangke): optimize this function so that we can detect and produce
- // all-zero packets
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
- 3 * TensorOpCost::MulCost<Index>() +
- 2 * TensorOpCost::AddCost<Index>());
- const double input_size = m_impl.dimensions().TotalSize();
- const double output_size = m_dimensions.TotalSize();
- if (output_size == 0)
- return TensorOpCost();
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0,
- compute_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
- const Strides m_strides;
- array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h
deleted file mode 100644
index 33edc49..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h
+++ /dev/null
@@ -1,82 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
-#define EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
-
-#include <initializer_list>
-
-namespace Eigen {
-
-/** \class TensorInitializer
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Helper template to initialize Tensors from std::initializer_lists.
- */
-namespace internal {
-
-template <typename Derived, int N>
-struct Initializer {
- typedef std::initializer_list<
- typename Initializer<Derived, N - 1>::InitList> InitList;
-
- static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
- Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices,
- const InitList& vals) {
- int i = 0;
- for (auto v : vals) {
- (*indices)[traits<Derived>::NumDimensions - N] = i++;
- Initializer<Derived, N - 1>::run(tensor, indices, v);
- }
- }
-};
-
-template <typename Derived>
-struct Initializer<Derived, 1> {
- typedef std::initializer_list<typename traits<Derived>::Scalar> InitList;
-
- static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
- Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>* indices,
- const InitList& vals) {
- int i = 0;
- // There is likely a faster way to do that than iterating.
- for (auto v : vals) {
- (*indices)[traits<Derived>::NumDimensions - 1] = i++;
- tensor.coeffRef(*indices) = v;
- }
- }
-};
-
-template <typename Derived>
-struct Initializer<Derived, 0> {
- typedef typename traits<Derived>::Scalar InitList;
-
- static void run(TensorEvaluator<Derived, DefaultDevice>& tensor,
- Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions>*,
- const InitList& v) {
- tensor.coeffRef(0) = v;
- }
-};
-
-
-template <typename Derived, int N>
-void initialize_tensor(TensorEvaluator<Derived, DefaultDevice>& tensor,
- const typename Initializer<Derived, traits<Derived>::NumDimensions>::InitList& vals) {
- Eigen::array<typename traits<Derived>::Index, traits<Derived>::NumDimensions> indices;
- Initializer<Derived, traits<Derived>::NumDimensions>::run(tensor, &indices, vals);
-}
-
-} // namespace internal
-} // namespace Eigen
-
-#endif // EIGEN_HAS_VARIADIC_TEMPLATES
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_INITIALIZER_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
deleted file mode 100644
index ede3939..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h
+++ /dev/null
@@ -1,253 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
-#define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
-
-
-namespace Eigen {
-
-/** \internal
- *
- * \class TensorIntDiv
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Fast integer division by a constant.
- *
- * See the paper from Granlund and Montgomery for explanation.
- * (at http://dx.doi.org/10.1145/773473.178249)
- *
- * \sa Tensor
- */
-
-namespace internal {
-
-namespace {
-
- // Note: result is undefined if val == 0
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- typename internal::enable_if<sizeof(T)==4,int>::type count_leading_zeros(const T val)
- {
-#ifdef __CUDA_ARCH__
- return __clz(val);
-#elif EIGEN_COMP_MSVC
- unsigned long index;
- _BitScanReverse(&index, val);
- return 31 - index;
-#else
- EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return __builtin_clz(static_cast<uint32_t>(val));
-#endif
- }
-
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- typename internal::enable_if<sizeof(T)==8,int>::type count_leading_zeros(const T val)
- {
-#ifdef __CUDA_ARCH__
- return __clzll(val);
-#elif EIGEN_COMP_MSVC && EIGEN_ARCH_x86_64
- unsigned long index;
- _BitScanReverse64(&index, val);
- return 63 - index;
-#elif EIGEN_COMP_MSVC
- // MSVC's _BitScanReverse64 is not available for 32bits builds.
- unsigned int lo = (unsigned int)(val&0xffffffff);
- unsigned int hi = (unsigned int)((val>>32)&0xffffffff);
- int n;
- if(hi==0)
- n = 32 + count_leading_zeros<unsigned int>(lo);
- else
- n = count_leading_zeros<unsigned int>(hi);
- return n;
-#else
- EIGEN_STATIC_ASSERT(sizeof(unsigned long long) == 8, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return __builtin_clzll(static_cast<uint64_t>(val));
-#endif
- }
-
- template <typename T>
- struct UnsignedTraits {
- typedef typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type type;
- };
-
- template <typename T>
- struct DividerTraits {
- typedef typename UnsignedTraits<T>::type type;
- static const int N = sizeof(T) * 8;
- };
-
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t muluh(const uint32_t a, const T b) {
-#if defined(__CUDA_ARCH__)
- return __umulhi(a, b);
-#else
- return (static_cast<uint64_t>(a) * b) >> 32;
-#endif
- }
-
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t muluh(const uint64_t a, const T b) {
-#if defined(__CUDA_ARCH__)
- return __umul64hi(a, b);
-#elif defined(__SIZEOF_INT128__)
- __uint128_t v = static_cast<__uint128_t>(a) * static_cast<__uint128_t>(b);
- return static_cast<uint64_t>(v >> 64);
-#else
- return (TensorUInt128<static_val<0>, uint64_t>(a) * TensorUInt128<static_val<0>, uint64_t>(b)).upper();
-#endif
- }
-
- template <int N, typename T>
- struct DividerHelper {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint32_t computeMultiplier(const int log_div, const T divider) {
- EIGEN_STATIC_ASSERT(N == 32, YOU_MADE_A_PROGRAMMING_MISTAKE);
- return static_cast<uint32_t>((static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1);
- }
- };
-
- template <typename T>
- struct DividerHelper<64, T> {
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE uint64_t computeMultiplier(const int log_div, const T divider) {
-#if defined(__SIZEOF_INT128__) && !defined(__CUDA_ARCH__)
- return static_cast<uint64_t>((static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1);
-#else
- const uint64_t shift = 1ULL << log_div;
- TensorUInt128<uint64_t, uint64_t> result = TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider)
- - TensorUInt128<static_val<1>, static_val<0> >(1, 0)
- + TensorUInt128<static_val<0>, static_val<1> >(1);
- return static_cast<uint64_t>(result);
-#endif
- }
- };
-}
-
-
-template <typename T, bool div_gt_one = false>
-struct TensorIntDivisor {
- public:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
- multiplier = 0;
- shift1 = 0;
- shift2 = 0;
- }
-
- // Must have 0 < divider < 2^31. This is relaxed to
- // 0 < divider < 2^63 when using 64-bit indices on platforms that support
- // the __uint128_t type.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) {
- const int N = DividerTraits<T>::N;
- eigen_assert(static_cast<typename UnsignedTraits<T>::type>(divider) < NumTraits<UnsignedType>::highest()/2);
- eigen_assert(divider > 0);
-
- // fast ln2
- const int leading_zeros = count_leading_zeros(static_cast<UnsignedType>(divider));
- int log_div = N - leading_zeros;
- // if divider is a power of two then log_div is 1 more than it should be.
- if ((static_cast<typename UnsignedTraits<T>::type>(1) << (log_div-1)) == static_cast<typename UnsignedTraits<T>::type>(divider))
- log_div--;
-
- multiplier = DividerHelper<N, T>::computeMultiplier(log_div, divider);
- shift1 = log_div > 1 ? 1 : log_div;
- shift2 = log_div > 1 ? log_div-1 : 0;
- }
-
- // Must have 0 <= numerator. On platforms that dont support the __uint128_t
- // type numerator should also be less than 2^32-1.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const {
- eigen_assert(static_cast<typename UnsignedTraits<T>::type>(numerator) < NumTraits<UnsignedType>::highest()/2);
- //eigen_assert(numerator >= 0); // this is implicitly asserted by the line above
-
- UnsignedType t1 = muluh(multiplier, numerator);
- UnsignedType t = (static_cast<UnsignedType>(numerator) - t1) >> shift1;
- return (t1 + t) >> shift2;
- }
-
- private:
- typedef typename DividerTraits<T>::type UnsignedType;
- UnsignedType multiplier;
- int32_t shift1;
- int32_t shift2;
-};
-
-
-// Optimized version for signed 32 bit integers.
-// Derived from Hacker's Delight.
-// Only works for divisors strictly greater than one
-template <>
-class TensorIntDivisor<int32_t, true> {
- public:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() {
- magic = 0;
- shift = 0;
- }
- // Must have 2 <= divider
- EIGEN_DEVICE_FUNC TensorIntDivisor(int32_t divider) {
- eigen_assert(divider >= 2);
- calcMagic(divider);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int32_t n) const {
-#ifdef __CUDA_ARCH__
- return (__umulhi(magic, n) >> shift);
-#else
- uint64_t v = static_cast<uint64_t>(magic) * static_cast<uint64_t>(n);
- return (static_cast<uint32_t>(v >> 32) >> shift);
-#endif
- }
-
-private:
- // Compute the magic numbers. See Hacker's Delight section 10 for an in
- // depth explanation.
- EIGEN_DEVICE_FUNC void calcMagic(int32_t d) {
- const unsigned two31 = 0x80000000; // 2**31.
- unsigned ad = d;
- unsigned t = two31 + (ad >> 31);
- unsigned anc = t - 1 - t%ad; // Absolute value of nc.
- int p = 31; // Init. p.
- unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|.
- unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
- unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|.
- unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
- unsigned delta = 0;
- do {
- p = p + 1;
- q1 = 2*q1; // Update q1 = 2**p/|nc|.
- r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
- if (r1 >= anc) { // (Must be an unsigned
- q1 = q1 + 1; // comparison here).
- r1 = r1 - anc;}
- q2 = 2*q2; // Update q2 = 2**p/|d|.
- r2 = 2*r2; // Update r2 = rem(2**p, |d|).
- if (r2 >= ad) { // (Must be an unsigned
- q2 = q2 + 1; // comparison here).
- r2 = r2 - ad;}
- delta = ad - r2;
- } while (q1 < delta || (q1 == delta && r1 == 0));
-
- magic = (unsigned)(q2 + 1);
- shift = p - 32;
- }
-
- uint32_t magic;
- int32_t shift;
-};
-
-
-template <typename T, bool div_gt_one>
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor<T, div_gt_one>& divisor) {
- return divisor.divide(numerator);
-}
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h
deleted file mode 100644
index cd0109e..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h
+++ /dev/null
@@ -1,209 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
-#define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
-
-namespace Eigen {
-
-/** \class TensorLayoutSwap
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Swap the layout from col-major to row-major, or row-major
- * to col-major, and invert the order of the dimensions.
- *
- * Beware: the dimensions are reversed by this operation. If you want to
- * preserve the ordering of the dimensions, you need to combine this
- * operation with a shuffle.
- *
- * \example:
- * Tensor<float, 2, ColMajor> input(2, 4);
- * Tensor<float, 2, RowMajor> output = input.swap_layout();
- * eigen_assert(output.dimension(0) == 4);
- * eigen_assert(output.dimension(1) == 2);
- *
- * array<int, 2> shuffle(1, 0);
- * output = input.swap_layout().shuffle(shuffle);
- * eigen_assert(output.dimension(0) == 2);
- * eigen_assert(output.dimension(1) == 4);
- *
- */
-namespace internal {
-template<typename XprType>
-struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = traits<XprType>::NumDimensions;
- static const int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor;
-};
-
-template<typename XprType>
-struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense>
-{
- typedef const TensorLayoutSwapOp<XprType>& type;
-};
-
-template<typename XprType>
-struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type>
-{
- typedef TensorLayoutSwapOp<XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename XprType>
-class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr)
- : m_xpr(expr) {}
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const TensorLayoutSwapOp& other)
- {
- typedef TensorAssignOp<TensorLayoutSwapOp, const TensorLayoutSwapOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorLayoutSwapOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorLayoutSwapOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
-};
-
-
-// Eval as rvalue
-template<typename ArgType, typename Device>
-struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
-{
- typedef TensorLayoutSwapOp<ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
- CoordAccess = false, // to be implemented
- RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- for(int i = 0; i < NumDims; ++i) {
- m_dimensions[i] = m_impl.dimensions()[NumDims-1-i];
- }
- }
-
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- return m_impl.evalSubExprsIfNeeded(data);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(index);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_impl.template packet<LoadMode>(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return m_impl.costPerCoeff(vectorized);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return m_impl.data(); }
-
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
-
- protected:
- TensorEvaluator<ArgType, Device> m_impl;
- Dimensions m_dimensions;
-};
-
-
-// Eval as lvalue
-template<typename ArgType, typename Device>
- struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device>
- : public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device>
-{
- typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base;
- typedef TensorLayoutSwapOp<ArgType> XprType;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = (static_cast<int>(TensorEvaluator<ArgType, Device>::Layout) == static_cast<int>(ColMajor)) ? RowMajor : ColMajor,
- CoordAccess = false // to be implemented
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(index);
- }
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- this->m_impl.template writePacket<StoreMode>(index, x);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h
deleted file mode 100644
index ee0078b..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h
+++ /dev/null
@@ -1,54 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_META_MACROS_H
-
-
-/** use this macro in sfinae selection in templated functions
- *
- * template<typename T,
- * typename std::enable_if< isBanana<T>::value , int >::type = 0
- * >
- * void foo(){}
- *
- * becomes =>
- *
- * template<typename TopoType,
- * SFINAE_ENABLE_IF( isBanana<T>::value )
- * >
- * void foo(){}
- */
-
-// SFINAE requires variadic templates
-#ifndef __CUDACC__
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- // SFINAE doesn't work for gcc <= 4.7
- #ifdef EIGEN_COMP_GNUC
- #if EIGEN_GNUC_AT_LEAST(4,8)
- #define EIGEN_HAS_SFINAE
- #endif
- #else
- #define EIGEN_HAS_SFINAE
- #endif
-#endif
-#endif
-
-#define EIGEN_SFINAE_ENABLE_IF( __condition__ ) \
- typename internal::enable_if< ( __condition__ ) , int >::type = 0
-
-
-#if EIGEN_HAS_CONSTEXPR
-#define EIGEN_CONSTEXPR constexpr
-#else
-#define EIGEN_CONSTEXPR
-#endif
-
-
-#endif
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h
deleted file mode 100644
index e4fc86a..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h
+++ /dev/null
@@ -1,323 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H
-#define EIGEN_CXX11_TENSOR_TENSOR_MAP_H
-
-namespace Eigen {
-
-// FIXME use proper doxygen documentation (e.g. \tparam MakePointer_)
-
-/** \class TensorMap
- * \ingroup CXX11_Tensor_Module
- *
- * \brief A tensor expression mapping an existing array of data.
- *
- */
-/// `template <class> class MakePointer_` is added to convert the host pointer to the device pointer.
-/// It is added due to the fact that for our device compiler `T*` is not allowed.
-/// If we wanted to use the same Evaluator functions we have to convert that type to our pointer `T`.
-/// This is done through our `MakePointer_` class. By default the Type in the `MakePointer_<T>` is `T*` .
-/// Therefore, by adding the default value, we managed to convert the type and it does not break any
-/// existing code as its default value is `T*`.
-template<typename PlainObjectType, int Options_, template <class> class MakePointer_> class TensorMap : public TensorBase<TensorMap<PlainObjectType, Options_, MakePointer_> >
-{
- public:
- typedef TensorMap<PlainObjectType, Options_, MakePointer_> Self;
- typedef typename PlainObjectType::Base Base;
- typedef typename Eigen::internal::nested<Self>::type Nested;
- typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
- typedef typename internal::traits<PlainObjectType>::Index Index;
- typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Base::CoeffReturnType CoeffReturnType;
-
- /* typedef typename internal::conditional<
- bool(internal::is_lvalue<PlainObjectType>::value),
- Scalar *,
- const Scalar *>::type
- PointerType;*/
- typedef typename MakePointer_<Scalar>::Type PointerType;
- typedef PointerType PointerArgType;
-
- static const int Options = Options_;
-
- static const Index NumIndices = PlainObjectType::NumIndices;
- typedef typename PlainObjectType::Dimensions Dimensions;
-
- enum {
- IsAligned = ((int(Options_)&Aligned)==Aligned),
- Layout = PlainObjectType::Layout,
- CoordAccess = true,
- RawAccess = true
- };
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr) : m_data(dataPtr), m_dimensions() {
- // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT((0 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(firstDimension, otherDimensions...) {
- // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT((sizeof...(otherDimensions) + 1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(firstDimension) {
- // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
- EIGEN_STATIC_ASSERT((1 == NumIndices || NumIndices == Dynamic), YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2) : m_data(dataPtr), m_dimensions(dim1, dim2) {
- EIGEN_STATIC_ASSERT(2 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3) {
- EIGEN_STATIC_ASSERT(3 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4) {
- EIGEN_STATIC_ASSERT(4 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) : m_data(dataPtr), m_dimensions(dim1, dim2, dim3, dim4, dim5) {
- EIGEN_STATIC_ASSERT(5 == NumIndices || NumIndices == Dynamic, YOU_MADE_A_PROGRAMMING_MISTAKE)
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const array<Index, NumIndices>& dimensions)
- : m_data(dataPtr), m_dimensions(dimensions)
- { }
-
- template <typename Dimensions>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, const Dimensions& dimensions)
- : m_data(dataPtr), m_dimensions(dimensions)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorMap(PlainObjectType& tensor)
- : m_data(tensor.data()), m_dimensions(tensor.dimensions())
- { }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index rank() const { return m_dimensions.rank(); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE PointerType data() { return m_data; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const PointerType data() const { return m_data; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
- {
- // eigen_assert(checkIndexRange(indices));
- if (PlainObjectType::Options&RowMajor) {
- const Index index = m_dimensions.IndexOfRowMajor(indices);
- return m_data[index];
- } else {
- const Index index = m_dimensions.IndexOfColMajor(indices);
- return m_data[index];
- }
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()() const
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return m_data[0];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_data[index];
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
- {
- EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
- if (PlainObjectType::Options&RowMajor) {
- const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- return m_data[index];
- } else {
- const Index index = m_dimensions.IndexOfColMajor(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
- return m_data[index];
- }
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i1 + i0 * m_dimensions[1];
- return m_data[index];
- } else {
- const Index index = i0 + i1 * m_dimensions[0];
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
- return m_data[index];
- }
- }
-#endif
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
- {
- // eigen_assert(checkIndexRange(indices));
- if (PlainObjectType::Options&RowMajor) {
- const Index index = m_dimensions.IndexOfRowMajor(indices);
- return m_data[index];
- } else {
- const Index index = m_dimensions.IndexOfColMajor(indices);
- return m_data[index];
- }
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()()
- {
- EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE)
- return m_data[0];
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index index)
- {
- eigen_internal_assert(index >= 0 && index < size());
- return m_data[index];
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
- {
- static_assert(sizeof...(otherIndices) + 2 == NumIndices || NumIndices == Dynamic, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
- const std::size_t NumDims = sizeof...(otherIndices) + 2;
- if (PlainObjectType::Options&RowMajor) {
- const Index index = m_dimensions.IndexOfRowMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
- return m_data[index];
- } else {
- const Index index = m_dimensions.IndexOfColMajor(array<Index, NumDims>{{firstIndex, secondIndex, otherIndices...}});
- return m_data[index];
- }
- }
-#else
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i1 + i0 * m_dimensions[1];
- return m_data[index];
- } else {
- const Index index = i0 + i1 * m_dimensions[0];
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0);
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * i2);
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0));
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * i3));
- return m_data[index];
- }
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
- {
- if (PlainObjectType::Options&RowMajor) {
- const Index index = i4 + m_dimensions[4] * (i3 + m_dimensions[3] * (i2 + m_dimensions[2] * (i1 + m_dimensions[1] * i0)));
- return m_data[index];
- } else {
- const Index index = i0 + m_dimensions[0] * (i1 + m_dimensions[1] * (i2 + m_dimensions[2] * (i3 + m_dimensions[3] * i4)));
- return m_data[index];
- }
- }
-#endif
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Self& operator=(const Self& other)
- {
- typedef TensorAssignOp<Self, const Self> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Self& operator=(const OtherDerived& other)
- {
- typedef TensorAssignOp<Self, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- private:
- typename MakePointer_<Scalar>::Type m_data;
- Dimensions m_dimensions;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
deleted file mode 100644
index 615559d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
+++ /dev/null
@@ -1,218 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_H
-#define EIGEN_CXX11_TENSOR_TENSOR_META_H
-
-namespace Eigen {
-
-template<bool cond> struct Cond {};
-
-template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-const T1& choose(Cond<true>, const T1& first, const T2&) {
- return first;
-}
-
-template<typename T1, typename T2> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-const T2& choose(Cond<false>, const T1&, const T2& second) {
- return second;
-}
-
-
-template <typename T, typename X, typename Y>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T divup(const X x, const Y y) {
- return static_cast<T>((x + y - 1) / y);
-}
-
-template <typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-T divup(const T x, const T y) {
- return static_cast<T>((x + y - 1) / y);
-}
-
-template <size_t n> struct max_n_1 {
- static const size_t size = n;
-};
-template <> struct max_n_1<0> {
- static const size_t size = 1;
-};
-
-
-// Default packet types
-template <typename Scalar, typename Device>
-struct PacketType : internal::packet_traits<Scalar> {
- typedef typename internal::packet_traits<Scalar>::type type;
-};
-
-// For CUDA packet types when using a GpuDevice
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__) && defined(EIGEN_HAS_CUDA_FP16)
-template <>
-struct PacketType<half, GpuDevice> {
- typedef half2 type;
- static const int size = 2;
- enum {
- HasAdd = 1,
- HasSub = 1,
- HasMul = 1,
- HasNegate = 1,
- HasAbs = 1,
- HasArg = 0,
- HasAbs2 = 0,
- HasMin = 1,
- HasMax = 1,
- HasConj = 0,
- HasSetLinear = 0,
- HasBlend = 0,
-
- HasDiv = 1,
- HasSqrt = 1,
- HasRsqrt = 1,
- HasExp = 1,
- HasLog = 1,
- HasLog1p = 0,
- HasLog10 = 0,
- HasPow = 1,
- };
-};
-#endif
-
-#if defined(EIGEN_USE_SYCL)
-template <typename T>
- struct PacketType<T, SyclDevice> {
- typedef T type;
- static const int size = 1;
- enum {
- HasAdd = 0,
- HasSub = 0,
- HasMul = 0,
- HasNegate = 0,
- HasAbs = 0,
- HasArg = 0,
- HasAbs2 = 0,
- HasMin = 0,
- HasMax = 0,
- HasConj = 0,
- HasSetLinear = 0,
- HasBlend = 0
- };
-};
-#endif
-
-
-// Tuple mimics std::pair but works on e.g. nvcc.
-template <typename U, typename V> struct Tuple {
- public:
- U first;
- V second;
-
- typedef U first_type;
- typedef V second_type;
-
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Tuple() : first(), second() {}
-
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Tuple(const U& f, const V& s) : first(f), second(s) {}
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Tuple& operator= (const Tuple& rhs) {
- if (&rhs == this) return *this;
- first = rhs.first;
- second = rhs.second;
- return *this;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void swap(Tuple& rhs) {
- using numext::swap;
- swap(first, rhs.first);
- swap(second, rhs.second);
- }
-};
-
-template <typename U, typename V>
-EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) {
- return (x.first == y.first && x.second == y.second);
-}
-
-template <typename U, typename V>
-EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) {
- return !(x == y);
-}
-
-
-// Can't use std::pairs on cuda devices
-template <typename Idx> struct IndexPair {
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair() : first(0), second(0) {}
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair(Idx f, Idx s) : first(f), second(s) {}
-
- EIGEN_DEVICE_FUNC void set(IndexPair<Idx> val) {
- first = val.first;
- second = val.second;
- }
-
- Idx first;
- Idx second;
-};
-
-
-#ifdef EIGEN_HAS_SFINAE
-namespace internal {
-
- template<typename IndexType, Index... Is>
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- array<Index, sizeof...(Is)> customIndices2Array(IndexType& idx, numeric_list<Index, Is...>) {
- return { idx[Is]... };
- }
- template<typename IndexType>
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- array<Index, 0> customIndices2Array(IndexType&, numeric_list<Index>) {
- return array<Index, 0>();
- }
-
- /** Make an array (for index/dimensions) out of a custom index */
- template<typename Index, std::size_t NumIndices, typename IndexType>
- EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- array<Index, NumIndices> customIndices2Array(IndexType& idx) {
- return customIndices2Array(idx, typename gen_numeric_list<Index, NumIndices>::type{});
- }
-
-
- template <typename B, typename D>
- struct is_base_of
- {
-
- typedef char (&yes)[1];
- typedef char (&no)[2];
-
- template <typename BB, typename DD>
- struct Host
- {
- operator BB*() const;
- operator DD*();
- };
-
- template<typename T>
- static yes check(D*, T);
- static no check(B*, int);
-
- static const bool value = sizeof(check(Host<B,D>(), int())) == sizeof(yes);
- };
-
-}
-#endif
-
-
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
deleted file mode 100644
index d34f1e3..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
+++ /dev/null
@@ -1,888 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
-
-namespace Eigen {
-
-/** \class TensorReshaping
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor reshaping class.
- *
- *
- */
-namespace internal {
-template<typename NewDimensions, typename XprType>
-struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = array_size<NewDimensions>::value;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename NewDimensions, typename XprType>
-struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense>
-{
- typedef const TensorReshapingOp<NewDimensions, XprType>& type;
-};
-
-template<typename NewDimensions, typename XprType>
-struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type>
-{
- typedef TensorReshapingOp<NewDimensions, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename NewDimensions, typename XprType>
-class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
- : m_xpr(expr), m_dims(dims) {}
-
- EIGEN_DEVICE_FUNC
- const NewDimensions& dimensions() const { return m_dims; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const TensorReshapingOp& other)
- {
- typedef TensorAssignOp<TensorReshapingOp, const TensorReshapingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorReshapingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const NewDimensions m_dims;
-};
-
-
-// Eval as rvalue
-template<typename NewDimensions, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
-{
- typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
- typedef NewDimensions Dimensions;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_dimensions(op.dimensions())
- {
- // The total size of the reshaped tensor must be equal to the total size
- // of the input tensor.
- eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- return m_impl.evalSubExprsIfNeeded(data);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(index);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- return m_impl.template packet<LoadMode>(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return m_impl.costPerCoeff(vectorized);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); }
-
- EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
-
- protected:
- TensorEvaluator<ArgType, Device> m_impl;
- NewDimensions m_dimensions;
-};
-
-
-// Eval as lvalue
-template<typename NewDimensions, typename ArgType, typename Device>
- struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
- : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
-
-{
- typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base;
- typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
- typedef NewDimensions Dimensions;
-
- enum {
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(index);
- }
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- this->m_impl.template writePacket<StoreMode>(index, x);
- }
-};
-
-
-/** \class TensorSlicing
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor slicing class.
- *
- *
- */
-namespace internal {
-template<typename StartIndices, typename Sizes, typename XprType>
-struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = array_size<StartIndices>::value;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename StartIndices, typename Sizes, typename XprType>
-struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense>
-{
- typedef const TensorSlicingOp<StartIndices, Sizes, XprType>& type;
-};
-
-template<typename StartIndices, typename Sizes, typename XprType>
-struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type>
-{
- typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename StartIndices, typename Sizes, typename XprType>
-class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> >
-{
- public:
- typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes)
- : m_xpr(expr), m_indices(indices), m_sizes(sizes) {}
-
- EIGEN_DEVICE_FUNC
- const StartIndices& startIndices() const { return m_indices; }
- EIGEN_DEVICE_FUNC
- const Sizes& sizes() const { return m_sizes; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorSlicingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const TensorSlicingOp& other)
- {
- typedef TensorAssignOp<TensorSlicingOp, const TensorSlicingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
-
- protected:
- typename XprType::Nested m_xpr;
- const StartIndices m_indices;
- const Sizes m_sizes;
-};
-
-
-// Fixme: figure out the exact threshold
-namespace {
-template <typename Index, typename Device> struct MemcpyTriggerForSlicing {
- EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { }
- EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > threshold_; }
-
- private:
- Index threshold_;
-};
-
-// It is very expensive to start the memcpy kernel on GPU: we therefore only
-// use it for large copies.
-#ifdef EIGEN_USE_GPU
-template <typename Index> struct MemcpyTriggerForSlicing<Index, GpuDevice> {
- EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { }
- EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > 4*1024*1024; }
-};
-#endif
-}
-
-// Eval as rvalue
-template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
-{
- typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
- static const int NumDims = internal::array_size<Sizes>::value;
-
- enum {
- // Alignment can't be guaranteed at compile time since it depends on the
- // slice offsets and sizes.
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
- {
- for (std::size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
- eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
- }
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- const Sizes& output_dims = op.sizes();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- }
-
- // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
- }
- } else {
- m_inputStrides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- }
-
- // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed.
- m_outputStrides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
- }
- }
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef Sizes Dimensions;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
- m_impl.evalSubExprsIfNeeded(NULL);
- if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data && m_impl.data()) {
- Index contiguous_values = 1;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumDims; ++i) {
- contiguous_values *= dimensions()[i];
- if (dimensions()[i] != m_impl.dimensions()[i]) {
- break;
- }
- }
- } else {
- for (int i = NumDims-1; i >= 0; --i) {
- contiguous_values *= dimensions()[i];
- if (dimensions()[i] != m_impl.dimensions()[i]) {
- break;
- }
- }
- }
- // Use memcpy if it's going to be faster than using the regular evaluation.
- const MemcpyTriggerForSlicing<Index, Device> trigger(m_device);
- if (trigger(contiguous_values)) {
- Scalar* src = (Scalar*)m_impl.data();
- for (int i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) {
- Index offset = srcCoeff(i);
- m_device.memcpy((void*)(data+i), src+offset, contiguous_values * sizeof(Scalar));
- }
- return false;
- }
- }
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(srcCoeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
- EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+packetSize-1 < internal::array_prod(dimensions()));
-
- Index inputIndices[] = {0, 0};
- Index indices[] = {index, index + packetSize - 1};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx0 = indices[0] / m_fastOutputStrides[i];
- const Index idx1 = indices[1] / m_fastOutputStrides[i];
- inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
- inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
- indices[0] -= idx0 * m_outputStrides[i];
- indices[1] -= idx1 * m_outputStrides[i];
- }
- inputIndices[0] += (indices[0] + m_offsets[0]);
- inputIndices[1] += (indices[1] + m_offsets[0]);
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx0 = indices[0] / m_fastOutputStrides[i];
- const Index idx1 = indices[1] / m_fastOutputStrides[i];
- inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
- inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
- indices[0] -= idx0 * m_outputStrides[i];
- indices[1] -= idx1 * m_outputStrides[i];
- }
- inputIndices[0] += (indices[0] + m_offsets[NumDims-1]);
- inputIndices[1] += (indices[1] + m_offsets[NumDims-1]);
- }
- if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
- PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
- return rslt;
- }
- else {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
- values[0] = m_impl.coeff(inputIndices[0]);
- values[packetSize-1] = m_impl.coeff(inputIndices[1]);
- for (int i = 1; i < packetSize-1; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
- }
-
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
- Scalar* result = m_impl.data();
- if (result) {
- Index offset = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumDims; ++i) {
- if (m_dimensions[i] != m_impl.dimensions()[i]) {
- offset += m_offsets[i] * m_inputStrides[i];
- for (int j = i+1; j < NumDims; ++j) {
- if (m_dimensions[j] > 1) {
- return NULL;
- }
- offset += m_offsets[j] * m_inputStrides[j];
- }
- break;
- }
- }
- } else {
- for (int i = NumDims - 1; i >= 0; --i) {
- if (m_dimensions[i] != m_impl.dimensions()[i]) {
- offset += m_offsets[i] * m_inputStrides[i];
- for (int j = i-1; j >= 0; --j) {
- if (m_dimensions[j] > 1) {
- return NULL;
- }
- offset += m_offsets[j] * m_inputStrides[j];
- }
- break;
- }
- }
- }
- return result + offset;
- }
- return NULL;
- }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
- {
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_fastOutputStrides[i];
- inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- inputIndex += (index + m_offsets[0]);
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_fastOutputStrides[i];
- inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- inputIndex += (index + m_offsets[NumDims-1]);
- }
- return inputIndex;
- }
-
- array<Index, NumDims> m_outputStrides;
- array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
- const Device& m_device;
- Dimensions m_dimensions;
- const StartIndices m_offsets;
-};
-
-
-// Eval as lvalue
-template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
-struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
- : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
-{
- typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base;
- typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
- static const int NumDims = internal::array_size<Sizes>::value;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef Sizes Dimensions;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(this->srcCoeff(index));
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
- Index inputIndices[] = {0, 0};
- Index indices[] = {index, index + packetSize - 1};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
- const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
- inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
- inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
- indices[0] -= idx0 * this->m_outputStrides[i];
- indices[1] -= idx1 * this->m_outputStrides[i];
- }
- inputIndices[0] += (indices[0] + this->m_offsets[0]);
- inputIndices[1] += (indices[1] + this->m_offsets[0]);
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
- const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
- inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
- inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
- indices[0] -= idx0 * this->m_outputStrides[i];
- indices[1] -= idx1 * this->m_outputStrides[i];
- }
- inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]);
- inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]);
- }
- if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
- this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
- }
- else {
- EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- this->m_impl.coeffRef(inputIndices[0]) = values[0];
- this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1];
- for (int i = 1; i < packetSize-1; ++i) {
- this->coeffRef(index+i) = values[i];
- }
- }
- }
-};
-
-
-
-namespace internal {
-template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
-struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = array_size<StartIndices>::value;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
-struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
-{
- typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type;
-};
-
-template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
-struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
-{
- typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
-};
-
-} // end namespace internal
-
-
-template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
-class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
-{
- public:
- typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
- typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
- typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
- const XprType& expr, const StartIndices& startIndices,
- const StopIndices& stopIndices, const Strides& strides)
- : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
- m_strides(strides) {}
-
- EIGEN_DEVICE_FUNC
- const StartIndices& startIndices() const { return m_startIndices; }
- EIGEN_DEVICE_FUNC
- const StartIndices& stopIndices() const { return m_stopIndices; }
- EIGEN_DEVICE_FUNC
- const StartIndices& strides() const { return m_strides; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other)
- {
- typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(
- assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(
- assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const StartIndices m_startIndices;
- const StopIndices m_stopIndices;
- const Strides m_strides;
-};
-
-// Eval as rvalue
-template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
-{
- typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
- static const int NumDims = internal::array_size<Strides>::value;
-
- enum {
- // Alignment can't be guaranteed at compile time since it depends on the
- // slice offsets and sizes.
- IsAligned = false,
- PacketAccess = false,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_device(device), m_strides(op.strides())
- {
- // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
- DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
- for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
- eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
- if(m_strides[i]>0){
- startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
- stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
- }else{
- /* implies m_strides[i]<0 by assert */
- startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
- stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
- }
- m_startIndices[i] = startIndicesClamped[i];
- }
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
-
- // check for degenerate intervals and compute output tensor shape
- bool degenerate = false;;
- for(int i = 0; i < NumDims; i++){
- Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
- if(interval == 0 || ((interval<0) != (m_strides[i]<0))){
- m_dimensions[i] = 0;
- degenerate = true;
- }else{
- m_dimensions[i] = interval / m_strides[i]
- + (interval % m_strides[i] != 0 ? 1 : 0);
- eigen_assert(m_dimensions[i] >= 0);
- }
- }
- Strides output_dims = m_dimensions;
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputStrides[0] = m_strides[0];
- m_offsets[0] = startIndicesClamped[0];
- Index previousDimProduct = 1;
- for (int i = 1; i < NumDims; ++i) {
- previousDimProduct *= input_dims[i-1];
- m_inputStrides[i] = previousDimProduct * m_strides[i];
- m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
- }
-
- // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
- // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
- }
- } else {
- m_inputStrides[NumDims-1] = m_strides[NumDims-1];
- m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
- Index previousDimProduct = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- previousDimProduct *= input_dims[i+1];
- m_inputStrides[i] = previousDimProduct * m_strides[i];
- m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
- }
-
- m_outputStrides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
- // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
- m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
- }
- }
- m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
- device.lastLevelCacheSize() /
- sizeof(Scalar));
- }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef Strides Dimensions;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(srcCoeff(index));
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
- return NULL;
- }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
- {
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i >= 0; --i) {
- const Index idx = index / m_fastOutputStrides[i];
- inputIndex += idx * m_inputStrides[i] + m_offsets[i];
- index -= idx * m_outputStrides[i];
- }
- } else {
- for (int i = 0; i < NumDims; ++i) {
- const Index idx = index / m_fastOutputStrides[i];
- inputIndex += idx * m_inputStrides[i] + m_offsets[i];
- index -= idx * m_outputStrides[i];
- }
- }
- return inputIndex;
- }
-
- static EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
- return numext::maxi(min, numext::mini(max,value));
- }
-
- array<Index, NumDims> m_outputStrides;
- array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
- const Device& m_device;
- DSizes<Index, NumDims> m_startIndices; // clamped startIndices
- DSizes<Index, NumDims> m_dimensions;
- DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
- const Strides m_strides;
- std::size_t m_block_total_size_max;
-};
-
-// Eval as lvalue
-template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
-struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
- : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
-{
- typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
- typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
- static const int NumDims = internal::array_size<Strides>::value;
-
- enum {
- IsAligned = false,
- PacketAccess = false,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef Strides Dimensions;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(this->srcCoeff(index));
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h
deleted file mode 100644
index 647bcf1..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h
+++ /dev/null
@@ -1,397 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
-
-namespace Eigen {
-
-/** \class TensorPadding
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor padding class.
- * At the moment only padding with a constant value is supported.
- *
- */
-namespace internal {
-template<typename PaddingDimensions, typename XprType>
-struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename PaddingDimensions, typename XprType>
-struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
-{
- typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
-};
-
-template<typename PaddingDimensions, typename XprType>
-struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
-{
- typedef TensorPaddingOp<PaddingDimensions, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename PaddingDimensions, typename XprType>
-class TensorPaddingOp : public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value)
- : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {}
-
- EIGEN_DEVICE_FUNC
- const PaddingDimensions& padding() const { return m_padding_dims; }
- EIGEN_DEVICE_FUNC
- Scalar padding_value() const { return m_padding_value; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const PaddingDimensions m_padding_dims;
- const Scalar m_padding_value;
-};
-
-
-// Eval as rvalue
-template<typename PaddingDimensions, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device>
-{
- typedef TensorPaddingOp<PaddingDimensions, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<PaddingDimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = true,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = true,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value())
- {
- // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
- // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
- // of 1 element first and then pad.
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- // Compute dimensions
- m_dimensions = m_impl.dimensions();
- for (int i = 0; i < NumDims; ++i) {
- m_dimensions[i] += m_padding[i].first + m_padding[i].second;
- }
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputStrides[0] = 1;
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
- }
- m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
- } else {
- m_inputStrides[NumDims - 1] = 1;
- m_outputStrides[NumDims] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
- }
- m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- eigen_assert(index < dimensions().TotalSize());
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- if (isPaddingAtIndexForDim(idx, i)) {
- return m_paddingValue;
- }
- inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- if (isPaddingAtIndexForDim(index, 0)) {
- return m_paddingValue;
- }
- inputIndex += (index - m_padding[0].first);
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i+1];
- if (isPaddingAtIndexForDim(idx, i)) {
- return m_paddingValue;
- }
- inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
- index -= idx * m_outputStrides[i+1];
- }
- if (isPaddingAtIndexForDim(index, NumDims-1)) {
- return m_paddingValue;
- }
- inputIndex += (index - m_padding[NumDims-1].first);
- }
- return m_impl.coeff(inputIndex);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return packetColMajor(index);
- }
- return packetRowMajor(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- TensorOpCost cost = m_impl.costPerCoeff(vectorized);
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumDims; ++i)
- updateCostPerDimension(cost, i, i == 0);
- } else {
- for (int i = NumDims - 1; i >= 0; --i)
- updateCostPerDimension(cost, i, i == NumDims - 1);
- }
- return cost;
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- private:
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
- Index index, int dim_index) const {
-#if defined(EIGEN_HAS_INDEX_LIST)
- return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
- index < m_padding[dim_index].first) ||
- (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
- index >= m_dimensions[dim_index] - m_padding[dim_index].second);
-#else
- return (index < m_padding[dim_index].first) ||
- (index >= m_dimensions[dim_index] - m_padding[dim_index].second);
-#endif
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero(
- int dim_index) const {
-#if defined(EIGEN_HAS_INDEX_LIST)
- return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
-#else
- EIGEN_UNUSED_VARIABLE(dim_index);
- return false;
-#endif
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero(
- int dim_index) const {
-#if defined(EIGEN_HAS_INDEX_LIST)
- return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
-#else
- EIGEN_UNUSED_VARIABLE(dim_index);
- return false;
-#endif
- }
-
-
- void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const {
- const double in = static_cast<double>(m_impl.dimensions()[i]);
- const double out = in + m_padding[i].first + m_padding[i].second;
- if (out == 0)
- return;
- const double reduction = in / out;
- cost *= reduction;
- if (first) {
- cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
- reduction * (1 * TensorOpCost::AddCost<Index>()));
- } else {
- cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
- 2 * TensorOpCost::MulCost<Index>() +
- reduction * (2 * TensorOpCost::MulCost<Index>() +
- 1 * TensorOpCost::DivCost<Index>()));
- }
- }
-
- protected:
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- const Index initialIndex = index;
- Index inputIndex = 0;
- for (int i = NumDims - 1; i > 0; --i) {
- const Index first = index;
- const Index last = index + PacketSize - 1;
- const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
- const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
- const Index lastPaddedRight = m_outputStrides[i+1];
-
- if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
- // all the coefficient are between the 2 padding zones.
- const Index idx = index / m_outputStrides[i];
- inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- else {
- // Every other case
- return packetWithPossibleZero(initialIndex);
- }
- }
-
- const Index last = index + PacketSize - 1;
- const Index first = index;
- const Index lastPaddedLeft = m_padding[0].first;
- const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
- const Index lastPaddedRight = m_outputStrides[1];
-
- if (!isLeftPaddingCompileTimeZero(0) && last < lastPaddedLeft) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if (!isRightPaddingCompileTimeZero(0) && first >= firstPaddedRight && last < lastPaddedRight) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
- // all the coefficient are between the 2 padding zones.
- inputIndex += (index - m_padding[0].first);
- return m_impl.template packet<Unaligned>(inputIndex);
- }
- // Every other case
- return packetWithPossibleZero(initialIndex);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- const Index initialIndex = index;
- Index inputIndex = 0;
-
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index first = index;
- const Index last = index + PacketSize - 1;
- const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
- const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
- const Index lastPaddedRight = m_outputStrides[i];
-
- if (!isLeftPaddingCompileTimeZero(i) && last < lastPaddedLeft) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if (!isRightPaddingCompileTimeZero(i) && first >= firstPaddedRight && last < lastPaddedRight) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
- // all the coefficient are between the 2 padding zones.
- const Index idx = index / m_outputStrides[i+1];
- inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
- index -= idx * m_outputStrides[i+1];
- }
- else {
- // Every other case
- return packetWithPossibleZero(initialIndex);
- }
- }
-
- const Index last = index + PacketSize - 1;
- const Index first = index;
- const Index lastPaddedLeft = m_padding[NumDims-1].first;
- const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
- const Index lastPaddedRight = m_outputStrides[NumDims-1];
-
- if (!isLeftPaddingCompileTimeZero(NumDims-1) && last < lastPaddedLeft) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if (!isRightPaddingCompileTimeZero(NumDims-1) && first >= firstPaddedRight && last < lastPaddedRight) {
- // all the coefficient are in the padding zone.
- return internal::pset1<PacketReturnType>(m_paddingValue);
- }
- else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (first >= lastPaddedLeft && last < firstPaddedRight)) {
- // all the coefficient are between the 2 padding zones.
- inputIndex += (index - m_padding[NumDims-1].first);
- return m_impl.template packet<Unaligned>(inputIndex);
- }
- // Every other case
- return packetWithPossibleZero(initialIndex);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
- {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- Dimensions m_dimensions;
- array<Index, NumDims+1> m_outputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
- PaddingDimensions m_padding;
-
- Scalar m_paddingValue;
-};
-
-
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
deleted file mode 100644
index 886a254..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
+++ /dev/null
@@ -1,269 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
-#define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
-
-namespace Eigen {
-
-/** \class TensorPatch
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor patch class.
- *
- *
- */
-namespace internal {
-template<typename PatchDim, typename XprType>
-struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions + 1;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename PatchDim, typename XprType>
-struct eval<TensorPatchOp<PatchDim, XprType>, Eigen::Dense>
-{
- typedef const TensorPatchOp<PatchDim, XprType>& type;
-};
-
-template<typename PatchDim, typename XprType>
-struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<PatchDim, XprType> >::type>
-{
- typedef TensorPatchOp<PatchDim, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename PatchDim, typename XprType>
-class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorPatchOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorPatchOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorPatchOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorPatchOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims)
- : m_xpr(expr), m_patch_dims(patch_dims) {}
-
- EIGEN_DEVICE_FUNC
- const PatchDim& patch_dims() const { return m_patch_dims; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const PatchDim m_patch_dims;
-};
-
-
-// Eval as rvalue
-template<typename PatchDim, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
-{
- typedef TensorPatchOp<PatchDim, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value + 1;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- Index num_patches = 1;
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- const PatchDim& patch_dims = op.patch_dims();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < NumDims-1; ++i) {
- m_dimensions[i] = patch_dims[i];
- num_patches *= (input_dims[i] - patch_dims[i] + 1);
- }
- m_dimensions[NumDims-1] = num_patches;
-
- m_inputStrides[0] = 1;
- m_patchStrides[0] = 1;
- for (int i = 1; i < NumDims-1; ++i) {
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1);
- }
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
- }
- } else {
- for (int i = 0; i < NumDims-1; ++i) {
- m_dimensions[i+1] = patch_dims[i];
- num_patches *= (input_dims[i] - patch_dims[i] + 1);
- }
- m_dimensions[0] = num_patches;
-
- m_inputStrides[NumDims-2] = 1;
- m_patchStrides[NumDims-2] = 1;
- for (int i = NumDims-3; i >= 0; --i) {
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- m_patchStrides[i] = m_patchStrides[i+1] * (input_dims[i+1] - patch_dims[i+1] + 1);
- }
- m_outputStrides[NumDims-1] = 1;
- for (int i = NumDims-2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0;
- // Find the location of the first element of the patch.
- Index patchIndex = index / m_outputStrides[output_stride_index];
- // Find the offset of the element wrt the location of the first element.
- Index patchOffset = index - patchIndex * m_outputStrides[output_stride_index];
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 2; i > 0; --i) {
- const Index patchIdx = patchIndex / m_patchStrides[i];
- patchIndex -= patchIdx * m_patchStrides[i];
- const Index offsetIdx = patchOffset / m_outputStrides[i];
- patchOffset -= offsetIdx * m_outputStrides[i];
- inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
- }
- } else {
- for (int i = 0; i < NumDims - 2; ++i) {
- const Index patchIdx = patchIndex / m_patchStrides[i];
- patchIndex -= patchIdx * m_patchStrides[i];
- const Index offsetIdx = patchOffset / m_outputStrides[i+1];
- patchOffset -= offsetIdx * m_outputStrides[i+1];
- inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
- }
- }
- inputIndex += (patchIndex + patchOffset);
- return m_impl.coeff(inputIndex);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0;
- Index indices[2] = {index, index + PacketSize - 1};
- Index patchIndices[2] = {indices[0] / m_outputStrides[output_stride_index],
- indices[1] / m_outputStrides[output_stride_index]};
- Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[output_stride_index],
- indices[1] - patchIndices[1] * m_outputStrides[output_stride_index]};
-
- Index inputIndices[2] = {0, 0};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 2; i > 0; --i) {
- const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i],
- patchIndices[1] / m_patchStrides[i]};
- patchIndices[0] -= patchIdx[0] * m_patchStrides[i];
- patchIndices[1] -= patchIdx[1] * m_patchStrides[i];
-
- const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i],
- patchOffsets[1] / m_outputStrides[i]};
- patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i];
- patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i];
-
- inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i];
- inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i];
- }
- } else {
- for (int i = 0; i < NumDims - 2; ++i) {
- const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i],
- patchIndices[1] / m_patchStrides[i]};
- patchIndices[0] -= patchIdx[0] * m_patchStrides[i];
- patchIndices[1] -= patchIdx[1] * m_patchStrides[i];
-
- const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i+1],
- patchOffsets[1] / m_outputStrides[i+1]};
- patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i+1];
- patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i+1];
-
- inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i];
- inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i];
- }
- }
- inputIndices[0] += (patchIndices[0] + patchOffsets[0]);
- inputIndices[1] += (patchIndices[1] + patchOffsets[1]);
-
- if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
- PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
- return rslt;
- }
- else {
- EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
- values[0] = m_impl.coeff(inputIndices[0]);
- values[PacketSize-1] = m_impl.coeff(inputIndices[1]);
- for (int i = 1; i < PacketSize-1; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- const double compute_cost = NumDims * (TensorOpCost::DivCost<Index>() +
- TensorOpCost::MulCost<Index>() +
- 2 * TensorOpCost::AddCost<Index>());
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims-1> m_inputStrides;
- array<Index, NumDims-1> m_patchStrides;
-
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
deleted file mode 100644
index 1655a81..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
+++ /dev/null
@@ -1,276 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
-#define EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
-
-namespace Eigen {
-namespace internal {
-
-namespace {
-
-EIGEN_DEVICE_FUNC uint64_t get_random_seed() {
-#ifdef __CUDA_ARCH__
- // We don't support 3d kernels since we currently only use 1 and
- // 2d kernels.
- assert(threadIdx.z == 0);
- return clock64() +
- blockIdx.x * blockDim.x + threadIdx.x +
- gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y);
-
-#elif defined _WIN32
- // Use the current time as a baseline.
- SYSTEMTIME st;
- GetSystemTime(&st);
- int time = st.wSecond + 1000 * st.wMilliseconds;
- // Mix in a random number to make sure that we get different seeds if
- // we try to generate seeds faster than the clock resolution.
- // We need 2 random values since the generator only generate 16 bits at
- // a time (https://msdn.microsoft.com/en-us/library/398ax69y.aspx)
- int rnd1 = ::rand();
- int rnd2 = ::rand();
- uint64_t rnd = (rnd1 | rnd2 << 16) ^ time;
- return rnd;
-
-#elif defined __APPLE__
- // Same approach as for win32, except that the random number generator
- // is better (// https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/random.3.html#//apple_ref/doc/man/3/random).
- uint64_t rnd = ::random() ^ mach_absolute_time();
- return rnd;
-
-#else
- // Augment the current time with pseudo random number generation
- // to ensure that we get different seeds if we try to generate seeds
- // faster than the clock resolution.
- timespec ts;
- clock_gettime(CLOCK_REALTIME, &ts);
- uint64_t rnd = ::random() ^ ts.tv_nsec;
- return rnd;
-#endif
-}
-
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state) {
- // TODO: Unify with the implementation in the non blocking thread pool.
- uint64_t current = *state;
- // Update the internal state
- *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
- // Generate the random output (using the PCG-XSH-RS scheme)
- return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
-}
-
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE uint64_t PCG_XSH_RS_state(uint64_t seed) {
- seed = seed ? seed : get_random_seed();
- return seed * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
-}
-
-} // namespace
-
-
-template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-T RandomToTypeUniform(uint64_t* state) {
- unsigned rnd = PCG_XSH_RS_generator(state);
- return static_cast<T>(rnd);
-}
-
-
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state) {
- Eigen::half result;
- // Generate 10 random bits for the mantissa
- unsigned rnd = PCG_XSH_RS_generator(state);
- result.x = static_cast<uint16_t>(rnd & 0x3ffu);
- // Set the exponent
- result.x |= (static_cast<uint16_t>(15) << 10);
- // Return the final result
- return result - Eigen::half(1.0f);
-}
-
-
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float RandomToTypeUniform<float>(uint64_t* state) {
- typedef union {
- uint32_t raw;
- float fp;
- } internal;
- internal result;
- // Generate 23 random bits for the mantissa mantissa
- const unsigned rnd = PCG_XSH_RS_generator(state);
- result.raw = rnd & 0x7fffffu;
- // Set the exponent
- result.raw |= (static_cast<uint32_t>(127) << 23);
- // Return the final result
- return result.fp - 1.0f;
-}
-
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double RandomToTypeUniform<double>(uint64_t* state) {
- typedef union {
- uint64_t raw;
- double dp;
- } internal;
- internal result;
- result.raw = 0;
- // Generate 52 random bits for the mantissa
- // First generate the upper 20 bits
- unsigned rnd1 = PCG_XSH_RS_generator(state) & 0xfffffu;
- // The generate the lower 32 bits
- unsigned rnd2 = PCG_XSH_RS_generator(state);
- result.raw = (static_cast<uint64_t>(rnd1) << 32) | rnd2;
- // Set the exponent
- result.raw |= (static_cast<uint64_t>(1023) << 52);
- // Return the final result
- return result.dp - 1.0;
-}
-
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state) {
- return std::complex<float>(RandomToTypeUniform<float>(state),
- RandomToTypeUniform<float>(state));
-}
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state) {
- return std::complex<double>(RandomToTypeUniform<double>(state),
- RandomToTypeUniform<double>(state));
-}
-
-template <typename T> class UniformRandomGenerator {
- public:
- static const bool PacketAccess = true;
-
- // Uses the given "seed" if non-zero, otherwise uses a random seed.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
- uint64_t seed = 0) {
- m_state = PCG_XSH_RS_state(seed);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
- const UniformRandomGenerator& other) {
- m_state = other.m_state;
- }
-
- template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T operator()(Index i) const {
- uint64_t local_state = m_state + i;
- T result = RandomToTypeUniform<T>(&local_state);
- m_state = local_state;
- return result;
- }
-
- template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Packet packetOp(Index i) const {
- const int packetSize = internal::unpacket_traits<Packet>::size;
- EIGEN_ALIGN_MAX T values[packetSize];
- uint64_t local_state = m_state + i;
- for (int j = 0; j < packetSize; ++j) {
- values[j] = RandomToTypeUniform<T>(&local_state);
- }
- m_state = local_state;
- return internal::pload<Packet>(values);
- }
-
- private:
- mutable uint64_t m_state;
-};
-
-template <typename Scalar>
-struct functor_traits<UniformRandomGenerator<Scalar> > {
- enum {
- // Rough estimate for floating point, multiplied by ceil(sizeof(T) / sizeof(float)).
- Cost = 12 * NumTraits<Scalar>::AddCost *
- ((sizeof(Scalar) + sizeof(float) - 1) / sizeof(float)),
- PacketAccess = UniformRandomGenerator<Scalar>::PacketAccess
- };
-};
-
-
-
-template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-T RandomToTypeNormal(uint64_t* state) {
- // Use the ratio of uniform method to generate numbers following a normal
- // distribution. See for example Numerical Recipes chapter 7.3.9 for the
- // details.
- T u, v, q;
- do {
- u = RandomToTypeUniform<T>(state);
- v = T(1.7156) * (RandomToTypeUniform<T>(state) - T(0.5));
- const T x = u - T(0.449871);
- const T y = numext::abs(v) + T(0.386595);
- q = x*x + y * (T(0.196)*y - T(0.25472)*x);
- } while (q > T(0.27597) &&
- (q > T(0.27846) || v*v > T(-4) * numext::log(u) * u*u));
-
- return v/u;
-}
-
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state) {
- return std::complex<float>(RandomToTypeNormal<float>(state),
- RandomToTypeNormal<float>(state));
-}
-template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state) {
- return std::complex<double>(RandomToTypeNormal<double>(state),
- RandomToTypeNormal<double>(state));
-}
-
-
-template <typename T> class NormalRandomGenerator {
- public:
- static const bool PacketAccess = true;
-
- // Uses the given "seed" if non-zero, otherwise uses a random seed.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) {
- m_state = PCG_XSH_RS_state(seed);
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(
- const NormalRandomGenerator& other) {
- m_state = other.m_state;
- }
-
- template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T operator()(Index i) const {
- uint64_t local_state = m_state + i;
- T result = RandomToTypeNormal<T>(&local_state);
- m_state = local_state;
- return result;
- }
-
- template<typename Packet, typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- Packet packetOp(Index i) const {
- const int packetSize = internal::unpacket_traits<Packet>::size;
- EIGEN_ALIGN_MAX T values[packetSize];
- uint64_t local_state = m_state + i;
- for (int j = 0; j < packetSize; ++j) {
- values[j] = RandomToTypeNormal<T>(&local_state);
- }
- m_state = local_state;
- return internal::pload<Packet>(values);
- }
-
- private:
- mutable uint64_t m_state;
-};
-
-
-template <typename Scalar>
-struct functor_traits<NormalRandomGenerator<Scalar> > {
- enum {
- // On average, we need to generate about 3 random numbers
- // 15 mul, 8 add, 1.5 logs
- Cost = 3 * functor_traits<UniformRandomGenerator<Scalar> >::Cost +
- 15 * NumTraits<Scalar>::AddCost + 8 * NumTraits<Scalar>::AddCost +
- 3 * functor_traits<scalar_log_op<Scalar> >::Cost / 2,
- PacketAccess = NormalRandomGenerator<Scalar>::PacketAccess
- };
-};
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_RANDOM_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
deleted file mode 100644
index 41d0d00..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
+++ /dev/null
@@ -1,781 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
-
-namespace Eigen {
-
-/** \class TensorReduction
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor reduction class.
- *
- */
-
-namespace internal {
- template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
- struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
- : traits<XprType>
-{
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::Scalar Scalar;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
- static const int Layout = XprTraits::Layout;
-
- template <class T> struct MakePointer {
- // Intermediate typedef to workaround MSVC issue.
- typedef MakePointer_<T> MakePointerT;
- typedef typename MakePointerT::Type Type;
- };
-};
-
-template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
-struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
-{
- typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
-};
-
-template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
-struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
-{
- typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
-};
-
-
-template <typename OutputDims> struct DimInitializer {
- template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
- static void run(const InputDims& input_dims,
- const array<bool, internal::array_size<InputDims>::value>& reduced,
- OutputDims* output_dims, ReducedDims* reduced_dims) {
- const int NumInputDims = internal::array_size<InputDims>::value;
- int outputIndex = 0;
- int reduceIndex = 0;
- for (int i = 0; i < NumInputDims; ++i) {
- if (reduced[i]) {
- (*reduced_dims)[reduceIndex] = input_dims[i];
- ++reduceIndex;
- } else {
- (*output_dims)[outputIndex] = input_dims[i];
- ++outputIndex;
- }
- }
- }
-};
-
-template <> struct DimInitializer<Sizes<> > {
- template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
- static void run(const InputDims& input_dims, const array<bool, Rank>&,
- Sizes<>*, array<Index, Rank>* reduced_dims) {
- const int NumInputDims = internal::array_size<InputDims>::value;
- for (int i = 0; i < NumInputDims; ++i) {
- (*reduced_dims)[i] = input_dims[i];
- }
- }
-};
-
-
-template <typename ReducedDims, int NumTensorDims, int Layout>
-struct are_inner_most_dims {
- static const bool value = false;
-};
-template <typename ReducedDims, int NumTensorDims, int Layout>
-struct preserve_inner_most_dims {
- static const bool value = false;
-};
-
-#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
-template <typename ReducedDims, int NumTensorDims>
-struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
- static const bool value = tmp1 & tmp2 & tmp3;
-};
-template <typename ReducedDims, int NumTensorDims>
-struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
- static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
- static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
- static const bool value = tmp1 & tmp2 & tmp3;
-
-};
-template <typename ReducedDims, int NumTensorDims>
-struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
- static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
- static const bool value = tmp1 & tmp2;
-
-};
-template <typename ReducedDims, int NumTensorDims>
-struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
- static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
- static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
- static const bool value = tmp1 & tmp2;
-};
-#endif
-
-
-template <int DimIndex, typename Self, typename Op>
-struct GenericDimReducer {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
- for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
- GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
- }
- }
-};
-template <typename Self, typename Op>
-struct GenericDimReducer<0, Self, Op> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
- for (int j = 0; j < self.m_reducedDims[0]; ++j) {
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
- reducer.reduce(self.m_impl.coeff(input), accum);
- }
- }
-};
-template <typename Self, typename Op>
-struct GenericDimReducer<-1, Self, Op> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
- reducer.reduce(self.m_impl.coeff(index), accum);
- }
-};
-
-template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
-struct InnerMostDimReducer {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
- typename Self::CoeffReturnType accum = reducer.initialize();
- for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
- }
- return reducer.finalize(accum);
- }
-};
-
-template <typename Self, typename Op>
-struct InnerMostDimReducer<Self, Op, true> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
- const int packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
- const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
- typename Self::PacketReturnType p = reducer.template initializePacket<typename Self::PacketReturnType>();
- for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p);
- }
- typename Self::CoeffReturnType accum = reducer.initialize();
- for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
- reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
- }
- return reducer.finalizeBoth(accum, p);
- }
-};
-
-template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
-struct InnerMostDimPreserver {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
- eigen_assert(false && "should never be called");
- }
-};
-
-template <int DimIndex, typename Self, typename Op>
-struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
- EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
- for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
- InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
- }
- }
-};
-
-template <typename Self, typename Op>
-struct InnerMostDimPreserver<0, Self, Op, true> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
- for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
- const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
- reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
- }
- }
-};
-template <typename Self, typename Op>
-struct InnerMostDimPreserver<-1, Self, Op, true> {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
- eigen_assert(false && "should never be called");
- }
-};
-
-// Default full reducer
-template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
-struct FullReducer {
- static const bool HasOptimizedImplementation = false;
-
- static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
- const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
- }
-};
-
-
-#ifdef EIGEN_USE_THREADS
-// Multithreaded full reducers
-template <typename Self, typename Op,
- bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
-struct FullReducerShard {
- static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
- typename Self::Index numValuesToReduce, Op& reducer,
- typename Self::CoeffReturnType* output) {
- *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
- self, firstIndex, numValuesToReduce, reducer);
- }
-};
-
-// Multithreaded full reducer
-template <typename Self, typename Op, bool Vectorizable>
-struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
- static const bool HasOptimizedImplementation = !Op::IsStateful;
- static const int PacketSize =
- unpacket_traits<typename Self::PacketReturnType>::size;
-
- // launch one reducer per thread and accumulate the result.
- static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
- typename Self::CoeffReturnType* output) {
- typedef typename Self::Index Index;
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
- if (num_coeffs == 0) {
- *output = reducer.finalize(reducer.initialize());
- return;
- }
- const TensorOpCost cost =
- self.m_impl.costPerCoeff(Vectorizable) +
- TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
- PacketSize);
- const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
- num_coeffs, cost, device.numThreads());
- if (num_threads == 1) {
- *output =
- InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
- return;
- }
- const Index blocksize =
- std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
- const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
- eigen_assert(num_coeffs >= numblocks * blocksize);
-
- Barrier barrier(internal::convert_index<unsigned int>(numblocks));
- MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
- for (Index i = 0; i < numblocks; ++i) {
- device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
- self, i * blocksize, blocksize, reducer,
- &shards[i]);
- }
- typename Self::CoeffReturnType finalShard;
- if (numblocks * blocksize < num_coeffs) {
- finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
- self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
- reducer);
- } else {
- finalShard = reducer.initialize();
- }
- barrier.Wait();
-
- for (Index i = 0; i < numblocks; ++i) {
- reducer.reduce(shards[i], &finalShard);
- }
- *output = reducer.finalize(finalShard);
- }
-};
-
-#endif
-
-
-// Default inner reducer
-template <typename Self, typename Op, typename Device>
-struct InnerReducer {
- static const bool HasOptimizedImplementation = false;
-
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
- eigen_assert(false && "Not implemented");
- return true;
- }
-};
-
-// Default outer reducer
-template <typename Self, typename Op, typename Device>
-struct OuterReducer {
- static const bool HasOptimizedImplementation = false;
-
- EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
- eigen_assert(false && "Not implemented");
- return true;
- }
-};
-
-
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
-template <int B, int N, typename S, typename R, typename I>
-__global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
-
-
-#ifdef EIGEN_HAS_CUDA_FP16
-template <typename S, typename R, typename I>
-__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
-template <int B, int N, typename S, typename R, typename I>
-__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
-template <int NPT, typename S, typename R, typename I>
-__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);
-
-#endif
-
-template <int NPT, typename S, typename R, typename I>
-__global__ void InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
-
-template <int NPT, typename S, typename R, typename I>
-__global__ void OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
-#endif
-
-} // end namespace internal
-
-
-template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
-class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
- public:
- typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
- { }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const XprType& expression() const { return m_expr; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Dims& dims() const { return m_dims; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Op& reducer() const { return m_reducer; }
-
- protected:
- typename XprType::Nested m_expr;
- const Dims m_dims;
- const Op m_reducer;
-};
-
-
-// Eval as rvalue
-template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
-struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
-{
- typedef TensorReductionOp<Op, Dims, ArgType, MakePointer_> XprType;
- typedef typename XprType::Index Index;
- typedef ArgType ChildType;
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
- static const int NumInputDims = internal::array_size<InputDimensions>::value;
- static const int NumReducedDims = internal::array_size<Dims>::value;
- static const int NumOutputDims = NumInputDims - NumReducedDims;
- typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
- static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
- typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = Self::InputPacketAccess && Op::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
- static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
- static const bool RunningFullReduction = (NumOutputDims==0);
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device), m_xpr_dims(op.dims())
- {
- EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
- YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- // Build the bitmap indicating if an input dimension is reduced or not.
- for (int i = 0; i < NumInputDims; ++i) {
- m_reduced[i] = false;
- }
- for (int i = 0; i < NumReducedDims; ++i) {
- eigen_assert(op.dims()[i] >= 0);
- eigen_assert(op.dims()[i] < NumInputDims);
- m_reduced[op.dims()[i]] = true;
- }
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
-
- // Precompute output strides.
- if (NumOutputDims > 0) {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumOutputDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
- }
- } else {
- m_outputStrides.back() = 1;
- for (int i = NumOutputDims - 2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
- }
- }
- }
-
- // Precompute input strides.
- if (NumInputDims > 0) {
- array<Index, NumInputDims> input_strides;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- input_strides[0] = 1;
- for (int i = 1; i < NumInputDims; ++i) {
- input_strides[i] = input_strides[i-1] * input_dims[i-1];
- }
- } else {
- input_strides.back() = 1;
- for (int i = NumInputDims - 2; i >= 0; --i) {
- input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
- }
- }
-
- int outputIndex = 0;
- int reduceIndex = 0;
- for (int i = 0; i < NumInputDims; ++i) {
- if (m_reduced[i]) {
- m_reducedStrides[reduceIndex] = input_strides[i];
- ++reduceIndex;
- } else {
- m_preservedStrides[outputIndex] = input_strides[i];
- ++outputIndex;
- }
- }
- }
-
- // Special case for full reductions
- if (NumOutputDims == 0) {
- m_preservedStrides[0] = internal::array_prod(input_dims);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(typename MakePointer_<CoeffReturnType>::Type data) {
- m_impl.evalSubExprsIfNeeded(NULL);
-
- // Use the FullReducer if possible.
- if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
- internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
- ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
- !RunningOnGPU))) {
- bool need_assign = false;
- if (!data) {
- m_result = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType)));
- data = m_result;
- need_assign = true;
- }
- Op reducer(m_reducer);
- internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
- return need_assign;
- }
- else if(RunningOnSycl){
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
- if (!data) {
- data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
- m_result = data;
- }
- Op reducer(m_reducer);
- internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
- return (m_result != NULL);
- }
-
- // Attempt to use an optimized reduction.
- else if (RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) {
- bool reducing_inner_dims = true;
- for (int i = 0; i < NumReducedDims; ++i) {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- reducing_inner_dims &= m_reduced[i];
- } else {
- reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
- }
- }
- if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
- (reducing_inner_dims || ReducingInnerMostDims)) {
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
- if (!data) {
- if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) {
- data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
- m_result = data;
- }
- else {
- return true;
- }
- }
- Op reducer(m_reducer);
- if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
- if (m_result) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- return true;
- } else {
- return (m_result != NULL);
- }
- }
-
- bool preserving_inner_dims = true;
- for (int i = 0; i < NumReducedDims; ++i) {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
- } else {
- preserving_inner_dims &= m_reduced[i];
- }
- }
- if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
- preserving_inner_dims) {
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
- const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
- if (!data) {
- if (num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) {
- data = static_cast<CoeffReturnType*>(m_device.allocate(sizeof(CoeffReturnType) * num_coeffs_to_preserve));
- m_result = data;
- }
- else {
- return true;
- }
- }
- Op reducer(m_reducer);
- if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
- if (m_result) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- return true;
- } else {
- return (m_result != NULL);
- }
- }
- }
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- if (m_result) {
- m_device.deallocate(m_result);
- m_result = NULL;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- if ((RunningOnSycl || RunningFullReduction || RunningOnGPU) && m_result) {
- return *(m_result + index);
- }
- Op reducer(m_reducer);
- if (ReducingInnerMostDims || RunningFullReduction) {
- const Index num_values_to_reduce =
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
- return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
- num_values_to_reduce, reducer);
- } else {
- typename Self::CoeffReturnType accum = reducer.initialize();
- internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
- return reducer.finalize(accum);
- }
- }
-
- // TODO(bsteiner): provide a more efficient implementation.
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
-
- if (RunningOnGPU && m_result) {
- return internal::pload<PacketReturnType>(m_result + index);
- }
-
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- if (ReducingInnerMostDims) {
- const Index num_values_to_reduce =
- (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
- const Index firstIndex = firstInput(index);
- for (Index i = 0; i < PacketSize; ++i) {
- Op reducer(m_reducer);
- values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
- num_values_to_reduce, reducer);
- }
- } else if (PreservingInnerMostDims) {
- const Index firstIndex = firstInput(index);
- const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
- // TBD: extend this the the n innermost dimensions that we preserve.
- if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
- Op reducer(m_reducer);
- typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
- internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
- return reducer.finalizePacket(accum);
- } else {
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index + i);
- }
- }
- } else {
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index + i);
- }
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- // Must be called after evalSubExprsIfNeeded().
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- if (RunningFullReduction && m_result) {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
- } else {
- const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
- const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
- return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
- }
-
- EIGEN_DEVICE_FUNC typename MakePointer_<Scalar>::Type data() const { return m_result; }
- /// required by sycl in order to extract the accessor
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
- /// added for sycl in order to construct the buffer from the sycl device
- const Device& device() const{return m_device;}
- /// added for sycl in order to re-construct the reduction eval on the device for the sub-kernel
- const Dims& xprDims() const {return m_xpr_dims;}
-
-
- private:
- template <int, typename, typename> friend struct internal::GenericDimReducer;
- template <typename, typename, bool> friend struct internal::InnerMostDimReducer;
- template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
- template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
-#ifdef EIGEN_USE_THREADS
- template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
-#endif
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
- template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*, unsigned int*);
-#ifdef EIGEN_HAS_CUDA_FP16
- template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
- template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
- template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
-#endif
- template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
-
- template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
-#endif
-
- template <typename S, typename O, typename D> friend struct internal::InnerReducer;
-
- // Returns the Index in the input tensor of the first value that needs to be
- // used to compute the reduction at output index "index".
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
- if (ReducingInnerMostDims) {
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- return index * m_preservedStrides[0];
- } else {
- return index * m_preservedStrides[NumPreservedStrides - 1];
- }
- }
- // TBD: optimize the case where we preserve the innermost dimensions.
- Index startInput = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumOutputDims - 1; i > 0; --i) {
- // This is index_i in the output tensor.
- const Index idx = index / m_outputStrides[i];
- startInput += idx * m_preservedStrides[i];
- index -= idx * m_outputStrides[i];
- }
- if (PreservingInnerMostDims) {
- eigen_assert(m_preservedStrides[0] == 1);
- startInput += index;
- } else {
- startInput += index * m_preservedStrides[0];
- }
- } else {
- for (int i = 0; i < NumOutputDims - 1; ++i) {
- // This is index_i in the output tensor.
- const Index idx = index / m_outputStrides[i];
- startInput += idx * m_preservedStrides[i];
- index -= idx * m_outputStrides[i];
- }
- if (PreservingInnerMostDims) {
- eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
- startInput += index;
- } else {
- startInput += index * m_preservedStrides[NumPreservedStrides - 1];
- }
- }
- return startInput;
- }
-
- // Bitmap indicating if an input dimension is reduced or not.
- array<bool, NumInputDims> m_reduced;
- // Dimensions of the output of the operation.
- Dimensions m_dimensions;
- // Precomputed strides for the output tensor.
- array<Index, NumOutputDims> m_outputStrides;
- // Subset of strides of the input tensor for the non-reduced dimensions.
- // Indexed by output dimensions.
- static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
- array<Index, NumPreservedStrides> m_preservedStrides;
-
- // Subset of strides of the input tensor for the reduced dimensions.
- // Indexed by reduced dimensions.
- array<Index, NumReducedDims> m_reducedStrides;
- // Size of the input dimensions that are reduced.
- // Indexed by reduced dimensions.
- array<Index, NumReducedDims> m_reducedDims;
-
- // Evaluator for the input expression.
- TensorEvaluator<ArgType, Device> m_impl;
-
- // Operation to apply for computing the reduction.
- Op m_reducer;
-
- // For full reductions
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
- static const bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
- static const bool RunningOnSycl = false;
-#elif defined(EIGEN_USE_SYCL)
-static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
-static const bool RunningOnGPU = false;
-#else
- static const bool RunningOnGPU = false;
- static const bool RunningOnSycl = false;
-#endif
- typename MakePointer_<CoeffReturnType>::Type m_result;
-
- const Device& m_device;
- const Dims& m_xpr_dims;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
deleted file mode 100644
index 65638b6..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
+++ /dev/null
@@ -1,750 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
-#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
-
-namespace Eigen {
-namespace internal {
-
-
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
-// Full reducers for GPU, don't vectorize for now
-
-// Reducer function that enables multiple cuda thread to safely accumulate at the same
-// output address. It basically reads the current value of the output variable, and
-// attempts to update it with the new value. If in the meantime another cuda thread
-// updated the content of the output address it will try again.
-template <typename T, typename R>
-__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
-#if __CUDA_ARCH__ >= 300
- if (sizeof(T) == 4)
- {
- unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
- unsigned int newval = oldval;
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
- if (newval == oldval) {
- return;
- }
- unsigned int readback;
- while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
- oldval = readback;
- newval = oldval;
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
- if (newval == oldval) {
- return;
- }
- }
- }
- else if (sizeof(T) == 8) {
- unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
- unsigned long long newval = oldval;
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
- if (newval == oldval) {
- return;
- }
- unsigned long long readback;
- while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
- oldval = readback;
- newval = oldval;
- reducer.reduce(accum, reinterpret_cast<T*>(&newval));
- if (newval == oldval) {
- return;
- }
- }
- }
- else {
- assert(0 && "Wordsize not supported");
- }
-#else
- assert(0 && "Shouldn't be called on unsupported device");
-#endif
-}
-
-// We extend atomicExch to support extra data types
-template <typename Type>
-__device__ inline Type atomicExchCustom(Type* address, Type val) {
- return atomicExch(address, val);
-}
-
-template <>
-__device__ inline double atomicExchCustom(double* address, double val) {
- unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address);
- return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
-}
-
-#ifdef EIGEN_HAS_CUDA_FP16
-template <template <typename T> class R>
-__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
- unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
- unsigned int newval = oldval;
- reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
- if (newval == oldval) {
- return;
- }
- unsigned int readback;
- while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
- oldval = readback;
- newval = oldval;
- reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
- if (newval == oldval) {
- return;
- }
- }
-}
-#endif
-
-template <>
-__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
-#if __CUDA_ARCH__ >= 300
- atomicAdd(output, accum);
-#else
- assert(0 && "Shouldn't be called on unsupported device");
-#endif
-}
-
-
-template <typename CoeffType, typename Index>
-__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
- const Index num_threads = blockDim.x * gridDim.x;
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
- output[i] = val;
- }
-}
-
-
-template <int BlockSize, int NumPerThread, typename Self,
- typename Reducer, typename Index>
-__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
- typename Self::CoeffReturnType* output, unsigned int* semaphore) {
-#if __CUDA_ARCH__ >= 300
- // Initialize the output value
- const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
- if (gridDim.x == 1) {
- if (first_index == 0) {
- *output = reducer.initialize();
- }
- }
- else {
- if (threadIdx.x == 0) {
- unsigned int block = atomicCAS(semaphore, 0u, 1u);
- if (block == 0) {
- // We're the first block to run, initialize the output value
- atomicExchCustom(output, reducer.initialize());
- __threadfence();
- atomicExch(semaphore, 2u);
- }
- else {
- // Wait for the first block to initialize the output value.
- // Use atomicCAS here to ensure that the reads aren't cached
- unsigned int val;
- do {
- val = atomicCAS(semaphore, 2u, 2u);
- }
- while (val < 2u);
- }
- }
- }
-
- __syncthreads();
-
- eigen_assert(gridDim.x == 1 || *semaphore >= 2u);
-
- typename Self::CoeffReturnType accum = reducer.initialize();
- Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
- for (Index i = 0; i < max_iter; i+=BlockSize) {
- const Index index = first_index + i;
- eigen_assert(index < num_coeffs);
- typename Self::CoeffReturnType val = input.m_impl.coeff(index);
- reducer.reduce(val, &accum);
- }
-
-#pragma unroll
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
- reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
- }
-
- if ((threadIdx.x & (warpSize - 1)) == 0) {
- atomicReduce(output, accum, reducer);
- }
-
- if (gridDim.x > 1 && threadIdx.x == 0) {
- // Let the last block reset the semaphore
- atomicInc(semaphore, gridDim.x + 1);
- }
-#else
- assert(0 && "Shouldn't be called on unsupported device");
-#endif
-}
-
-
-#ifdef EIGEN_HAS_CUDA_FP16
-template <typename Self,
- typename Reducer, typename Index>
-__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
- eigen_assert(blockDim.x == 1);
- eigen_assert(gridDim.x == 1);
- if (num_coeffs % 2 != 0) {
- half last = input.m_impl.coeff(num_coeffs-1);
- *scratch = __halves2half2(last, reducer.initialize());
- } else {
- *scratch = reducer.template initializePacket<half2>();
- }
-}
-
-template <typename Self,
- typename Reducer, typename Index>
-__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
- const Index num_threads = blockDim.x * gridDim.x;
- const Index num_packets = num_coeffs / 2;
- for (Index i = thread_id; i < num_packets; i += num_threads) {
- ((half2*)output)[i] = reducer.template initializePacket<half2>();
- }
-
- if (thread_id == 0 && num_coeffs % 2 != 0) {
- output[num_coeffs-1] = reducer.initialize();
- }
-}
-
-template <int BlockSize, int NumPerThread, typename Self,
- typename Reducer, typename Index>
-__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
- half* output, half2* scratch) {
- eigen_assert(NumPerThread % 2 == 0);
-
- const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x;
-
- // Initialize the output value if it wasn't initialized by the ReductionInitKernel
- if (gridDim.x == 1 && first_index == 0) {
- if (num_coeffs % 2 != 0) {
- half last = input.m_impl.coeff(num_coeffs-1);
- *scratch = __halves2half2(last, reducer.initialize());
- } else {
- *scratch = reducer.template initializePacket<half2>();
- }
- __syncthreads();
- }
-
- half2 accum = reducer.template initializePacket<half2>();
- const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
- for (Index i = 0; i < max_iter; i += BlockSize) {
- const Index index = first_index + 2*i;
- eigen_assert(index + 1 < num_coeffs);
- half2 val = input.m_impl.template packet<Unaligned>(index);
- reducer.reducePacket(val, &accum);
- }
-
-#pragma unroll
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
- reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum);
- }
-
- if ((threadIdx.x & (warpSize - 1)) == 0) {
- atomicReduce(scratch, accum, reducer);
- }
-
- __syncthreads();
-
- if (gridDim.x == 1 && first_index == 0) {
- half tmp = __low2half(*scratch);
- reducer.reduce(__high2half(*scratch), &tmp);
- *output = tmp;
- }
-}
-
-template <typename Op>
-__global__ void ReductionCleanupKernelHalfFloat(Op& reducer, half* output, half2* scratch) {
- eigen_assert(threadIdx.x == 1);
- half tmp = __low2half(*scratch);
- reducer.reduce(__high2half(*scratch), &tmp);
- *output = tmp;
-}
-
-#endif
-
-template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
-struct FullReductionLauncher {
- static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
- assert(false && "Should only be called on doubles, floats and half floats");
- }
-};
-
-// Specialization for float and double
-template <typename Self, typename Op, typename OutputType, bool PacketAccess>
-struct FullReductionLauncher<
- Self, Op, OutputType, PacketAccess,
- typename internal::enable_if<
- internal::is_same<float, OutputType>::value ||
- internal::is_same<double, OutputType>::value,
- void>::type> {
- static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {
- typedef typename Self::Index Index;
- typedef typename Self::CoeffReturnType Scalar;
- const int block_size = 256;
- const int num_per_thread = 128;
- const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
-
- unsigned int* semaphore = NULL;
- if (num_blocks > 1) {
- semaphore = device.semaphore();
- }
-
- LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
- num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
- }
-};
-
-#ifdef EIGEN_HAS_CUDA_FP16
-template <typename Self, typename Op>
-struct FullReductionLauncher<Self, Op, Eigen::half, false> {
- static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
- assert(false && "Should not be called since there is no packet accessor");
- }
-};
-
-template <typename Self, typename Op>
-struct FullReductionLauncher<Self, Op, Eigen::half, true> {
- static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) {
- typedef typename Self::Index Index;
-
- const int block_size = 256;
- const int num_per_thread = 128;
- const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
- half2* scratch = static_cast<half2*>(device.scratchpad());
-
- if (num_blocks > 1) {
- // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
- // won't be a race conditions between multiple thread blocks.
- LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
- 1, 1, 0, device, reducer, self, num_coeffs, scratch);
- }
-
- LAUNCH_CUDA_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
- num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);
-
- if (num_blocks > 1) {
- LAUNCH_CUDA_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
- 1, 1, 0, device, reducer, output, scratch);
- }
- }
-};
-#endif
-
-
-template <typename Self, typename Op, bool Vectorizable>
-struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
- // Unfortunately nvidia doesn't support well exotic types such as complex,
- // so reduce the scope of the optimized version of the code to the simple cases
- // of doubles, floats and half floats
-#ifdef EIGEN_HAS_CUDA_FP16
- static const bool HasOptimizedImplementation = !Op::IsStateful &&
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
- internal::is_same<typename Self::CoeffReturnType, double>::value ||
- (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
-#else
- static const bool HasOptimizedImplementation = !Op::IsStateful &&
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
- internal::is_same<typename Self::CoeffReturnType, double>::value);
-#endif
-
- template <typename OutputType>
- static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
- assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
- // Don't crash when we're called with an input tensor of size 0.
- if (num_coeffs == 0) {
- return;
- }
-
- FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
- }
-};
-
-
-template <int NumPerThread, typename Self,
- typename Reducer, typename Index>
-__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
- typename Self::CoeffReturnType* output) {
-#if __CUDA_ARCH__ >= 300
- typedef typename Self::CoeffReturnType Type;
- eigen_assert(blockDim.y == 1);
- eigen_assert(blockDim.z == 1);
- eigen_assert(gridDim.y == 1);
- eigen_assert(gridDim.z == 1);
-
- const int unroll_times = 16;
- eigen_assert(NumPerThread % unroll_times == 0);
-
- const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
- const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
-
- const Index num_threads = blockDim.x * gridDim.x;
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
-
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
- if (gridDim.x == 1) {
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
- output[i] = reducer.initialize();
- }
- __syncthreads();
- }
-
- for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
- const Index row = i / input_col_blocks;
-
- if (row < num_preserved_coeffs) {
- const Index col_block = i % input_col_blocks;
- const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
-
- Type reduced_val = reducer.initialize();
-
- for (Index j = 0; j < NumPerThread; j += unroll_times) {
- const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
- if (last_col >= num_coeffs_to_reduce) {
- for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
- const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
- reducer.reduce(val, &reduced_val);
- }
- break;
- } else {
- // Faster version of the loop with no branches after unrolling.
-#pragma unroll
- for (int k = 0; k < unroll_times; ++k) {
- const Index col = col_begin + blockDim.x * (j + k);
- reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
- }
- }
- }
-
-#pragma unroll
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
- reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
- }
-
- if ((threadIdx.x & (warpSize - 1)) == 0) {
- atomicReduce(&(output[row]), reduced_val, reducer);
- }
- }
- }
-#else
- assert(0 && "Shouldn't be called on unsupported device");
-#endif
-}
-
-#ifdef EIGEN_HAS_CUDA_FP16
-
-template <int NumPerThread, typename Self,
- typename Reducer, typename Index>
-__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
- half* output) {
- eigen_assert(blockDim.y == 1);
- eigen_assert(blockDim.z == 1);
- eigen_assert(gridDim.y == 1);
- eigen_assert(gridDim.z == 1);
-
- const int unroll_times = 16;
- eigen_assert(NumPerThread % unroll_times == 0);
- eigen_assert(unroll_times % 2 == 0);
-
- const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
- const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
-
- const Index num_threads = blockDim.x * gridDim.x;
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
-
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
- if (gridDim.x == 1) {
- Index i = 2*thread_id;
- for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) {
- half* loc = output + i;
- *((half2*)loc) = reducer.template initializePacket<half2>();
- }
- if (i < num_preserved_coeffs) {
- output[i] = reducer.initialize();
- }
- __syncthreads();
- }
-
- for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
- const Index row = 2 * (i / input_col_blocks);
-
- if (row + 1 < num_preserved_coeffs) {
- const Index col_block = i % input_col_blocks;
- const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x);
-
- half2 reduced_val1 = reducer.template initializePacket<half2>();
- half2 reduced_val2 = reducer.template initializePacket<half2>();
-
- for (Index j = 0; j < NumPerThread; j += unroll_times) {
- const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2;
- if (last_col >= num_coeffs_to_reduce) {
- Index col = col_begin + blockDim.x * j;
- for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
- const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col);
- reducer.reducePacket(val1, &reduced_val1);
- const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col);
- reducer.reducePacket(val2, &reduced_val2);
- }
- if (col < num_coeffs_to_reduce) {
- // Peel;
- const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
- const half2 val1 = __halves2half2(last1, reducer.initialize());
- reducer.reducePacket(val1, &reduced_val1);
- const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col);
- const half2 val2 = __halves2half2(last2, reducer.initialize());
- reducer.reducePacket(val2, &reduced_val2);
- }
- break;
- } else {
- // Faster version of the loop with no branches after unrolling.
-#pragma unroll
- for (int k = 0; k < unroll_times; ++k) {
- const Index col = col_begin + blockDim.x * (j + k) * 2;
- reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1);
- reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2);
- }
- }
- }
-
-#pragma unroll
- for (int offset = warpSize/2; offset > 0; offset /= 2) {
- reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
- reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
- }
-
- half val1 = __low2half(reduced_val1);
- reducer.reduce(__high2half(reduced_val1), &val1);
- half val2 = __low2half(reduced_val2);
- reducer.reduce(__high2half(reduced_val2), &val2);
- half2 val = __halves2half2(val1, val2);
-
- if ((threadIdx.x & (warpSize - 1)) == 0) {
- half* loc = output + row;
- atomicReduce((half2*)loc, val, reducer);
- }
- }
- }
-}
-
-#endif
-
-template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
-struct InnerReductionLauncher {
- static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
- assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
- return true;
- }
-};
-
-// Specialization for float and double
-template <typename Self, typename Op, typename OutputType, bool PacketAccess>
-struct InnerReductionLauncher<
- Self, Op, OutputType, PacketAccess,
- typename internal::enable_if<
- internal::is_same<float, OutputType>::value ||
- internal::is_same<double, OutputType>::value,
- void>::type> {
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
- typedef typename Self::Index Index;
-
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
- const int block_size = 256;
- const int num_per_thread = 128;
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / block_size;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
-
- if (num_blocks > 1) {
- // We initialize the outputs outside the reduction kernel when we can't be sure that there
- // won't be a race conditions between multiple thread blocks.
- const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / 1024;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
- LAUNCH_CUDA_KERNEL((ReductionInitKernel<OutputType, Index>),
- num_blocks, 1024, 0, device, reducer.initialize(),
- num_preserved_vals, output);
- }
-
- LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
-
- return false;
- }
-};
-
-#ifdef EIGEN_HAS_CUDA_FP16
-template <typename Self, typename Op>
-struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
- static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
- assert(false && "Should not be called since there is no packet accessor");
- return true;
- }
-};
-
-template <typename Self, typename Op>
-struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
- typedef typename Self::Index Index;
-
- if (num_preserved_vals % 2 != 0) {
- // Not supported yet, revert to the slower code path
- return true;
- }
-
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
- const int block_size = /*256*/128;
- const int num_per_thread = /*128*/64;
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / block_size;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
-
- if (num_blocks > 1) {
- // We initialize the outputs outside the reduction kernel when we can't be sure that there
- // won't be a race conditions between multiple thread blocks.
- const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / 1024;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
- LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
- 1, 1, 0, device, reducer, self, num_preserved_vals, output);
- }
-
- LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
-
- return false;
- }
-};
-#endif
-
-
-template <typename Self, typename Op>
-struct InnerReducer<Self, Op, GpuDevice> {
- // Unfortunately nvidia doesn't support well exotic types such as complex,
- // so reduce the scope of the optimized version of the code to the simple case
- // of floats and half floats.
-#ifdef EIGEN_HAS_CUDA_FP16
- static const bool HasOptimizedImplementation = !Op::IsStateful &&
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
- internal::is_same<typename Self::CoeffReturnType, double>::value ||
- (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
-#else
- static const bool HasOptimizedImplementation = !Op::IsStateful &&
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
- internal::is_same<typename Self::CoeffReturnType, double>::value);
-#endif
-
- template <typename OutputType>
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
- assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
- const Index num_coeffs = array_prod(self.m_impl.dimensions());
- // Don't crash when we're called with an input tensor of size 0.
- if (num_coeffs == 0) {
- return true;
- }
- // It's faster to use the usual code.
- if (num_coeffs_to_reduce <= 128) {
- return true;
- }
-
- return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
- }
-};
-
-template <int NumPerThread, typename Self,
- typename Reducer, typename Index>
-__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
- typename Self::CoeffReturnType* output) {
- const Index num_threads = blockDim.x * gridDim.x;
- const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
- // Initialize the output values if they weren't initialized by the ReductionInitKernel
- if (gridDim.x == 1) {
- for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
- output[i] = reducer.initialize();
- }
- __syncthreads();
- }
-
- // Do the reduction.
- const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
- for (Index i = thread_id; i < max_iter; i += num_threads) {
- const Index input_col = i % num_preserved_coeffs;
- const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
- typename Self::CoeffReturnType reduced_val = reducer.initialize();
- const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
- for (Index j = input_row; j < max_row; j++) {
- typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
- reducer.reduce(val, &reduced_val);
- }
- atomicReduce(&(output[input_col]), reduced_val, reducer);
- }
-}
-
-
-template <typename Self, typename Op>
-struct OuterReducer<Self, Op, GpuDevice> {
- // Unfortunately nvidia doesn't support well exotic types such as complex,
- // so reduce the scope of the optimized version of the code to the simple case
- // of floats.
- static const bool HasOptimizedImplementation = !Op::IsStateful &&
- (internal::is_same<typename Self::CoeffReturnType, float>::value ||
- internal::is_same<typename Self::CoeffReturnType, double>::value);
- template <typename Device, typename OutputType>
- static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
- assert(false && "Should only be called to reduce doubles or floats on a gpu device");
- return true;
- }
-
- static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
- typedef typename Self::Index Index;
-
- // It's faster to use the usual code.
- if (num_coeffs_to_reduce <= 32) {
- return true;
- }
-
- const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
- const int block_size = 256;
- const int num_per_thread = 16;
- const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / block_size;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
-
- if (num_blocks > 1) {
- // We initialize the outputs in the reduction kernel itself when we don't have to worry
- // about race conditions between multiple thread blocks.
- const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
- const int max_blocks = device.getNumCudaMultiProcessors() *
- device.maxCudaThreadsPerMultiProcessor() / 1024;
- const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
- LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
- num_blocks, 1024, 0, device, reducer.initialize(),
- num_preserved_vals, output);
- }
-
- LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
- num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
-
- return false;
- }
-};
-
-#endif
-
-
-} // end namespace internal
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h
deleted file mode 100644
index 3daecb0..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h
+++ /dev/null
@@ -1,242 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclPlaceHolderExpr.h
- *
- * \brief:
- * This is the specialisation of the placeholder expression based on the
- * operation type
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
-
-namespace Eigen {
-namespace internal {
-
-template<typename CoeffReturnType, typename KernelName> struct syclGenericBufferReducer{
-template<typename BufferTOut, typename BufferTIn>
-static void run(BufferTOut* bufOut, BufferTIn& bufI, const Eigen::SyclDevice& dev, size_t length, size_t local){
- do {
- auto f = [length, local, bufOut, &bufI](cl::sycl::handler& h) mutable {
- cl::sycl::nd_range<1> r{cl::sycl::range<1>{std::max(length, local)},
- cl::sycl::range<1>{std::min(length, local)}};
- /* Two accessors are used: one to the buffer that is being reduced,
- * and a second to local memory, used to store intermediate data. */
- auto aI =
- bufI.template get_access<cl::sycl::access::mode::read_write>(h);
- auto aOut =
- bufOut->template get_access<cl::sycl::access::mode::discard_write>(h);
- cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write,
- cl::sycl::access::target::local>
- scratch(cl::sycl::range<1>(local), h);
-
- /* The parallel_for invocation chosen is the variant with an nd_item
- * parameter, since the code requires barriers for correctness. */
- h.parallel_for<KernelName>(
- r, [aOut, aI, scratch, local, length](cl::sycl::nd_item<1> id) {
- size_t globalid = id.get_global(0);
- size_t localid = id.get_local(0);
- /* All threads collectively read from global memory into local.
- * The barrier ensures all threads' IO is resolved before
- * execution continues (strictly speaking, all threads within
- * a single work-group - there is no co-ordination between
- * work-groups, only work-items). */
- if (globalid < length) {
- scratch[localid] = aI[globalid];
- }
- id.barrier(cl::sycl::access::fence_space::local_space);
-
- /* Apply the reduction operation between the current local
- * id and the one on the other half of the vector. */
- if (globalid < length) {
- int min = (length < local) ? length : local;
- for (size_t offset = min / 2; offset > 0; offset /= 2) {
- if (localid < offset) {
- scratch[localid] += scratch[localid + offset];
- }
- id.barrier(cl::sycl::access::fence_space::local_space);
- }
- /* The final result will be stored in local id 0. */
- if (localid == 0) {
- aI[id.get_group(0)] = scratch[localid];
- if((length<=local) && globalid ==0){
- aOut[globalid]=scratch[localid];
- }
- }
- }
- });
- };
- dev.m_queue.submit(f);
- dev.m_queue.throw_asynchronous();
-
- /* At this point, you could queue::wait_and_throw() to ensure that
- * errors are caught quickly. However, this would likely impact
- * performance negatively. */
- length = length / local;
-
- } while (length > 1);
-
-
-
-}
-
-};
-
-/// For now let's start with a full reducer
-/// Self is useless here because in expression construction we are going to treat reduction as a leafnode.
-/// we want to take reduction child and then build a construction and apply the full reducer function on it. Fullreducre applies the
-/// reduction operation on the child of the reduction. once it is done the reduction is an empty shell and can be thrown away and treated as
-// a leafNode.
-template <typename Self, typename Op, bool Vectorizable>
-struct FullReducer<Self, Op, const Eigen::SyclDevice, Vectorizable> {
-
- typedef typename Self::CoeffReturnType CoeffReturnType;
- static const bool HasOptimizedImplementation = false;
-
- static void run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output) {
- typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
- typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
- auto functors = TensorSycl::internal::extractFunctors(self.impl());
- int red_factor =256; /// initial reduction. If the size is less than red_factor we only creates one thread.
- size_t inputSize =self.impl().dimensions().TotalSize();
- size_t rng = inputSize/red_factor; // the total number of thread initially is half the size of the input
- size_t remaining = inputSize% red_factor;
- if(rng ==0) {
- red_factor=1;
- };
- size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
- size_t GRange=std::max((size_t )1, rng);
-
- // convert global range to power of 2 for redecution
- GRange--;
- GRange |= GRange >> 1;
- GRange |= GRange >> 2;
- GRange |= GRange >> 4;
- GRange |= GRange >> 8;
- GRange |= GRange >> 16;
-#if __x86_64__ || __ppc64__ || _WIN64
- GRange |= GRange >> 32;
-#endif
- GRange++;
- size_t outTileSize = tileSize;
- /// if the shared memory is less than the GRange, we set shared_mem size to the TotalSize and in this case one kernel would be created for recursion to reduce all to one.
- if (GRange < outTileSize) outTileSize=GRange;
- // getting final out buffer at the moment the created buffer is true because there is no need for assign
- auto out_buffer =dev.template get_sycl_buffer<typename Eigen::internal::remove_all<CoeffReturnType>::type>(self.dimensions().TotalSize(), output);
- /// creating the shared memory for calculating reduction.
- /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
- /// recursively apply reduction on it in order to reduce the whole.
- auto temp_global_buffer =cl::sycl::buffer<CoeffReturnType, 1>(cl::sycl::range<1>(GRange));
- typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
- Dims dims= self.xprDims();
- Op functor = reducer;
- dev.m_queue.submit([&](cl::sycl::handler &cgh) {
- // create a tuple of accessors from Evaluator
- auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
- auto tmp_global_accessor = temp_global_buffer. template get_access<cl::sycl::access::mode::read_write, cl::sycl::access::target::global_buffer>(cgh);
-
- cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(outTileSize)), [=](cl::sycl::nd_item<1> itemID) {
- typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr;
- auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
- /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour
- /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the
- /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here.
- const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
- /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
- /// the device_evaluator is detectable and recognisable on the device.
- auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
- /// const cast added as a naive solution to solve the qualifier drop error
- auto globalid=itemID.get_global_linear_id();
-
- if(globalid<rng)
- tmp_global_accessor.get_pointer()[globalid]=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*globalid, red_factor, const_cast<Op&>(functor));
- else
- tmp_global_accessor.get_pointer()[globalid]=static_cast<CoeffReturnType>(0);
-
- if(remaining!=0 && globalid==0 )
- // this will add the rest of input buffer when the input size is not devidable to red_factor.
- tmp_global_accessor.get_pointer()[globalid]+=InnerMostDimReducer<decltype(device_self_evaluator), Op, false>::reduce(device_self_evaluator, red_factor*(rng), remaining, const_cast<Op&>(functor));
- });
- });
- dev.m_queue.throw_asynchronous();
-
-/// This is used to recursively reduce the tmp value to an element of 1;
- syclGenericBufferReducer<CoeffReturnType,HostExpr>::run(out_buffer, temp_global_buffer,dev, GRange, outTileSize);
- }
-
-};
-
-template <typename Self, typename Op>
-struct InnerReducer<Self, Op, const Eigen::SyclDevice> {
-
- typedef typename Self::CoeffReturnType CoeffReturnType;
- static const bool HasOptimizedImplementation = false;
-
- static bool run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output, typename Self::Index , typename Self::Index num_coeffs_to_preserve) {
- typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
- typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
- auto functors = TensorSycl::internal::extractFunctors(self.impl());
-
- size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
-
- size_t GRange=num_coeffs_to_preserve;
- if (tileSize>GRange) tileSize=GRange;
- else if(GRange>tileSize){
- size_t xMode = GRange % tileSize;
- if (xMode != 0) GRange += (tileSize - xMode);
- }
- // getting final out buffer at the moment the created buffer is true because there is no need for assign
- /// creating the shared memory for calculating reduction.
- /// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
- /// recursively apply reduction on it in order to reduce the whole.
- typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
- Dims dims= self.xprDims();
- Op functor = reducer;
-
- dev.m_queue.submit([&](cl::sycl::handler &cgh) {
- // create a tuple of accessors from Evaluator
- auto tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
- auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::discard_write>(num_coeffs_to_preserve,cgh, output);
-
- cgh.parallel_for<Self>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
- typedef typename TensorSycl::internal::ConvertToDeviceExpression<const HostExpr>::Type DevExpr;
- auto device_expr = TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
- /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour
- /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the
- /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here.
- const auto device_self_expr= TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
- /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
- /// the device_evaluator is detectable and recognisable on the device.
- typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice> DeiceSelf;
- auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
- /// const cast added as a naive solution to solve the qualifier drop error
- auto globalid=itemID.get_global_linear_id();
- if (globalid< static_cast<size_t>(num_coeffs_to_preserve)) {
- typename DeiceSelf::CoeffReturnType accum = functor.initialize();
- GenericDimReducer<DeiceSelf::NumReducedDims-1, DeiceSelf, Op>::reduce(device_self_evaluator, device_self_evaluator.firstInput(globalid),const_cast<Op&>(functor), &accum);
- functor.finalize(accum);
- output_accessor.get_pointer()[globalid]= accum;
- }
- });
- });
- dev.m_queue.throw_asynchronous();
- return false;
- }
-};
-
-} // end namespace internal
-} // namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h
deleted file mode 100644
index 99245f7..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h
+++ /dev/null
@@ -1,429 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_REF_H
-#define EIGEN_CXX11_TENSOR_TENSOR_REF_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Dimensions, typename Scalar>
-class TensorLazyBaseEvaluator {
- public:
- TensorLazyBaseEvaluator() : m_refcount(0) { }
- virtual ~TensorLazyBaseEvaluator() { }
-
- EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const = 0;
- EIGEN_DEVICE_FUNC virtual const Scalar* data() const = 0;
-
- EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const = 0;
- EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) = 0;
-
- void incrRefCount() { ++m_refcount; }
- void decrRefCount() { --m_refcount; }
- int refCount() const { return m_refcount; }
-
- private:
- // No copy, no assigment;
- TensorLazyBaseEvaluator(const TensorLazyBaseEvaluator& other);
- TensorLazyBaseEvaluator& operator = (const TensorLazyBaseEvaluator& other);
-
- int m_refcount;
-};
-
-
-template <typename Dimensions, typename Expr, typename Device>
-class TensorLazyEvaluatorReadOnly : public TensorLazyBaseEvaluator<Dimensions, typename TensorEvaluator<Expr, Device>::Scalar> {
- public:
- // typedef typename TensorEvaluator<Expr, Device>::Dimensions Dimensions;
- typedef typename TensorEvaluator<Expr, Device>::Scalar Scalar;
-
- TensorLazyEvaluatorReadOnly(const Expr& expr, const Device& device) : m_impl(expr, device), m_dummy(Scalar(0)) {
- m_dims = m_impl.dimensions();
- m_impl.evalSubExprsIfNeeded(NULL);
- }
- virtual ~TensorLazyEvaluatorReadOnly() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC virtual const Dimensions& dimensions() const {
- return m_dims;
- }
- EIGEN_DEVICE_FUNC virtual const Scalar* data() const {
- return m_impl.data();
- }
-
- EIGEN_DEVICE_FUNC virtual const Scalar coeff(DenseIndex index) const {
- return m_impl.coeff(index);
- }
- EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex /*index*/) {
- eigen_assert(false && "can't reference the coefficient of a rvalue");
- return m_dummy;
- };
-
- protected:
- TensorEvaluator<Expr, Device> m_impl;
- Dimensions m_dims;
- Scalar m_dummy;
-};
-
-template <typename Dimensions, typename Expr, typename Device>
-class TensorLazyEvaluatorWritable : public TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> {
- public:
- typedef TensorLazyEvaluatorReadOnly<Dimensions, Expr, Device> Base;
- typedef typename Base::Scalar Scalar;
-
- TensorLazyEvaluatorWritable(const Expr& expr, const Device& device) : Base(expr, device) {
- }
- virtual ~TensorLazyEvaluatorWritable() {
- }
-
- EIGEN_DEVICE_FUNC virtual Scalar& coeffRef(DenseIndex index) {
- return this->m_impl.coeffRef(index);
- }
-};
-
-template <typename Dimensions, typename Expr, typename Device>
-class TensorLazyEvaluator : public internal::conditional<bool(internal::is_lvalue<Expr>::value),
- TensorLazyEvaluatorWritable<Dimensions, Expr, Device>,
- TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type {
- public:
- typedef typename internal::conditional<bool(internal::is_lvalue<Expr>::value),
- TensorLazyEvaluatorWritable<Dimensions, Expr, Device>,
- TensorLazyEvaluatorReadOnly<Dimensions, const Expr, Device> >::type Base;
- typedef typename Base::Scalar Scalar;
-
- TensorLazyEvaluator(const Expr& expr, const Device& device) : Base(expr, device) {
- }
- virtual ~TensorLazyEvaluator() {
- }
-};
-
-} // namespace internal
-
-
-/** \class TensorRef
- * \ingroup CXX11_Tensor_Module
- *
- * \brief A reference to a tensor expression
- * The expression will be evaluated lazily (as much as possible).
- *
- */
-template<typename PlainObjectType> class TensorRef : public TensorBase<TensorRef<PlainObjectType> >
-{
- public:
- typedef TensorRef<PlainObjectType> Self;
- typedef typename PlainObjectType::Base Base;
- typedef typename Eigen::internal::nested<Self>::type Nested;
- typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind;
- typedef typename internal::traits<PlainObjectType>::Index Index;
- typedef typename internal::traits<PlainObjectType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Base::CoeffReturnType CoeffReturnType;
- typedef Scalar* PointerType;
- typedef PointerType PointerArgType;
-
- static const Index NumIndices = PlainObjectType::NumIndices;
- typedef typename PlainObjectType::Dimensions Dimensions;
-
- enum {
- IsAligned = false,
- PacketAccess = false,
- Layout = PlainObjectType::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_STRONG_INLINE TensorRef() : m_evaluator(NULL) {
- }
-
- template <typename Expression>
- EIGEN_STRONG_INLINE TensorRef(const Expression& expr) : m_evaluator(new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice())) {
- m_evaluator->incrRefCount();
- }
-
- template <typename Expression>
- EIGEN_STRONG_INLINE TensorRef& operator = (const Expression& expr) {
- unrefEvaluator();
- m_evaluator = new internal::TensorLazyEvaluator<Dimensions, Expression, DefaultDevice>(expr, DefaultDevice());
- m_evaluator->incrRefCount();
- return *this;
- }
-
- ~TensorRef() {
- unrefEvaluator();
- }
-
- TensorRef(const TensorRef& other) : m_evaluator(other.m_evaluator) {
- eigen_assert(m_evaluator->refCount() > 0);
- m_evaluator->incrRefCount();
- }
-
- TensorRef& operator = (const TensorRef& other) {
- if (this != &other) {
- unrefEvaluator();
- m_evaluator = other.m_evaluator;
- eigen_assert(m_evaluator->refCount() > 0);
- m_evaluator->incrRefCount();
- }
- return *this;
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index rank() const { return m_evaluator->dimensions().size(); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_evaluator->dimensions()[n]; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_evaluator->dimensions(); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Index size() const { return m_evaluator->dimensions().TotalSize(); }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar* data() const { return m_evaluator->data(); }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index index) const
- {
- return m_evaluator->coeff(index);
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index firstIndex, IndexTypes... otherIndices) const
- {
- const std::size_t num_indices = (sizeof...(otherIndices) + 1);
- const array<Index, num_indices> indices{{firstIndex, otherIndices...}};
- return coeff(indices);
- }
- template<typename... IndexTypes> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index firstIndex, IndexTypes... otherIndices)
- {
- const std::size_t num_indices = (sizeof...(otherIndices) + 1);
- const array<Index, num_indices> indices{{firstIndex, otherIndices...}};
- return coeffRef(indices);
- }
-#else
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1) const
- {
- array<Index, 2> indices;
- indices[0] = i0;
- indices[1] = i1;
- return coeff(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2) const
- {
- array<Index, 3> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- return coeff(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3) const
- {
- array<Index, 4> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- indices[3] = i3;
- return coeff(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
- {
- array<Index, 5> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- indices[3] = i3;
- indices[4] = i4;
- return coeff(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1)
- {
- array<Index, 2> indices;
- indices[0] = i0;
- indices[1] = i1;
- return coeffRef(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2)
- {
- array<Index, 3> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- return coeffRef(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
- {
- array<Index, 4> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- indices[3] = i3;
- return coeffRef(indices);
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index i0, Index i1, Index i2, Index i3, Index i4)
- {
- array<Index, 5> indices;
- indices[0] = i0;
- indices[1] = i1;
- indices[2] = i2;
- indices[3] = i3;
- indices[4] = i4;
- return coeffRef(indices);
- }
-#endif
-
- template <std::size_t NumIndices> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(const array<Index, NumIndices>& indices) const
- {
- const Dimensions& dims = this->dimensions();
- Index index = 0;
- if (PlainObjectType::Options & RowMajor) {
- index += indices[0];
- for (size_t i = 1; i < NumIndices; ++i) {
- index = index * dims[i] + indices[i];
- }
- } else {
- index += indices[NumIndices-1];
- for (int i = NumIndices-2; i >= 0; --i) {
- index = index * dims[i] + indices[i];
- }
- }
- return m_evaluator->coeff(index);
- }
- template <std::size_t NumIndices> EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
- {
- const Dimensions& dims = this->dimensions();
- Index index = 0;
- if (PlainObjectType::Options & RowMajor) {
- index += indices[0];
- for (size_t i = 1; i < NumIndices; ++i) {
- index = index * dims[i] + indices[i];
- }
- } else {
- index += indices[NumIndices-1];
- for (int i = NumIndices-2; i >= 0; --i) {
- index = index * dims[i] + indices[i];
- }
- }
- return m_evaluator->coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return m_evaluator->coeff(index);
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return m_evaluator->coeffRef(index);
- }
-
- private:
- EIGEN_STRONG_INLINE void unrefEvaluator() {
- if (m_evaluator) {
- m_evaluator->decrRefCount();
- if (m_evaluator->refCount() == 0) {
- delete m_evaluator;
- }
- }
- }
-
- internal::TensorLazyBaseEvaluator<Dimensions, Scalar>* m_evaluator;
-};
-
-
-// evaluator for rvalues
-template<typename Derived, typename Device>
-struct TensorEvaluator<const TensorRef<Derived>, Device>
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename Derived::Dimensions Dimensions;
-
- enum {
- IsAligned = false,
- PacketAccess = false,
- Layout = TensorRef<Derived>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const TensorRef<Derived>& m, const Device&)
- : m_ref(m)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_ref.dimensions(); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
- return m_ref.coeff(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
- return m_ref.coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return m_ref.data(); }
-
- protected:
- TensorRef<Derived> m_ref;
-};
-
-
-// evaluator for lvalues
-template<typename Derived, typename Device>
-struct TensorEvaluator<TensorRef<Derived>, Device> : public TensorEvaluator<const TensorRef<Derived>, Device>
-{
- typedef typename Derived::Index Index;
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Scalar CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef typename Derived::Dimensions Dimensions;
-
- typedef TensorEvaluator<const TensorRef<Derived>, Device> Base;
-
- enum {
- IsAligned = false,
- PacketAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(TensorRef<Derived>& m, const Device& d) : Base(m, d)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
- return this->m_ref.coeffRef(index);
- }
-};
-
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_REF_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
deleted file mode 100644
index 14e392e..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
+++ /dev/null
@@ -1,288 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
-// Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
-#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
-namespace Eigen {
-
-/** \class TensorReverse
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor reverse elements class.
- *
- */
-namespace internal {
-template<typename ReverseDimensions, typename XprType>
-struct traits<TensorReverseOp<ReverseDimensions,
- XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename ReverseDimensions, typename XprType>
-struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense>
-{
- typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
-};
-
-template<typename ReverseDimensions, typename XprType>
-struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
- typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type>
-{
- typedef TensorReverseOp<ReverseDimensions, XprType> type;
-};
-
-} // end namespace internal
-
-template<typename ReverseDimensions, typename XprType>
-class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions,
- XprType>, WriteAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind
- StorageKind;
- typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(
- const XprType& expr, const ReverseDimensions& reverse_dims)
- : m_xpr(expr), m_reverse_dims(reverse_dims) { }
-
- EIGEN_DEVICE_FUNC
- const ReverseDimensions& reverse() const { return m_reverse_dims; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorReverseOp& operator = (const TensorReverseOp& other)
- {
- typedef TensorAssignOp<TensorReverseOp, const TensorReverseOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorReverseOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorReverseOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const ReverseDimensions m_reverse_dims;
-};
-
-// Eval as rvalue
-template<typename ReverseDimensions, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device>
-{
- typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<ReverseDimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
- const Device& device)
- : m_impl(op.expression(), device), m_reverse(op.reverse())
- {
- // Reversing a scalar isn't supported yet. It would be a no-op anyway.
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- // Compute strides
- m_dimensions = m_impl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_strides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
- }
- } else {
- m_strides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex(
- Index index) const {
- eigen_assert(index < dimensions().TotalSize());
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- Index idx = index / m_strides[i];
- index -= idx * m_strides[i];
- if (m_reverse[i]) {
- idx = m_dimensions[i] - idx - 1;
- }
- inputIndex += idx * m_strides[i] ;
- }
- if (m_reverse[0]) {
- inputIndex += (m_dimensions[0] - index - 1);
- } else {
- inputIndex += index;
- }
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- Index idx = index / m_strides[i];
- index -= idx * m_strides[i];
- if (m_reverse[i]) {
- idx = m_dimensions[i] - idx - 1;
- }
- inputIndex += idx * m_strides[i] ;
- }
- if (m_reverse[NumDims-1]) {
- inputIndex += (m_dimensions[NumDims-1] - index - 1);
- } else {
- inputIndex += index;
- }
- }
- return inputIndex;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(
- Index index) const {
- return m_impl.coeff(reverseIndex(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- // TODO(ndjaitly): write a better packing routine that uses
- // local structure.
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type
- values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
- 2 * TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>());
- for (int i = 0; i < NumDims; ++i) {
- if (m_reverse[i]) {
- compute_cost += 2 * TensorOpCost::AddCost<Index>();
- }
- }
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- Dimensions m_dimensions;
- array<Index, NumDims> m_strides;
- TensorEvaluator<ArgType, Device> m_impl;
- ReverseDimensions m_reverse;
-};
-
-// Eval as lvalue
-
-template <typename ReverseDimensions, typename ArgType, typename Device>
-struct TensorEvaluator<TensorReverseOp<ReverseDimensions, ArgType>, Device>
- : public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
- Device> {
- typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>,
- Device> Base;
- typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<ReverseDimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
- const Device& device)
- : Base(op, device) {}
-
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Dimensions& dimensions() const { return this->m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) {
- return this->m_impl.coeffRef(this->reverseIndex(index));
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x) {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- // This code is pilfered from TensorMorphing.h
- EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- for (int i = 0; i < PacketSize; ++i) {
- this->coeffRef(index+i) = values[i];
- }
- }
-
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
deleted file mode 100644
index 8501466..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
+++ /dev/null
@@ -1,287 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
-#define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Op, typename XprType>
-struct traits<TensorScanOp<Op, XprType> >
- : public traits<XprType> {
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Op, typename XprType>
-struct eval<TensorScanOp<Op, XprType>, Eigen::Dense>
-{
- typedef const TensorScanOp<Op, XprType>& type;
-};
-
-template<typename Op, typename XprType>
-struct nested<TensorScanOp<Op, XprType>, 1,
- typename eval<TensorScanOp<Op, XprType> >::type>
-{
- typedef TensorScanOp<Op, XprType> type;
-};
-} // end namespace internal
-
-/** \class TensorScan
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor scan class.
- */
-template <typename Op, typename XprType>
-class TensorScanOp
- : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> {
-public:
- typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorScanOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorScanOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp(
- const XprType& expr, const Index& axis, bool exclusive = false, const Op& op = Op())
- : m_expr(expr), m_axis(axis), m_accumulator(op), m_exclusive(exclusive) {}
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Index axis() const { return m_axis; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const XprType& expression() const { return m_expr; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const Op accumulator() const { return m_accumulator; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- bool exclusive() const { return m_exclusive; }
-
-protected:
- typename XprType::Nested m_expr;
- const Index m_axis;
- const Op m_accumulator;
- const bool m_exclusive;
-};
-
-template <typename Self, typename Reducer, typename Device>
-struct ScanLauncher;
-
-// Eval as rvalue
-template <typename Op, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
-
- typedef TensorScanOp<Op, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self;
-
- enum {
- IsAligned = false,
- PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = true
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
- const Device& device)
- : m_impl(op.expression(), device),
- m_device(device),
- m_exclusive(op.exclusive()),
- m_accumulator(op.accumulator()),
- m_size(m_impl.dimensions()[op.axis()]),
- m_stride(1),
- m_output(NULL) {
-
- // Accumulating a scalar isn't supported.
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
- eigen_assert(op.axis() >= 0 && op.axis() < NumDims);
-
- // Compute stride of scan axis
- const Dimensions& dims = m_impl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = 0; i < op.axis(); ++i) {
- m_stride = m_stride * dims[i];
- }
- } else {
- for (int i = NumDims - 1; i > op.axis(); --i) {
- m_stride = m_stride * dims[i];
- }
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
- return m_impl.dimensions();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const {
- return m_stride;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const {
- return m_size;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const {
- return m_accumulator;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const {
- return m_exclusive;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const {
- return m_impl;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const {
- return m_device;
- }
-
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
- m_impl.evalSubExprsIfNeeded(NULL);
- ScanLauncher<Self, Op, Device> launcher;
- if (data) {
- launcher(*this, data);
- return false;
- }
-
- const Index total_size = internal::array_prod(dimensions());
- m_output = static_cast<CoeffReturnType*>(m_device.allocate(total_size * sizeof(Scalar)));
- launcher(*this, m_output);
- return true;
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
- return internal::ploadt<PacketReturnType, LoadMode>(m_output + index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const
- {
- return m_output;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_output[index];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
- return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- if (m_output != NULL) {
- m_device.deallocate(m_output);
- m_output = NULL;
- }
- m_impl.cleanup();
- }
-
-protected:
- TensorEvaluator<ArgType, Device> m_impl;
- const Device& m_device;
- const bool m_exclusive;
- Op m_accumulator;
- const Index m_size;
- Index m_stride;
- CoeffReturnType* m_output;
-};
-
-// CPU implementation of scan
-// TODO(ibab) This single-threaded implementation should be parallelized,
-// at least by running multiple scans at the same time.
-template <typename Self, typename Reducer, typename Device>
-struct ScanLauncher {
- void operator()(Self& self, typename Self::CoeffReturnType *data) {
- Index total_size = internal::array_prod(self.dimensions());
-
- // We fix the index along the scan axis to 0 and perform a
- // scan per remaining entry. The iteration is split into two nested
- // loops to avoid an integer division by keeping track of each idx1 and idx2.
- for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) {
- for (Index idx2 = 0; idx2 < self.stride(); idx2++) {
- // Calculate the starting offset for the scan
- Index offset = idx1 + idx2;
-
- // Compute the scan along the axis, starting at the calculated offset
- typename Self::CoeffReturnType accum = self.accumulator().initialize();
- for (Index idx3 = 0; idx3 < self.size(); idx3++) {
- Index curr = offset + idx3 * self.stride();
-
- if (self.exclusive()) {
- data[curr] = self.accumulator().finalize(accum);
- self.accumulator().reduce(self.inner().coeff(curr), &accum);
- } else {
- self.accumulator().reduce(self.inner().coeff(curr), &accum);
- data[curr] = self.accumulator().finalize(accum);
- }
- }
- }
- }
- }
-};
-
-#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
-
-// GPU implementation of scan
-// TODO(ibab) This placeholder implementation performs multiple scans in
-// parallel, but it would be better to use a parallel scan algorithm and
-// optimize memory access.
-template <typename Self, typename Reducer>
-__global__ void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) {
- // Compute offset as in the CPU version
- Index val = threadIdx.x + blockIdx.x * blockDim.x;
- Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride();
-
- if (offset + (self.size() - 1) * self.stride() < total_size) {
- // Compute the scan along the axis, starting at the calculated offset
- typename Self::CoeffReturnType accum = self.accumulator().initialize();
- for (Index idx = 0; idx < self.size(); idx++) {
- Index curr = offset + idx * self.stride();
- if (self.exclusive()) {
- data[curr] = self.accumulator().finalize(accum);
- self.accumulator().reduce(self.inner().coeff(curr), &accum);
- } else {
- self.accumulator().reduce(self.inner().coeff(curr), &accum);
- data[curr] = self.accumulator().finalize(accum);
- }
- }
- }
- __syncthreads();
-
-}
-
-template <typename Self, typename Reducer>
-struct ScanLauncher<Self, Reducer, GpuDevice> {
- void operator()(const Self& self, typename Self::CoeffReturnType* data) {
- Index total_size = internal::array_prod(self.dimensions());
- Index num_blocks = (total_size / self.size() + 63) / 64;
- Index block_size = 64;
- LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
- }
-};
-#endif // EIGEN_USE_GPU && __CUDACC__
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
deleted file mode 100644
index 113c060..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h
+++ /dev/null
@@ -1,264 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
-
-namespace Eigen {
-
-/** \class TensorShuffling
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor shuffling class.
- *
- *
- */
-namespace internal {
-template<typename Shuffle, typename XprType>
-struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Shuffle, typename XprType>
-struct eval<TensorShufflingOp<Shuffle, XprType>, Eigen::Dense>
-{
- typedef const TensorShufflingOp<Shuffle, XprType>& type;
-};
-
-template<typename Shuffle, typename XprType>
-struct nested<TensorShufflingOp<Shuffle, XprType>, 1, typename eval<TensorShufflingOp<Shuffle, XprType> >::type>
-{
- typedef TensorShufflingOp<Shuffle, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename Shuffle, typename XprType>
-class TensorShufflingOp : public TensorBase<TensorShufflingOp<Shuffle, XprType> >
-{
- public:
- typedef typename Eigen::internal::traits<TensorShufflingOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorShufflingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorShufflingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorShufflingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle)
- : m_xpr(expr), m_shuffle(shuffle) {}
-
- EIGEN_DEVICE_FUNC
- const Shuffle& shufflePermutation() const { return m_shuffle; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other)
- {
- typedef TensorAssignOp<TensorShufflingOp, const TensorShufflingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorShufflingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const Shuffle m_shuffle;
-};
-
-
-// Eval as rvalue
-template<typename Shuffle, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
-{
- typedef TensorShufflingOp<Shuffle, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = (internal::packet_traits<Scalar>::size > 1),
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- const Shuffle& shuffle = op.shufflePermutation();
- for (int i = 0; i < NumDims; ++i) {
- m_dimensions[i] = input_dims[shuffle[i]];
- }
-
- array<Index, NumDims> inputStrides;
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- inputStrides[0] = 1;
- m_outputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1];
- m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
- }
- } else {
- inputStrides[NumDims - 1] = 1;
- m_outputStrides[NumDims - 1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
- m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
- }
- }
-
- for (int i = 0; i < NumDims; ++i) {
- m_inputStrides[i] = inputStrides[shuffle[i]];
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(srcCoeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
- 2 * TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>());
- return m_impl.costPerCoeff(vectorized) +
- TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- inputIndex += idx * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- return inputIndex + index * m_inputStrides[0];
- } else {
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
- inputIndex += idx * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- return inputIndex + index * m_inputStrides[NumDims - 1];
- }
- }
-
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-
-// Eval as lvalue
-template<typename Shuffle, typename ArgType, typename Device>
-struct TensorEvaluator<TensorShufflingOp<Shuffle, ArgType>, Device>
- : public TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
-{
- typedef TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device> Base;
-
- typedef TensorShufflingOp<Shuffle, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = (internal::packet_traits<Scalar>::size > 1),
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device)
- { }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(this->srcCoeff(index));
- }
-
- template <int StoreMode> EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
-
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
- for (int i = 0; i < PacketSize; ++i) {
- this->coeffRef(index+i) = values[i];
- }
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h
deleted file mode 100644
index e6a666f..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h
+++ /dev/null
@@ -1,146 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-// Copyright (C) 2014-2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
-#define EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
-
-#ifdef EIGEN_TENSOR_STORAGE_CTOR_PLUGIN
- #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN EIGEN_TENSOR_STORAGE_CTOR_PLUGIN;
-#else
- #define EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN
-#endif
-
-namespace Eigen {
-
-/** \internal
- *
- * \class TensorStorage
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Stores the data of a tensor
- *
- * This class stores the data of fixed-size, dynamic-size or mixed tensors
- * in a way as compact as possible.
- *
- * \sa Tensor
- */
-template<typename T, typename Dimensions, int Options> class TensorStorage;
-
-
-// Pure fixed-size storage
-template<typename T, typename FixedDimensions, int Options_>
-class TensorStorage
-{
- private:
- static const std::size_t Size = FixedDimensions::total_size;
-
- // Allocate an array of size at least one to prevent compiler warnings.
- static const std::size_t MinSize = max_n_1<Size>::size;
- EIGEN_ALIGN_MAX T m_data[MinSize];
-
- FixedDimensions m_dimensions;
-
- public:
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorStorage() {
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T *data() { return m_data; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T *data() const { return m_data; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const FixedDimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE DenseIndex size() const { return m_dimensions.TotalSize(); }
-};
-
-
-// pure dynamic
-template<typename T, typename IndexType, int NumIndices_, int Options_>
-class TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_>
-{
- public:
- typedef IndexType Index;
- typedef DSizes<IndexType, NumIndices_> Dimensions;
- typedef TensorStorage<T, DSizes<IndexType, NumIndices_>, Options_> Self;
-
- EIGEN_DEVICE_FUNC TensorStorage() : m_data(0), m_dimensions() {
- if (NumIndices_ == 0) {
- m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1);
- }
- }
- EIGEN_DEVICE_FUNC TensorStorage(internal::constructor_without_unaligned_array_assert)
- : m_data(0), m_dimensions(internal::template repeat<NumIndices_, Index>(0)) {}
- EIGEN_DEVICE_FUNC TensorStorage(Index size, const array<Index, NumIndices_>& dimensions)
- : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size)), m_dimensions(dimensions)
- { EIGEN_INTERNAL_TENSOR_STORAGE_CTOR_PLUGIN }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template <typename... DenseIndex>
- EIGEN_DEVICE_FUNC TensorStorage(DenseIndex... indices) : m_dimensions(indices...) {
- m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(m_dimensions));
- }
-#endif
-
- EIGEN_DEVICE_FUNC TensorStorage(const Self& other)
- : m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(internal::array_prod(other.m_dimensions)))
- , m_dimensions(other.m_dimensions)
- {
- internal::smart_copy(other.m_data, other.m_data+internal::array_prod(other.m_dimensions), m_data);
- }
- EIGEN_DEVICE_FUNC Self& operator=(const Self& other)
- {
- if (this != &other) {
- Self tmp(other);
- this->swap(tmp);
- }
- return *this;
- }
-
- EIGEN_DEVICE_FUNC ~TensorStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, internal::array_prod(m_dimensions)); }
- EIGEN_DEVICE_FUNC void swap(Self& other)
- { numext::swap(m_data,other.m_data); numext::swap(m_dimensions,other.m_dimensions); }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {return m_dimensions;}
-
- EIGEN_DEVICE_FUNC void resize(Index size, const array<Index, NumIndices_>& nbDimensions)
- {
- const Index currentSz = internal::array_prod(m_dimensions);
- if(size != currentSz)
- {
- internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, currentSz);
- if (size)
- m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
- else if (NumIndices_ == 0) {
- m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(1);
- }
- else
- m_data = 0;
- EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
- }
- m_dimensions = nbDimensions;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T *data() { return m_data; }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T *data() const { return m_data; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); }
-
- private:
- T *m_data;
- Dimensions m_dimensions;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSORSTORAGE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h
deleted file mode 100644
index 6c35bfd..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h
+++ /dev/null
@@ -1,338 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
-#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
-
-namespace Eigen {
-
-/** \class TensorStriding
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Tensor striding class.
- *
- *
- */
-namespace internal {
-template<typename Strides, typename XprType>
-struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType>
-{
- typedef typename XprType::Scalar Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions;
- static const int Layout = XprTraits::Layout;
-};
-
-template<typename Strides, typename XprType>
-struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense>
-{
- typedef const TensorStridingOp<Strides, XprType>& type;
-};
-
-template<typename Strides, typename XprType>
-struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type>
-{
- typedef TensorStridingOp<Strides, XprType> type;
-};
-
-} // end namespace internal
-
-
-
-template<typename Strides, typename XprType>
-class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> >
-{
- public:
- typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims)
- : m_xpr(expr), m_dims(dims) {}
-
- EIGEN_DEVICE_FUNC
- const Strides& strides() const { return m_dims; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorStridingOp& operator = (const TensorStridingOp& other)
- {
- typedef TensorAssignOp<TensorStridingOp, const TensorStridingOp> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TensorStridingOp& operator = (const OtherDerived& other)
- {
- typedef TensorAssignOp<TensorStridingOp, const OtherDerived> Assign;
- Assign assign(*this, other);
- internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
- return *this;
- }
-
- protected:
- typename XprType::Nested m_xpr;
- const Strides m_dims;
-};
-
-
-// Eval as rvalue
-template<typename Strides, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
-{
- typedef TensorStridingOp<Strides, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- m_dimensions = m_impl.dimensions();
- for (int i = 0; i < NumDims; ++i) {
- m_dimensions[i] = ceilf(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
- }
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_outputStrides[0] = 1;
- m_inputStrides[0] = 1;
- for (int i = 1; i < NumDims; ++i) {
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
- m_inputStrides[i-1] *= op.strides()[i-1];
- }
- m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
- } else { // RowMajor
- m_outputStrides[NumDims-1] = 1;
- m_inputStrides[NumDims-1] = 1;
- for (int i = NumDims - 2; i >= 0; --i) {
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
- m_inputStrides[i+1] *= op.strides()[i+1];
- }
- m_inputStrides[0] *= op.strides()[0];
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return m_impl.coeff(srcCoeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- Index inputIndices[] = {0, 0};
- Index indices[] = {index, index + PacketSize - 1};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx0 = indices[0] / m_outputStrides[i];
- const Index idx1 = indices[1] / m_outputStrides[i];
- inputIndices[0] += idx0 * m_inputStrides[i];
- inputIndices[1] += idx1 * m_inputStrides[i];
- indices[0] -= idx0 * m_outputStrides[i];
- indices[1] -= idx1 * m_outputStrides[i];
- }
- inputIndices[0] += indices[0] * m_inputStrides[0];
- inputIndices[1] += indices[1] * m_inputStrides[0];
- } else { // RowMajor
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx0 = indices[0] / m_outputStrides[i];
- const Index idx1 = indices[1] / m_outputStrides[i];
- inputIndices[0] += idx0 * m_inputStrides[i];
- inputIndices[1] += idx1 * m_inputStrides[i];
- indices[0] -= idx0 * m_outputStrides[i];
- indices[1] -= idx1 * m_outputStrides[i];
- }
- inputIndices[0] += indices[0] * m_inputStrides[NumDims-1];
- inputIndices[1] += indices[1] * m_inputStrides[NumDims-1];
- }
- if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
- PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
- return rslt;
- }
- else {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- values[0] = m_impl.coeff(inputIndices[0]);
- values[PacketSize-1] = m_impl.coeff(inputIndices[1]);
- for (int i = 1; i < PacketSize-1; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
- double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() +
- TensorOpCost::MulCost<Index>() +
- TensorOpCost::DivCost<Index>()) +
- TensorOpCost::MulCost<Index>();
- if (vectorized) {
- compute_cost *= 2; // packet() computes two indices
- }
- const int innerDim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : (NumDims - 1);
- return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) +
- // Computation is not vectorized per se, but it is done once per packet.
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
- {
- Index inputIndex = 0;
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx = index / m_outputStrides[i];
- inputIndex += idx * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- inputIndex += index * m_inputStrides[0];
- } else { // RowMajor
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx = index / m_outputStrides[i];
- inputIndex += idx * m_inputStrides[i];
- index -= idx * m_outputStrides[i];
- }
- inputIndex += index * m_inputStrides[NumDims-1];
- }
- return inputIndex;
- }
-
- Dimensions m_dimensions;
- array<Index, NumDims> m_outputStrides;
- array<Index, NumDims> m_inputStrides;
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-
-// Eval as lvalue
-template<typename Strides, typename ArgType, typename Device>
-struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
- : public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
-{
- typedef TensorStridingOp<Strides, ArgType> XprType;
- typedef TensorEvaluator<const XprType, Device> Base;
- // typedef typename XprType::Index Index;
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- // typedef DSizes<Index, NumDims> Dimensions;
-
- enum {
- IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false, // to be implemented
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : Base(op, device) { }
-
- typedef typename XprType::Index Index;
- typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return this->m_impl.coeffRef(this->srcCoeff(index));
- }
-
- template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void writePacket(Index index, const PacketReturnType& x)
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize());
-
- Index inputIndices[] = {0, 0};
- Index indices[] = {index, index + PacketSize - 1};
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- for (int i = NumDims - 1; i > 0; --i) {
- const Index idx0 = indices[0] / this->m_outputStrides[i];
- const Index idx1 = indices[1] / this->m_outputStrides[i];
- inputIndices[0] += idx0 * this->m_inputStrides[i];
- inputIndices[1] += idx1 * this->m_inputStrides[i];
- indices[0] -= idx0 * this->m_outputStrides[i];
- indices[1] -= idx1 * this->m_outputStrides[i];
- }
- inputIndices[0] += indices[0] * this->m_inputStrides[0];
- inputIndices[1] += indices[1] * this->m_inputStrides[0];
- } else { // RowMajor
- for (int i = 0; i < NumDims - 1; ++i) {
- const Index idx0 = indices[0] / this->m_outputStrides[i];
- const Index idx1 = indices[1] / this->m_outputStrides[i];
- inputIndices[0] += idx0 * this->m_inputStrides[i];
- inputIndices[1] += idx1 * this->m_inputStrides[i];
- indices[0] -= idx0 * this->m_outputStrides[i];
- indices[1] -= idx1 * this->m_outputStrides[i];
- }
- inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1];
- inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1];
- }
- if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
- this->m_impl.template writePacket<Unaligned>(inputIndices[0], x);
- }
- else {
- EIGEN_ALIGN_MAX Scalar values[PacketSize];
- internal::pstore<Scalar, PacketReturnType>(values, x);
- this->m_impl.coeffRef(inputIndices[0]) = values[0];
- this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize-1];
- for (int i = 1; i < PacketSize-1; ++i) {
- this->coeffRef(index+i) = values[i];
- }
- }
- }
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h
deleted file mode 100644
index bb8800d..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSycl.h
+++ /dev/null
@@ -1,82 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: eigen@codeplay.com
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// General include header of SYCL target for Tensor Module
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
-
-#ifdef EIGEN_USE_SYCL
-
-// global pointer to set different attribute state for a class
-template <class T>
-struct MakeGlobalPointer {
- typedef typename cl::sycl::global_ptr<T>::pointer_t Type;
-};
-
-// global pointer to set different attribute state for a class
-template <class T>
-struct MakeLocalPointer {
- typedef typename cl::sycl::local_ptr<T>::pointer_t Type;
-};
-
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-
-/// This struct is used for special expression nodes with no operations (for example assign and selectOP).
- struct NoOP;
-
-template<bool IsConst, typename T> struct GetType{
- typedef const T Type;
-};
-template<typename T> struct GetType<false, T>{
- typedef T Type;
-};
-
-}
-}
-}
-
-// tuple construction
-#include "TensorSyclTuple.h"
-
-// counting number of leaf at compile time
-#include "TensorSyclLeafCount.h"
-
-// The index PlaceHolder takes the actual expression and replaces the actual
-// data on it with the place holder. It uses the same pre-order expression tree
-// traverse as the leaf count in order to give the right access number to each
-// node in the expression
-#include "TensorSyclPlaceHolderExpr.h"
-
-// creation of an accessor tuple from a tuple of SYCL buffers
-#include "TensorSyclExtractAccessor.h"
-
-// this is used to change the address space type in tensor map for GPU
-#include "TensorSyclConvertToDeviceExpression.h"
-
-// this is used to extract the functors
-#include "TensorSyclExtractFunctors.h"
-
-// this is used to create tensormap on the device
-// this is used to construct the expression on the device
-#include "TensorSyclExprConstructor.h"
-
-/// this is used for extracting tensor reduction
-#include "TensorReductionSycl.h"
-
-// kernel execution using fusion
-#include "TensorSyclRun.h"
-
-#endif // end of EIGEN_USE_SYCL
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
deleted file mode 100644
index 8729c86..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
+++ /dev/null
@@ -1,121 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclConvertToDeviceExpression.h
- *
- * \brief:
- * Conversion from host pointer to device pointer
- * inside leaf nodes of the expression.
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_CONVERT_TO_DEVICE_EXPRESSION_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-
-/// \struct ConvertToDeviceExpression
-/// \brief This struct is used to convert the MakePointer in the host expression
-/// to the MakeGlobalPointer for the device expression. For the leafNodes
-/// containing the pointer. This is due to the fact that the address space of
-/// the pointer T* is different on the host and the device.
-template <typename Expr>
-struct ConvertToDeviceExpression;
-
-template<template<class...> class NonOpCategory, bool IsConst, typename... Args>
-struct NonOpConversion{
- typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type...> >::Type Type;
-};
-
-
-template<template<class, template <class> class > class NonOpCategory, bool IsConst, typename Args>
-struct DeviceConvertor{
- typedef typename GetType<IsConst, NonOpCategory<typename ConvertToDeviceExpression<Args>::Type, MakeGlobalPointer> >::Type Type;
-};
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node
-/// type is TensorMap
-#define TENSORMAPCONVERT(CVQual)\
-template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_>\
-struct ConvertToDeviceExpression<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_> > {\
- typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\
-};
-
-TENSORMAPCONVERT(const)
-TENSORMAPCONVERT()
-#undef TENSORMAPCONVERT
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node
-/// type is TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, TensorBroadcastingOp
-#define CATEGORYCONVERT(CVQual)\
-template <template<class, class...> class Category, typename OP, typename... subExprs>\
-struct ConvertToDeviceExpression<CVQual Category<OP, subExprs...> > {\
- typedef CVQual Category<OP, typename ConvertToDeviceExpression<subExprs>::Type... > Type;\
-};
-CATEGORYCONVERT(const)
-CATEGORYCONVERT()
-#undef CATEGORYCONVERT
-
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node
-/// type is TensorCwiseSelectOp
-#define SELECTOPCONVERT(CVQual, Res)\
-template <typename IfExpr, typename ThenExpr, typename ElseExpr>\
-struct ConvertToDeviceExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >\
-: NonOpConversion<TensorSelectOp, Res, IfExpr, ThenExpr, ElseExpr> {};
-SELECTOPCONVERT(const, true)
-SELECTOPCONVERT(, false)
-#undef SELECTOPCONVERT
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node
-/// type is const AssingOP
-#define ASSIGNCONVERT(CVQual, Res)\
-template <typename LHSExpr, typename RHSExpr>\
-struct ConvertToDeviceExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr> >\
-: NonOpConversion<TensorAssignOp, Res, LHSExpr, RHSExpr>{};
-
-ASSIGNCONVERT(const, true)
-ASSIGNCONVERT(, false)
-#undef ASSIGNCONVERT
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node
-/// type is either TensorForcedEvalOp or TensorEvalToOp
-#define KERNELBROKERCONVERT(CVQual, Res, ExprNode)\
-template <typename Expr>\
-struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > \
-: DeviceConvertor<ExprNode, Res, Expr>{};
-
-KERNELBROKERCONVERT(const, true, TensorForcedEvalOp)
-KERNELBROKERCONVERT(, false, TensorForcedEvalOp)
-KERNELBROKERCONVERT(const, true, TensorEvalToOp)
-KERNELBROKERCONVERT(, false, TensorEvalToOp)
-#undef KERNELBROKERCONVERT
-
-/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
-#define KERNELBROKERCONVERTREDUCTION(CVQual)\
-template <typename OP, typename Dim, typename subExpr, template <class> class MakePointer_>\
-struct ConvertToDeviceExpression<CVQual TensorReductionOp<OP, Dim, subExpr, MakePointer_> > {\
- typedef CVQual TensorReductionOp<OP, Dim, typename ConvertToDeviceExpression<subExpr>::Type, MakeGlobalPointer> Type;\
-};
-
-KERNELBROKERCONVERTREDUCTION(const)
-KERNELBROKERCONVERTREDUCTION()
-#undef KERNELBROKERCONVERTREDUCTION
-
-} // namespace internal
-} // namespace TensorSycl
-} // namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX1
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
deleted file mode 100644
index 983f631..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
+++ /dev/null
@@ -1,239 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclExprConstructor.h
- *
- * \brief:
- * This file re-create an expression on the SYCL device in order
- * to use the original tensor evaluator.
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-/// this class is used by EvalToOp in order to create an lhs expression which is
-/// a pointer from an accessor on device-only buffer
-template <typename PtrType, size_t N, typename... Params>
-struct EvalToLHSConstructor {
- PtrType expr;
- EvalToLHSConstructor(const utility::tuple::Tuple<Params...> &t): expr((&(*(utility::tuple::get<N>(t).get_pointer())))) {}
-};
-
-/// struct ExprConstructor is used to reconstruct the expression on the device and
-/// recreate the expression with MakeGlobalPointer containing the device address
-/// space for the TensorMap pointers used in eval function.
-/// It receives the original expression type, the functor of the node, the tuple
-/// of accessors, and the device expression type to re-instantiate the
-/// expression tree for the device
-template <typename OrigExpr, typename IndexExpr, typename... Params>
-struct ExprConstructor;
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorMap
-#define TENSORMAP(CVQual)\
-template <typename Scalar_, int Options_, int Options2_, int Options3_, int NumIndices_, typename IndexType_,\
-template <class> class MakePointer_, size_t N, typename... Params>\
-struct ExprConstructor< CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer>,\
-CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options3_, MakePointer_>, N>, Params...>{\
- typedef CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakeGlobalPointer> Type;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
- : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
-};
-
-TENSORMAP(const)
-TENSORMAP()
-#undef TENSORMAP
-
-#define UNARYCATEGORY(CVQual)\
-template <template<class, class> class UnaryCategory, typename OP, typename OrigRHSExpr, typename RHSExpr, typename... Params>\
-struct ExprConstructor<CVQual UnaryCategory<OP, OrigRHSExpr>, CVQual UnaryCategory<OP, RHSExpr>, Params...> {\
- typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_type;\
- my_type rhsExpr;\
- typedef CVQual UnaryCategory<OP, typename my_type::Type> Type;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
- : rhsExpr(funcD.rhsExpr, t), expr(rhsExpr.expr, funcD.func) {}\
-};
-
-UNARYCATEGORY(const)
-UNARYCATEGORY()
-#undef UNARYCATEGORY
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorBinaryOp
-#define BINARYCATEGORY(CVQual)\
-template <template<class, class, class> class BinaryCategory, typename OP, typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr,\
-typename RHSExpr, typename... Params>\
-struct ExprConstructor<CVQual BinaryCategory<OP, OrigLHSExpr, OrigRHSExpr>, CVQual BinaryCategory<OP, LHSExpr, RHSExpr>, Params...> {\
- typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\
- typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\
- typedef CVQual BinaryCategory<OP, typename my_left_type::Type, typename my_right_type::Type> Type;\
- my_left_type lhsExpr;\
- my_right_type rhsExpr;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
- : lhsExpr(funcD.lhsExpr, t),rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr, funcD.func) {}\
-};
-
-BINARYCATEGORY(const)
-BINARYCATEGORY()
-#undef BINARYCATEGORY
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorCwiseTernaryOp
-#define TERNARYCATEGORY(CVQual)\
-template <template <class, class, class, class> class TernaryCategory, typename OP, typename OrigArg1Expr, typename OrigArg2Expr,typename OrigArg3Expr,\
-typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename... Params>\
-struct ExprConstructor<CVQual TernaryCategory<OP, OrigArg1Expr, OrigArg2Expr, OrigArg3Expr>, CVQual TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Params...> {\
- typedef ExprConstructor<OrigArg1Expr, Arg1Expr, Params...> my_arg1_type;\
- typedef ExprConstructor<OrigArg2Expr, Arg2Expr, Params...> my_arg2_type;\
- typedef ExprConstructor<OrigArg3Expr, Arg3Expr, Params...> my_arg3_type;\
- typedef CVQual TernaryCategory<OP, typename my_arg1_type::Type, typename my_arg2_type::Type, typename my_arg3_type::Type> Type;\
- my_arg1_type arg1Expr;\
- my_arg2_type arg2Expr;\
- my_arg3_type arg3Expr;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD,const utility::tuple::Tuple<Params...> &t)\
- : arg1Expr(funcD.arg1Expr, t), arg2Expr(funcD.arg2Expr, t), arg3Expr(funcD.arg3Expr, t), expr(arg1Expr.expr, arg2Expr.expr, arg3Expr.expr, funcD.func) {}\
-};
-
-TERNARYCATEGORY(const)
-TERNARYCATEGORY()
-#undef TERNARYCATEGORY
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorCwiseSelectOp
-#define SELECTOP(CVQual)\
-template <typename OrigIfExpr, typename OrigThenExpr, typename OrigElseExpr, typename IfExpr, typename ThenExpr, typename ElseExpr, typename... Params>\
-struct ExprConstructor< CVQual TensorSelectOp<OrigIfExpr, OrigThenExpr, OrigElseExpr>, CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Params...> {\
- typedef ExprConstructor<OrigIfExpr, IfExpr, Params...> my_if_type;\
- typedef ExprConstructor<OrigThenExpr, ThenExpr, Params...> my_then_type;\
- typedef ExprConstructor<OrigElseExpr, ElseExpr, Params...> my_else_type;\
- typedef CVQual TensorSelectOp<typename my_if_type::Type, typename my_then_type::Type, typename my_else_type::Type> Type;\
- my_if_type ifExpr;\
- my_then_type thenExpr;\
- my_else_type elseExpr;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
- : ifExpr(funcD.ifExpr, t), thenExpr(funcD.thenExpr, t), elseExpr(funcD.elseExpr, t), expr(ifExpr.expr, thenExpr.expr, elseExpr.expr) {}\
-};
-
-SELECTOP(const)
-SELECTOP()
-#undef SELECTOP
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// const TensorAssignOp
-#define ASSIGN(CVQual)\
-template <typename OrigLHSExpr, typename OrigRHSExpr, typename LHSExpr, typename RHSExpr, typename... Params>\
-struct ExprConstructor<CVQual TensorAssignOp<OrigLHSExpr, OrigRHSExpr>, CVQual TensorAssignOp<LHSExpr, RHSExpr>, Params...> {\
- typedef ExprConstructor<OrigLHSExpr, LHSExpr, Params...> my_left_type;\
- typedef ExprConstructor<OrigRHSExpr, RHSExpr, Params...> my_right_type;\
- typedef CVQual TensorAssignOp<typename my_left_type::Type, typename my_right_type::Type> Type;\
- my_left_type lhsExpr;\
- my_right_type rhsExpr;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
- : lhsExpr(funcD.lhsExpr, t), rhsExpr(funcD.rhsExpr, t), expr(lhsExpr.expr, rhsExpr.expr) {}\
- };
-
- ASSIGN(const)
- ASSIGN()
- #undef ASSIGN
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorEvalToOp
-#define EVALTO(CVQual)\
-template <typename OrigExpr, typename Expr, typename... Params>\
-struct ExprConstructor<CVQual TensorEvalToOp<OrigExpr, MakeGlobalPointer>, CVQual TensorEvalToOp<Expr>, Params...> {\
- typedef ExprConstructor<OrigExpr, Expr, Params...> my_expr_type;\
- typedef typename TensorEvalToOp<OrigExpr, MakeGlobalPointer>::PointerType my_buffer_type;\
- typedef CVQual TensorEvalToOp<typename my_expr_type::Type, MakeGlobalPointer> Type;\
- my_expr_type nestedExpression;\
- EvalToLHSConstructor<my_buffer_type, 0, Params...> buffer;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
- : nestedExpression(funcD.rhsExpr, t), buffer(t), expr(buffer.expr, nestedExpression.expr) {}\
-};
-
-EVALTO(const)
-EVALTO()
-#undef EVALTO
-
-/// specialisation of the \ref ExprConstructor struct when the node type is
-/// TensorForcedEvalOp
-#define FORCEDEVAL(CVQual)\
-template <typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
-struct ExprConstructor<CVQual TensorForcedEvalOp<OrigExpr, MakeGlobalPointer>,\
-CVQual PlaceHolder<CVQual TensorForcedEvalOp<DevExpr>, N>, Params...> {\
- typedef CVQual TensorMap<Tensor<typename TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::Scalar,\
- TensorForcedEvalOp<DevExpr, MakeGlobalPointer>::NumDimensions, 0, typename TensorForcedEvalOp<DevExpr>::Index>, 0, MakeGlobalPointer> Type;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
- : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
-};
-
-FORCEDEVAL(const)
-FORCEDEVAL()
-#undef FORCEDEVAL
-
-template <bool Conds, size_t X , size_t Y > struct ValueCondition {
- static const size_t Res =X;
-};
-template<size_t X, size_t Y> struct ValueCondition<false, X , Y> {
- static const size_t Res =Y;
-};
-
-/// specialisation of the \ref ExprConstructor struct when the node type is TensorReductionOp
-#define SYCLREDUCTIONEXPR(CVQual)\
-template <typename OP, typename Dim, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
-struct ExprConstructor<CVQual TensorReductionOp<OP, Dim, OrigExpr, MakeGlobalPointer>,\
-CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dim, DevExpr>, N>, Params...> {\
- static const size_t NumIndices= ValueCondition< TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions==0, 1, TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::NumDimensions >::Res;\
- typedef CVQual TensorMap<Tensor<typename TensorReductionOp<OP, Dim, DevExpr, MakeGlobalPointer>::Scalar,\
- NumIndices, 0, typename TensorReductionOp<OP, Dim, DevExpr>::Index>, 0, MakeGlobalPointer> Type;\
- Type expr;\
- template <typename FuncDetector>\
- ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
- : expr(Type((&(*(utility::tuple::get<N>(t).get_pointer()))), fd.dimensions())) {}\
-};
-
-SYCLREDUCTIONEXPR(const)
-SYCLREDUCTIONEXPR()
-#undef SYCLREDUCTIONEXPR
-
-/// template deduction for \ref ExprConstructor struct
-template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params>
-auto createDeviceExpression(FuncD &funcD, const utility::tuple::Tuple<Params...> &t)
- -> decltype(ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t)) {
- return ExprConstructor<OrigExpr, IndexExpr, Params...>(funcD, t);
-}
-
-} /// namespace TensorSycl
-} /// namespace internal
-} /// namespace Eigen
-
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXPR_CONSTRUCTOR_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
deleted file mode 100644
index cc18fcd..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
+++ /dev/null
@@ -1,204 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclExtractAccessor.h
- *
- * \brief:
- * ExtractAccessor takes Expression placeHolder expression and the tuple of sycl
- * buffers as an input. Using pre-order tree traversal, ExtractAccessor
- * recursively calls itself for its children in the expression tree. The
- * leaf node in the PlaceHolder expression is nothing but a container preserving
- * the order of the actual data in the tuple of sycl buffer. By invoking the
- * extract accessor for the PlaceHolder<N>, an accessor is created for the Nth
- * buffer in the tuple of buffers. This accessor is then added as an Nth
- * element in the tuple of accessors. In this case we preserve the order of data
- * in the expression tree.
- *
- * This is the specialisation of extract accessor method for different operation
- * type in the PlaceHolder expression.
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-/// struct ExtractAccessor: Extract Accessor Class is used to extract the
-/// accessor from a buffer.
-/// Depending on the type of the leaf node we can get a read accessor or a
-/// read_write accessor
-template <typename Evaluator>
-struct ExtractAccessor;
-
-struct AccessorConstructor{
- template<typename Arg> static inline auto getTuple(cl::sycl::handler& cgh, Arg eval)
- -> decltype(ExtractAccessor<Arg>::getTuple(cgh, eval)) {
- return ExtractAccessor<Arg>::getTuple(cgh, eval);
- }
-
- template<typename Arg1, typename Arg2> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1, Arg2 eval2)
- -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2))) {
- return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2));
- }
- template<typename Arg1, typename Arg2, typename Arg3> static inline auto getTuple(cl::sycl::handler& cgh, Arg1 eval1 , Arg2 eval2 , Arg3 eval3)
- -> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)))) {
- return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)));
- }
- template< cl::sycl::access::mode AcM, typename Arg> static inline auto getAccessor(cl::sycl::handler& cgh, Arg eval)
- -> decltype(utility::tuple::make_tuple( eval.device().template get_sycl_accessor<AcM,
- typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data()))){
- return utility::tuple::make_tuple(eval.device().template get_sycl_accessor<AcM, typename Eigen::internal::remove_all<typename Arg::CoeffReturnType>::type>(eval.dimensions().TotalSize(), cgh,eval.data()));
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is
-/// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp and const TensorBroadcastingOp
-template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> eval)
- -> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){
- return AccessorConstructor::getTuple(cgh, eval.impl());
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseNullaryOp, TensorCwiseUnaryOp and TensorBroadcastingOp
-template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorCwiseBinaryOp
-template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> eval)
- -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){
- return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());
- }
-};
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseBinaryOp
-template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is
-/// const TensorCwiseTernaryOp
-template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> eval)
- -> decltype(AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl())){
- return AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl());
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorCwiseTernaryOp
-template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is
-/// const TensorCwiseSelectOp. This is a special case where there is no OP
-template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> eval)
- -> decltype(AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl())){
- return AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl());
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is
-/// TensorCwiseSelectOp. This is a special case where there is no OP
-template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorAssignOp
-template <typename LHSExpr, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> eval)
- -> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){
- return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorAssignOp
-template <typename LHSExpr, typename RHSExpr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorMap
-#define TENSORMAPEXPR(CVQual, ACCType)\
-template <typename PlainObjectType, int Options_, typename Dev>\
-struct ExtractAccessor<TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> > {\
- static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> eval)\
- -> decltype(AccessorConstructor::template getAccessor<ACCType>(cgh, eval)){\
- return AccessorConstructor::template getAccessor<ACCType>(cgh, eval);\
- }\
-};
-TENSORMAPEXPR(const, cl::sycl::access::mode::read)
-TENSORMAPEXPR(, cl::sycl::access::mode::read_write)
-#undef TENSORMAPEXPR
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorForcedEvalOp
-template <typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> eval)
- -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){
- return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorForcedEvalOp
-template <typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TensorForcedEvalOp<Expr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TensorForcedEvalOp<Expr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorEvalToOp
-template <typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<const TensorEvalToOp<Expr>, Dev> eval)
- -> decltype(utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()))){
- return utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()));
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorEvalToOp
-template <typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TensorEvalToOp<Expr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TensorEvalToOp<Expr>, Dev> >{};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is const TensorReductionOp
-template <typename OP, typename Dim, typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> > {
- static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> eval)
- -> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){
- return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);
- }
-};
-
-/// specialisation of the \ref ExtractAccessor struct when the node type is TensorReductionOp
-template <typename OP, typename Dim, typename Expr, typename Dev>
-struct ExtractAccessor<TensorEvaluator<TensorReductionOp<OP, Dim, Expr>, Dev> >
-: ExtractAccessor<TensorEvaluator<const TensorReductionOp<OP, Dim, Expr>, Dev> >{};
-
-/// template deduction for \ref ExtractAccessor
-template <typename Evaluator>
-auto createTupleOfAccessors(cl::sycl::handler& cgh, const Evaluator& expr)
--> decltype(ExtractAccessor<Evaluator>::getTuple(cgh, expr)) {
- return ExtractAccessor<Evaluator>::getTuple(cgh, expr);
-}
-
-} /// namespace TensorSycl
-} /// namespace internal
-} /// namespace Eigen
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_ACCESSOR_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
deleted file mode 100644
index 9edd38e..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
+++ /dev/null
@@ -1,177 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclextractFunctors.h
- *
- * \brief:
- * Used to extract all the functors allocated to each node of the expression
-*tree.
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-/// struct FunctorExtractor: This struct is used to extract the functors
-/// constructed on
-/// the host-side, to pack them and reuse them in reconstruction of the
-/// expression on the device.
-/// We have to do that as in Eigen the functors are not stateless so we cannot
-/// re-instantiate them on the device.
-/// We have to pass instantiated functors to the device.
-// This struct is used for leafNode (TensorMap) and nodes behaving like leafNode (TensorForcedEval).
-template <typename Evaluator> struct FunctorExtractor{
- typedef typename Evaluator::Dimensions Dimensions;
- const Dimensions m_dimensions;
- const Dimensions& dimensions() const { return m_dimensions; }
- FunctorExtractor(const Evaluator& expr)
- : m_dimensions(expr.dimensions()) {}
-
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorCwiseNullaryOp, const TensorCwiseUnaryOp, and const TensorBroadcastingOp
-template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> > {
- FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
- OP func;
- FunctorExtractor(const TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev>& expr)
- : rhsExpr(expr.impl()), func(expr.functor()) {}
-};
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// TensorCwiseNullaryOp, TensorCwiseUnaryOp, and TensorBroadcastingOp
-template <template <class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<UnaryCategory<OP, RHSExpr>, Dev> >
-: FunctorExtractor<TensorEvaluator<const UnaryCategory<OP, RHSExpr>, Dev> >{};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorCwiseBinaryOp
-template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > {
- FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr;
- FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
- OP func;
- FunctorExtractor(const TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev>& expr)
- : lhsExpr(expr.left_impl()),rhsExpr(expr.right_impl()),func(expr.functor()) {}
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorCwiseBinaryOp
-template <template <class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >
-: FunctorExtractor<TensorEvaluator<const BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> >{};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorCwiseTernaryOp
-template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr,typename Dev>
-struct FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > {
- FunctorExtractor<TensorEvaluator<Arg1Expr, Dev> > arg1Expr;
- FunctorExtractor<TensorEvaluator<Arg2Expr, Dev> > arg2Expr;
- FunctorExtractor<TensorEvaluator<Arg3Expr, Dev> > arg3Expr;
- OP func;
- FunctorExtractor(const TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev>& expr)
- : arg1Expr(expr.arg1Impl()), arg2Expr(expr.arg2Impl()), arg3Expr(expr.arg3Impl()), func(expr.functor()) {}
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// TensorCwiseTernaryOp
-template <template <class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>
-struct FunctorExtractor<TensorEvaluator< TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >
-:FunctorExtractor<TensorEvaluator<const TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> >{};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated.
-template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
-struct FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {
- FunctorExtractor<TensorEvaluator<IfExpr, Dev> > ifExpr;
- FunctorExtractor<TensorEvaluator<ThenExpr, Dev> > thenExpr;
- FunctorExtractor<TensorEvaluator<ElseExpr, Dev> > elseExpr;
- FunctorExtractor(const TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev>& expr)
- : ifExpr(expr.cond_impl()), thenExpr(expr.then_impl()), elseExpr(expr.else_impl()) {}
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// TensorCwiseSelectOp. This is an specialisation without OP so it has to be separated
-template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> >
-:FunctorExtractor< TensorEvaluator<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorAssignOp. This is an specialisation without OP so it has to be separated.
-template <typename LHSExpr, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> > {
- FunctorExtractor<TensorEvaluator<LHSExpr, Dev> > lhsExpr;
- FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
- FunctorExtractor(const TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev>& expr)
- : lhsExpr(expr.left_impl()), rhsExpr(expr.right_impl()) {}
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// TensorAssignOp. This is an specialisation without OP so it has to be separated.
-template <typename LHSExpr, typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<TensorAssignOp<LHSExpr, RHSExpr>, Dev> >
-:FunctorExtractor<TensorEvaluator<const TensorAssignOp<LHSExpr, RHSExpr>, Dev> >{};
-
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// const TensorEvalToOp, This is an specialisation without OP so it has to be separated.
-template <typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > {
- FunctorExtractor<TensorEvaluator<RHSExpr, Dev> > rhsExpr;
- FunctorExtractor(const TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev>& expr)
- : rhsExpr(expr.impl()) {}
-};
-
-/// specialisation of the \ref FunctorExtractor struct when the node type is
-/// TensorEvalToOp. This is a specialisation without OP so it has to be separated.
-template <typename RHSExpr, typename Dev>
-struct FunctorExtractor<TensorEvaluator<TensorEvalToOp<RHSExpr>, Dev> >
-: FunctorExtractor<TensorEvaluator<const TensorEvalToOp<RHSExpr>, Dev> > {};
-
-template<typename Dim, size_t NumOutputDim> struct DimConstr {
-template<typename InDim>
- static inline Dim getDim(InDim dims ) {return dims;}
-};
-
-template<typename Dim> struct DimConstr<Dim, 0> {
- template<typename InDim>
- static inline Dim getDim(InDim dims ) {return Dim(dims.TotalSize());}
-};
-
-template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
-struct FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{
- typedef TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Evaluator;
- typedef typename Eigen::internal::conditional<Evaluator::NumOutputDims==0, DSizes<typename Evaluator::Index, 1>, typename Evaluator::Dimensions >::type Dimensions;
- const Dimensions m_dimensions;
- const Dimensions& dimensions() const { return m_dimensions; }
- FunctorExtractor(const TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>& expr)
- : m_dimensions(DimConstr<Dimensions, Evaluator::NumOutputDims>::getDim(expr.dimensions())) {}
-};
-
-
-template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
-struct FunctorExtractor<TensorEvaluator<TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>
-: FunctorExtractor<TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{};
-/// template deduction function for FunctorExtractor
-template <typename Evaluator>
-auto inline extractFunctors(const Evaluator& evaluator)-> FunctorExtractor<Evaluator> {
- return FunctorExtractor<Evaluator>(evaluator);
-}
-} // namespace internal
-} // namespace TensorSycl
-} // namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_EXTRACT_FUNCTORS_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
deleted file mode 100644
index 25d1fac..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
+++ /dev/null
@@ -1,114 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclLeafCount.h
- *
- * \brief:
- * The leaf count used the pre-order expression tree traverse in order to name
- * count the number of leaf nodes in the expression
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-/// \brief LeafCount used to counting terminal nodes. The total number of
-/// leaf nodes is used by MakePlaceHolderExprHelper to find the order
-/// of the leaf node in a expression tree at compile time.
-template <typename Expr>
-struct LeafCount;
-
-template<typename... Args> struct CategoryCount;
-
-template<> struct CategoryCount<>
-{
- static const size_t Count =0;
-};
-
-template<typename Arg, typename... Args>
-struct CategoryCount<Arg,Args...>{
- static const size_t Count = LeafCount<Arg>::Count + CategoryCount<Args...>::Count;
-};
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorMap
-template <typename PlainObjectType, int Options_, template <class> class MakePointer_>
-struct LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> > {
- static const size_t Count =1;
-};
-
-/// specialisation of the \ref LeafCount struct when the node type is TensorMap
-template <typename PlainObjectType, int Options_, template <class> class MakePointer_>
-struct LeafCount<TensorMap<PlainObjectType, Options_, MakePointer_> > :LeafCount<const TensorMap<PlainObjectType, Options_, MakePointer_> >{};
-
-// const TensorCwiseUnaryOp, const TensorCwiseNullaryOp, const TensorCwiseBinaryOp, const TensorCwiseTernaryOp, and Const TensorBroadcastingOp
-template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr>
-struct LeafCount<const CategoryExpr<OP, RHSExpr...> >: CategoryCount<RHSExpr...> {};
-// TensorCwiseUnaryOp, TensorCwiseNullaryOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp, and TensorBroadcastingOp
-template <template <class, class...> class CategoryExpr, typename OP, typename... RHSExpr>
-struct LeafCount<CategoryExpr<OP, RHSExpr...> > :LeafCount<const CategoryExpr<OP, RHSExpr...> >{};
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorSelectOp is an exception
-template <typename IfExpr, typename ThenExpr, typename ElseExpr>
-struct LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > : CategoryCount<IfExpr, ThenExpr, ElseExpr> {};
-/// specialisation of the \ref LeafCount struct when the node type is TensorSelectOp
-template <typename IfExpr, typename ThenExpr, typename ElseExpr>
-struct LeafCount<TensorSelectOp<IfExpr, ThenExpr, ElseExpr> >: LeafCount<const TensorSelectOp<IfExpr, ThenExpr, ElseExpr> > {};
-
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorAssignOp
-template <typename LHSExpr, typename RHSExpr>
-struct LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >: CategoryCount<LHSExpr,RHSExpr> {};
-
-/// specialisation of the \ref LeafCount struct when the node type is
-/// TensorAssignOp is an exception. It is not the same as Unary
-template <typename LHSExpr, typename RHSExpr>
-struct LeafCount<TensorAssignOp<LHSExpr, RHSExpr> > :LeafCount<const TensorAssignOp<LHSExpr, RHSExpr> >{};
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorForcedEvalOp
-template <typename Expr>
-struct LeafCount<const TensorForcedEvalOp<Expr> > {
- static const size_t Count =1;
-};
-
-/// specialisation of the \ref LeafCount struct when the node type is TensorForcedEvalOp
-template <typename Expr>
-struct LeafCount<TensorForcedEvalOp<Expr> >: LeafCount<const TensorForcedEvalOp<Expr> > {};
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorEvalToOp
-template <typename Expr>
-struct LeafCount<const TensorEvalToOp<Expr> > {
- static const size_t Count = 1 + CategoryCount<Expr>::Count;
-};
-
-/// specialisation of the \ref LeafCount struct when the node type is const TensorReductionOp
-template <typename OP, typename Dim, typename Expr>
-struct LeafCount<const TensorReductionOp<OP, Dim, Expr> > {
- static const size_t Count =1;
-};
-
-/// specialisation of the \ref LeafCount struct when the node type is TensorReductionOp
-template <typename OP, typename Dim, typename Expr>
-struct LeafCount<TensorReductionOp<OP, Dim, Expr> >: LeafCount<const TensorReductionOp<OP, Dim, Expr> >{};
-
-/// specialisation of the \ref LeafCount struct when the node type is TensorEvalToOp
-template <typename Expr>
-struct LeafCount<TensorEvalToOp<Expr> >: LeafCount<const TensorEvalToOp<Expr> >{};
-
-} /// namespace TensorSycl
-} /// namespace internal
-} /// namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_LEAF_COUNT_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
deleted file mode 100644
index d4c250c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
+++ /dev/null
@@ -1,181 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclPlaceHolderExpr.h
- *
- * \brief:
- * This is the specialisation of the placeholder expression based on the
- * operation type
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-namespace internal {
-
-/// \struct PlaceHolder
-/// \brief PlaceHolder is used to replace the \ref TensorMap in the expression
-/// tree.
-/// PlaceHolder contains the order of the leaf node in the expression tree.
-template <typename Scalar, size_t N>
-struct PlaceHolder {
- static constexpr size_t I = N;
- typedef Scalar Type;
-};
-
-/// \sttruct PlaceHolderExpression
-/// \brief it is used to create the PlaceHolder expression. The PlaceHolder
-/// expression is a copy of expression type in which the TensorMap of the has
-/// been replaced with PlaceHolder.
-template <typename Expr, size_t N>
-struct PlaceHolderExpression;
-
-template<size_t N, typename... Args>
-struct CalculateIndex;
-
-template<size_t N, typename Arg>
-struct CalculateIndex<N, Arg>{
- typedef typename PlaceHolderExpression<Arg, N>::Type ArgType;
- typedef utility::tuple::Tuple<ArgType> ArgsTuple;
-};
-
-template<size_t N, typename Arg1, typename Arg2>
-struct CalculateIndex<N, Arg1, Arg2>{
- static const size_t Arg2LeafCount = LeafCount<Arg2>::Count;
- typedef typename PlaceHolderExpression<Arg1, N - Arg2LeafCount>::Type Arg1Type;
- typedef typename PlaceHolderExpression<Arg2, N>::Type Arg2Type;
- typedef utility::tuple::Tuple<Arg1Type, Arg2Type> ArgsTuple;
-};
-
-template<size_t N, typename Arg1, typename Arg2, typename Arg3>
-struct CalculateIndex<N, Arg1, Arg2, Arg3> {
- static const size_t Arg3LeafCount = LeafCount<Arg3>::Count;
- static const size_t Arg2LeafCount = LeafCount<Arg2>::Count;
- typedef typename PlaceHolderExpression<Arg1, N - Arg3LeafCount - Arg2LeafCount>::Type Arg1Type;
- typedef typename PlaceHolderExpression<Arg2, N - Arg3LeafCount>::Type Arg2Type;
- typedef typename PlaceHolderExpression<Arg3, N>::Type Arg3Type;
- typedef utility::tuple::Tuple<Arg1Type, Arg2Type, Arg3Type> ArgsTuple;
-};
-
-template<template<class...> class Category , class OP, class TPL>
-struct CategoryHelper;
-
-template<template<class...> class Category , class OP, class ...T >
-struct CategoryHelper<Category, OP, utility::tuple::Tuple<T...> > {
- typedef Category<OP, T... > Type;
-};
-
-template<template<class...> class Category , class ...T >
-struct CategoryHelper<Category, NoOP, utility::tuple::Tuple<T...> > {
- typedef Category<T... > Type;
-};
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorCwiseNullaryOp, TensorCwiseUnaryOp, TensorBroadcastingOp, TensorCwiseBinaryOp, TensorCwiseTernaryOp
-#define OPEXPRCATEGORY(CVQual)\
-template <template <class, class... > class Category, typename OP, typename... SubExpr, size_t N>\
-struct PlaceHolderExpression<CVQual Category<OP, SubExpr...>, N>{\
- typedef CVQual typename CategoryHelper<Category, OP, typename CalculateIndex<N, SubExpr...>::ArgsTuple>::Type Type;\
-};
-
-OPEXPRCATEGORY(const)
-OPEXPRCATEGORY()
-#undef OPEXPRCATEGORY
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorCwiseSelectOp
-#define SELECTEXPR(CVQual)\
-template <typename IfExpr, typename ThenExpr, typename ElseExpr, size_t N>\
-struct PlaceHolderExpression<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, N> {\
- typedef CVQual typename CategoryHelper<TensorSelectOp, NoOP, typename CalculateIndex<N, IfExpr, ThenExpr, ElseExpr>::ArgsTuple>::Type Type;\
-};
-
-SELECTEXPR(const)
-SELECTEXPR()
-#undef SELECTEXPR
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorAssignOp
-#define ASSIGNEXPR(CVQual)\
-template <typename LHSExpr, typename RHSExpr, size_t N>\
-struct PlaceHolderExpression<CVQual TensorAssignOp<LHSExpr, RHSExpr>, N> {\
- typedef CVQual typename CategoryHelper<TensorAssignOp, NoOP, typename CalculateIndex<N, LHSExpr, RHSExpr>::ArgsTuple>::Type Type;\
-};
-
-ASSIGNEXPR(const)
-ASSIGNEXPR()
-#undef ASSIGNEXPR
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorMap
-#define TENSORMAPEXPR(CVQual)\
-template <typename Scalar_, int Options_, int Options2_, int NumIndices_, typename IndexType_, template <class> class MakePointer_, size_t N>\
-struct PlaceHolderExpression< CVQual TensorMap< Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> {\
- typedef CVQual PlaceHolder<CVQual TensorMap<Tensor<Scalar_, NumIndices_, Options_, IndexType_>, Options2_, MakePointer_>, N> Type;\
-};
-
-TENSORMAPEXPR(const)
-TENSORMAPEXPR()
-#undef TENSORMAPEXPR
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorForcedEvalOp
-#define FORCEDEVAL(CVQual)\
-template <typename Expr, size_t N>\
-struct PlaceHolderExpression<CVQual TensorForcedEvalOp<Expr>, N> {\
- typedef CVQual PlaceHolder<CVQual TensorForcedEvalOp<Expr>, N> Type;\
-};
-
-FORCEDEVAL(const)
-FORCEDEVAL()
-#undef FORCEDEVAL
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorEvalToOp
-#define EVALTO(CVQual)\
-template <typename Expr, size_t N>\
-struct PlaceHolderExpression<CVQual TensorEvalToOp<Expr>, N> {\
- typedef CVQual TensorEvalToOp<typename CalculateIndex <N, Expr>::ArgType> Type;\
-};
-
-EVALTO(const)
-EVALTO()
-#undef EVALTO
-
-
-/// specialisation of the \ref PlaceHolderExpression when the node is
-/// TensorReductionOp
-#define SYCLREDUCTION(CVQual)\
-template <typename OP, typename Dims, typename Expr, size_t N>\
-struct PlaceHolderExpression<CVQual TensorReductionOp<OP, Dims, Expr>, N>{\
- typedef CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dims,Expr>, N> Type;\
-};
-SYCLREDUCTION(const)
-SYCLREDUCTION()
-#undef SYCLREDUCTION
-
-/// template deduction for \ref PlaceHolderExpression struct
-template <typename Expr>
-struct createPlaceHolderExpression {
- static const size_t TotalLeaves = LeafCount<Expr>::Count;
- typedef typename PlaceHolderExpression<Expr, TotalLeaves - 1>::Type Type;
-};
-
-} // internal
-} // TensorSycl
-} // namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_PLACEHOLDER_EXPR_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h
deleted file mode 100644
index 7914b6f..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclRun.h
+++ /dev/null
@@ -1,70 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Cummins Chris PhD student at The University of Edinburgh.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensorSyclRun.h
- *
- * \brief:
- * Schedule_kernel invoke an specialised version of kernel struct. The
- * specialisation is based on the data dimension in sycl buffer
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
-
-namespace Eigen {
-namespace TensorSycl {
-/// The run function in tensor sycl convert the expression tree to a buffer
-/// based expression tree;
-/// creates the expression tree for the device with accessor to buffers;
-/// construct the kernel and submit it to the sycl queue.
-template <typename Expr, typename Dev>
-void run(Expr &expr, Dev &dev) {
- Eigen::TensorEvaluator<Expr, Dev> evaluator(expr, dev);
- const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
- if (needs_assign) {
- typedef typename internal::createPlaceHolderExpression<Expr>::Type PlaceHolderExpr;
- auto functors = internal::extractFunctors(evaluator);
-
- size_t tileSize =dev.m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
- dev.m_queue.submit([&](cl::sycl::handler &cgh) {
-
- // create a tuple of accessors from Evaluator
- auto tuple_of_accessors = internal::createTupleOfAccessors<decltype(evaluator)>(cgh, evaluator);
- const auto range = utility::tuple::get<0>(tuple_of_accessors).get_range()[0];
- size_t GRange=range;
- if (tileSize>GRange) tileSize=GRange;
- else if(GRange>tileSize){
- size_t xMode = GRange % tileSize;
- if (xMode != 0) GRange += (tileSize - xMode);
- }
- // run the kernel
- cgh.parallel_for<PlaceHolderExpr>( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), [=](cl::sycl::nd_item<1> itemID) {
- typedef typename internal::ConvertToDeviceExpression<Expr>::Type DevExpr;
- auto device_expr =internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
- auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
- if (itemID.get_global_linear_id() < range) {
- device_evaluator.evalScalar(static_cast<int>(itemID.get_global_linear_id()));
- }
- });
- });
- dev.m_queue.throw_asynchronous();
- }
-
- evaluator.cleanup();
-}
-} // namespace TensorSycl
-} // namespace Eigen
-
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_SYCLRUN_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h
deleted file mode 100644
index 83915f3..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorSyclTuple.h
+++ /dev/null
@@ -1,237 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Mehdi Goli Codeplay Software Ltd.
-// Ralph Potter Codeplay Software Ltd.
-// Luke Iwanski Codeplay Software Ltd.
-// Contact: <eigen@codeplay.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-/*****************************************************************
- * TensroSyclTuple.h
- *
- * \brief:
- * Minimal implementation of std::tuple that can be used inside a SYCL kernel.
- *
-*****************************************************************/
-
-#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
-#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
-namespace utility {
-namespace tuple {
-/// \struct StaticIf
-/// \brief The StaticIf struct is used to statically choose the type based on the
-/// condition.
-template <bool, typename T = void> struct StaticIf;
-/// \brief specialisation of the \ref StaticIf when the condition is true
-template <typename T>
-struct StaticIf<true, T> {
- typedef T type;
-};
-
-/// \struct Tuple
-/// \brief is a fixed-size collection of heterogeneous values
-/// \tparam Ts... - the types of the elements that the tuple stores.
-/// Empty list is supported.
-template <class... Ts>
-struct Tuple {};
-
-/// \brief specialisation of the \ref Tuple class when the tuple has at least
-/// one element.
-/// \tparam T : the type of the first element in the tuple.
-/// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty.
-template <class T, class... Ts>
-struct Tuple<T, Ts...> {
- Tuple(T t, Ts... ts) : head(t), tail(ts...) {}
- T head;
- Tuple<Ts...> tail;
-};
-
-///\ struct ElemTypeHolder
-/// \brief ElemTypeHolder class is used to specify the types of the
-/// elements inside the tuple
-/// \tparam size_t the number of elements inside the tuple
-/// \tparam class the tuple class
-template <size_t, class>
-struct ElemTypeHolder;
-
-/// \brief specialisation of the \ref ElemTypeHolder class when the number of
-/// elements inside the tuple is 1
-template <class T, class... Ts>
-struct ElemTypeHolder<0, Tuple<T, Ts...> > {
- typedef T type;
-};
-
-/// \brief specialisation of the \ref ElemTypeHolder class when the number of
-/// elements inside the tuple is bigger than 1. It recursively calls itself to
-/// detect the type of each element in the tuple
-/// \tparam T : the type of the first element in the tuple.
-/// \tparam Ts... the rest of the elements in the tuple. Ts... can be empty.
-/// \tparam K is the Kth element in the tuple
-template <size_t k, class T, class... Ts>
-struct ElemTypeHolder<k, Tuple<T, Ts...> > {
- typedef typename ElemTypeHolder<k - 1, Tuple<Ts...> >::type type;
-};
-
-/// get
-/// \brief Extracts the first element from the tuple.
-/// K=0 represents the first element of the tuple. The tuple cannot be empty.
-/// \tparam Ts... are the type of the elements in the tuple.
-/// \param t is the tuple whose contents to extract
-/// \return typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type
-
-#define TERMINATE_CONDS_TUPLE_GET(CVQual) \
-template <size_t k, class... Ts> \
-typename StaticIf<k == 0, CVQual typename ElemTypeHolder<0, Tuple<Ts...> >::type &>::type \
-get(CVQual Tuple<Ts...> &t) { \
- static_assert(sizeof...(Ts)!=0, "The requseted value is bigger than the size of the tuple"); \
- return t.head; \
-}
-
-TERMINATE_CONDS_TUPLE_GET(const)
-TERMINATE_CONDS_TUPLE_GET()
-#undef TERMINATE_CONDS_TUPLE_GET
-/// get
-/// \brief Extracts the Kth element from the tuple.
-///\tparam K is an integer value in [0,sizeof...(Types)).
-/// \tparam T is the (sizeof...(Types) -(K+1)) element in the tuple
-/// \tparam Ts... are the type of the elements in the tuple.
-/// \param t is the tuple whose contents to extract
-/// \return typename ElemTypeHolder<K, Tuple<Ts...> >::type &>::type
-#define RECURSIVE_TUPLE_GET(CVQual) \
-template <size_t k, class T, class... Ts> \
-typename StaticIf<k != 0, CVQual typename ElemTypeHolder<k, Tuple<T, Ts...> >::type &>::type \
-get(CVQual Tuple<T, Ts...> &t) { \
- return utility::tuple::get<k - 1>(t.tail); \
-}
-RECURSIVE_TUPLE_GET(const)
-RECURSIVE_TUPLE_GET()
-#undef RECURSIVE_TUPLE_GET
-
-/// make_tuple
-/// \brief Creates a tuple object, deducing the target type from the types of
-/// arguments.
-/// \tparam Args the type of the arguments to construct the tuple from
-/// \param args zero or more arguments to construct the tuple from
-/// \return Tuple<Args...>
-template <typename... Args>
-Tuple<Args...> make_tuple(Args... args) {
- return Tuple<Args...>(args...);
-}
-
-/// size
-/// \brief Provides access to the number of elements in a tuple as a
-/// compile-time constant expression.
-/// \tparam Args the type of the arguments to construct the tuple from
-/// \return size_t
-template <typename... Args>
-static constexpr size_t size(Tuple<Args...> &) {
- return sizeof...(Args);
-}
-
-/// \struct IndexList
-/// \brief Creates a list of index from the elements in the tuple
-/// \tparam Is... a list of index from [0 to sizeof...(tuple elements))
-template <size_t... Is>
-struct IndexList {};
-
-/// \struct RangeBuilder
-/// \brief Collects internal details for generating index ranges [MIN, MAX)
-/// Declare primary template for index range builder
-/// \tparam MIN is the starting index in the tuple
-/// \tparam N represents sizeof..(elemens)- sizeof...(Is)
-/// \tparam Is... are the list of generated index so far
-template <size_t MIN, size_t N, size_t... Is>
-struct RangeBuilder;
-
-// FIXME Doxygen has problems with recursive inheritance
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-/// \brief base Step: Specialisation of the \ref RangeBuilder when the
-/// MIN==MAX. In this case the Is... is [0 to sizeof...(tuple elements))
-/// \tparam MIN is the starting index of the tuple
-/// \tparam Is is [0 to sizeof...(tuple elements))
-template <size_t MIN, size_t... Is>
-struct RangeBuilder<MIN, MIN, Is...> {
- typedef IndexList<Is...> type;
-};
-
-/// Induction step: Specialisation of the RangeBuilder class when N!=MIN
-/// in this case we are recursively subtracting N by one and adding one
-/// index to Is... list until MIN==N
-/// \tparam MIN is the starting index in the tuple
-/// \tparam N represents sizeof..(elemens)- sizeof...(Is)
-/// \tparam Is... are the list of generated index so far
-template <size_t MIN, size_t N, size_t... Is>
-struct RangeBuilder : public RangeBuilder<MIN, N - 1, N - 1, Is...> {};
-#endif // EIGEN_PARSED_BY_DOXYGEN
-
-/// \brief IndexRange that returns a [MIN, MAX) index range
-/// \tparam MIN is the starting index in the tuple
-/// \tparam MAX is the size of the tuple
-template <size_t MIN, size_t MAX>
-struct IndexRange: RangeBuilder<MIN, MAX>::type {};
-
-/// append_base
-/// \brief unpacking the elements of the input tuple t and creating a new tuple
-/// by adding element a at the end of it.
-///\tparam Args... the type of the elements inside the tuple t
-/// \tparam T the type of the new element going to be added at the end of tuple
-/// \tparam I... is the list of index from [0 to sizeof...(t))
-/// \param t the tuple on which we want to append a.
-/// \param a the new elements going to be added to the tuple
-/// \return Tuple<Args..., T>
-template <typename... Args, typename T, size_t... I>
-Tuple<Args..., T> append_base(Tuple<Args...> t, T a,IndexList<I...>) {
- return utility::tuple::make_tuple(get<I>(t)..., a);
-}
-
-/// append
-/// \brief the deduction function for \ref append_base that automatically
-/// generate the \ref IndexRange
-///\tparam Args... the type of the elements inside the tuple t
-/// \tparam T the type of the new element going to be added at the end of tuple
-/// \param t the tuple on which we want to append a.
-/// \param a the new elements going to be added to the tuple
-/// \return Tuple<Args..., T>
-template <typename... Args, typename T>
-Tuple<Args..., T> append(Tuple<Args...> t, T a) {
- return utility::tuple::append_base(t, a, IndexRange<0, sizeof...(Args)>());
-}
-
-/// append_base
-/// \brief This is a specialisation of \ref append_base when we want to
-/// concatenate
-/// tuple t2 at the end of the tuple t1. Here we unpack both tuples, generate the
-/// IndexRange for each of them and create an output tuple T that contains both
-/// elements of t1 and t2.
-///\tparam Args1... the type of the elements inside the tuple t1
-///\tparam Args2... the type of the elements inside the tuple t2
-/// \tparam I1... is the list of index from [0 to sizeof...(t1))
-/// \tparam I2... is the list of index from [0 to sizeof...(t2))
-/// \param t1 is the tuple on which we want to append t2.
-/// \param t2 is the tuple that is going to be added on t1.
-/// \return Tuple<Args1..., Args2...>
-template <typename... Args1, typename... Args2, size_t... I1, size_t... I2>
-Tuple<Args1..., Args2...> append_base(Tuple<Args1...> t1, Tuple<Args2...> t2, IndexList<I1...>, IndexList<I2...>) {
- return utility::tuple::make_tuple(get<I1>(t1)...,get<I2>(t2)...);
-}
-
-/// append
-/// \brief deduction function for \ref append_base when we are appending tuple
-/// t1 by tuple t2. In this case the \ref IndexRange for both tuple are
-/// automatically generated.
-///\tparam Args1... the type of the elements inside the tuple t1
-///\tparam Args2... the type of the elements inside the tuple t2
-/// \param t1 is the tuple on which we want to append t2.
-/// \param t2 is the tuple that is going to be added on t1.
-/// \return Tuple<Args1..., Args2...>
-template <typename... Args1, typename... Args2>
-Tuple<Args1..., Args2...> append(Tuple<Args1...> t1,Tuple<Args2...> t2) {
- return utility::tuple::append_base(t1, t2, IndexRange<0, sizeof...(Args1)>(), IndexRange<0, sizeof...(Args2)>());
-}
-} // tuple
-} // utility
-#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCL_TUPLE_HPP
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h
deleted file mode 100644
index ffcf8b0..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h
+++ /dev/null
@@ -1,272 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
-#define EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
-
-namespace Eigen {
-namespace internal {
-
-
-template<typename Scalar, int Options>
-class compute_tensor_flags
-{
- enum {
- is_dynamic_size_storage = 1,
-
- is_aligned =
- (
- ((Options&DontAlign)==0) && (
-#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
- (!is_dynamic_size_storage)
-#else
- 0
-#endif
- |
-#if EIGEN_MAX_ALIGN_BYTES>0
- is_dynamic_size_storage
-#else
- 0
-#endif
- )
- ),
- packet_access_bit = packet_traits<Scalar>::Vectorizable && is_aligned ? PacketAccessBit : 0
- };
-
- public:
- enum { ret = packet_access_bit };
-};
-
-
-template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
-struct traits<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
-{
- typedef Scalar_ Scalar;
- typedef Dense StorageKind;
- typedef IndexType_ Index;
- static const int NumDimensions = NumIndices_;
- static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
- enum {
- Options = Options_,
- Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0 : LvalueBit)
- };
- template <typename T> struct MakePointer {
- typedef T* Type;
- };
-};
-
-
-template<typename Scalar_, typename Dimensions, int Options_, typename IndexType_>
-struct traits<TensorFixedSize<Scalar_, Dimensions, Options_, IndexType_> >
-{
- typedef Scalar_ Scalar;
- typedef Dense StorageKind;
- typedef IndexType_ Index;
- static const int NumDimensions = array_size<Dimensions>::value;
- static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
- enum {
- Options = Options_,
- Flags = compute_tensor_flags<Scalar_, Options_>::ret | (is_const<Scalar_>::value ? 0: LvalueBit)
- };
- template <typename T> struct MakePointer {
- typedef T* Type;
- };
-};
-
-
-template<typename PlainObjectType, int Options_, template <class> class MakePointer_>
-struct traits<TensorMap<PlainObjectType, Options_, MakePointer_> >
- : public traits<PlainObjectType>
-{
- typedef traits<PlainObjectType> BaseTraits;
- typedef typename BaseTraits::Scalar Scalar;
- typedef typename BaseTraits::StorageKind StorageKind;
- typedef typename BaseTraits::Index Index;
- static const int NumDimensions = BaseTraits::NumDimensions;
- static const int Layout = BaseTraits::Layout;
- enum {
- Options = Options_,
- Flags = BaseTraits::Flags
- };
- template <class T> struct MakePointer {
- // Intermediate typedef to workaround MSVC issue.
- typedef MakePointer_<T> MakePointerT;
- typedef typename MakePointerT::Type Type;
- };
-};
-
-template<typename PlainObjectType>
-struct traits<TensorRef<PlainObjectType> >
- : public traits<PlainObjectType>
-{
- typedef traits<PlainObjectType> BaseTraits;
- typedef typename BaseTraits::Scalar Scalar;
- typedef typename BaseTraits::StorageKind StorageKind;
- typedef typename BaseTraits::Index Index;
- static const int NumDimensions = BaseTraits::NumDimensions;
- static const int Layout = BaseTraits::Layout;
- enum {
- Options = BaseTraits::Options,
- Flags = BaseTraits::Flags
- };
-};
-
-
-template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
-struct eval<Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
-{
- typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type;
-};
-
-template<typename _Scalar, int NumIndices_, int Options, typename IndexType_>
-struct eval<const Tensor<_Scalar, NumIndices_, Options, IndexType_>, Eigen::Dense>
-{
- typedef const Tensor<_Scalar, NumIndices_, Options, IndexType_>& type;
-};
-
-template<typename Scalar_, typename Dimensions, int Options, typename IndexType_>
-struct eval<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense>
-{
- typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
-};
-
-template<typename Scalar_, typename Dimensions, int Options, typename IndexType_>
-struct eval<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>, Eigen::Dense>
-{
- typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
-};
-
-template<typename PlainObjectType, int Options, template <class> class MakePointer>
-struct eval<TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense>
-{
- typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
-};
-
-template<typename PlainObjectType, int Options, template <class> class MakePointer>
-struct eval<const TensorMap<PlainObjectType, Options, MakePointer>, Eigen::Dense>
-{
- typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
-};
-
-template<typename PlainObjectType>
-struct eval<TensorRef<PlainObjectType>, Eigen::Dense>
-{
- typedef const TensorRef<PlainObjectType>& type;
-};
-
-template<typename PlainObjectType>
-struct eval<const TensorRef<PlainObjectType>, Eigen::Dense>
-{
- typedef const TensorRef<PlainObjectType>& type;
-};
-
-// TODO nested<> does not exist anymore in Eigen/Core, and it thus has to be removed in favor of ref_selector.
-template<typename T, int n=1, typename PlainObject = void> struct nested
-{
- typedef typename ref_selector<T>::type type;
-};
-
-template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
-struct nested<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
-{
- typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type;
-};
-
-template <typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
-struct nested<const Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
-{
- typedef const Tensor<Scalar_, NumIndices_, Options_, IndexType_>& type;
-};
-
-template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
-struct nested<TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> >
-{
- typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
-};
-
-template <typename Scalar_, typename Dimensions, int Options, typename IndexType_>
-struct nested<const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_> >
-{
- typedef const TensorFixedSize<Scalar_, Dimensions, Options, IndexType_>& type;
-};
-
-
-template <typename PlainObjectType, int Options, template <class> class MakePointer>
-struct nested<TensorMap<PlainObjectType, Options, MakePointer> >
-{
- typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
-};
-
-template <typename PlainObjectType, int Options, template <class> class MakePointer>
-struct nested<const TensorMap<PlainObjectType, Options, MakePointer> >
-{
- typedef const TensorMap<PlainObjectType, Options, MakePointer>& type;
-};
-
-template <typename PlainObjectType>
-struct nested<TensorRef<PlainObjectType> >
-{
- typedef const TensorRef<PlainObjectType>& type;
-};
-
-template <typename PlainObjectType>
-struct nested<const TensorRef<PlainObjectType> >
-{
- typedef const TensorRef<PlainObjectType>& type;
-};
-
-} // end namespace internal
-
-// Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C,
-// R, B), and convolve it with a set of filters, which can also be presented as
-// a tensor (D, K, K, M), where M is the number of filters, K is the filter
-// size, and each 3-dimensional tensor of size (D, K, K) is a filter. For
-// simplicity we assume that we always use square filters (which is usually the
-// case in images), hence the two Ks in the tensor dimension. It also takes in
-// a few additional parameters:
-// Stride (S): The convolution stride is the offset between locations where we
-// apply the filters. A larger stride means that the output will be
-// spatially smaller.
-// Padding (P): The padding we apply to the input tensor along the R and C
-// dimensions. This is usually used to make sure that the spatial
-// dimensions of the output matches our intention.
-//
-// Two types of padding are often used:
-// SAME: The pad value is computed so that the output will have size
-// R/S and C/S.
-// VALID: no padding is carried out.
-// When we do padding, the padded values at the padded locations are usually
-// zero.
-//
-// The output dimensions for convolution, when given all the parameters above,
-// are as follows:
-// When Padding = SAME: the output size is (B, R', C', M), where
-// R' = ceil(float(R) / float(S))
-// C' = ceil(float(C) / float(S))
-// where ceil is the ceiling function. The input tensor is padded with 0 as
-// needed. The number of padded rows and columns are computed as:
-// Pr = ((R' - 1) * S + K - R) / 2
-// Pc = ((C' - 1) * S + K - C) / 2
-// when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2.
-// This is where SAME comes from - the output has the same size as the input has.
-// When Padding = VALID: the output size is computed as
-// R' = ceil(float(R - K + 1) / float(S))
-// C' = ceil(float(C - K + 1) / float(S))
-// and the number of padded rows and columns are computed in the same way as in
-// the SAME case.
-// When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0,
-// Pc=0.
-typedef enum {
- PADDING_VALID = 1,
- PADDING_SAME = 2
-} PaddingType;
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
deleted file mode 100644
index 3523e7c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h
+++ /dev/null
@@ -1,248 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
-#define EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
-
-namespace Eigen {
-namespace internal {
-
-
-template <uint64_t n>
-struct static_val {
- static const uint64_t value = n;
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator uint64_t() const { return n; }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val() { }
-
- template <typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static_val(const T& v) {
- eigen_assert(v == n);
- }
-};
-
-
-template <typename HIGH = uint64_t, typename LOW = uint64_t>
-struct TensorUInt128
-{
- HIGH high;
- LOW low;
-
- template<typename OTHER_HIGH, typename OTHER_LOW>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- TensorUInt128(const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) : high(other.high), low(other.low) {
- EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- template<typename OTHER_HIGH, typename OTHER_LOW>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- TensorUInt128& operator = (const TensorUInt128<OTHER_HIGH, OTHER_LOW>& other) {
- EIGEN_STATIC_ASSERT(sizeof(OTHER_HIGH) <= sizeof(HIGH), YOU_MADE_A_PROGRAMMING_MISTAKE);
- EIGEN_STATIC_ASSERT(sizeof(OTHER_LOW) <= sizeof(LOW), YOU_MADE_A_PROGRAMMING_MISTAKE);
- high = other.high;
- low = other.low;
- return *this;
- }
-
- template<typename T>
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- explicit TensorUInt128(const T& x) : high(0), low(x) {
- eigen_assert((static_cast<typename conditional<sizeof(T) == 8, uint64_t, uint32_t>::type>(x) <= NumTraits<uint64_t>::highest()));
- eigen_assert(x >= 0);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- TensorUInt128(HIGH y, LOW x) : high(y), low(x) { }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE operator LOW() const {
- return low;
- }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LOW lower() const {
- return low;
- }
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HIGH upper() const {
- return high;
- }
-};
-
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-bool operator == (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- return (lhs.high == rhs.high) & (lhs.low == rhs.low);
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-bool operator != (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- return (lhs.high != rhs.high) | (lhs.low != rhs.low);
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-bool operator >= (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- if (lhs.high != rhs.high) {
- return lhs.high > rhs.high;
- }
- return lhs.low >= rhs.low;
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-bool operator < (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- if (lhs.high != rhs.high) {
- return lhs.high < rhs.high;
- }
- return lhs.low < rhs.low;
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-TensorUInt128<uint64_t, uint64_t> operator + (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- TensorUInt128<uint64_t, uint64_t> result(lhs.high + rhs.high, lhs.low + rhs.low);
- if (result.low < rhs.low) {
- result.high += 1;
- }
- return result;
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
-TensorUInt128<uint64_t, uint64_t> operator - (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- TensorUInt128<uint64_t, uint64_t> result(lhs.high - rhs.high, lhs.low - rhs.low);
- if (result.low > lhs.low) {
- result.high -= 1;
- }
- return result;
-}
-
-
-template <typename HL, typename LL, typename HR, typename LR>
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-TensorUInt128<uint64_t, uint64_t> operator * (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- // Split each 128-bit integer into 4 32-bit integers, and then do the
- // multiplications by hand as follow:
- // lhs a b c d
- // rhs e f g h
- // -----------
- // ah bh ch dh
- // bg cg dg
- // cf df
- // de
- // The result is stored in 2 64bit integers, high and low.
-
- const uint64_t LOW = 0x00000000FFFFFFFFLL;
- const uint64_t HIGH = 0xFFFFFFFF00000000LL;
-
- uint64_t d = lhs.low & LOW;
- uint64_t c = (lhs.low & HIGH) >> 32LL;
- uint64_t b = lhs.high & LOW;
- uint64_t a = (lhs.high & HIGH) >> 32LL;
-
- uint64_t h = rhs.low & LOW;
- uint64_t g = (rhs.low & HIGH) >> 32LL;
- uint64_t f = rhs.high & LOW;
- uint64_t e = (rhs.high & HIGH) >> 32LL;
-
- // Compute the low 32 bits of low
- uint64_t acc = d * h;
- uint64_t low = acc & LOW;
- // Compute the high 32 bits of low. Add a carry every time we wrap around
- acc >>= 32LL;
- uint64_t carry = 0;
- uint64_t acc2 = acc + c * h;
- if (acc2 < acc) {
- carry++;
- }
- acc = acc2 + d * g;
- if (acc < acc2) {
- carry++;
- }
- low |= (acc << 32LL);
-
- // Carry forward the high bits of acc to initiate the computation of the
- // low 32 bits of high
- acc2 = (acc >> 32LL) | (carry << 32LL);
- carry = 0;
-
- acc = acc2 + b * h;
- if (acc < acc2) {
- carry++;
- }
- acc2 = acc + c * g;
- if (acc2 < acc) {
- carry++;
- }
- acc = acc2 + d * f;
- if (acc < acc2) {
- carry++;
- }
- uint64_t high = acc & LOW;
-
- // Start to compute the high 32 bits of high.
- acc2 = (acc >> 32LL) | (carry << 32LL);
-
- acc = acc2 + a * h;
- acc2 = acc + b * g;
- acc = acc2 + c * f;
- acc2 = acc + d * e;
- high |= (acc2 << 32LL);
-
- return TensorUInt128<uint64_t, uint64_t>(high, low);
-}
-
-template <typename HL, typename LL, typename HR, typename LR>
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-TensorUInt128<uint64_t, uint64_t> operator / (const TensorUInt128<HL, LL>& lhs, const TensorUInt128<HR, LR>& rhs)
-{
- if (rhs == TensorUInt128<static_val<0>, static_val<1> >(1)) {
- return TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
- } else if (lhs < rhs) {
- return TensorUInt128<uint64_t, uint64_t>(0);
- } else {
- // calculate the biggest power of 2 times rhs that's less than or equal to lhs
- TensorUInt128<uint64_t, uint64_t> power2(1);
- TensorUInt128<uint64_t, uint64_t> d(rhs);
- TensorUInt128<uint64_t, uint64_t> tmp(lhs - d);
- while (lhs >= d) {
- tmp = tmp - d;
- d = d + d;
- power2 = power2 + power2;
- }
-
- tmp = TensorUInt128<uint64_t, uint64_t>(lhs.high, lhs.low);
- TensorUInt128<uint64_t, uint64_t> result(0);
- while (power2 != TensorUInt128<static_val<0>, static_val<0> >(0)) {
- if (tmp >= d) {
- tmp = tmp - d;
- result = result + power2;
- }
- // Shift right
- power2 = TensorUInt128<uint64_t, uint64_t>(power2.high >> 1, (power2.low >> 1) | (power2.high << 63));
- d = TensorUInt128<uint64_t, uint64_t>(d.high >> 1, (d.low >> 1) | (d.high << 63));
- }
-
- return result;
- }
-}
-
-
-} // namespace internal
-} // namespace Eigen
-
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_UINT128_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h b/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
deleted file mode 100644
index 0ca2cac..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
+++ /dev/null
@@ -1,608 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
-#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
-
-namespace Eigen {
-
-/** \class TensorVolumePatch
- * \ingroup CXX11_Tensor_Module
- *
- * \brief Patch extraction specialized for processing of volumetric data.
- * This assumes that the input has a least 4 dimensions ordered as follows:
- * - channels
- * - planes
- * - rows
- * - columns
- * - (optional) additional dimensions such as time or batch size.
- * Calling the volume patch code with patch_planes, patch_rows, and patch_cols
- * is equivalent to calling the regular patch extraction code with parameters
- * d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
- * dimensions.
- */
-namespace internal {
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
-{
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef traits<XprType> XprTraits;
- typedef typename XprTraits::StorageKind StorageKind;
- typedef typename XprTraits::Index Index;
- typedef typename XprType::Nested Nested;
- typedef typename remove_reference<Nested>::type _Nested;
- static const int NumDimensions = XprTraits::NumDimensions + 1;
- static const int Layout = XprTraits::Layout;
-};
-
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
-{
- typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
-};
-
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
-struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
-{
- typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
-};
-
-} // end namespace internal
-
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
-class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
-{
- public:
- typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
- typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
- typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
- DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
- DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
- DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
- PaddingType padding_type, Scalar padding_value)
- : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
- m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
- m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
- m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
- m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
- m_padding_type(padding_type), m_padding_value(padding_value) {}
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
- DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
- DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
- DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
- DenseIndex padding_top_z, DenseIndex padding_bottom_z,
- DenseIndex padding_top, DenseIndex padding_bottom,
- DenseIndex padding_left, DenseIndex padding_right,
- Scalar padding_value)
- : m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
- m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
- m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
- m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
- m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
- m_padding_left(padding_left), m_padding_right(padding_right),
- m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
-
- EIGEN_DEVICE_FUNC
- DenseIndex patch_planes() const { return m_patch_planes; }
- EIGEN_DEVICE_FUNC
- DenseIndex patch_rows() const { return m_patch_rows; }
- EIGEN_DEVICE_FUNC
- DenseIndex patch_cols() const { return m_patch_cols; }
- EIGEN_DEVICE_FUNC
- DenseIndex plane_strides() const { return m_plane_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex row_strides() const { return m_row_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex col_strides() const { return m_col_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex in_plane_strides() const { return m_in_plane_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex in_row_strides() const { return m_in_row_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex in_col_strides() const { return m_in_col_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
- EIGEN_DEVICE_FUNC
- DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
- EIGEN_DEVICE_FUNC
- bool padding_explicit() const { return m_padding_explicit; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_top_z() const { return m_padding_top_z; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_top() const { return m_padding_top; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_bottom() const { return m_padding_bottom; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_left() const { return m_padding_left; }
- EIGEN_DEVICE_FUNC
- DenseIndex padding_right() const { return m_padding_right; }
- EIGEN_DEVICE_FUNC
- PaddingType padding_type() const { return m_padding_type; }
- EIGEN_DEVICE_FUNC
- Scalar padding_value() const { return m_padding_value; }
-
- EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename XprType::Nested>::type&
- expression() const { return m_xpr; }
-
- protected:
- typename XprType::Nested m_xpr;
- const DenseIndex m_patch_planes;
- const DenseIndex m_patch_rows;
- const DenseIndex m_patch_cols;
- const DenseIndex m_plane_strides;
- const DenseIndex m_row_strides;
- const DenseIndex m_col_strides;
- const DenseIndex m_in_plane_strides;
- const DenseIndex m_in_row_strides;
- const DenseIndex m_in_col_strides;
- const DenseIndex m_plane_inflate_strides;
- const DenseIndex m_row_inflate_strides;
- const DenseIndex m_col_inflate_strides;
- const bool m_padding_explicit;
- const DenseIndex m_padding_top_z;
- const DenseIndex m_padding_bottom_z;
- const DenseIndex m_padding_top;
- const DenseIndex m_padding_bottom;
- const DenseIndex m_padding_left;
- const DenseIndex m_padding_right;
- const PaddingType m_padding_type;
- const Scalar m_padding_value;
-};
-
-
-// Eval as rvalue
-template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
-struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
-{
- typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
- typedef typename XprType::Index Index;
- static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
- static const int NumDims = NumInputDims + 1;
- typedef DSizes<Index, NumDims> Dimensions;
- typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
-
- enum {
- IsAligned = false,
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
- BlockAccess = false,
- Layout = TensorEvaluator<ArgType, Device>::Layout,
- CoordAccess = false,
- RawAccess = false
- };
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device)
- {
- EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- m_paddingValue = op.padding_value();
-
- const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
-
- // Cache a few variables.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_inputDepth = input_dims[0];
- m_inputPlanes = input_dims[1];
- m_inputRows = input_dims[2];
- m_inputCols = input_dims[3];
- } else {
- m_inputDepth = input_dims[NumInputDims-1];
- m_inputPlanes = input_dims[NumInputDims-2];
- m_inputRows = input_dims[NumInputDims-3];
- m_inputCols = input_dims[NumInputDims-4];
- }
-
- m_plane_strides = op.plane_strides();
- m_row_strides = op.row_strides();
- m_col_strides = op.col_strides();
-
- // Input strides and effective input/patch size
- m_in_plane_strides = op.in_plane_strides();
- m_in_row_strides = op.in_row_strides();
- m_in_col_strides = op.in_col_strides();
- m_plane_inflate_strides = op.plane_inflate_strides();
- m_row_inflate_strides = op.row_inflate_strides();
- m_col_inflate_strides = op.col_inflate_strides();
-
- // The "effective" spatial size after inflating data with zeros.
- m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
- m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
- m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
- m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
- m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
- m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
-
- if (op.padding_explicit()) {
- m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
- m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
- m_planePaddingTop = op.padding_top_z();
- m_rowPaddingTop = op.padding_top();
- m_colPaddingLeft = op.padding_left();
- } else {
- // Computing padding from the type
- switch (op.padding_type()) {
- case PADDING_VALID:
- m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
- m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
- m_planePaddingTop = 0;
- m_rowPaddingTop = 0;
- m_colPaddingLeft = 0;
- break;
- case PADDING_SAME: {
- m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
- m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
- m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
- const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
- const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
- const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
- m_planePaddingTop = dz - dz / 2;
- m_rowPaddingTop = dy - dy / 2;
- m_colPaddingLeft = dx - dx / 2;
- break;
- }
- default:
- eigen_assert(false && "unexpected padding");
- }
- }
- eigen_assert(m_outputRows > 0);
- eigen_assert(m_outputCols > 0);
- eigen_assert(m_outputPlanes > 0);
-
- // Dimensions for result of extraction.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- // ColMajor
- // 0: depth
- // 1: patch_planes
- // 2: patch_rows
- // 3: patch_cols
- // 4: number of patches
- // 5 and beyond: anything else (such as batch).
- m_dimensions[0] = input_dims[0];
- m_dimensions[1] = op.patch_planes();
- m_dimensions[2] = op.patch_rows();
- m_dimensions[3] = op.patch_cols();
- m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
- for (int i = 5; i < NumDims; ++i) {
- m_dimensions[i] = input_dims[i-1];
- }
- } else {
- // RowMajor
- // NumDims-1: depth
- // NumDims-2: patch_planes
- // NumDims-3: patch_rows
- // NumDims-4: patch_cols
- // NumDims-5: number of patches
- // NumDims-6 and beyond: anything else (such as batch).
- m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
- m_dimensions[NumDims-2] = op.patch_planes();
- m_dimensions[NumDims-3] = op.patch_rows();
- m_dimensions[NumDims-4] = op.patch_cols();
- m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
- for (int i = NumDims-6; i >= 0; --i) {
- m_dimensions[i] = input_dims[i];
- }
- }
-
- // Strides for the output tensor.
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_rowStride = m_dimensions[1];
- m_colStride = m_dimensions[2] * m_rowStride;
- m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
- m_otherStride = m_patchStride * m_dimensions[4];
- } else {
- m_rowStride = m_dimensions[NumDims-2];
- m_colStride = m_dimensions[NumDims-3] * m_rowStride;
- m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
- m_otherStride = m_patchStride * m_dimensions[NumDims-5];
- }
-
- // Strides for navigating through the input tensor.
- m_planeInputStride = m_inputDepth;
- m_rowInputStride = m_inputDepth * m_inputPlanes;
- m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
- m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
-
- m_outputPlanesRows = m_outputPlanes * m_outputRows;
-
- // Fast representations of different variables.
- m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
- m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
- m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
- m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
- m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
- m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
- m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
- m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
- m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
- m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
-
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
- m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
- } else {
- m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
- }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
- m_impl.evalSubExprsIfNeeded(NULL);
- return true;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
- m_impl.cleanup();
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- // Patch index corresponding to the passed in index.
- const Index patchIndex = index / m_fastPatchStride;
-
- // Spatial offset within the patch. This has to be translated into 3D
- // coordinates within the patch.
- const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
-
- // Batch, etc.
- const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
- const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
-
- // Calculate column index in the input original tensor.
- const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
- const Index colOffset = patchOffset / m_fastColStride;
- const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
- const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
- if (inputCol < 0 || inputCol >= m_input_cols_eff ||
- ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
- return Scalar(m_paddingValue);
- }
-
- // Calculate row index in the original input tensor.
- const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
- const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
- const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
- const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
- if (inputRow < 0 || inputRow >= m_input_rows_eff ||
- ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
- return Scalar(m_paddingValue);
- }
-
- // Calculate plane index in the original input tensor.
- const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
- const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
- const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
- const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
- if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
- ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
- return Scalar(m_paddingValue);
- }
-
- const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
- const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
-
- const Index inputIndex = depth +
- origInputRow * m_rowInputStride +
- origInputCol * m_colInputStride +
- origInputPlane * m_planeInputStride +
- otherIndex * m_otherInputStride;
-
- return m_impl.coeff(inputIndex);
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
- {
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
-
- if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
- m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
- return packetWithPossibleZero(index);
- }
-
- const Index indices[2] = {index, index + PacketSize - 1};
- const Index patchIndex = indices[0] / m_fastPatchStride;
- if (patchIndex != indices[1] / m_fastPatchStride) {
- return packetWithPossibleZero(index);
- }
- const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
- eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
-
- // Find the offset of the element wrt the location of the first element.
- const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
- (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
-
- const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
- eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
-
- const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
- const Index colOffsets[2] = {
- patchOffsets[0] / m_fastColStride,
- patchOffsets[1] / m_fastColStride};
-
- // Calculate col indices in the original input tensor.
- const Index inputCols[2] = {
- colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
- colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
- if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
- return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
- }
-
- if (inputCols[0] != inputCols[1]) {
- return packetWithPossibleZero(index);
- }
-
- const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
- const Index rowOffsets[2] = {
- (patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
- (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
- eigen_assert(rowOffsets[0] <= rowOffsets[1]);
- // Calculate col indices in the original input tensor.
- const Index inputRows[2] = {
- rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
- rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
-
- if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
- return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
- }
-
- if (inputRows[0] != inputRows[1]) {
- return packetWithPossibleZero(index);
- }
-
- const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
- const Index planeOffsets[2] = {
- patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
- patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
- eigen_assert(planeOffsets[0] <= planeOffsets[1]);
- const Index inputPlanes[2] = {
- planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
- planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
-
- if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
- return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
- }
-
- if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
- // no padding
- const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
- const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
- const Index inputIndex = depth +
- inputRows[0] * m_rowInputStride +
- inputCols[0] * m_colInputStride +
- m_planeInputStride * inputPlanes[0] +
- otherIndex * m_otherInputStride;
- return m_impl.template packet<Unaligned>(inputIndex);
- }
-
- return packetWithPossibleZero(index);
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
- costPerCoeff(bool vectorized) const {
- const double compute_cost =
- 10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() +
- 8 * TensorOpCost::AddCost<Index>();
- return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
- }
-
- EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
-
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
-
- Index planePaddingTop() const { return m_planePaddingTop; }
- Index rowPaddingTop() const { return m_rowPaddingTop; }
- Index colPaddingLeft() const { return m_colPaddingLeft; }
- Index outputPlanes() const { return m_outputPlanes; }
- Index outputRows() const { return m_outputRows; }
- Index outputCols() const { return m_outputCols; }
- Index userPlaneStride() const { return m_plane_strides; }
- Index userRowStride() const { return m_row_strides; }
- Index userColStride() const { return m_col_strides; }
- Index userInPlaneStride() const { return m_in_plane_strides; }
- Index userInRowStride() const { return m_in_row_strides; }
- Index userInColStride() const { return m_in_col_strides; }
- Index planeInflateStride() const { return m_plane_inflate_strides; }
- Index rowInflateStride() const { return m_row_inflate_strides; }
- Index colInflateStride() const { return m_col_inflate_strides; }
-
- protected:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
- {
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
- for (int i = 0; i < PacketSize; ++i) {
- values[i] = coeff(index+i);
- }
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
- return rslt;
- }
-
- Dimensions m_dimensions;
-
- // Parameters passed to the costructor.
- Index m_plane_strides;
- Index m_row_strides;
- Index m_col_strides;
-
- Index m_outputPlanes;
- Index m_outputRows;
- Index m_outputCols;
-
- Index m_planePaddingTop;
- Index m_rowPaddingTop;
- Index m_colPaddingLeft;
-
- Index m_in_plane_strides;
- Index m_in_row_strides;
- Index m_in_col_strides;
-
- Index m_plane_inflate_strides;
- Index m_row_inflate_strides;
- Index m_col_inflate_strides;
-
- // Cached input size.
- Index m_inputDepth;
- Index m_inputPlanes;
- Index m_inputRows;
- Index m_inputCols;
-
- // Other cached variables.
- Index m_outputPlanesRows;
-
- // Effective input/patch post-inflation size.
- Index m_input_planes_eff;
- Index m_input_rows_eff;
- Index m_input_cols_eff;
- Index m_patch_planes_eff;
- Index m_patch_rows_eff;
- Index m_patch_cols_eff;
-
- // Strides for the output tensor.
- Index m_otherStride;
- Index m_patchStride;
- Index m_rowStride;
- Index m_colStride;
-
- // Strides for the input tensor.
- Index m_planeInputStride;
- Index m_rowInputStride;
- Index m_colInputStride;
- Index m_otherInputStride;
-
- internal::TensorIntDivisor<Index> m_fastOtherStride;
- internal::TensorIntDivisor<Index> m_fastPatchStride;
- internal::TensorIntDivisor<Index> m_fastColStride;
- internal::TensorIntDivisor<Index> m_fastRowStride;
- internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
- internal::TensorIntDivisor<Index> m_fastInputRowStride;
- internal::TensorIntDivisor<Index> m_fastInputColStride;
- internal::TensorIntDivisor<Index> m_fastInputColsEff;
- internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
- internal::TensorIntDivisor<Index> m_fastOutputPlanes;
- internal::TensorIntDivisor<Index> m_fastOutputDepth;
-
- Scalar m_paddingValue;
-
- TensorEvaluator<ArgType, Device> m_impl;
-};
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h b/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h
deleted file mode 100644
index bc4f202..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h
+++ /dev/null
@@ -1,293 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H
-#define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H
-
-namespace Eigen {
-
-class DynamicSGroup
-{
- public:
- inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { m_elements.push_back(ge(Generator(0, 0, 0))); }
- inline DynamicSGroup(const DynamicSGroup& o) : m_numIndices(o.m_numIndices), m_elements(o.m_elements), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { }
- inline DynamicSGroup(DynamicSGroup&& o) : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { std::swap(m_elements, o.m_elements); }
- inline DynamicSGroup& operator=(const DynamicSGroup& o) { m_numIndices = o.m_numIndices; m_elements = o.m_elements; m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; }
- inline DynamicSGroup& operator=(DynamicSGroup&& o) { m_numIndices = o.m_numIndices; std::swap(m_elements, o.m_elements); m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; }
-
- void add(int one, int two, int flags = 0);
-
- template<typename Gen_>
- inline void add(Gen_) { add(Gen_::One, Gen_::Two, Gen_::Flags); }
- inline void addSymmetry(int one, int two) { add(one, two, 0); }
- inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); }
- inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); }
- inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); }
-
- template<typename Op, typename RV, typename Index, std::size_t N, typename... Args>
- inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const
- {
- eigen_assert(N >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
- for (std::size_t i = 0; i < size(); i++)
- initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, initial, std::forward<Args>(args)...);
- return initial;
- }
-
- template<typename Op, typename RV, typename Index, typename... Args>
- inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const
- {
- eigen_assert(idx.size() >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
- for (std::size_t i = 0; i < size(); i++)
- initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...);
- return initial;
- }
-
- inline int globalFlags() const { return m_globalFlags; }
- inline std::size_t size() const { return m_elements.size(); }
-
- template<typename Tensor_, typename... IndexTypes>
- inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const
- {
- static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
- return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}});
- }
-
- template<typename Tensor_>
- inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const
- {
- return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices);
- }
- private:
- struct GroupElement {
- std::vector<int> representation;
- int flags;
- bool isId() const
- {
- for (std::size_t i = 0; i < representation.size(); i++)
- if (i != (size_t)representation[i])
- return false;
- return true;
- }
- };
- struct Generator {
- int one;
- int two;
- int flags;
- constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {}
- };
-
- std::size_t m_numIndices;
- std::vector<GroupElement> m_elements;
- std::vector<Generator> m_generators;
- int m_globalFlags;
-
- template<typename Index, std::size_t N, int... n>
- inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, internal::numeric_list<int, n...>) const
- {
- return std::array<Index, N>{{ idx[n >= m_numIndices ? n : m_elements[which].representation[n]]... }};
- }
-
- template<typename Index>
- inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const
- {
- std::vector<Index> result;
- result.reserve(idx.size());
- for (auto k : m_elements[which].representation)
- result.push_back(idx[k]);
- for (std::size_t i = m_numIndices; i < idx.size(); i++)
- result.push_back(idx[i]);
- return result;
- }
-
- inline GroupElement ge(Generator const& g) const
- {
- GroupElement result;
- result.representation.reserve(m_numIndices);
- result.flags = g.flags;
- for (std::size_t k = 0; k < m_numIndices; k++) {
- if (k == (std::size_t)g.one)
- result.representation.push_back(g.two);
- else if (k == (std::size_t)g.two)
- result.representation.push_back(g.one);
- else
- result.representation.push_back(int(k));
- }
- return result;
- }
-
- GroupElement mul(GroupElement, GroupElement) const;
- inline GroupElement mul(Generator g1, GroupElement g2) const
- {
- return mul(ge(g1), g2);
- }
-
- inline GroupElement mul(GroupElement g1, Generator g2) const
- {
- return mul(g1, ge(g2));
- }
-
- inline GroupElement mul(Generator g1, Generator g2) const
- {
- return mul(ge(g1), ge(g2));
- }
-
- inline int findElement(GroupElement e) const
- {
- for (auto ee : m_elements) {
- if (ee.representation == e.representation)
- return ee.flags ^ e.flags;
- }
- return -1;
- }
-
- void updateGlobalFlags(int flagDiffOfSameGenerator);
-};
-
-// dynamic symmetry group that auto-adds the template parameters in the constructor
-template<typename... Gen>
-class DynamicSGroupFromTemplateArgs : public DynamicSGroup
-{
- public:
- inline DynamicSGroupFromTemplateArgs() : DynamicSGroup()
- {
- add_all(internal::type_list<Gen...>());
- }
- inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) { }
- inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) { }
- inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { DynamicSGroup::operator=(o); return *this; }
- inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { DynamicSGroup::operator=(o); return *this; }
-
- private:
- template<typename Gen1, typename... GenNext>
- inline void add_all(internal::type_list<Gen1, GenNext...>)
- {
- add(Gen1());
- add_all(internal::type_list<GenNext...>());
- }
-
- inline void add_all(internal::type_list<>)
- {
- }
-};
-
-inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const
-{
- eigen_internal_assert(g1.representation.size() == m_numIndices);
- eigen_internal_assert(g2.representation.size() == m_numIndices);
-
- GroupElement result;
- result.representation.reserve(m_numIndices);
- for (std::size_t i = 0; i < m_numIndices; i++) {
- int v = g2.representation[g1.representation[i]];
- eigen_assert(v >= 0);
- result.representation.push_back(v);
- }
- result.flags = g1.flags ^ g2.flags;
- return result;
-}
-
-inline void DynamicSGroup::add(int one, int two, int flags)
-{
- eigen_assert(one >= 0);
- eigen_assert(two >= 0);
- eigen_assert(one != two);
-
- if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) {
- std::size_t newNumIndices = (one > two) ? one : two + 1;
- for (auto& gelem : m_elements) {
- gelem.representation.reserve(newNumIndices);
- for (std::size_t i = m_numIndices; i < newNumIndices; i++)
- gelem.representation.push_back(i);
- }
- m_numIndices = newNumIndices;
- }
-
- Generator g{one, two, flags};
- GroupElement e = ge(g);
-
- /* special case for first generator */
- if (m_elements.size() == 1) {
- while (!e.isId()) {
- m_elements.push_back(e);
- e = mul(e, g);
- }
-
- if (e.flags > 0)
- updateGlobalFlags(e.flags);
-
- // only add in case we didn't have identity
- if (m_elements.size() > 1)
- m_generators.push_back(g);
- return;
- }
-
- int p = findElement(e);
- if (p >= 0) {
- updateGlobalFlags(p);
- return;
- }
-
- std::size_t coset_order = m_elements.size();
- m_elements.push_back(e);
- for (std::size_t i = 1; i < coset_order; i++)
- m_elements.push_back(mul(m_elements[i], e));
- m_generators.push_back(g);
-
- std::size_t coset_rep = coset_order;
- do {
- for (auto g : m_generators) {
- e = mul(m_elements[coset_rep], g);
- p = findElement(e);
- if (p < 0) {
- // element not yet in group
- m_elements.push_back(e);
- for (std::size_t i = 1; i < coset_order; i++)
- m_elements.push_back(mul(m_elements[i], e));
- } else if (p > 0) {
- updateGlobalFlags(p);
- }
- }
- coset_rep += coset_order;
- } while (coset_rep < m_elements.size());
-}
-
-inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator)
-{
- switch (flagDiffOfSameGenerator) {
- case 0:
- default:
- // nothing happened
- break;
- case NegationFlag:
- // every element is it's own negative => whole tensor is zero
- m_globalFlags |= GlobalZeroFlag;
- break;
- case ConjugationFlag:
- // every element is it's own conjugate => whole tensor is real
- m_globalFlags |= GlobalRealFlag;
- break;
- case (NegationFlag | ConjugationFlag):
- // every element is it's own negative conjugate => whole tensor is imaginary
- m_globalFlags |= GlobalImagFlag;
- break;
- /* NOTE:
- * since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator
- * causes the tensor to be real and the next one to be imaginary, this will
- * trivially give the correct result
- */
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h b/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h
deleted file mode 100644
index 942293b..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H
-#define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename list> struct tensor_static_symgroup_permutate;
-
-template<int... nn>
-struct tensor_static_symgroup_permutate<numeric_list<int, nn...>>
-{
- constexpr static std::size_t N = sizeof...(nn);
-
- template<typename T>
- constexpr static inline std::array<T, N> run(const std::array<T, N>& indices)
- {
- return {{indices[nn]...}};
- }
-};
-
-template<typename indices_, int flags_>
-struct tensor_static_symgroup_element
-{
- typedef indices_ indices;
- constexpr static int flags = flags_;
-};
-
-template<typename Gen, int N>
-struct tensor_static_symgroup_element_ctor
-{
- typedef tensor_static_symgroup_element<
- typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type,
- Gen::Flags
- > type;
-};
-
-template<int N>
-struct tensor_static_symgroup_identity_ctor
-{
- typedef tensor_static_symgroup_element<
- typename gen_numeric_list<int, N>::type,
- 0
- > type;
-};
-
-template<typename iib>
-struct tensor_static_symgroup_multiply_helper
-{
- template<int... iia>
- constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) {
- return numeric_list<int, get<iia, iib>::value...>();
- }
-};
-
-template<typename A, typename B>
-struct tensor_static_symgroup_multiply
-{
- private:
- typedef typename A::indices iia;
- typedef typename B::indices iib;
- constexpr static int ffa = A::flags;
- constexpr static int ffb = B::flags;
-
- public:
- static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices.");
-
- typedef tensor_static_symgroup_element<
- decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())),
- ffa ^ ffb
- > type;
-};
-
-template<typename A, typename B>
-struct tensor_static_symgroup_equality
-{
- typedef typename A::indices iia;
- typedef typename B::indices iib;
- constexpr static int ffa = A::flags;
- constexpr static int ffb = B::flags;
- static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices.");
-
- constexpr static bool value = is_same<iia, iib>::value;
-
- private:
- /* this should be zero if they are identical, or else the tensor
- * will be forced to be pure real, pure imaginary or even pure zero
- */
- constexpr static int flags_cmp_ = ffa ^ ffb;
-
- /* either they are not equal, then we don't care whether the flags
- * match, or they are equal, and then we have to check
- */
- constexpr static bool is_zero = value && flags_cmp_ == NegationFlag;
- constexpr static bool is_real = value && flags_cmp_ == ConjugationFlag;
- constexpr static bool is_imag = value && flags_cmp_ == (NegationFlag | ConjugationFlag);
-
- public:
- constexpr static int global_flags =
- (is_real ? GlobalRealFlag : 0) |
- (is_imag ? GlobalImagFlag : 0) |
- (is_zero ? GlobalZeroFlag : 0);
-};
-
-template<std::size_t NumIndices, typename... Gen>
-struct tensor_static_symgroup
-{
- typedef StaticSGroup<Gen...> type;
- constexpr static std::size_t size = type::static_size;
-};
-
-template<typename Index, std::size_t N, int... ii, int... jj>
-constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>)
-{
- return {{ idx[ii]..., idx[jj]... }};
-}
-
-template<typename Index, int... ii>
-static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>)
-{
- std::vector<Index> result{{ idx[ii]... }};
- std::size_t target_size = idx.size();
- for (std::size_t i = result.size(); i < target_size; i++)
- result.push_back(idx[i]);
- return result;
-}
-
-template<typename T> struct tensor_static_symgroup_do_apply;
-
-template<typename first, typename... next>
-struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>>
-{
- template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args>
- static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args)
- {
- static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices.");
- typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices;
- initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...);
- return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...);
- }
-
- template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args>
- static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args)
- {
- eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices.");
- initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...);
- return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...);
- }
-};
-
-template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)>
-struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>>
-{
- template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args>
- static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...)
- {
- // do nothing
- return initial;
- }
-
- template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args>
- static inline RV run(const std::vector<Index>&, RV initial, Args&&...)
- {
- // do nothing
- return initial;
- }
-};
-
-} // end namespace internal
-
-template<typename... Gen>
-class StaticSGroup
-{
- constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value;
- typedef internal::group_theory::enumerate_group_elements<
- internal::tensor_static_symgroup_multiply,
- internal::tensor_static_symgroup_equality,
- typename internal::tensor_static_symgroup_identity_ctor<NumIndices>::type,
- internal::type_list<typename internal::tensor_static_symgroup_element_ctor<Gen, NumIndices>::type...>
- > group_elements;
- typedef typename group_elements::type ge;
- public:
- constexpr inline StaticSGroup() {}
- constexpr inline StaticSGroup(const StaticSGroup<Gen...>&) {}
- constexpr inline StaticSGroup(StaticSGroup<Gen...>&&) {}
-
- template<typename Op, typename RV, typename Index, std::size_t N, typename... Args>
- static inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args)
- {
- return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...);
- }
-
- template<typename Op, typename RV, typename Index, typename... Args>
- static inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args)
- {
- eigen_assert(idx.size() == NumIndices);
- return internal::tensor_static_symgroup_do_apply<ge>::template run<Op, RV, NumIndices>(idx, initial, args...);
- }
-
- constexpr static std::size_t static_size = ge::count;
-
- constexpr static inline std::size_t size() {
- return ge::count;
- }
- constexpr static inline int globalFlags() { return group_elements::global_flags; }
-
- template<typename Tensor_, typename... IndexTypes>
- inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const
- {
- static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
- return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}});
- }
-
- template<typename Tensor_>
- inline internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const
- {
- return internal::tensor_symmetry_value_setter<Tensor_, StaticSGroup<Gen...>>(tensor, *this, indices);
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h b/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h
deleted file mode 100644
index 879d6cd..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h
+++ /dev/null
@@ -1,338 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H
-#define EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H
-
-namespace Eigen {
-
-enum {
- NegationFlag = 0x01,
- ConjugationFlag = 0x02
-};
-
-enum {
- GlobalRealFlag = 0x01,
- GlobalImagFlag = 0x02,
- GlobalZeroFlag = 0x03
-};
-
-namespace internal {
-
-template<std::size_t NumIndices, typename... Sym> struct tensor_symmetry_pre_analysis;
-template<std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup;
-template<bool instantiate, std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup_if;
-template<typename Tensor_> struct tensor_symmetry_calculate_flags;
-template<typename Tensor_> struct tensor_symmetry_assign_value;
-template<typename... Sym> struct tensor_symmetry_num_indices;
-
-} // end namespace internal
-
-template<int One_, int Two_>
-struct Symmetry
-{
- static_assert(One_ != Two_, "Symmetries must cover distinct indices.");
- constexpr static int One = One_;
- constexpr static int Two = Two_;
- constexpr static int Flags = 0;
-};
-
-template<int One_, int Two_>
-struct AntiSymmetry
-{
- static_assert(One_ != Two_, "Symmetries must cover distinct indices.");
- constexpr static int One = One_;
- constexpr static int Two = Two_;
- constexpr static int Flags = NegationFlag;
-};
-
-template<int One_, int Two_>
-struct Hermiticity
-{
- static_assert(One_ != Two_, "Symmetries must cover distinct indices.");
- constexpr static int One = One_;
- constexpr static int Two = Two_;
- constexpr static int Flags = ConjugationFlag;
-};
-
-template<int One_, int Two_>
-struct AntiHermiticity
-{
- static_assert(One_ != Two_, "Symmetries must cover distinct indices.");
- constexpr static int One = One_;
- constexpr static int Two = Two_;
- constexpr static int Flags = ConjugationFlag | NegationFlag;
-};
-
-/** \class DynamicSGroup
- * \ingroup TensorSymmetry_Module
- *
- * \brief Dynamic symmetry group
- *
- * The %DynamicSGroup class represents a symmetry group that need not be known at
- * compile time. It is useful if one wants to support arbitrary run-time defineable
- * symmetries for tensors, but it is also instantiated if a symmetry group is defined
- * at compile time that would be either too large for the compiler to reasonably
- * generate (using templates to calculate this at compile time is very inefficient)
- * or that the compiler could generate the group but that it wouldn't make sense to
- * unroll the loop for setting coefficients anymore.
- */
-class DynamicSGroup;
-
-/** \internal
- *
- * \class DynamicSGroupFromTemplateArgs
- * \ingroup TensorSymmetry_Module
- *
- * \brief Dynamic symmetry group, initialized from template arguments
- *
- * This class is a child class of DynamicSGroup. It uses the template arguments
- * specified to initialize itself.
- */
-template<typename... Gen>
-class DynamicSGroupFromTemplateArgs;
-
-/** \class StaticSGroup
- * \ingroup TensorSymmetry_Module
- *
- * \brief Static symmetry group
- *
- * This class represents a symmetry group that is known and resolved completely
- * at compile time. Ideally, no run-time penalty is incurred compared to the
- * manual unrolling of the symmetry.
- *
- * <b><i>CAUTION:</i></b>
- *
- * Do not use this class directly for large symmetry groups. The compiler
- * may run into a limit, or segfault or in the very least will take a very,
- * very, very long time to compile the code. Use the SGroup class instead
- * if you want a static group. That class contains logic that will
- * automatically select the DynamicSGroup class instead if the symmetry
- * group becomes too large. (In that case, unrolling may not even be
- * beneficial.)
- */
-template<typename... Gen>
-class StaticSGroup;
-
-/** \class SGroup
- * \ingroup TensorSymmetry_Module
- *
- * \brief Symmetry group, initialized from template arguments
- *
- * This class represents a symmetry group whose generators are already
- * known at compile time. It may or may not be resolved at compile time,
- * depending on the estimated size of the group.
- *
- * \sa StaticSGroup
- * \sa DynamicSGroup
- */
-template<typename... Gen>
-class SGroup : public internal::tensor_symmetry_pre_analysis<internal::tensor_symmetry_num_indices<Gen...>::value, Gen...>::root_type
-{
- public:
- constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value;
- typedef typename internal::tensor_symmetry_pre_analysis<NumIndices, Gen...>::root_type Base;
-
- // make standard constructors + assignment operators public
- inline SGroup() : Base() { }
- inline SGroup(const SGroup<Gen...>& other) : Base(other) { }
- inline SGroup(SGroup<Gen...>&& other) : Base(other) { }
- inline SGroup<Gen...>& operator=(const SGroup<Gen...>& other) { Base::operator=(other); return *this; }
- inline SGroup<Gen...>& operator=(SGroup<Gen...>&& other) { Base::operator=(other); return *this; }
-
- // all else is defined in the base class
-};
-
-namespace internal {
-
-template<typename... Sym> struct tensor_symmetry_num_indices
-{
- constexpr static std::size_t value = 1;
-};
-
-template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...>
-{
-private:
- constexpr static std::size_t One = static_cast<std::size_t>(One_);
- constexpr static std::size_t Two = static_cast<std::size_t>(Two_);
- constexpr static std::size_t Three = tensor_symmetry_num_indices<Sym...>::value;
-
- // don't use std::max, since it's not constexpr until C++14...
- constexpr static std::size_t maxOneTwoPlusOne = ((One > Two) ? One : Two) + 1;
-public:
- constexpr static std::size_t value = (maxOneTwoPlusOne > Three) ? maxOneTwoPlusOne : Three;
-};
-
-template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiSymmetry<One_, Two_>, Sym...>
- : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {};
-template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Hermiticity<One_, Two_>, Sym...>
- : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {};
-template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiHermiticity<One_, Two_>, Sym...>
- : public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {};
-
-/** \internal
- *
- * \class tensor_symmetry_pre_analysis
- * \ingroup TensorSymmetry_Module
- *
- * \brief Pre-select whether to use a static or dynamic symmetry group
- *
- * When a symmetry group could in principle be determined at compile time,
- * this template implements the logic whether to actually do that or whether
- * to rather defer that to runtime.
- *
- * The logic is as follows:
- * <dl>
- * <dt><b>No generators (trivial symmetry):</b></dt>
- * <dd>Use a trivial static group. Ideally, this has no performance impact
- * compared to not using symmetry at all. In practice, this might not
- * be the case.</dd>
- * <dt><b>More than 4 generators:</b></dt>
- * <dd>Calculate the group at run time, it is likely far too large for the
- * compiler to be able to properly generate it in a realistic time.</dd>
- * <dt><b>Up to and including 4 generators:</b></dt>
- * <dd>Actually enumerate all group elements, but then check how many there
- * are. If there are more than 16, it is unlikely that unrolling the
- * loop (as is done in the static compile-time case) is sensible, so
- * use a dynamic group instead. If there are at most 16 elements, actually
- * use that static group. Note that the largest group with 4 generators
- * still compiles with reasonable resources.</dd>
- * </dl>
- *
- * Note: Example compile time performance with g++-4.6 on an Intenl Core i5-3470
- * with 16 GiB RAM (all generators non-redundant and the subgroups don't
- * factorize):
- *
- * # Generators -O0 -ggdb -O2
- * -------------------------------------------------------------------
- * 1 0.5 s / 250 MiB 0.45s / 230 MiB
- * 2 0.5 s / 260 MiB 0.5 s / 250 MiB
- * 3 0.65s / 310 MiB 0.62s / 310 MiB
- * 4 2.2 s / 860 MiB 1.7 s / 770 MiB
- * 5 130 s / 13000 MiB 120 s / 11000 MiB
- *
- * It is clear that everything is still very efficient up to 4 generators, then
- * the memory and CPU requirements become unreasonable. Thus we only instantiate
- * the template group theory logic if the number of generators supplied is 4 or
- * lower, otherwise this will be forced to be done during runtime, where the
- * algorithm is reasonably fast.
- */
-template<std::size_t NumIndices>
-struct tensor_symmetry_pre_analysis<NumIndices>
-{
- typedef StaticSGroup<> root_type;
-};
-
-template<std::size_t NumIndices, typename Gen_, typename... Gens_>
-struct tensor_symmetry_pre_analysis<NumIndices, Gen_, Gens_...>
-{
- constexpr static std::size_t max_static_generators = 4;
- constexpr static std::size_t max_static_elements = 16;
- typedef tensor_static_symgroup_if<(sizeof...(Gens_) + 1 <= max_static_generators), NumIndices, Gen_, Gens_...> helper;
- constexpr static std::size_t possible_size = helper::size;
-
- typedef typename conditional<
- possible_size == 0 || possible_size >= max_static_elements,
- DynamicSGroupFromTemplateArgs<Gen_, Gens_...>,
- typename helper::type
- >::type root_type;
-};
-
-template<bool instantiate, std::size_t NumIndices, typename... Gens>
-struct tensor_static_symgroup_if
-{
- constexpr static std::size_t size = 0;
- typedef void type;
-};
-
-template<std::size_t NumIndices, typename... Gens>
-struct tensor_static_symgroup_if<true, NumIndices, Gens...> : tensor_static_symgroup<NumIndices, Gens...> {};
-
-template<typename Tensor_>
-struct tensor_symmetry_assign_value
-{
- typedef typename Tensor_::Index Index;
- typedef typename Tensor_::Scalar Scalar;
- constexpr static std::size_t NumIndices = Tensor_::NumIndices;
-
- static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transformation_flags, int dummy, Tensor_& tensor, const Scalar& value_)
- {
- Scalar value(value_);
- if (transformation_flags & ConjugationFlag)
- value = numext::conj(value);
- if (transformation_flags & NegationFlag)
- value = -value;
- tensor.coeffRef(transformed_indices) = value;
- return dummy;
- }
-};
-
-template<typename Tensor_>
-struct tensor_symmetry_calculate_flags
-{
- typedef typename Tensor_::Index Index;
- constexpr static std::size_t NumIndices = Tensor_::NumIndices;
-
- static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transform_flags, int current_flags, const std::array<Index, NumIndices>& orig_indices)
- {
- if (transformed_indices == orig_indices) {
- if (transform_flags & (ConjugationFlag | NegationFlag))
- return current_flags | GlobalImagFlag; // anti-hermitian diagonal
- else if (transform_flags & ConjugationFlag)
- return current_flags | GlobalRealFlag; // hermitian diagonal
- else if (transform_flags & NegationFlag)
- return current_flags | GlobalZeroFlag; // anti-symmetric diagonal
- }
- return current_flags;
- }
-};
-
-template<typename Tensor_, typename Symmetry_, int Flags = 0>
-class tensor_symmetry_value_setter
-{
- public:
- typedef typename Tensor_::Index Index;
- typedef typename Tensor_::Scalar Scalar;
- constexpr static std::size_t NumIndices = Tensor_::NumIndices;
-
- inline tensor_symmetry_value_setter(Tensor_& tensor, Symmetry_ const& symmetry, std::array<Index, NumIndices> const& indices)
- : m_tensor(tensor), m_symmetry(symmetry), m_indices(indices) { }
-
- inline tensor_symmetry_value_setter<Tensor_, Symmetry_, Flags>& operator=(Scalar const& value)
- {
- doAssign(value);
- return *this;
- }
- private:
- Tensor_& m_tensor;
- Symmetry_ m_symmetry;
- std::array<Index, NumIndices> m_indices;
-
- inline void doAssign(Scalar const& value)
- {
- #ifdef EIGEN_TENSOR_SYMMETRY_CHECK_VALUES
- int value_flags = m_symmetry.template apply<internal::tensor_symmetry_calculate_flags<Tensor_>, int>(m_indices, m_symmetry.globalFlags(), m_indices);
- if (value_flags & GlobalRealFlag)
- eigen_assert(numext::imag(value) == 0);
- if (value_flags & GlobalImagFlag)
- eigen_assert(numext::real(value) == 0);
- #endif
- m_symmetry.template apply<internal::tensor_symmetry_assign_value<Tensor_>, int>(m_indices, 0, m_tensor, value);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h b/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h
deleted file mode 100644
index 5e97d07..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h
+++ /dev/null
@@ -1,669 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H
-#define EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H
-
-namespace Eigen {
-
-namespace internal {
-
-namespace group_theory {
-
-/** \internal
- * \file CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h
- * This file contains C++ templates that implement group theory algorithms.
- *
- * The algorithms allow for a compile-time analysis of finite groups.
- *
- * Currently only Dimino's algorithm is implemented, which returns a list
- * of all elements in a group given a set of (possibly redundant) generators.
- * (One could also do that with the so-called orbital algorithm, but that
- * is much more expensive and usually has no advantages.)
- */
-
-/**********************************************************************
- * "Ok kid, here is where it gets complicated."
- * - Amelia Pond in the "Doctor Who" episode
- * "The Big Bang"
- *
- * Dimino's algorithm
- * ==================
- *
- * The following is Dimino's algorithm in sequential form:
- *
- * Input: identity element, list of generators, equality check,
- * multiplication operation
- * Output: list of group elements
- *
- * 1. add identity element
- * 2. remove identities from list of generators
- * 3. add all powers of first generator that aren't the
- * identity element
- * 4. go through all remaining generators:
- * a. if generator is already in the list of elements
- * -> do nothing
- * b. otherwise
- * i. remember current # of elements
- * (i.e. the size of the current subgroup)
- * ii. add all current elements (which includes
- * the identity) each multiplied from right
- * with the current generator to the group
- * iii. add all remaining cosets that are generated
- * by products of the new generator with itself
- * and all other generators seen so far
- *
- * In functional form, this is implemented as a long set of recursive
- * templates that have a complicated relationship.
- *
- * The main interface for Dimino's algorithm is the template
- * enumerate_group_elements. All lists are implemented as variadic
- * type_list<typename...> and numeric_list<typename = int, int...>
- * templates.
- *
- * 'Calling' templates is usually done via typedefs.
- *
- * This algorithm is an extended version of the basic version. The
- * extension consists in the fact that each group element has a set
- * of flags associated with it. Multiplication of two group elements
- * with each other results in a group element whose flags are the
- * XOR of the flags of the previous elements. Each time the algorithm
- * notices that a group element it just calculated is already in the
- * list of current elements, the flags of both will be compared and
- * added to the so-called 'global flags' of the group.
- *
- * The rationale behind this extension is that this allows not only
- * for the description of symmetries between tensor indices, but
- * also allows for the description of hermiticity, antisymmetry and
- * antihermiticity. Negation and conjugation each are specific bit
- * in the flags value and if two different ways to reach a group
- * element lead to two different flags, this poses a constraint on
- * the allowed values of the resulting tensor. For example, if a
- * group element is reach both with and without the conjugation
- * flags, it is clear that the resulting tensor has to be real.
- *
- * Note that this flag mechanism is quite generic and may have other
- * uses beyond tensor properties.
- *
- * IMPORTANT:
- * This algorithm assumes the group to be finite. If you try to
- * run it with a group that's infinite, the algorithm will only
- * terminate once you hit a compiler limit (max template depth).
- * Also note that trying to use this implementation to create a
- * very large group will probably either make you hit the same
- * limit, cause the compiler to segfault or at the very least
- * take a *really* long time (hours, days, weeks - sic!) to
- * compile. It is not recommended to plug in more than 4
- * generators, unless they are independent of each other.
- */
-
-/** \internal
- *
- * \class strip_identities
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Cleanse a list of group elements of the identity element
- *
- * This template is used to make a first pass through all initial
- * generators of Dimino's algorithm and remove the identity
- * elements.
- *
- * \sa enumerate_group_elements
- */
-template<template<typename, typename> class Equality, typename id, typename L> struct strip_identities;
-
-template<
- template<typename, typename> class Equality,
- typename id,
- typename t,
- typename... ts
->
-struct strip_identities<Equality, id, type_list<t, ts...>>
-{
- typedef typename conditional<
- Equality<id, t>::value,
- typename strip_identities<Equality, id, type_list<ts...>>::type,
- typename concat<type_list<t>, typename strip_identities<Equality, id, type_list<ts...>>::type>::type
- >::type type;
- constexpr static int global_flags = Equality<id, t>::global_flags | strip_identities<Equality, id, type_list<ts...>>::global_flags;
-};
-
-template<
- template<typename, typename> class Equality,
- typename id
- EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, ts)
->
-struct strip_identities<Equality, id, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(ts)>>
-{
- typedef type_list<> type;
- constexpr static int global_flags = 0;
-};
-
-/** \internal
- *
- * \class dimino_first_step_elements_helper
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Recursive template that adds powers of the first generator to the list of group elements
- *
- * This template calls itself recursively to add powers of the first
- * generator to the list of group elements. It stops if it reaches
- * the identity element again.
- *
- * \sa enumerate_group_elements, dimino_first_step_elements
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename g,
- typename current_element,
- typename elements,
- bool dont_add_current_element // = false
->
-struct dimino_first_step_elements_helper
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- : // recursive inheritance is too difficult for Doxygen
- public dimino_first_step_elements_helper<
- Multiply,
- Equality,
- id,
- g,
- typename Multiply<current_element, g>::type,
- typename concat<elements, type_list<current_element>>::type,
- Equality<typename Multiply<current_element, g>::type, id>::value
- > {};
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename g,
- typename current_element,
- typename elements
->
-struct dimino_first_step_elements_helper<Multiply, Equality, id, g, current_element, elements, true>
-#endif // EIGEN_PARSED_BY_DOXYGEN
-{
- typedef elements type;
- constexpr static int global_flags = Equality<current_element, id>::global_flags;
-};
-
-/** \internal
- *
- * \class dimino_first_step_elements
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Add all powers of the first generator to the list of group elements
- *
- * This template takes the first non-identity generator and generates the initial
- * list of elements which consists of all powers of that generator. For a group
- * with just one generated, it would be enumerated after this.
- *
- * \sa enumerate_group_elements
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename generators
->
-struct dimino_first_step_elements
-{
- typedef typename get<0, generators>::type first_generator;
- typedef typename skip<1, generators>::type next_generators;
- typedef type_list<first_generator> generators_done;
-
- typedef dimino_first_step_elements_helper<
- Multiply,
- Equality,
- id,
- first_generator,
- first_generator,
- type_list<id>,
- false
- > helper;
- typedef typename helper::type type;
- constexpr static int global_flags = helper::global_flags;
-};
-
-/** \internal
- *
- * \class dimino_get_coset_elements
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Generate all elements of a specific coset
- *
- * This template generates all the elements of a specific coset by
- * multiplying all elements in the given subgroup with the new
- * coset representative. Note that the first element of the
- * subgroup is always the identity element, so the first element of
- * ther result of this template is going to be the coset
- * representative itself.
- *
- * Note that this template accepts an additional boolean parameter
- * that specifies whether to actually generate the coset (true) or
- * just return an empty list (false).
- *
- * \sa enumerate_group_elements, dimino_add_cosets_for_rep
- */
-template<
- template<typename, typename> class Multiply,
- typename sub_group_elements,
- typename new_coset_rep,
- bool generate_coset // = true
->
-struct dimino_get_coset_elements
-{
- typedef typename apply_op_from_right<Multiply, new_coset_rep, sub_group_elements>::type type;
-};
-
-template<
- template<typename, typename> class Multiply,
- typename sub_group_elements,
- typename new_coset_rep
->
-struct dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, false>
-{
- typedef type_list<> type;
-};
-
-/** \internal
- *
- * \class dimino_add_cosets_for_rep
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Recursive template for adding coset spaces
- *
- * This template multiplies the coset representative with a generator
- * from the list of previous generators. If the new element is not in
- * the group already, it adds the corresponding coset. Finally it
- * proceeds to call itself with the next generator from the list.
- *
- * \sa enumerate_group_elements, dimino_add_all_coset_spaces
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename sub_group_elements,
- typename elements,
- typename generators,
- typename rep_element,
- int sub_group_size
->
-struct dimino_add_cosets_for_rep;
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename sub_group_elements,
- typename elements,
- typename g,
- typename... gs,
- typename rep_element,
- int sub_group_size
->
-struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<g, gs...>, rep_element, sub_group_size>
-{
- typedef typename Multiply<rep_element, g>::type new_coset_rep;
- typedef contained_in_list_gf<Equality, new_coset_rep, elements> _cil;
- constexpr static bool add_coset = !_cil::value;
-
- typedef typename dimino_get_coset_elements<
- Multiply,
- sub_group_elements,
- new_coset_rep,
- add_coset
- >::type coset_elements;
-
- typedef dimino_add_cosets_for_rep<
- Multiply,
- Equality,
- id,
- sub_group_elements,
- typename concat<elements, coset_elements>::type,
- type_list<gs...>,
- rep_element,
- sub_group_size
- > _helper;
-
- typedef typename _helper::type type;
- constexpr static int global_flags = _cil::global_flags | _helper::global_flags;
-
- /* Note that we don't have to update global flags here, since
- * we will only add these elements if they are not part of
- * the group already. But that only happens if the coset rep
- * is not already in the group, so the check for the coset rep
- * will catch this.
- */
-};
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename sub_group_elements,
- typename elements
- EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty),
- typename rep_element,
- int sub_group_size
->
-struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, rep_element, sub_group_size>
-{
- typedef elements type;
- constexpr static int global_flags = 0;
-};
-
-/** \internal
- *
- * \class dimino_add_all_coset_spaces
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Recursive template for adding all coset spaces for a new generator
- *
- * This template tries to go through the list of generators (with
- * the help of the dimino_add_cosets_for_rep template) as long as
- * it still finds elements that are not part of the group and add
- * the corresponding cosets.
- *
- * \sa enumerate_group_elements, dimino_add_cosets_for_rep
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename sub_group_elements,
- typename elements,
- typename generators,
- int sub_group_size,
- int rep_pos,
- bool stop_condition // = false
->
-struct dimino_add_all_coset_spaces
-{
- typedef typename get<rep_pos, elements>::type rep_element;
- typedef dimino_add_cosets_for_rep<
- Multiply,
- Equality,
- id,
- sub_group_elements,
- elements,
- generators,
- rep_element,
- sub_group_elements::count
- > _ac4r;
- typedef typename _ac4r::type new_elements;
-
- constexpr static int new_rep_pos = rep_pos + sub_group_elements::count;
- constexpr static bool new_stop_condition = new_rep_pos >= new_elements::count;
-
- typedef dimino_add_all_coset_spaces<
- Multiply,
- Equality,
- id,
- sub_group_elements,
- new_elements,
- generators,
- sub_group_size,
- new_rep_pos,
- new_stop_condition
- > _helper;
-
- typedef typename _helper::type type;
- constexpr static int global_flags = _helper::global_flags | _ac4r::global_flags;
-};
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename sub_group_elements,
- typename elements,
- typename generators,
- int sub_group_size,
- int rep_pos
->
-struct dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, elements, generators, sub_group_size, rep_pos, true>
-{
- typedef elements type;
- constexpr static int global_flags = 0;
-};
-
-/** \internal
- *
- * \class dimino_add_generator
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Enlarge the group by adding a new generator.
- *
- * It accepts a boolean parameter that determines if the generator is redundant,
- * i.e. was already seen in the group. In that case, it reduces to a no-op.
- *
- * \sa enumerate_group_elements, dimino_add_all_coset_spaces
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename elements,
- typename generators_done,
- typename current_generator,
- bool redundant // = false
->
-struct dimino_add_generator
-{
- /* this template is only called if the generator is not redundant
- * => all elements of the group multiplied with the new generator
- * are going to be new elements of the most trivial coset space
- */
- typedef typename apply_op_from_right<Multiply, current_generator, elements>::type multiplied_elements;
- typedef typename concat<elements, multiplied_elements>::type new_elements;
-
- constexpr static int rep_pos = elements::count;
-
- typedef dimino_add_all_coset_spaces<
- Multiply,
- Equality,
- id,
- elements, // elements of previous subgroup
- new_elements,
- typename concat<generators_done, type_list<current_generator>>::type,
- elements::count, // size of previous subgroup
- rep_pos,
- false // don't stop (because rep_pos >= new_elements::count is always false at this point)
- > _helper;
- typedef typename _helper::type type;
- constexpr static int global_flags = _helper::global_flags;
-};
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename elements,
- typename generators_done,
- typename current_generator
->
-struct dimino_add_generator<Multiply, Equality, id, elements, generators_done, current_generator, true>
-{
- // redundant case
- typedef elements type;
- constexpr static int global_flags = 0;
-};
-
-/** \internal
- *
- * \class dimino_add_remaining_generators
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Recursive template that adds all remaining generators to a group
- *
- * Loop through the list of generators that remain and successively
- * add them to the group.
- *
- * \sa enumerate_group_elements, dimino_add_generator
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename generators_done,
- typename remaining_generators,
- typename elements
->
-struct dimino_add_remaining_generators
-{
- typedef typename get<0, remaining_generators>::type first_generator;
- typedef typename skip<1, remaining_generators>::type next_generators;
-
- typedef contained_in_list_gf<Equality, first_generator, elements> _cil;
-
- typedef dimino_add_generator<
- Multiply,
- Equality,
- id,
- elements,
- generators_done,
- first_generator,
- _cil::value
- > _helper;
-
- typedef typename _helper::type new_elements;
-
- typedef dimino_add_remaining_generators<
- Multiply,
- Equality,
- id,
- typename concat<generators_done, type_list<first_generator>>::type,
- next_generators,
- new_elements
- > _next_iter;
-
- typedef typename _next_iter::type type;
- constexpr static int global_flags =
- _cil::global_flags |
- _helper::global_flags |
- _next_iter::global_flags;
-};
-
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename generators_done,
- typename elements
->
-struct dimino_add_remaining_generators<Multiply, Equality, id, generators_done, type_list<>, elements>
-{
- typedef elements type;
- constexpr static int global_flags = 0;
-};
-
-/** \internal
- *
- * \class enumerate_group_elements_noid
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Helper template that implements group element enumeration
- *
- * This is a helper template that implements the actual enumeration
- * of group elements. This has been split so that the list of
- * generators can be cleansed of the identity element before
- * performing the actual operation.
- *
- * \sa enumerate_group_elements
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename generators,
- int initial_global_flags = 0
->
-struct enumerate_group_elements_noid
-{
- typedef dimino_first_step_elements<Multiply, Equality, id, generators> first_step;
- typedef typename first_step::type first_step_elements;
-
- typedef dimino_add_remaining_generators<
- Multiply,
- Equality,
- id,
- typename first_step::generators_done,
- typename first_step::next_generators, // remaining_generators
- typename first_step::type // first_step elements
- > _helper;
-
- typedef typename _helper::type type;
- constexpr static int global_flags =
- initial_global_flags |
- first_step::global_flags |
- _helper::global_flags;
-};
-
-// in case when no generators are specified
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- int initial_global_flags
->
-struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initial_global_flags>
-{
- typedef type_list<id> type;
- constexpr static int global_flags = initial_global_flags;
-};
-
-/** \internal
- *
- * \class enumerate_group_elements
- * \ingroup CXX11_TensorSymmetry_Module
- *
- * \brief Enumerate all elements in a finite group
- *
- * This template enumerates all elements in a finite group. It accepts
- * the following template parameters:
- *
- * \tparam Multiply The multiplication operation that multiplies two group elements
- * with each other.
- * \tparam Equality The equality check operation that checks if two group elements
- * are equal to another.
- * \tparam id The identity element
- * \tparam _generators A list of (possibly redundant) generators of the group
- */
-template<
- template<typename, typename> class Multiply,
- template<typename, typename> class Equality,
- typename id,
- typename _generators
->
-struct enumerate_group_elements
- : public enumerate_group_elements_noid<
- Multiply,
- Equality,
- id,
- typename strip_identities<Equality, id, _generators>::type,
- strip_identities<Equality, id, _generators>::global_flags
- >
-{
-};
-
-} // end namespace group_theory
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h
deleted file mode 100644
index 71d5555..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h
+++ /dev/null
@@ -1,233 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
-#define EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
-
-namespace Eigen {
-
-// EventCount allows to wait for arbitrary predicates in non-blocking
-// algorithms. Think of condition variable, but wait predicate does not need to
-// be protected by a mutex. Usage:
-// Waiting thread does:
-//
-// if (predicate)
-// return act();
-// EventCount::Waiter& w = waiters[my_index];
-// ec.Prewait(&w);
-// if (predicate) {
-// ec.CancelWait(&w);
-// return act();
-// }
-// ec.CommitWait(&w);
-//
-// Notifying thread does:
-//
-// predicate = true;
-// ec.Notify(true);
-//
-// Notify is cheap if there are no waiting threads. Prewait/CommitWait are not
-// cheap, but they are executed only if the preceeding predicate check has
-// failed.
-//
-// Algorihtm outline:
-// There are two main variables: predicate (managed by user) and state_.
-// Operation closely resembles Dekker mutual algorithm:
-// https://en.wikipedia.org/wiki/Dekker%27s_algorithm
-// Waiting thread sets state_ then checks predicate, Notifying thread sets
-// predicate then checks state_. Due to seq_cst fences in between these
-// operations it is guaranteed than either waiter will see predicate change
-// and won't block, or notifying thread will see state_ change and will unblock
-// the waiter, or both. But it can't happen that both threads don't see each
-// other changes, which would lead to deadlock.
-class EventCount {
- public:
- class Waiter;
-
- EventCount(MaxSizeVector<Waiter>& waiters) : waiters_(waiters) {
- eigen_assert(waiters.size() < (1 << kWaiterBits) - 1);
- // Initialize epoch to something close to overflow to test overflow.
- state_ = kStackMask | (kEpochMask - kEpochInc * waiters.size() * 2);
- }
-
- ~EventCount() {
- // Ensure there are no waiters.
- eigen_assert((state_.load() & (kStackMask | kWaiterMask)) == kStackMask);
- }
-
- // Prewait prepares for waiting.
- // After calling this function the thread must re-check the wait predicate
- // and call either CancelWait or CommitWait passing the same Waiter object.
- void Prewait(Waiter* w) {
- w->epoch = state_.fetch_add(kWaiterInc, std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_seq_cst);
- }
-
- // CommitWait commits waiting.
- void CommitWait(Waiter* w) {
- w->state = Waiter::kNotSignaled;
- // Modification epoch of this waiter.
- uint64_t epoch =
- (w->epoch & kEpochMask) +
- (((w->epoch & kWaiterMask) >> kWaiterShift) << kEpochShift);
- uint64_t state = state_.load(std::memory_order_seq_cst);
- for (;;) {
- if (int64_t((state & kEpochMask) - epoch) < 0) {
- // The preceeding waiter has not decided on its fate. Wait until it
- // calls either CancelWait or CommitWait, or is notified.
- EIGEN_THREAD_YIELD();
- state = state_.load(std::memory_order_seq_cst);
- continue;
- }
- // We've already been notified.
- if (int64_t((state & kEpochMask) - epoch) > 0) return;
- // Remove this thread from prewait counter and add it to the waiter list.
- eigen_assert((state & kWaiterMask) != 0);
- uint64_t newstate = state - kWaiterInc + kEpochInc;
- newstate = (newstate & ~kStackMask) | (w - &waiters_[0]);
- if ((state & kStackMask) == kStackMask)
- w->next.store(nullptr, std::memory_order_relaxed);
- else
- w->next.store(&waiters_[state & kStackMask], std::memory_order_relaxed);
- if (state_.compare_exchange_weak(state, newstate,
- std::memory_order_release))
- break;
- }
- Park(w);
- }
-
- // CancelWait cancels effects of the previous Prewait call.
- void CancelWait(Waiter* w) {
- uint64_t epoch =
- (w->epoch & kEpochMask) +
- (((w->epoch & kWaiterMask) >> kWaiterShift) << kEpochShift);
- uint64_t state = state_.load(std::memory_order_relaxed);
- for (;;) {
- if (int64_t((state & kEpochMask) - epoch) < 0) {
- // The preceeding waiter has not decided on its fate. Wait until it
- // calls either CancelWait or CommitWait, or is notified.
- EIGEN_THREAD_YIELD();
- state = state_.load(std::memory_order_relaxed);
- continue;
- }
- // We've already been notified.
- if (int64_t((state & kEpochMask) - epoch) > 0) return;
- // Remove this thread from prewait counter.
- eigen_assert((state & kWaiterMask) != 0);
- if (state_.compare_exchange_weak(state, state - kWaiterInc + kEpochInc,
- std::memory_order_relaxed))
- return;
- }
- }
-
- // Notify wakes one or all waiting threads.
- // Must be called after changing the associated wait predicate.
- void Notify(bool all) {
- std::atomic_thread_fence(std::memory_order_seq_cst);
- uint64_t state = state_.load(std::memory_order_acquire);
- for (;;) {
- // Easy case: no waiters.
- if ((state & kStackMask) == kStackMask && (state & kWaiterMask) == 0)
- return;
- uint64_t waiters = (state & kWaiterMask) >> kWaiterShift;
- uint64_t newstate;
- if (all) {
- // Reset prewait counter and empty wait list.
- newstate = (state & kEpochMask) + (kEpochInc * waiters) + kStackMask;
- } else if (waiters) {
- // There is a thread in pre-wait state, unblock it.
- newstate = state + kEpochInc - kWaiterInc;
- } else {
- // Pop a waiter from list and unpark it.
- Waiter* w = &waiters_[state & kStackMask];
- Waiter* wnext = w->next.load(std::memory_order_relaxed);
- uint64_t next = kStackMask;
- if (wnext != nullptr) next = wnext - &waiters_[0];
- // Note: we don't add kEpochInc here. ABA problem on the lock-free stack
- // can't happen because a waiter is re-pushed onto the stack only after
- // it was in the pre-wait state which inevitably leads to epoch
- // increment.
- newstate = (state & kEpochMask) + next;
- }
- if (state_.compare_exchange_weak(state, newstate,
- std::memory_order_acquire)) {
- if (!all && waiters) return; // unblocked pre-wait thread
- if ((state & kStackMask) == kStackMask) return;
- Waiter* w = &waiters_[state & kStackMask];
- if (!all) w->next.store(nullptr, std::memory_order_relaxed);
- Unpark(w);
- return;
- }
- }
- }
-
- class Waiter {
- friend class EventCount;
- // Align to 128 byte boundary to prevent false sharing with other Waiter objects in the same vector.
- EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic<Waiter*> next;
- std::mutex mu;
- std::condition_variable cv;
- uint64_t epoch;
- unsigned state;
- enum {
- kNotSignaled,
- kWaiting,
- kSignaled,
- };
- };
-
- private:
- // State_ layout:
- // - low kStackBits is a stack of waiters committed wait.
- // - next kWaiterBits is count of waiters in prewait state.
- // - next kEpochBits is modification counter.
- static const uint64_t kStackBits = 16;
- static const uint64_t kStackMask = (1ull << kStackBits) - 1;
- static const uint64_t kWaiterBits = 16;
- static const uint64_t kWaiterShift = 16;
- static const uint64_t kWaiterMask = ((1ull << kWaiterBits) - 1)
- << kWaiterShift;
- static const uint64_t kWaiterInc = 1ull << kWaiterBits;
- static const uint64_t kEpochBits = 32;
- static const uint64_t kEpochShift = 32;
- static const uint64_t kEpochMask = ((1ull << kEpochBits) - 1) << kEpochShift;
- static const uint64_t kEpochInc = 1ull << kEpochShift;
- std::atomic<uint64_t> state_;
- MaxSizeVector<Waiter>& waiters_;
-
- void Park(Waiter* w) {
- std::unique_lock<std::mutex> lock(w->mu);
- while (w->state != Waiter::kSignaled) {
- w->state = Waiter::kWaiting;
- w->cv.wait(lock);
- }
- }
-
- void Unpark(Waiter* waiters) {
- Waiter* next = nullptr;
- for (Waiter* w = waiters; w; w = next) {
- next = w->next.load(std::memory_order_relaxed);
- unsigned state;
- {
- std::unique_lock<std::mutex> lock(w->mu);
- state = w->state;
- w->state = Waiter::kSignaled;
- }
- // Avoid notifying if it wasn't waiting.
- if (state == Waiter::kWaiting) w->cv.notify_one();
- }
- }
-
- EventCount(const EventCount&) = delete;
- void operator=(const EventCount&) = delete;
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H_
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h
deleted file mode 100644
index 354bce5..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h
+++ /dev/null
@@ -1,274 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
-#define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
-
-
-namespace Eigen {
-
-template <typename Environment>
-class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
- public:
- typedef typename Environment::Task Task;
- typedef RunQueue<Task, 1024> Queue;
-
- NonBlockingThreadPoolTempl(int num_threads, Environment env = Environment())
- : env_(env),
- threads_(num_threads),
- queues_(num_threads),
- coprimes_(num_threads),
- waiters_(num_threads),
- blocked_(0),
- spinning_(0),
- done_(false),
- ec_(waiters_) {
- waiters_.resize(num_threads);
-
- // Calculate coprimes of num_threads.
- // Coprimes are used for a random walk over all threads in Steal
- // and NonEmptyQueueIndex. Iteration is based on the fact that if we take
- // a walk starting thread index t and calculate num_threads - 1 subsequent
- // indices as (t + coprime) % num_threads, we will cover all threads without
- // repetitions (effectively getting a presudo-random permutation of thread
- // indices).
- for (int i = 1; i <= num_threads; i++) {
- unsigned a = i;
- unsigned b = num_threads;
- // If GCD(a, b) == 1, then a and b are coprimes.
- while (b != 0) {
- unsigned tmp = a;
- a = b;
- b = tmp % b;
- }
- if (a == 1) {
- coprimes_.push_back(i);
- }
- }
- for (int i = 0; i < num_threads; i++) {
- queues_.push_back(new Queue());
- }
- for (int i = 0; i < num_threads; i++) {
- threads_.push_back(env_.CreateThread([this, i]() { WorkerLoop(i); }));
- }
- }
-
- ~NonBlockingThreadPoolTempl() {
- done_ = true;
- // Now if all threads block without work, they will start exiting.
- // But note that threads can continue to work arbitrary long,
- // block, submit new work, unblock and otherwise live full life.
- ec_.Notify(true);
-
- // Join threads explicitly to avoid destruction order issues.
- for (size_t i = 0; i < threads_.size(); i++) delete threads_[i];
- for (size_t i = 0; i < threads_.size(); i++) delete queues_[i];
- }
-
- void Schedule(std::function<void()> fn) {
- Task t = env_.CreateTask(std::move(fn));
- PerThread* pt = GetPerThread();
- if (pt->pool == this) {
- // Worker thread of this pool, push onto the thread's queue.
- Queue* q = queues_[pt->thread_id];
- t = q->PushFront(std::move(t));
- } else {
- // A free-standing thread (or worker of another pool), push onto a random
- // queue.
- Queue* q = queues_[Rand(&pt->rand) % queues_.size()];
- t = q->PushBack(std::move(t));
- }
- // Note: below we touch this after making w available to worker threads.
- // Strictly speaking, this can lead to a racy-use-after-free. Consider that
- // Schedule is called from a thread that is neither main thread nor a worker
- // thread of this pool. Then, execution of w directly or indirectly
- // completes overall computations, which in turn leads to destruction of
- // this. We expect that such scenario is prevented by program, that is,
- // this is kept alive while any threads can potentially be in Schedule.
- if (!t.f)
- ec_.Notify(false);
- else
- env_.ExecuteTask(t); // Push failed, execute directly.
- }
-
- int NumThreads() const final {
- return static_cast<int>(threads_.size());
- }
-
- int CurrentThreadId() const final {
- const PerThread* pt =
- const_cast<NonBlockingThreadPoolTempl*>(this)->GetPerThread();
- if (pt->pool == this) {
- return pt->thread_id;
- } else {
- return -1;
- }
- }
-
- private:
- typedef typename Environment::EnvThread Thread;
-
- struct PerThread {
- constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) { }
- NonBlockingThreadPoolTempl* pool; // Parent pool, or null for normal threads.
- uint64_t rand; // Random generator state.
- int thread_id; // Worker thread index in pool.
- };
-
- Environment env_;
- MaxSizeVector<Thread*> threads_;
- MaxSizeVector<Queue*> queues_;
- MaxSizeVector<unsigned> coprimes_;
- MaxSizeVector<EventCount::Waiter> waiters_;
- std::atomic<unsigned> blocked_;
- std::atomic<bool> spinning_;
- std::atomic<bool> done_;
- EventCount ec_;
-
- // Main worker thread loop.
- void WorkerLoop(int thread_id) {
- PerThread* pt = GetPerThread();
- pt->pool = this;
- pt->rand = std::hash<std::thread::id>()(std::this_thread::get_id());
- pt->thread_id = thread_id;
- Queue* q = queues_[thread_id];
- EventCount::Waiter* waiter = &waiters_[thread_id];
- for (;;) {
- Task t = q->PopFront();
- if (!t.f) {
- t = Steal();
- if (!t.f) {
- // Leave one thread spinning. This reduces latency.
- // TODO(dvyukov): 1000 iterations is based on fair dice roll, tune it.
- // Also, the time it takes to attempt to steal work 1000 times depends
- // on the size of the thread pool. However the speed at which the user
- // of the thread pool submit tasks is independent of the size of the
- // pool. Consider a time based limit instead.
- if (!spinning_ && !spinning_.exchange(true)) {
- for (int i = 0; i < 1000 && !t.f; i++) {
- t = Steal();
- }
- spinning_ = false;
- }
- if (!t.f) {
- if (!WaitForWork(waiter, &t)) {
- return;
- }
- }
- }
- }
- if (t.f) {
- env_.ExecuteTask(t);
- }
- }
- }
-
- // Steal tries to steal work from other worker threads in best-effort manner.
- Task Steal() {
- PerThread* pt = GetPerThread();
- const size_t size = queues_.size();
- unsigned r = Rand(&pt->rand);
- unsigned inc = coprimes_[r % coprimes_.size()];
- unsigned victim = r % size;
- for (unsigned i = 0; i < size; i++) {
- Task t = queues_[victim]->PopBack();
- if (t.f) {
- return t;
- }
- victim += inc;
- if (victim >= size) {
- victim -= size;
- }
- }
- return Task();
- }
-
- // WaitForWork blocks until new work is available (returns true), or if it is
- // time to exit (returns false). Can optionally return a task to execute in t
- // (in such case t.f != nullptr on return).
- bool WaitForWork(EventCount::Waiter* waiter, Task* t) {
- eigen_assert(!t->f);
- // We already did best-effort emptiness check in Steal, so prepare for
- // blocking.
- ec_.Prewait(waiter);
- // Now do a reliable emptiness check.
- int victim = NonEmptyQueueIndex();
- if (victim != -1) {
- ec_.CancelWait(waiter);
- *t = queues_[victim]->PopBack();
- return true;
- }
- // Number of blocked threads is used as termination condition.
- // If we are shutting down and all worker threads blocked without work,
- // that's we are done.
- blocked_++;
- if (done_ && blocked_ == threads_.size()) {
- ec_.CancelWait(waiter);
- // Almost done, but need to re-check queues.
- // Consider that all queues are empty and all worker threads are preempted
- // right after incrementing blocked_ above. Now a free-standing thread
- // submits work and calls destructor (which sets done_). If we don't
- // re-check queues, we will exit leaving the work unexecuted.
- if (NonEmptyQueueIndex() != -1) {
- // Note: we must not pop from queues before we decrement blocked_,
- // otherwise the following scenario is possible. Consider that instead
- // of checking for emptiness we popped the only element from queues.
- // Now other worker threads can start exiting, which is bad if the
- // work item submits other work. So we just check emptiness here,
- // which ensures that all worker threads exit at the same time.
- blocked_--;
- return true;
- }
- // Reached stable termination state.
- ec_.Notify(true);
- return false;
- }
- ec_.CommitWait(waiter);
- blocked_--;
- return true;
- }
-
- int NonEmptyQueueIndex() {
- PerThread* pt = GetPerThread();
- const size_t size = queues_.size();
- unsigned r = Rand(&pt->rand);
- unsigned inc = coprimes_[r % coprimes_.size()];
- unsigned victim = r % size;
- for (unsigned i = 0; i < size; i++) {
- if (!queues_[victim]->Empty()) {
- return victim;
- }
- victim += inc;
- if (victim >= size) {
- victim -= size;
- }
- }
- return -1;
- }
-
- static EIGEN_STRONG_INLINE PerThread* GetPerThread() {
- EIGEN_THREAD_LOCAL PerThread per_thread_;
- PerThread* pt = &per_thread_;
- return pt;
- }
-
- static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) {
- uint64_t current = *state;
- // Update the internal state
- *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
- // Generate the random output (using the PCG-XSH-RS scheme)
- return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
- }
-};
-
-typedef NonBlockingThreadPoolTempl<StlThreadEnvironment> NonBlockingThreadPool;
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h
deleted file mode 100644
index 05ed76c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h
+++ /dev/null
@@ -1,210 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
-#define EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
-
-
-namespace Eigen {
-
-// RunQueue is a fixed-size, partially non-blocking deque or Work items.
-// Operations on front of the queue must be done by a single thread (owner),
-// operations on back of the queue can be done by multiple threads concurrently.
-//
-// Algorithm outline:
-// All remote threads operating on the queue back are serialized by a mutex.
-// This ensures that at most two threads access state: owner and one remote
-// thread (Size aside). The algorithm ensures that the occupied region of the
-// underlying array is logically continuous (can wraparound, but no stray
-// occupied elements). Owner operates on one end of this region, remote thread
-// operates on the other end. Synchronization between these threads
-// (potential consumption of the last element and take up of the last empty
-// element) happens by means of state variable in each element. States are:
-// empty, busy (in process of insertion of removal) and ready. Threads claim
-// elements (empty->busy and ready->busy transitions) by means of a CAS
-// operation. The finishing transition (busy->empty and busy->ready) are done
-// with plain store as the element is exclusively owned by the current thread.
-//
-// Note: we could permit only pointers as elements, then we would not need
-// separate state variable as null/non-null pointer value would serve as state,
-// but that would require malloc/free per operation for large, complex values
-// (and this is designed to store std::function<()>).
-template <typename Work, unsigned kSize>
-class RunQueue {
- public:
- RunQueue() : front_(0), back_(0) {
- // require power-of-two for fast masking
- eigen_assert((kSize & (kSize - 1)) == 0);
- eigen_assert(kSize > 2); // why would you do this?
- eigen_assert(kSize <= (64 << 10)); // leave enough space for counter
- for (unsigned i = 0; i < kSize; i++)
- array_[i].state.store(kEmpty, std::memory_order_relaxed);
- }
-
- ~RunQueue() { eigen_assert(Size() == 0); }
-
- // PushFront inserts w at the beginning of the queue.
- // If queue is full returns w, otherwise returns default-constructed Work.
- Work PushFront(Work w) {
- unsigned front = front_.load(std::memory_order_relaxed);
- Elem* e = &array_[front & kMask];
- uint8_t s = e->state.load(std::memory_order_relaxed);
- if (s != kEmpty ||
- !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire))
- return w;
- front_.store(front + 1 + (kSize << 1), std::memory_order_relaxed);
- e->w = std::move(w);
- e->state.store(kReady, std::memory_order_release);
- return Work();
- }
-
- // PopFront removes and returns the first element in the queue.
- // If the queue was empty returns default-constructed Work.
- Work PopFront() {
- unsigned front = front_.load(std::memory_order_relaxed);
- Elem* e = &array_[(front - 1) & kMask];
- uint8_t s = e->state.load(std::memory_order_relaxed);
- if (s != kReady ||
- !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire))
- return Work();
- Work w = std::move(e->w);
- e->state.store(kEmpty, std::memory_order_release);
- front = ((front - 1) & kMask2) | (front & ~kMask2);
- front_.store(front, std::memory_order_relaxed);
- return w;
- }
-
- // PushBack adds w at the end of the queue.
- // If queue is full returns w, otherwise returns default-constructed Work.
- Work PushBack(Work w) {
- std::unique_lock<std::mutex> lock(mutex_);
- unsigned back = back_.load(std::memory_order_relaxed);
- Elem* e = &array_[(back - 1) & kMask];
- uint8_t s = e->state.load(std::memory_order_relaxed);
- if (s != kEmpty ||
- !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire))
- return w;
- back = ((back - 1) & kMask2) | (back & ~kMask2);
- back_.store(back, std::memory_order_relaxed);
- e->w = std::move(w);
- e->state.store(kReady, std::memory_order_release);
- return Work();
- }
-
- // PopBack removes and returns the last elements in the queue.
- // Can fail spuriously.
- Work PopBack() {
- if (Empty()) return Work();
- std::unique_lock<std::mutex> lock(mutex_, std::try_to_lock);
- if (!lock) return Work();
- unsigned back = back_.load(std::memory_order_relaxed);
- Elem* e = &array_[back & kMask];
- uint8_t s = e->state.load(std::memory_order_relaxed);
- if (s != kReady ||
- !e->state.compare_exchange_strong(s, kBusy, std::memory_order_acquire))
- return Work();
- Work w = std::move(e->w);
- e->state.store(kEmpty, std::memory_order_release);
- back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed);
- return w;
- }
-
- // PopBackHalf removes and returns half last elements in the queue.
- // Returns number of elements removed. But can also fail spuriously.
- unsigned PopBackHalf(std::vector<Work>* result) {
- if (Empty()) return 0;
- std::unique_lock<std::mutex> lock(mutex_, std::try_to_lock);
- if (!lock) return 0;
- unsigned back = back_.load(std::memory_order_relaxed);
- unsigned size = Size();
- unsigned mid = back;
- if (size > 1) mid = back + (size - 1) / 2;
- unsigned n = 0;
- unsigned start = 0;
- for (; static_cast<int>(mid - back) >= 0; mid--) {
- Elem* e = &array_[mid & kMask];
- uint8_t s = e->state.load(std::memory_order_relaxed);
- if (n == 0) {
- if (s != kReady ||
- !e->state.compare_exchange_strong(s, kBusy,
- std::memory_order_acquire))
- continue;
- start = mid;
- } else {
- // Note: no need to store temporal kBusy, we exclusively own these
- // elements.
- eigen_assert(s == kReady);
- }
- result->push_back(std::move(e->w));
- e->state.store(kEmpty, std::memory_order_release);
- n++;
- }
- if (n != 0)
- back_.store(start + 1 + (kSize << 1), std::memory_order_relaxed);
- return n;
- }
-
- // Size returns current queue size.
- // Can be called by any thread at any time.
- unsigned Size() const {
- // Emptiness plays critical role in thread pool blocking. So we go to great
- // effort to not produce false positives (claim non-empty queue as empty).
- for (;;) {
- // Capture a consistent snapshot of front/tail.
- unsigned front = front_.load(std::memory_order_acquire);
- unsigned back = back_.load(std::memory_order_acquire);
- unsigned front1 = front_.load(std::memory_order_relaxed);
- if (front != front1) continue;
- int size = (front & kMask2) - (back & kMask2);
- // Fix overflow.
- if (size < 0) size += 2 * kSize;
- // Order of modification in push/pop is crafted to make the queue look
- // larger than it is during concurrent modifications. E.g. pop can
- // decrement size before the corresponding push has incremented it.
- // So the computed size can be up to kSize + 1, fix it.
- if (size > static_cast<int>(kSize)) size = kSize;
- return size;
- }
- }
-
- // Empty tests whether container is empty.
- // Can be called by any thread at any time.
- bool Empty() const { return Size() == 0; }
-
- private:
- static const unsigned kMask = kSize - 1;
- static const unsigned kMask2 = (kSize << 1) - 1;
- struct Elem {
- std::atomic<uint8_t> state;
- Work w;
- };
- enum {
- kEmpty,
- kBusy,
- kReady,
- };
- std::mutex mutex_;
- // Low log(kSize) + 1 bits in front_ and back_ contain rolling index of
- // front/back, repsectively. The remaining bits contain modification counters
- // that are incremented on Push operations. This allows us to (1) distinguish
- // between empty and full conditions (if we would use log(kSize) bits for
- // position, these conditions would be indistinguishable); (2) obtain
- // consistent snapshot of front_/back_ for Size operation using the
- // modification counters.
- std::atomic<unsigned> front_;
- std::atomic<unsigned> back_;
- Elem array_[kSize];
-
- RunQueue(const RunQueue&) = delete;
- void operator=(const RunQueue&) = delete;
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/SimpleThreadPool.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/SimpleThreadPool.h
deleted file mode 100644
index e75d0f4..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/SimpleThreadPool.h
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
-#define EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
-
-namespace Eigen {
-
-// The implementation of the ThreadPool type ensures that the Schedule method
-// runs the functions it is provided in FIFO order when the scheduling is done
-// by a single thread.
-// Environment provides a way to create threads and also allows to intercept
-// task submission and execution.
-template <typename Environment>
-class SimpleThreadPoolTempl : public ThreadPoolInterface {
- public:
- // Construct a pool that contains "num_threads" threads.
- explicit SimpleThreadPoolTempl(int num_threads, Environment env = Environment())
- : env_(env), threads_(num_threads), waiters_(num_threads) {
- for (int i = 0; i < num_threads; i++) {
- threads_.push_back(env.CreateThread([this, i]() { WorkerLoop(i); }));
- }
- }
-
- // Wait until all scheduled work has finished and then destroy the
- // set of threads.
- ~SimpleThreadPoolTempl() {
- {
- // Wait for all work to get done.
- std::unique_lock<std::mutex> l(mu_);
- while (!pending_.empty()) {
- empty_.wait(l);
- }
- exiting_ = true;
-
- // Wakeup all waiters.
- for (auto w : waiters_) {
- w->ready = true;
- w->task.f = nullptr;
- w->cv.notify_one();
- }
- }
-
- // Wait for threads to finish.
- for (auto t : threads_) {
- delete t;
- }
- }
-
- // Schedule fn() for execution in the pool of threads. The functions are
- // executed in the order in which they are scheduled.
- void Schedule(std::function<void()> fn) final {
- Task t = env_.CreateTask(std::move(fn));
- std::unique_lock<std::mutex> l(mu_);
- if (waiters_.empty()) {
- pending_.push_back(std::move(t));
- } else {
- Waiter* w = waiters_.back();
- waiters_.pop_back();
- w->ready = true;
- w->task = std::move(t);
- w->cv.notify_one();
- }
- }
-
- int NumThreads() const final {
- return static_cast<int>(threads_.size());
- }
-
- int CurrentThreadId() const final {
- const PerThread* pt = this->GetPerThread();
- if (pt->pool == this) {
- return pt->thread_id;
- } else {
- return -1;
- }
- }
-
- protected:
- void WorkerLoop(int thread_id) {
- std::unique_lock<std::mutex> l(mu_);
- PerThread* pt = GetPerThread();
- pt->pool = this;
- pt->thread_id = thread_id;
- Waiter w;
- Task t;
- while (!exiting_) {
- if (pending_.empty()) {
- // Wait for work to be assigned to me
- w.ready = false;
- waiters_.push_back(&w);
- while (!w.ready) {
- w.cv.wait(l);
- }
- t = w.task;
- w.task.f = nullptr;
- } else {
- // Pick up pending work
- t = std::move(pending_.front());
- pending_.pop_front();
- if (pending_.empty()) {
- empty_.notify_all();
- }
- }
- if (t.f) {
- mu_.unlock();
- env_.ExecuteTask(t);
- t.f = nullptr;
- mu_.lock();
- }
- }
- }
-
- private:
- typedef typename Environment::Task Task;
- typedef typename Environment::EnvThread Thread;
-
- struct Waiter {
- std::condition_variable cv;
- Task task;
- bool ready;
- };
-
- struct PerThread {
- constexpr PerThread() : pool(NULL), thread_id(-1) { }
- SimpleThreadPoolTempl* pool; // Parent pool, or null for normal threads.
- int thread_id; // Worker thread index in pool.
- };
-
- Environment env_;
- std::mutex mu_;
- MaxSizeVector<Thread*> threads_; // All threads
- MaxSizeVector<Waiter*> waiters_; // Stack of waiting threads.
- std::deque<Task> pending_; // Queue of pending work
- std::condition_variable empty_; // Signaled on pending_.empty()
- bool exiting_ = false;
-
- PerThread* GetPerThread() const {
- EIGEN_THREAD_LOCAL PerThread per_thread;
- return &per_thread;
- }
-};
-
-typedef SimpleThreadPoolTempl<StlThreadEnvironment> SimpleThreadPool;
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h
deleted file mode 100644
index 399f95c..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h
+++ /dev/null
@@ -1,38 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H
-#define EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H
-
-namespace Eigen {
-
-struct StlThreadEnvironment {
- struct Task {
- std::function<void()> f;
- };
-
- // EnvThread constructor must start the thread,
- // destructor must join the thread.
- class EnvThread {
- public:
- EnvThread(std::function<void()> f) : thr_(std::move(f)) {}
- ~EnvThread() { thr_.join(); }
-
- private:
- std::thread thr_;
- };
-
- EnvThread* CreateThread(std::function<void()> f) { return new EnvThread(std::move(f)); }
- Task CreateTask(std::function<void()> f) { return Task{std::move(f)}; }
- void ExecuteTask(const Task& t) { t.f(); }
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_THREAD_ENVIRONMENT_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h
deleted file mode 100644
index cfa2217..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h
+++ /dev/null
@@ -1,22 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
-#define EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
-
-// Try to come up with a portable implementation of thread local variables
-#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7)
-#define EIGEN_THREAD_LOCAL static __thread
-#elif EIGEN_COMP_CLANG
-#define EIGEN_THREAD_LOCAL static __thread
-#else
-#define EIGEN_THREAD_LOCAL static thread_local
-#endif
-
-#endif // EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h
deleted file mode 100644
index a65ee97..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h
+++ /dev/null
@@ -1,33 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H
-#define EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H
-
-namespace Eigen {
-
-// This defines an interface that ThreadPoolDevice can take to use
-// custom thread pools underneath.
-class ThreadPoolInterface {
- public:
- virtual void Schedule(std::function<void()> fn) = 0;
-
- // Returns the number of threads in the pool.
- virtual int NumThreads() const = 0;
-
- // Returns a logical thread index between 0 and NumThreads() - 1 if called
- // from one of the threads in the pool. Returns -1 otherwise.
- virtual int CurrentThreadId() const = 0;
-
- virtual ~ThreadPoolInterface() {}
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_CXX11_THREADPOOL_THREAD_POOL_INTERFACE_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h b/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h
deleted file mode 100644
index a859c7b..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h
+++ /dev/null
@@ -1,20 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
-#define EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
-
-// Try to come up with a portable way to yield
-#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7)
-#define EIGEN_THREAD_YIELD() sched_yield()
-#else
-#define EIGEN_THREAD_YIELD() std::this_thread::yield()
-#endif
-
-#endif // EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h b/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h
deleted file mode 100644
index ec27edd..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h
+++ /dev/null
@@ -1,542 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11META_H
-#define EIGEN_CXX11META_H
-
-#include <vector>
-#include "EmulateArray.h"
-
-// Emulate the cxx11 functionality that we need if the compiler doesn't support it.
-// Visual studio 2015 doesn't advertise itself as cxx11 compliant, although it
-// supports enough of the standard for our needs
-#if __cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900
-
-#include "CXX11Workarounds.h"
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * \file CXX11/util/CXX11Meta.h
- * This file contains generic metaprogramming classes which are not specifically related to Eigen.
- * This file expands upon Core/util/Meta.h and adds support for C++11 specific features.
- */
-
-template<typename... tt>
-struct type_list { constexpr static int count = sizeof...(tt); };
-
-template<typename t, typename... tt>
-struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; };
-
-template<typename T, T... nn>
-struct numeric_list { constexpr static std::size_t count = sizeof...(nn); };
-
-template<typename T, T n, T... nn>
-struct numeric_list<T, n, nn...> { constexpr static std::size_t count = sizeof...(nn) + 1; constexpr static T first_value = n; };
-
-/* numeric list constructors
- *
- * equivalencies:
- * constructor result
- * typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4>
- * typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0>
- * typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4>
- * typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0>
- */
-
-template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, start, start + n-1, ii...> {};
-template<typename T, T start, T... ii> struct gen_numeric_list<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; };
-
-template<typename T, std::size_t n, T start = 0, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, start, ii..., start + n-1> {};
-template<typename T, T start, T... ii> struct gen_numeric_list_reversed<T, 0, start, ii...> { typedef numeric_list<T, ii...> type; };
-
-template<typename T, std::size_t n, T a, T b, T start = 0, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, start, (start + n-1) == a ? b : ((start + n-1) == b ? a : (start + n-1)), ii...> {};
-template<typename T, T a, T b, T start, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, start, ii...> { typedef numeric_list<T, ii...> type; };
-
-template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {};
-template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; };
-
-/* list manipulation: concatenate */
-
-template<class a, class b> struct concat;
-
-template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; };
-template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; };
-
-template<typename... p> struct mconcat;
-template<typename a> struct mconcat<a> { typedef a type; };
-template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {};
-template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {};
-
-/* list manipulation: extract slices */
-
-template<int n, typename x> struct take;
-template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {};
-template<int n> struct take<n, type_list<>> { typedef type_list<> type; };
-template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; };
-template<> struct take<0, type_list<>> { typedef type_list<> type; };
-
-template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {};
-template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; };
-template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; };
-template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; };
-
-template<typename T, int n, T... ii> struct h_skip_helper_numeric;
-template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {};
-template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; };
-template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; };
-template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; };
-
-template<int n, typename... tt> struct h_skip_helper_type;
-template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {};
-template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; };
-template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; };
-template<> struct h_skip_helper_type<0> { typedef type_list<> type; };
-
-template<int n>
-struct h_skip {
- template<typename T, T... ii>
- constexpr static inline typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); }
- template<typename... tt>
- constexpr static inline typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); }
-};
-
-template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; };
-
-template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {};
-
-/* list manipulation: retrieve single element from list */
-
-template<int n, typename x> struct get;
-
-template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {};
-template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; };
-
-template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {};
-template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static T value = a; };
-
-/* always get type, regardless of dummy; good for parameter pack expansion */
-
-template<typename T, T dummy, typename t> struct id_numeric { typedef t type; };
-template<typename dummy, typename t> struct id_type { typedef t type; };
-
-/* equality checking, flagged version */
-
-template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; };
-
-/* apply_op to list */
-
-template<
- bool from_left, // false
- template<typename, typename> class op,
- typename additional_param,
- typename... values
->
-struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; };
-template<
- template<typename, typename> class op,
- typename additional_param,
- typename... values
->
-struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; };
-
-template<
- bool from_left,
- template<typename, typename> class op,
- typename additional_param
->
-struct h_apply_op
-{
- template<typename... values>
- constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>)
- { return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); }
-};
-
-template<
- template<typename, typename> class op,
- typename additional_param,
- typename a
->
-struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; };
-
-template<
- template<typename, typename> class op,
- typename additional_param,
- typename a
->
-struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; };
-
-/* see if an element is in a list */
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename h_list,
- bool last_check_positive = false
->
-struct contained_in_list;
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename h_list
->
-struct contained_in_list<test, check_against, h_list, true>
-{
- constexpr static bool value = true;
-};
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename a,
- typename... as
->
-struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {};
-
-template<
- template<typename, typename> class test,
- typename check_against
- EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty)
->
-struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; };
-
-/* see if an element is in a list and check for global flags */
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename h_list,
- int default_flags = 0,
- bool last_check_positive = false,
- int last_check_flags = default_flags
->
-struct contained_in_list_gf;
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename h_list,
- int default_flags,
- int last_check_flags
->
-struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags>
-{
- constexpr static bool value = true;
- constexpr static int global_flags = last_check_flags;
-};
-
-template<
- template<typename, typename> class test,
- typename check_against,
- typename a,
- typename... as,
- int default_flags,
- int last_check_flags
->
-struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {};
-
-template<
- template<typename, typename> class test,
- typename check_against
- EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty),
- int default_flags,
- int last_check_flags
->
-struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; };
-
-/* generic reductions */
-
-template<
- typename Reducer,
- typename... Ts
-> struct reduce;
-
-template<
- typename Reducer
-> struct reduce<Reducer>
-{
- constexpr static inline int run() { return Reducer::Identity; }
-};
-
-template<
- typename Reducer,
- typename A
-> struct reduce<Reducer, A>
-{
- constexpr static inline A run(A a) { return a; }
-};
-
-template<
- typename Reducer,
- typename A,
- typename... Ts
-> struct reduce<Reducer, A, Ts...>
-{
- constexpr static inline auto run(A a, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, Ts...>::run(ts...))) {
- return Reducer::run(a, reduce<Reducer, Ts...>::run(ts...));
- }
-};
-
-/* generic binary operations */
-
-struct sum_op {
- template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a + b) { return a + b; }
- static constexpr int Identity = 0;
-};
-struct product_op {
- template<typename A, typename B> EIGEN_DEVICE_FUNC constexpr static inline auto run(A a, B b) -> decltype(a * b) { return a * b; }
- static constexpr int Identity = 1;
-};
-
-struct logical_and_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a && b) { return a && b; } };
-struct logical_or_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a || b) { return a || b; } };
-
-struct equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a == b) { return a == b; } };
-struct not_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a != b) { return a != b; } };
-struct lesser_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } };
-struct lesser_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a <= b) { return a <= b; } };
-struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a > b) { return a > b; } };
-struct greater_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a >= b) { return a >= b; } };
-
-/* generic unary operations */
-
-struct not_op { template<typename A> constexpr static inline auto run(A a) -> decltype(!a) { return !a; } };
-struct negation_op { template<typename A> constexpr static inline auto run(A a) -> decltype(-a) { return -a; } };
-struct greater_equal_zero_op { template<typename A> constexpr static inline auto run(A a) -> decltype(a >= 0) { return a >= 0; } };
-
-
-/* reductions for lists */
-
-// using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it
-// together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1
-// does...
-template<typename... Ts>
-constexpr inline decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts)
-{
- return reduce<product_op, Ts...>::run(ts...);
-}
-
-template<typename... Ts>
-constexpr inline decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts)
-{
- return reduce<sum_op, Ts...>::run(ts...);
-}
-
-/* reverse arrays */
-
-template<typename Array, int... n>
-constexpr inline Array h_array_reverse(Array arr, numeric_list<int, n...>)
-{
- return {{array_get<sizeof...(n) - n - 1>(arr)...}};
-}
-
-template<typename T, std::size_t N>
-constexpr inline array<T, N> array_reverse(array<T, N> arr)
-{
- return h_array_reverse(arr, typename gen_numeric_list<int, N>::type());
-}
-
-
-/* generic array reductions */
-
-// can't reuse standard reduce() interface above because Intel's Compiler
-// *really* doesn't like it, so we just reimplement the stuff
-// (start from N - 1 and work down to 0 because specialization for
-// n == N - 1 also doesn't work in Intel's compiler, so it goes into
-// an infinite loop)
-template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1>
-struct h_array_reduce {
- EIGEN_DEVICE_FUNC constexpr static inline auto run(array<T, N> arr, T identity) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr)))
- {
- return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr, identity), array_get<n>(arr));
- }
-};
-
-template<typename Reducer, typename T, std::size_t N>
-struct h_array_reduce<Reducer, T, N, 0>
-{
- EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, N>& arr, T)
- {
- return array_get<0>(arr);
- }
-};
-
-template<typename Reducer, typename T>
-struct h_array_reduce<Reducer, T, 0>
-{
- EIGEN_DEVICE_FUNC constexpr static inline T run(const array<T, 0>&, T identity)
- {
- return identity;
- }
-};
-
-template<typename Reducer, typename T, std::size_t N>
-EIGEN_DEVICE_FUNC constexpr inline auto array_reduce(const array<T, N>& arr, T identity) -> decltype(h_array_reduce<Reducer, T, N>::run(arr, identity))
-{
- return h_array_reduce<Reducer, T, N>::run(arr, identity);
-}
-
-/* standard array reductions */
-
-template<typename T, std::size_t N>
-EIGEN_DEVICE_FUNC constexpr inline auto array_sum(const array<T, N>& arr) -> decltype(array_reduce<sum_op, T, N>(arr, static_cast<T>(0)))
-{
- return array_reduce<sum_op, T, N>(arr, static_cast<T>(0));
-}
-
-template<typename T, std::size_t N>
-EIGEN_DEVICE_FUNC constexpr inline auto array_prod(const array<T, N>& arr) -> decltype(array_reduce<product_op, T, N>(arr, static_cast<T>(1)))
-{
- return array_reduce<product_op, T, N>(arr, static_cast<T>(1));
-}
-
-template<typename t>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) {
- eigen_assert(a.size() > 0);
- t prod = 1;
- for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; }
- return prod;
-}
-
-/* zip an array */
-
-template<typename Op, typename A, typename B, std::size_t N, int... n>
-constexpr inline array<decltype(Op::run(A(), B())),N> h_array_zip(array<A, N> a, array<B, N> b, numeric_list<int, n...>)
-{
- return array<decltype(Op::run(A(), B())),N>{{ Op::run(array_get<n>(a), array_get<n>(b))... }};
-}
-
-template<typename Op, typename A, typename B, std::size_t N>
-constexpr inline array<decltype(Op::run(A(), B())),N> array_zip(array<A, N> a, array<B, N> b)
-{
- return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type());
-}
-
-/* zip an array and reduce the result */
-
-template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n>
-constexpr inline auto h_array_zip_and_reduce(array<A, N> a, array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...))
-{
- return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(array_get<n>(a), array_get<n>(b))...);
-}
-
-template<typename Reducer, typename Op, typename A, typename B, std::size_t N>
-constexpr inline auto array_zip_and_reduce(array<A, N> a, array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()))
-{
- return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type());
-}
-
-/* apply stuff to an array */
-
-template<typename Op, typename A, std::size_t N, int... n>
-constexpr inline array<decltype(Op::run(A())),N> h_array_apply(array<A, N> a, numeric_list<int, n...>)
-{
- return array<decltype(Op::run(A())),N>{{ Op::run(array_get<n>(a))... }};
-}
-
-template<typename Op, typename A, std::size_t N>
-constexpr inline array<decltype(Op::run(A())),N> array_apply(array<A, N> a)
-{
- return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type());
-}
-
-/* apply stuff to an array and reduce */
-
-template<typename Reducer, typename Op, typename A, std::size_t N, int... n>
-constexpr inline auto h_array_apply_and_reduce(array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...))
-{
- return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(array_get<n>(arr))...);
-}
-
-template<typename Reducer, typename Op, typename A, std::size_t N>
-constexpr inline auto array_apply_and_reduce(array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()))
-{
- return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type());
-}
-
-/* repeat a value n times (and make an array out of it
- * usage:
- * array<int, 16> = repeat<16>(42);
- */
-
-template<int n>
-struct h_repeat
-{
- template<typename t, int... ii>
- constexpr static inline array<t, n> run(t v, numeric_list<int, ii...>)
- {
- return {{ typename id_numeric<int, ii, t>::type(v)... }};
- }
-};
-
-template<int n, typename t>
-constexpr array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); }
-
-/* instantiate a class by a C-style array */
-template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps>
-struct h_instantiate_by_c_array;
-
-template<class InstType, typename ArrType, std::size_t N, typename... Ps>
-struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...>
-{
- static InstType run(ArrType* arr, Ps... args)
- {
- return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]);
- }
-};
-
-template<class InstType, typename ArrType, std::size_t N, typename... Ps>
-struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...>
-{
- static InstType run(ArrType* arr, Ps... args)
- {
- return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...);
- }
-};
-
-template<class InstType, typename ArrType, typename... Ps>
-struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...>
-{
- static InstType run(ArrType* arr, Ps... args)
- {
- (void)arr;
- return InstType(args...);
- }
-};
-
-template<class InstType, typename ArrType, typename... Ps>
-struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...>
-{
- static InstType run(ArrType* arr, Ps... args)
- {
- (void)arr;
- return InstType(args...);
- }
-};
-
-template<class InstType, typename ArrType, std::size_t N, bool Reverse = false>
-InstType instantiate_by_c_array(ArrType* arr)
-{
- return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#else // Non C++11, fallback to emulation mode
-
-#include "EmulateCXX11Meta.h"
-
-#endif
-
-#endif // EIGEN_CXX11META_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h b/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h
deleted file mode 100644
index fe4d228..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h
+++ /dev/null
@@ -1,88 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CXX11WORKAROUNDS_H
-#define EIGEN_CXX11WORKAROUNDS_H
-
-/* COMPATIBILITY CHECKS
- * (so users of compilers that are too old get some realistic error messages)
- */
-#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER < 1310)
-#error Intel Compiler only supports required C++ features since version 13.1.
-// note that most stuff in principle works with 13.0 but when combining
-// some features, at some point 13.0 will just fail with an internal assertion
-#elif defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (__GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 6))
-// G++ < 4.6 by default will continue processing the source files - even if we use #error to make
-// it error out. For this reason, we use the pragma to make sure G++ aborts at the first error
-// it sees. Unfortunately, that is still not our #error directive, but at least the output is
-// short enough the user has a chance to see that the compiler version is not sufficient for
-// the funky template mojo we use.
-#pragma GCC diagnostic error "-Wfatal-errors"
-#error GNU C++ Compiler (g++) only supports required C++ features since version 4.6.
-#endif
-
-/* Check that the compiler at least claims to support C++11. It might not be sufficient
- * because the compiler may not implement it correctly, but at least we'll know.
- * On the other hand, visual studio still doesn't claim to support C++11 although it's
- * compliant enugh for our purpose.
- */
-#if (__cplusplus <= 199711L) && (EIGEN_COMP_MSVC < 1900)
-#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
-#pragma GCC diagnostic error "-Wfatal-errors"
-#endif
-#error This library needs at least a C++11 compliant compiler. If you use g++/clang, please enable the -std=c++11 compiler flag. (-std=c++0x on older versions.)
-#endif
-
-namespace Eigen {
-
-namespace internal {
-
-/* std::get is only constexpr in C++14, not yet in C++11
- */
-
-
-template<std::size_t I, class T> constexpr inline T& array_get(std::vector<T>& a) { return a[I]; }
-template<std::size_t I, class T> constexpr inline T&& array_get(std::vector<T>&& a) { return a[I]; }
-template<std::size_t I, class T> constexpr inline T const& array_get(std::vector<T> const& a) { return a[I]; }
-
-/* Suppose you have a template of the form
- * template<typename T> struct X;
- * And you want to specialize it in such a way:
- * template<typename S1, typename... SN> struct X<Foo<S1, SN...>> { ::: };
- * template<> struct X<Foo<>> { ::: };
- * This will work in Intel's compiler 13.0, but only to some extent in g++ 4.6, since
- * g++ can only match templates called with parameter packs if the number of template
- * arguments is not a fixed size (so inside the first specialization, referencing
- * X<Foo<Sn...>> will fail in g++). On the other hand, g++ will accept the following:
- * template<typename S...> struct X<Foo<S...>> { ::: }:
- * as an additional (!) specialization, which will then only match the empty case.
- * But Intel's compiler 13.0 won't accept that, it will only accept the empty syntax,
- * so we have to create a workaround for this.
- */
-#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
-#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) mt... n
-#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) , EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n)
-#define EIGEN_TPL_PP_SPEC_HACK_USE(n) n...
-#define EIGEN_TPL_PP_SPEC_HACK_USEC(n) , n...
-#else
-#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n)
-#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n)
-#define EIGEN_TPL_PP_SPEC_HACK_USE(n)
-#define EIGEN_TPL_PP_SPEC_HACK_USEC(n)
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CXX11WORKAROUNDS_H
-
-/*
- * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
- */
diff --git a/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h b/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h
deleted file mode 100644
index 30d3ebc..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h
+++ /dev/null
@@ -1,267 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EMULATE_ARRAY_H
-#define EIGEN_EMULATE_ARRAY_H
-
-
-
-// The array class is only available starting with cxx11. Emulate our own here
-// if needed. Beware, msvc still doesn't advertise itself as a c++11 compiler!
-// Moreover, CUDA doesn't support the STL containers, so we use our own instead.
-#if (__cplusplus <= 199711L && EIGEN_COMP_MSVC < 1900) || defined(__CUDACC__) || defined(EIGEN_AVOID_STL_ARRAY)
-
-namespace Eigen {
-template <typename T, size_t n> class array {
- public:
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& operator[] (size_t index) { return values[index]; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& operator[] (size_t index) const { return values[index]; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& front() { return values[0]; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& front() const { return values[0]; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& back() { return values[n-1]; }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& back() const { return values[n-1]; }
-
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
- static std::size_t size() { return n; }
-
- T values[n];
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array() { }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v) {
- EIGEN_STATIC_ASSERT(n==1, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2) {
- EIGEN_STATIC_ASSERT(n==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3) {
- EIGEN_STATIC_ASSERT(n==3, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3,
- const T& v4) {
- EIGEN_STATIC_ASSERT(n==4, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- values[3] = v4;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4,
- const T& v5) {
- EIGEN_STATIC_ASSERT(n==5, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- values[3] = v4;
- values[4] = v5;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4,
- const T& v5, const T& v6) {
- EIGEN_STATIC_ASSERT(n==6, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- values[3] = v4;
- values[4] = v5;
- values[5] = v6;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(const T& v1, const T& v2, const T& v3, const T& v4,
- const T& v5, const T& v6, const T& v7) {
- EIGEN_STATIC_ASSERT(n==7, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- values[3] = v4;
- values[4] = v5;
- values[5] = v6;
- values[6] = v7;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(
- const T& v1, const T& v2, const T& v3, const T& v4,
- const T& v5, const T& v6, const T& v7, const T& v8) {
- EIGEN_STATIC_ASSERT(n==8, YOU_MADE_A_PROGRAMMING_MISTAKE)
- values[0] = v1;
- values[1] = v2;
- values[2] = v3;
- values[3] = v4;
- values[4] = v5;
- values[5] = v6;
- values[6] = v7;
- values[7] = v8;
- }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array(std::initializer_list<T> l) {
- eigen_assert(l.size() == n);
- internal::smart_copy(l.begin(), l.end(), values);
- }
-#endif
-};
-
-
-// Specialize array for zero size
-template <typename T> class array<T, 0> {
- public:
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& operator[] (size_t) {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& operator[] (size_t) const {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& front() {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& front() const {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE T& back() {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const T& back() const {
- eigen_assert(false && "Can't index a zero size array");
- return dummy;
- }
-
- static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::size_t size() { return 0; }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE array() : dummy() { }
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- EIGEN_DEVICE_FUNC array(std::initializer_list<T> l) : dummy() {
- eigen_assert(l.size() == 0);
- }
-#endif
-
- private:
- T dummy;
-};
-
-// Comparison operator
-// Todo: implement !=, <, <=, >, and >=
-template<class T, std::size_t N>
-EIGEN_DEVICE_FUNC bool operator==(const array<T,N>& lhs, const array<T,N>& rhs) {
- for (std::size_t i = 0; i < N; ++i) {
- if (lhs[i] != rhs[i]) {
- return false;
- }
- }
- return true;
-}
-
-
-namespace internal {
-template<std::size_t I, class T, std::size_t N>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(array<T,N>& a) {
- return a[I];
-}
-template<std::size_t I, class T, std::size_t N>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const array<T,N>& a) {
- return a[I];
-}
-
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<array<T,N> > {
- static const size_t value = N;
-};
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<array<T,N>& > {
- static const size_t value = N;
-};
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<const array<T,N> > {
- static const size_t value = N;
-};
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<const array<T,N>& > {
- static const size_t value = N;
-};
-
-} // end namespace internal
-} // end namespace Eigen
-
-#else
-
-// The compiler supports c++11, and we're not targetting cuda: use std::array as Eigen::array
-#include <array>
-namespace Eigen {
-
-template <typename T, std::size_t N> using array = std::array<T, N>;
-
-namespace internal {
-/* std::get is only constexpr in C++14, not yet in C++11
- * - libstdc++ from version 4.7 onwards has it nevertheless,
- * so use that
- * - libstdc++ older versions: use _M_instance directly
- * - libc++ all versions so far: use __elems_ directly
- * - all other libs: use std::get to be portable, but
- * this may not be constexpr
- */
-#if defined(__GLIBCXX__) && __GLIBCXX__ < 20120322
-#define STD_GET_ARR_HACK a._M_instance[I]
-#elif defined(_LIBCPP_VERSION)
-#define STD_GET_ARR_HACK a.__elems_[I]
-#else
-#define STD_GET_ARR_HACK std::template get<I, T, N>(a)
-#endif
-
-template<std::size_t I, class T, std::size_t N> constexpr inline T& array_get(std::array<T,N>& a) { return (T&) STD_GET_ARR_HACK; }
-template<std::size_t I, class T, std::size_t N> constexpr inline T&& array_get(std::array<T,N>&& a) { return (T&&) STD_GET_ARR_HACK; }
-template<std::size_t I, class T, std::size_t N> constexpr inline T const& array_get(std::array<T,N> const& a) { return (T const&) STD_GET_ARR_HACK; }
-
-#undef STD_GET_ARR_HACK
-
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<const std::array<T,N> > {
- static const size_t value = N;
-};
-template <typename T> struct array_size;
-template<class T, std::size_t N> struct array_size<std::array<T,N> > {
- static const size_t value = N;
-};
-} // end namespace internal
-} // end namespace Eigen
-
-#endif
-
-#endif // EIGEN_EMULATE_ARRAY_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/util/EmulateCXX11Meta.h b/eigen/unsupported/Eigen/CXX11/src/util/EmulateCXX11Meta.h
deleted file mode 100644
index 8a536fa..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/util/EmulateCXX11Meta.h
+++ /dev/null
@@ -1,311 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EMULATE_CXX11_META_H
-#define EIGEN_EMULATE_CXX11_META_H
-
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal
- * \file CXX11/util/EmulateCXX11Meta.h
- * This file emulates a subset of the functionality provided by CXXMeta.h for
- * compilers that don't yet support cxx11 such as nvcc.
- */
-
-struct empty_list { static const std::size_t count = 0; };
-
-template<typename T, typename Tail=empty_list> struct type_list {
- typedef T HeadType;
- typedef Tail TailType;
- static const T head;
- static const Tail tail;
- static const std::size_t count = 1 + Tail::count;
-};
-
-struct null_type { };
-
-template<typename T1 = null_type, typename T2 = null_type, typename T3 = null_type,
- typename T4 = null_type, typename T5 = null_type, typename T6 = null_type,
- typename T7 = null_type, typename T8 = null_type>
-struct make_type_list {
- typedef typename make_type_list<T2, T3, T4, T5, T6, T7, T8>::type tailresult;
-
- typedef type_list<T1, tailresult> type;
-};
-
-template<> struct make_type_list<> {
- typedef empty_list type;
-};
-
-
-template <std::size_t index, class TList> struct get_type;
-
-template <class Head, class Tail>
-struct get_type<0, type_list<Head, Tail> >
-{
- typedef Head type;
-};
-
-template <std::size_t i, class Head, class Tail>
-struct get_type<i, type_list<Head, Tail> >
-{
- typedef typename get_type<i-1, Tail>::type type;
-};
-
-
-/* numeric list */
-template <typename T, T n>
-struct type2val {
- typedef T type;
- static const T value = n;
-};
-
-
-template<typename T, size_t n, T V> struct gen_numeric_list_repeated;
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 1, V> {
- typedef typename make_type_list<type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 2, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 3, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 4, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 5, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 6, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>,
- type2val<T, V>, type2val<T, V>, type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 7, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>,
- type2val<T, V>, type2val<T, V>, type2val<T, V>,
- type2val<T, V> >::type type;
-};
-
-template<typename T, T V> struct gen_numeric_list_repeated<T, 8, V> {
- typedef typename make_type_list<type2val<T, V>, type2val<T, V>, type2val<T, V>,
- type2val<T, V>, type2val<T, V>, type2val<T, V>,
- type2val<T, V>, type2val<T, V> >::type type;
-};
-
-
-template <std::size_t index, class NList> struct get;
-
-template <std::size_t i>
-struct get<i, empty_list>
-{
- get() { eigen_assert(false && "index overflow"); }
- typedef void type;
- static const char value = '\0';
-};
-
-template <std::size_t i, class Head>
-struct get<i, type_list<Head, empty_list> >
-{
- get() { eigen_assert(false && "index overflow"); }
- typedef void type;
- static const char value = '\0';
-};
-
-template <class Head>
-struct get<0, type_list<Head, empty_list> >
-{
- typedef typename Head::type type;
- static const type value = Head::value;
-};
-
-template <class Head, class Tail>
-struct get<0, type_list<Head, Tail> >
-{
- typedef typename Head::type type;
- static const type value = Head::value;
-};
-
-template <std::size_t i, class Head, class Tail>
-struct get<i, type_list<Head, Tail> >
-{
- typedef typename Tail::HeadType::type type;
- static const type value = get<i-1, Tail>::value;
-};
-
-
-template <class NList> struct arg_prod {
- static const typename NList::HeadType::type value = get<0, NList>::value * arg_prod<typename NList::TailType>::value;
-};
-template <> struct arg_prod<empty_list> {
- static const int value = 1;
-};
-
-
-template<int n, typename t>
-array<t, n> repeat(t v) {
- array<t, n> array;
- array.fill(v);
- return array;
-}
-
-template<std::size_t I, class Head, class Tail>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Head::type array_get(type_list<Head, Tail>&) {
- return get<I, type_list<Head, Tail> >::value;
-}
-template<std::size_t I, class Head, class Tail>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Head::type array_get(const type_list<Head, Tail>&) {
- return get<I, type_list<Head, Tail> >::value;
-}
-
-template <class NList>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NList::HeadType::type array_prod(const NList&) {
- return arg_prod<NList>::value;
-}
-
-template<typename t, std::size_t n>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const array<t, n>& a) {
- t prod = 1;
- for (size_t i = 0; i < n; ++i) { prod *= a[i]; }
- return prod;
-}
-template<typename t>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const array<t, 0>& /*a*/) {
- return 1;
-}
-
-template<typename t>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE t array_prod(const std::vector<t>& a) {
- eigen_assert(a.size() > 0);
- t prod = 1;
- for (size_t i = 0; i < a.size(); ++i) { prod *= a[i]; }
- return prod;
-}
-
-
-template<std::size_t I, class T>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T& array_get(std::vector<T>& a) {
- return a[I];
-}
-template<std::size_t I, class T>
-EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const std::vector<T>& a) {
- return a[I];
-}
-
-struct sum_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a + b; }
-};
-struct product_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a * b; }
-};
-
-struct logical_and_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a && b; }
-};
-struct logical_or_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a || b; }
-};
-
-struct equal_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a == b; }
-};
-struct not_equal_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a != b; }
-};
-struct lesser_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a < b; }
-};
-struct lesser_equal_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a <= b; }
-};
-
-struct greater_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a > b; }
-};
-struct greater_equal_op {
- template<typename A, typename B> static inline bool run(A a, B b) { return a >= b; }
-};
-
-struct not_op {
- template<typename A> static inline bool run(A a) { return !a; }
-};
-struct negation_op {
- template<typename A> static inline bool run(A a) { return -a; }
-};
-struct greater_equal_zero_op {
- template<typename A> static inline bool run(A a) { return a >= 0; }
-};
-
-
-template<typename Reducer, typename Op, typename A, std::size_t N>
-struct ArrayApplyAndReduce {
- static inline bool run(const array<A, N>& a) {
- EIGEN_STATIC_ASSERT(N >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
- bool result = Reducer::run(Op::run(a[0]), Op::run(a[1]));
- for (size_t i = 2; i < N; ++i) {
- result = Reducer::run(result, Op::run(a[i]));
- }
- return result;
- }
-};
-
-template<typename Reducer, typename Op, typename A>
-struct ArrayApplyAndReduce<Reducer, Op, A, 1> {
- static inline bool run(const array<A, 1>& a) {
- return Op::run(a[0]);
- }
-};
-
-template<typename Reducer, typename Op, typename A, std::size_t N>
-inline bool array_apply_and_reduce(const array<A, N>& a) {
- return ArrayApplyAndReduce<Reducer, Op, A, N>::run(a);
-}
-
-template<typename Reducer, typename Op, typename A, typename B, std::size_t N>
-struct ArrayZipAndReduce {
- static inline bool run(const array<A, N>& a, const array<B, N>& b) {
- EIGEN_STATIC_ASSERT(N >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
- bool result = Reducer::run(Op::run(a[0], b[0]), Op::run(a[1], b[1]));
- for (size_t i = 2; i < N; ++i) {
- result = Reducer::run(result, Op::run(a[i], b[i]));
- }
- return result;
- }
-};
-
-template<typename Reducer, typename Op, typename A, typename B>
-struct ArrayZipAndReduce<Reducer, Op, A, B, 1> {
- static inline bool run(const array<A, 1>& a, const array<B, 1>& b) {
- return Op::run(a[0], b[0]);
- }
-};
-
-template<typename Reducer, typename Op, typename A, typename B, std::size_t N>
-inline bool array_zip_and_reduce(const array<A, N>& a, const array<B, N>& b) {
- return ArrayZipAndReduce<Reducer, Op, A, B, N>::run(a, b);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-
-
-#endif // EIGEN_EMULATE_CXX11_META_H
diff --git a/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h b/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h
deleted file mode 100644
index 4bc3dd1..0000000
--- a/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h
+++ /dev/null
@@ -1,141 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FIXEDSIZEVECTOR_H
-#define EIGEN_FIXEDSIZEVECTOR_H
-
-namespace Eigen {
-
-/** \class MaxSizeVector
- * \ingroup Core
- *
- * \brief The MaxSizeVector class.
- *
- * The %MaxSizeVector provides a subset of std::vector functionality.
- *
- * The goal is to provide basic std::vector operations when using
- * std::vector is not an option (e.g. on GPU or when compiling using
- * FMA/AVX, as this can cause either compilation failures or illegal
- * instruction failures).
- *
- * Beware: The constructors are not API compatible with these of
- * std::vector.
- */
-template <typename T>
-class MaxSizeVector {
- public:
- // Construct a new MaxSizeVector, reserve n elements.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- explicit MaxSizeVector(size_t n)
- : reserve_(n), size_(0),
- data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) {
- for (size_t i = 0; i < n; ++i) { new (&data_[i]) T; }
- }
-
- // Construct a new MaxSizeVector, reserve and resize to n.
- // Copy the init value to all elements.
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- MaxSizeVector(size_t n, const T& init)
- : reserve_(n), size_(n),
- data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) {
- for (size_t i = 0; i < n; ++i) { new (&data_[i]) T(init); }
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- ~MaxSizeVector() {
- for (size_t i = 0; i < size_; ++i) {
- data_[i].~T();
- }
- internal::aligned_free(data_);
- }
-
- void resize(size_t n) {
- eigen_assert(n <= reserve_);
- for (size_t i = size_; i < n; ++i) {
- new (&data_[i]) T;
- }
- for (size_t i = n; i < size_; ++i) {
- data_[i].~T();
- }
- size_ = n;
- }
-
- // Append new elements (up to reserved size).
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void push_back(const T& t) {
- eigen_assert(size_ < reserve_);
- data_[size_++] = t;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const T& operator[] (size_t i) const {
- eigen_assert(i < size_);
- return data_[i];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T& operator[] (size_t i) {
- eigen_assert(i < size_);
- return data_[i];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T& back() {
- eigen_assert(size_ > 0);
- return data_[size_ - 1];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const T& back() const {
- eigen_assert(size_ > 0);
- return data_[size_ - 1];
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void pop_back() {
- // NOTE: This does not destroy the value at the end the way
- // std::vector's version of pop_back() does. That happens when
- // the Vector is destroyed.
- eigen_assert(size_ > 0);
- size_--;
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- size_t size() const { return size_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- bool empty() const { return size_ == 0; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T* data() { return data_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const T* data() const { return data_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T* begin() { return data_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- T* end() { return data_ + size_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const T* begin() const { return data_; }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const T* end() const { return data_ + size_; }
-
- private:
- size_t reserve_;
- size_t size_;
- T* data_;
-};
-
-} // namespace Eigen
-
-#endif // EIGEN_FIXEDSIZEVECTOR_H
diff --git a/eigen/unsupported/Eigen/EulerAngles b/eigen/unsupported/Eigen/EulerAngles
deleted file mode 100644
index 521fa3f..0000000
--- a/eigen/unsupported/Eigen/EulerAngles
+++ /dev/null
@@ -1,43 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERANGLES_MODULE_H
-#define EIGEN_EULERANGLES_MODULE_H
-
-
-#include "Eigen/Core"
-#include "Eigen/Geometry"
-
-#include "Eigen/src/Core/util/DisableStupidWarnings.h"
-
-namespace Eigen {
-
-/**
- * \defgroup EulerAngles_Module EulerAngles module
- * \brief This module provides generic euler angles rotation.
- *
- * Euler angles are a way to represent 3D rotation.
- *
- * In order to use this module in your code, include this header:
- * \code
- * #include <unsupported/Eigen/EulerAngles>
- * \endcode
- *
- * See \ref EulerAngles for more information.
- *
- */
-
-}
-
-#include "src/EulerAngles/EulerSystem.h"
-#include "src/EulerAngles/EulerAngles.h"
-
-#include "Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_EULERANGLES_MODULE_H
diff --git a/eigen/unsupported/Eigen/FFT b/eigen/unsupported/Eigen/FFT
deleted file mode 100644
index d8cf3e6..0000000
--- a/eigen/unsupported/Eigen/FFT
+++ /dev/null
@@ -1,419 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Mark Borgerding mark a borgerding net
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FFT_H
-#define EIGEN_FFT_H
-
-#include <complex>
-#include <vector>
-#include <map>
-#include <Eigen/Core>
-
-
-/**
- * \defgroup FFT_Module Fast Fourier Transform module
- *
- * \code
- * #include <unsupported/Eigen/FFT>
- * \endcode
- *
- * This module provides Fast Fourier transformation, with a configurable backend
- * implementation.
- *
- * The default implementation is based on kissfft. It is a small, free, and
- * reasonably efficient default.
- *
- * There are currently two implementation backend:
- *
- * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
- * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
- *
- * \section FFTDesign Design
- *
- * The following design decisions were made concerning scaling and
- * half-spectrum for real FFT.
- *
- * The intent is to facilitate generic programming and ease migrating code
- * from Matlab/octave.
- * We think the default behavior of Eigen/FFT should favor correctness and
- * generality over speed. Of course, the caller should be able to "opt-out" from this
- * behavior and get the speed increase if they want it.
- *
- * 1) %Scaling:
- * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there
- * is a constant gain incurred after the forward&inverse transforms , so
- * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply.
- * The downside is that algorithms that worked correctly in Matlab/octave
- * don't behave the same way once implemented in C++.
- *
- * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x.
- *
- * 2) Real FFT half-spectrum
- * Other libraries use only half the frequency spectrum (plus one extra
- * sample for the Nyquist bin) for a real FFT, the other half is the
- * conjugate-symmetric of the first half. This saves them a copy and some
- * memory. The downside is the caller needs to have special logic for the
- * number of bins in complex vs real.
- *
- * How Eigen/FFT differs: The full spectrum is returned from the forward
- * transform. This facilitates generic template programming by obviating
- * separate specializations for real vs complex. On the inverse
- * transform, only half the spectrum is actually used if the output type is real.
- */
-
-
-#ifdef EIGEN_FFTW_DEFAULT
-// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
-# include <fftw3.h>
-# include "src/FFT/ei_fftw_impl.h"
- namespace Eigen {
- //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work
- template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
- }
-#elif defined EIGEN_MKL_DEFAULT
-// TODO
-// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
-# include "src/FFT/ei_imklfft_impl.h"
- namespace Eigen {
- template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
- }
-#else
-// internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft
-//
-# include "src/FFT/ei_kissfft_impl.h"
- namespace Eigen {
- template <typename T>
- struct default_fft_impl : public internal::kissfft_impl<T> {};
- }
-#endif
-
-namespace Eigen {
-
-
-//
-template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
-template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;
-
-namespace internal {
-template<typename T_SrcMat,typename T_FftIfc>
-struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
-{
- typedef typename T_SrcMat::PlainObject ReturnType;
-};
-template<typename T_SrcMat,typename T_FftIfc>
-struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
-{
- typedef typename T_SrcMat::PlainObject ReturnType;
-};
-}
-
-template<typename T_SrcMat,typename T_FftIfc>
-struct fft_fwd_proxy
- : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
-{
- typedef DenseIndex Index;
-
- fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
-
- template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-protected:
- const T_SrcMat & m_src;
- T_FftIfc & m_ifc;
- Index m_nfft;
-private:
- fft_fwd_proxy& operator=(const fft_fwd_proxy&);
-};
-
-template<typename T_SrcMat,typename T_FftIfc>
-struct fft_inv_proxy
- : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
-{
- typedef DenseIndex Index;
-
- fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
-
- template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-protected:
- const T_SrcMat & m_src;
- T_FftIfc & m_ifc;
- Index m_nfft;
-private:
- fft_inv_proxy& operator=(const fft_inv_proxy&);
-};
-
-
-template <typename T_Scalar,
- typename T_Impl=default_fft_impl<T_Scalar> >
-class FFT
-{
- public:
- typedef T_Impl impl_type;
- typedef DenseIndex Index;
- typedef typename impl_type::Scalar Scalar;
- typedef typename impl_type::Complex Complex;
-
- enum Flag {
- Default=0, // goof proof
- Unscaled=1,
- HalfSpectrum=2,
- // SomeOtherSpeedOptimization=4
- Speedy=32767
- };
-
- FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
-
- inline
- bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
-
- inline
- void SetFlag(Flag f) { m_flag |= (int)f;}
-
- inline
- void ClearFlag(Flag f) { m_flag &= (~(int)f);}
-
- inline
- void fwd( Complex * dst, const Scalar * src, Index nfft)
- {
- m_impl.fwd(dst,src,static_cast<int>(nfft));
- if ( HasFlag(HalfSpectrum) == false)
- ReflectSpectrum(dst,nfft);
- }
-
- inline
- void fwd( Complex * dst, const Complex * src, Index nfft)
- {
- m_impl.fwd(dst,src,static_cast<int>(nfft));
- }
-
- /*
- inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
- {
- m_impl.fwd2(dst,src,n0,n1);
- }
- */
-
- template <typename _Input>
- inline
- void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
- {
- if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
- else
- dst.resize(src.size());
- fwd(&dst[0],&src[0],src.size());
- }
-
- template<typename InputDerived, typename ComplexDerived>
- inline
- void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- typedef typename ComplexDerived::Scalar dst_type;
- typedef typename InputDerived::Scalar src_type;
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
- EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
-
- if (nfft<1)
- nfft = src.size();
-
- if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.derived().resize( (nfft>>1)+1);
- else
- dst.derived().resize(nfft);
-
- if ( src.innerStride() != 1 || src.size() < nfft ) {
- Matrix<src_type,1,Dynamic> tmp;
- if (src.size()<nfft) {
- tmp.setZero(nfft);
- tmp.block(0,0,src.size(),1 ) = src;
- }else{
- tmp = src;
- }
- fwd( &dst[0],&tmp[0],nfft );
- }else{
- fwd( &dst[0],&src[0],nfft );
- }
- }
-
- template<typename InputDerived>
- inline
- fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
- fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
- }
-
- template<typename InputDerived>
- inline
- fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
- inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
- }
-
- inline
- void inv( Complex * dst, const Complex * src, Index nfft)
- {
- m_impl.inv( dst,src,static_cast<int>(nfft) );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,Scalar(1./nfft),nfft); // scale the time series
- }
-
- inline
- void inv( Scalar * dst, const Complex * src, Index nfft)
- {
- m_impl.inv( dst,src,static_cast<int>(nfft) );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,Scalar(1./nfft),nfft); // scale the time series
- }
-
- template<typename OutputDerived, typename ComplexDerived>
- inline
- void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
- {
- typedef typename ComplexDerived::Scalar src_type;
- typedef typename ComplexDerived::RealScalar real_type;
- typedef typename OutputDerived::Scalar dst_type;
- const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
- EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
-
- if (nfft<1) { //automatic FFT size determination
- if ( realfft && HasFlag(HalfSpectrum) )
- nfft = 2*(src.size()-1); //assume even fft size
- else
- nfft = src.size();
- }
- dst.derived().resize( nfft );
-
- // check for nfft that does not fit the input data size
- Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
- ? ( (nfft/2+1) - src.size() )
- : ( nfft - src.size() );
-
- if ( src.innerStride() != 1 || resize_input ) {
- // if the vector is strided, then we need to copy it to a packed temporary
- Matrix<src_type,1,Dynamic> tmp;
- if ( resize_input ) {
- size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
- tmp.setZero(src.size() + resize_input);
- if ( realfft && HasFlag(HalfSpectrum) ) {
- // pad at the Nyquist bin
- tmp.head(ncopy) = src.head(ncopy);
- tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
- }else{
- size_t nhead,ntail;
- nhead = 1+ncopy/2-1; // range [0:pi)
- ntail = ncopy/2-1; // range (-pi:0)
- tmp.head(nhead) = src.head(nhead);
- tmp.tail(ntail) = src.tail(ntail);
- if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
- tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5);
- }else{ // expanding -- split the old Nyquist bin into two halves
- tmp(nhead) = src(nhead) * real_type(.5);
- tmp(tmp.size()-nhead) = tmp(nhead);
- }
- }
- }else{
- tmp = src;
- }
- inv( &dst[0],&tmp[0], nfft);
- }else{
- inv( &dst[0],&src[0], nfft);
- }
- }
-
- template <typename _Output>
- inline
- void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
- {
- if (nfft<1)
- nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
- dst.resize( nfft );
- inv( &dst[0],&src[0],nfft);
- }
-
-
- /*
- // TODO: multi-dimensional FFTs
- inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
- {
- m_impl.inv2(dst,src,n0,n1);
- if ( HasFlag( Unscaled ) == false)
- scale(dst,1./(n0*n1),n0*n1);
- }
- */
-
- inline
- impl_type & impl() {return m_impl;}
- private:
-
- template <typename T_Data>
- inline
- void scale(T_Data * x,Scalar s,Index nx)
- {
-#if 1
- for (int k=0;k<nx;++k)
- *x++ *= s;
-#else
- if ( ((ptrdiff_t)x) & 15 )
- Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
- else
- Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
- //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
-#endif
- }
-
- inline
- void ReflectSpectrum(Complex * freq, Index nfft)
- {
- // create the implicit right-half spectrum (conjugate-mirror of the left-half)
- Index nhbins=(nfft>>1)+1;
- for (Index k=nhbins;k < nfft; ++k )
- freq[k] = conj(freq[nfft-k]);
- }
-
- impl_type m_impl;
- int m_flag;
-};
-
-template<typename T_SrcMat,typename T_FftIfc>
-template<typename T_DestMat> inline
-void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
-{
- m_ifc.fwd( dst, m_src, m_nfft);
-}
-
-template<typename T_SrcMat,typename T_FftIfc>
-template<typename T_DestMat> inline
-void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
-{
- m_ifc.inv( dst, m_src, m_nfft);
-}
-
-}
-#endif
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/IterativeSolvers b/eigen/unsupported/Eigen/IterativeSolvers
deleted file mode 100644
index 31e880b..0000000
--- a/eigen/unsupported/Eigen/IterativeSolvers
+++ /dev/null
@@ -1,42 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ITERATIVE_SOLVERS_MODULE_H
-#define EIGEN_ITERATIVE_SOLVERS_MODULE_H
-
-#include <Eigen/Sparse>
-
-/**
- * \defgroup IterativeSolvers_Module Iterative solvers module
- * This module aims to provide various iterative linear and non linear solver algorithms.
- * It currently provides:
- * - a constrained conjugate gradient
- * - a Householder GMRES implementation
- * \code
- * #include <unsupported/Eigen/IterativeSolvers>
- * \endcode
- */
-//@{
-
-#ifndef EIGEN_MPL2_ONLY
-#include "src/IterativeSolvers/IterationController.h"
-#include "src/IterativeSolvers/ConstrainedConjGrad.h"
-#endif
-
-#include "src/IterativeSolvers/IncompleteLU.h"
-#include "../../Eigen/Jacobi"
-#include "../../Eigen/Householder"
-#include "src/IterativeSolvers/GMRES.h"
-#include "src/IterativeSolvers/DGMRES.h"
-//#include "src/IterativeSolvers/SSORPreconditioner.h"
-#include "src/IterativeSolvers/MINRES.h"
-
-//@}
-
-#endif // EIGEN_ITERATIVE_SOLVERS_MODULE_H
diff --git a/eigen/unsupported/Eigen/KroneckerProduct b/eigen/unsupported/Eigen/KroneckerProduct
deleted file mode 100644
index 5f5afb8..0000000
--- a/eigen/unsupported/Eigen/KroneckerProduct
+++ /dev/null
@@ -1,36 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_KRONECKER_PRODUCT_MODULE_H
-#define EIGEN_KRONECKER_PRODUCT_MODULE_H
-
-#include "../../Eigen/Core"
-
-#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
-
-#include "../../Eigen/src/SparseCore/SparseUtil.h"
-
-namespace Eigen {
-
-/**
- * \defgroup KroneckerProduct_Module KroneckerProduct module
- *
- * This module contains an experimental Kronecker product implementation.
- *
- * \code
- * #include <Eigen/KroneckerProduct>
- * \endcode
- */
-
-} // namespace Eigen
-
-#include "src/KroneckerProduct/KroneckerTensorProduct.h"
-
-#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_KRONECKER_PRODUCT_MODULE_H
diff --git a/eigen/unsupported/Eigen/LevenbergMarquardt b/eigen/unsupported/Eigen/LevenbergMarquardt
deleted file mode 100644
index 0fe2680..0000000
--- a/eigen/unsupported/Eigen/LevenbergMarquardt
+++ /dev/null
@@ -1,45 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LEVENBERGMARQUARDT_MODULE
-#define EIGEN_LEVENBERGMARQUARDT_MODULE
-
-// #include <vector>
-
-#include <Eigen/Core>
-#include <Eigen/Jacobi>
-#include <Eigen/QR>
-#include <unsupported/Eigen/NumericalDiff>
-
-#include <Eigen/SparseQR>
-
-/**
- * \defgroup LevenbergMarquardt_Module Levenberg-Marquardt module
- *
- * \code
- * #include </Eigen/LevenbergMarquardt>
- * \endcode
- *
- *
- */
-
-#include "Eigen/SparseCore"
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-#include "src/LevenbergMarquardt/LMqrsolv.h"
-#include "src/LevenbergMarquardt/LMcovar.h"
-#include "src/LevenbergMarquardt/LMpar.h"
-
-#endif
-
-#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
-#include "src/LevenbergMarquardt/LMonestep.h"
-
-
-#endif // EIGEN_LEVENBERGMARQUARDT_MODULE
diff --git a/eigen/unsupported/Eigen/MPRealSupport b/eigen/unsupported/Eigen/MPRealSupport
deleted file mode 100644
index 7f0b70c..0000000
--- a/eigen/unsupported/Eigen/MPRealSupport
+++ /dev/null
@@ -1,209 +0,0 @@
-// This file is part of a joint effort between Eigen, a lightweight C++ template library
-// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
-//
-// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
-// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MPREALSUPPORT_MODULE_H
-#define EIGEN_MPREALSUPPORT_MODULE_H
-
-#include <Eigen/Core>
-#include <mpreal.h>
-
-namespace Eigen {
-
-/**
- * \defgroup MPRealSupport_Module MPFRC++ Support module
- * \code
- * #include <Eigen/MPRealSupport>
- * \endcode
- *
- * This module provides support for multi precision floating point numbers
- * via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
- * library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
- *
- * \warning MPFR C++ is licensed under the GPL.
- *
- * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
- *
- * Here is an example:
- *
-\code
-#include <iostream>
-#include <Eigen/MPRealSupport>
-#include <Eigen/LU>
-using namespace mpfr;
-using namespace Eigen;
-int main()
-{
- // set precision to 256 bits (double has only 53 bits)
- mpreal::set_default_prec(256);
- // Declare matrix and vector types with multi-precision scalar type
- typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp;
- typedef Matrix<mpreal,Dynamic,1> VectorXmp;
-
- MatrixXmp A = MatrixXmp::Random(100,100);
- VectorXmp b = VectorXmp::Random(100);
-
- // Solve Ax=b using LU
- VectorXmp x = A.lu().solve(b);
- std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
- return 0;
-}
-\endcode
- *
- */
-
- template<> struct NumTraits<mpfr::mpreal>
- : GenericNumTraits<mpfr::mpreal>
- {
- enum {
- IsInteger = 0,
- IsSigned = 1,
- IsComplex = 0,
- RequireInitialization = 1,
- ReadCost = HugeCost,
- AddCost = HugeCost,
- MulCost = HugeCost
- };
-
- typedef mpfr::mpreal Real;
- typedef mpfr::mpreal NonInteger;
-
- static inline Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
- static inline Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
-
- // Constants
- static inline Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
- static inline Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
- static inline Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
- static inline Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
-
- static inline Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
- static inline Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
-
-#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS
- static inline int digits10 (long Precision = mpfr::mpreal::get_default_prec()) { return std::numeric_limits<Real>::digits10(Precision); }
- static inline int digits10 (const Real& x) { return std::numeric_limits<Real>::digits10(x); }
-#endif
-
- static inline Real dummy_precision()
- {
- mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
- return mpfr::machine_epsilon(weak_prec);
- }
- };
-
- namespace internal {
-
- template<> inline mpfr::mpreal random<mpfr::mpreal>()
- {
- return mpfr::random();
- }
-
- template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
- {
- return a + (b-a) * random<mpfr::mpreal>();
- }
-
- inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
- {
- return mpfr::abs(a) <= mpfr::abs(b) * eps;
- }
-
- inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
- {
- return mpfr::isEqualFuzzy(a,b,eps);
- }
-
- inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
- {
- return a <= b || mpfr::isEqualFuzzy(a,b,eps);
- }
-
- template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
- { return x.toLDouble(); }
-
- template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
- { return x.toDouble(); }
-
- template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
- { return x.toLong(); }
-
- template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
- { return int(x.toLong()); }
-
- // Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
- // This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
- template<>
- class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false>
- {
- public:
- typedef mpfr::mpreal ResScalar;
- enum {
- Vectorizable = false,
- LhsPacketSize = 1,
- RhsPacketSize = 1,
- ResPacketSize = 1,
- NumberOfRegisters = 1,
- nr = 1,
- mr = 1,
- LhsProgress = 1,
- RhsProgress = 1
- };
- typedef ResScalar LhsPacket;
- typedef ResScalar RhsPacket;
- typedef ResScalar ResPacket;
-
- };
-
-
-
- template<typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs>
- struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,DataMapper,1,1,ConjugateLhs,ConjugateRhs>
- {
- typedef mpfr::mpreal mpreal;
-
- EIGEN_DONT_INLINE
- void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB,
- Index rows, Index depth, Index cols, const mpreal& alpha,
- Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0)
- {
- if(rows==0 || cols==0 || depth==0)
- return;
-
- mpreal acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())),
- tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr()));
-
- if(strideA==-1) strideA = depth;
- if(strideB==-1) strideB = depth;
-
- for(Index i=0; i<rows; ++i)
- {
- for(Index j=0; j<cols; ++j)
- {
- const mpreal *A = blockA + i*strideA + offsetA;
- const mpreal *B = blockB + j*strideB + offsetB;
-
- acc1 = 0;
- for(Index k=0; k<depth; k++)
- {
- mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd());
- mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
- }
-
- mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd());
- mpfr_add(res(i,j).mpfr_ptr(), res(i,j).mpfr_srcptr(), acc1.mpfr_srcptr(), mpreal::get_default_rnd());
- }
- }
- }
- };
- } // end namespace internal
-}
-
-#endif // EIGEN_MPREALSUPPORT_MODULE_H
diff --git a/eigen/unsupported/Eigen/MatrixFunctions b/eigen/unsupported/Eigen/MatrixFunctions
deleted file mode 100644
index 60dc0a6..0000000
--- a/eigen/unsupported/Eigen/MatrixFunctions
+++ /dev/null
@@ -1,500 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTIONS
-#define EIGEN_MATRIX_FUNCTIONS
-
-#include <cfloat>
-#include <list>
-
-#include <Eigen/Core>
-#include <Eigen/LU>
-#include <Eigen/Eigenvalues>
-
-/**
- * \defgroup MatrixFunctions_Module Matrix functions module
- * \brief This module aims to provide various methods for the computation of
- * matrix functions.
- *
- * To use this module, add
- * \code
- * #include <unsupported/Eigen/MatrixFunctions>
- * \endcode
- * at the start of your source file.
- *
- * This module defines the following MatrixBase methods.
- * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
- * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
- * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
- * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm
- * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power
- * - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
- * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
- * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
- * - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
- *
- * These methods are the main entry points to this module.
- *
- * %Matrix functions are defined as follows. Suppose that \f$ f \f$
- * is an entire function (that is, a function on the complex plane
- * that is everywhere complex differentiable). Then its Taylor
- * series
- * \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
- * converges to \f$ f(x) \f$. In this case, we can define the matrix
- * function by the same series:
- * \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
- *
- */
-
-#include "src/MatrixFunctions/MatrixExponential.h"
-#include "src/MatrixFunctions/MatrixFunction.h"
-#include "src/MatrixFunctions/MatrixSquareRoot.h"
-#include "src/MatrixFunctions/MatrixLogarithm.h"
-#include "src/MatrixFunctions/MatrixPower.h"
-
-
-/**
-\page matrixbaseextra_page
-\ingroup MatrixFunctions_Module
-
-\section matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
-
-The remainder of the page documents the following MatrixBase methods
-which are defined in the MatrixFunctions module.
-
-
-
-\subsection matrixbase_cos MatrixBase::cos()
-
-Compute the matrix cosine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \cos(M) \f$.
-
-This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
-
-The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
-
-\sa \ref matrixbase_sin "sin()" for an example.
-
-
-
-\subsection matrixbase_cosh MatrixBase::cosh()
-
-Compute the matrix hyberbolic cosine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \cosh(M) \f$
-
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
-
-\sa \ref matrixbase_sinh "sinh()" for an example.
-
-
-
-\subsection matrixbase_exp MatrixBase::exp()
-
-Compute the matrix exponential.
-
-\code
-const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
-\endcode
-
-\param[in] M matrix whose exponential is to be computed.
-\returns expression representing the matrix exponential of \p M.
-
-The matrix exponential of \f$ M \f$ is defined by
-\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
-The matrix exponential can be used to solve linear ordinary
-differential equations: the solution of \f$ y' = My \f$ with the
-initial condition \f$ y(0) = y_0 \f$ is given by
-\f$ y(t) = \exp(M) y_0 \f$.
-
-The matrix exponential is different from applying the exp function to all the entries in the matrix.
-Use ArrayBase::exp() if you want to do the latter.
-
-The cost of the computation is approximately \f$ 20 n^3 \f$ for
-matrices of size \f$ n \f$. The number 20 depends weakly on the
-norm of the matrix.
-
-The matrix exponential is computed using the scaling-and-squaring
-method combined with Pad&eacute; approximation. The matrix is first
-rescaled, then the exponential of the reduced matrix is computed
-approximant, and then the rescaling is undone by repeated
-squaring. The degree of the Pad&eacute; approximant is chosen such
-that the approximation error is less than the round-off
-error. However, errors may accumulate during the squaring phase.
-
-Details of the algorithm can be found in: Nicholas J. Higham, "The
-scaling and squaring method for the matrix exponential revisited,"
-<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
-2005.
-
-Example: The following program checks that
-\f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis.
-
-\include MatrixExponential.cpp
-Output: \verbinclude MatrixExponential.out
-
-\note \p M has to be a matrix of \c float, \c double, `long double`
-\c complex<float>, \c complex<double>, or `complex<long double>` .
-
-
-\subsection matrixbase_log MatrixBase::log()
-
-Compute the matrix logarithm.
-
-\code
-const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
-\endcode
-
-\param[in] M invertible matrix whose logarithm is to be computed.
-\returns expression representing the matrix logarithm root of \p M.
-
-The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that
-\f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for
-the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
-multiple solutions; this function returns a matrix whose eigenvalues
-have imaginary part in the interval \f$ (-\pi,\pi] \f$.
-
-The matrix logarithm is different from applying the log function to all the entries in the matrix.
-Use ArrayBase::log() if you want to do the latter.
-
-In the real case, the matrix \f$ M \f$ should be invertible and
-it should have no eigenvalues which are real and negative (pairs of
-complex conjugate eigenvalues are allowed). In the complex case, it
-only needs to be invertible.
-
-This function computes the matrix logarithm using the Schur-Parlett
-algorithm as implemented by MatrixBase::matrixFunction(). The
-logarithm of an atomic block is computed by MatrixLogarithmAtomic,
-which uses direct computation for 1-by-1 and 2-by-2 blocks and an
-inverse scaling-and-squaring algorithm for bigger blocks, with the
-square roots computed by MatrixBase::sqrt().
-
-Details of the algorithm can be found in Section 11.6.2 of:
-Nicholas J. Higham,
-<em>Functions of Matrices: Theory and Computation</em>,
-SIAM 2008. ISBN 978-0-898716-46-7.
-
-Example: The following program checks that
-\f[ \log \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right] = \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis. This is the inverse of the example used in the
-documentation of \ref matrixbase_exp "exp()".
-
-\include MatrixLogarithm.cpp
-Output: \verbinclude MatrixLogarithm.out
-
-\note \p M has to be a matrix of \c float, \c double, `long
-double`, \c complex<float>, \c complex<double>, or `complex<long double>`.
-
-\sa MatrixBase::exp(), MatrixBase::matrixFunction(),
- class MatrixLogarithmAtomic, MatrixBase::sqrt().
-
-
-\subsection matrixbase_pow MatrixBase::pow()
-
-Compute the matrix raised to arbitrary real power.
-
-\code
-const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
-\endcode
-
-\param[in] M base of the matrix power, should be a square matrix.
-\param[in] p exponent of the matrix power.
-
-The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
-where exp denotes the matrix exponential, and log denotes the matrix
-logarithm. This is different from raising all the entries in the matrix
-to the p-th power. Use ArrayBase::pow() if you want to do the latter.
-
-If \p p is complex, the scalar type of \p M should be the type of \p
-p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
-Therefore, the matrix \f$ M \f$ should meet the conditions to be an
-argument of matrix logarithm.
-
-If \p p is real, it is casted into the real scalar type of \p M. Then
-this function computes the matrix power using the Schur-Pad&eacute;
-algorithm as implemented by class MatrixPower. The exponent is split
-into integral part and fractional part, where the fractional part is
-in the interval \f$ (-1, 1) \f$. The main diagonal and the first
-super-diagonal is directly computed.
-
-If \p M is singular with a semisimple zero eigenvalue and \p p is
-positive, the Schur factor \f$ T \f$ is reordered with Givens
-rotations, i.e.
-
-\f[ T = \left[ \begin{array}{cc}
- T_1 & T_2 \\
- 0 & 0
- \end{array} \right] \f]
-
-where \f$ T_1 \f$ is invertible. Then \f$ T^p \f$ is given by
-
-\f[ T^p = \left[ \begin{array}{cc}
- T_1^p & T_1^{-1} T_1^p T_2 \\
- 0 & 0
- \end{array}. \right] \f]
-
-\warning Fractional power of a matrix with a non-semisimple zero
-eigenvalue is not well-defined. We introduce an assertion failure
-against inaccurate result, e.g. \code
-#include <unsupported/Eigen/MatrixFunctions>
-#include <iostream>
-
-int main()
-{
- Eigen::Matrix4d A;
- A << 0, 0, 2, 3,
- 0, 0, 4, 5,
- 0, 0, 6, 7,
- 0, 0, 8, 9;
- std::cout << A.pow(0.37) << std::endl;
-
- // The 1 makes eigenvalue 0 non-semisimple.
- A.coeffRef(0, 1) = 1;
-
- // This fails if EIGEN_NO_DEBUG is undefined.
- std::cout << A.pow(0.37) << std::endl;
-
- return 0;
-}
-\endcode
-
-Details of the algorithm can be found in: Nicholas J. Higham and
-Lijing Lin, "A Schur-Pad&eacute; algorithm for fractional powers of a
-matrix," <em>SIAM J. %Matrix Anal. Applic.</em>,
-<b>32(3)</b>:1056&ndash;1078, 2011.
-
-Example: The following program checks that
-\f[ \left[ \begin{array}{ccc}
- \cos1 & -\sin1 & 0 \\
- \sin1 & \cos1 & 0 \\
- 0 & 0 & 1
- \end{array} \right]^{\frac14\pi} = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to \f$ \frac14\pi \f$ rotations of 1 radian around
-the z-axis.
-
-\include MatrixPower.cpp
-Output: \verbinclude MatrixPower.out
-
-MatrixBase::pow() is user-friendly. However, there are some
-circumstances under which you should use class MatrixPower directly.
-MatrixPower can save the result of Schur decomposition, so it's
-better for computing various powers for the same matrix.
-
-Example:
-\include MatrixPower_optimal.cpp
-Output: \verbinclude MatrixPower_optimal.out
-
-\note \p M has to be a matrix of \c float, \c double, `long
-double`, \c complex<float>, \c complex<double>, or
-\c complex<long double> .
-
-\sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower.
-
-
-\subsection matrixbase_matrixfunction MatrixBase::matrixFunction()
-
-Compute a matrix function.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
-\endcode
-
-\param[in] M argument of matrix function, should be a square matrix.
-\param[in] f an entire function; \c f(x,n) should compute the n-th
-derivative of f at x.
-\returns expression representing \p f applied to \p M.
-
-Suppose that \p M is a matrix whose entries have type \c Scalar.
-Then, the second argument, \p f, should be a function with prototype
-\code
-ComplexScalar f(ComplexScalar, int)
-\endcode
-where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
-real (e.g., \c float or \c double) and \c ComplexScalar =
-\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
-should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
-
-This routine uses the algorithm described in:
-Philip Davies and Nicholas J. Higham,
-"A Schur-Parlett algorithm for computing matrix functions",
-<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464&ndash;485, 2003.
-
-The actual work is done by the MatrixFunction class.
-
-Example: The following program checks that
-\f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
-This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
-the z-axis. This is the same example as used in the documentation
-of \ref matrixbase_exp "exp()".
-
-\include MatrixFunction.cpp
-Output: \verbinclude MatrixFunction.out
-
-Note that the function \c expfn is defined for complex numbers
-\c x, even though the matrix \c A is over the reals. Instead of
-\c expfn, we could also have used StdStemFunctions::exp:
-\code
-A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
-\endcode
-
-
-
-\subsection matrixbase_sin MatrixBase::sin()
-
-Compute the matrix sine.
-
-\code
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \sin(M) \f$.
-
-This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
-
-The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
-
-Example: \include MatrixSine.cpp
-Output: \verbinclude MatrixSine.out
-
-
-
-\subsection matrixbase_sinh MatrixBase::sinh()
-
-Compute the matrix hyperbolic sine.
-
-\code
-MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
-\endcode
-
-\param[in] M a square matrix.
-\returns expression representing \f$ \sinh(M) \f$
-
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
-
-Example: \include MatrixSinh.cpp
-Output: \verbinclude MatrixSinh.out
-
-
-\subsection matrixbase_sqrt MatrixBase::sqrt()
-
-Compute the matrix square root.
-
-\code
-const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
-\endcode
-
-\param[in] M invertible matrix whose square root is to be computed.
-\returns expression representing the matrix square root of \p M.
-
-The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
-whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
-\f$ S^2 = M \f$. This is different from taking the square root of all
-the entries in the matrix; use ArrayBase::sqrt() if you want to do the
-latter.
-
-In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
-it should have no eigenvalues which are real and negative (pairs of
-complex conjugate eigenvalues are allowed). In that case, the matrix
-has a square root which is also real, and this is the square root
-computed by this function.
-
-The matrix square root is computed by first reducing the matrix to
-quasi-triangular form with the real Schur decomposition. The square
-root of the quasi-triangular matrix can then be computed directly. The
-cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
-decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
-(though the computation time in practice is likely more than this
-indicates).
-
-Details of the algorithm can be found in: Nicholas J. Highan,
-"Computing real square roots of a real matrix", <em>Linear Algebra
-Appl.</em>, 88/89:405&ndash;430, 1987.
-
-If the matrix is <b>positive-definite symmetric</b>, then the square
-root is also positive-definite symmetric. In this case, it is best to
-use SelfAdjointEigenSolver::operatorSqrt() to compute it.
-
-In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
-this is a restriction of the algorithm. The square root computed by
-this algorithm is the one whose eigenvalues have an argument in the
-interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
-cut.
-
-The computation is the same as in the real case, except that the
-complex Schur decomposition is used to reduce the matrix to a
-triangular matrix. The theoretical cost is the same. Details are in:
-&Aring;ke Bj&ouml;rck and Sven Hammarling, "A Schur method for the
-square root of a matrix", <em>Linear Algebra Appl.</em>,
-52/53:127&ndash;140, 1983.
-
-Example: The following program checks that the square root of
-\f[ \left[ \begin{array}{cc}
- \cos(\frac13\pi) & -\sin(\frac13\pi) \\
- \sin(\frac13\pi) & \cos(\frac13\pi)
- \end{array} \right], \f]
-corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
-\f[ \left[ \begin{array}{cc}
- \cos(\frac16\pi) & -\sin(\frac16\pi) \\
- \sin(\frac16\pi) & \cos(\frac16\pi)
- \end{array} \right]. \f]
-
-\include MatrixSquareRoot.cpp
-Output: \verbinclude MatrixSquareRoot.out
-
-\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
- SelfAdjointEigenSolver::operatorSqrt().
-
-*/
-
-#endif // EIGEN_MATRIX_FUNCTIONS
-
diff --git a/eigen/unsupported/Eigen/MoreVectorization b/eigen/unsupported/Eigen/MoreVectorization
deleted file mode 100644
index 470e724..0000000
--- a/eigen/unsupported/Eigen/MoreVectorization
+++ /dev/null
@@ -1,24 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MOREVECTORIZATION_MODULE_H
-#define EIGEN_MOREVECTORIZATION_MODULE_H
-
-#include <Eigen/Core>
-
-namespace Eigen {
-
-/**
- * \defgroup MoreVectorization More vectorization module
- */
-
-}
-
-#include "src/MoreVectorization/MathFunctions.h"
-
-#endif // EIGEN_MOREVECTORIZATION_MODULE_H
diff --git a/eigen/unsupported/Eigen/NonLinearOptimization b/eigen/unsupported/Eigen/NonLinearOptimization
deleted file mode 100644
index 600ab4c..0000000
--- a/eigen/unsupported/Eigen/NonLinearOptimization
+++ /dev/null
@@ -1,134 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NONLINEAROPTIMIZATION_MODULE
-#define EIGEN_NONLINEAROPTIMIZATION_MODULE
-
-#include <vector>
-
-#include <Eigen/Core>
-#include <Eigen/Jacobi>
-#include <Eigen/QR>
-#include <unsupported/Eigen/NumericalDiff>
-
-/**
- * \defgroup NonLinearOptimization_Module Non linear optimization module
- *
- * \code
- * #include <unsupported/Eigen/NonLinearOptimization>
- * \endcode
- *
- * This module provides implementation of two important algorithms in non linear
- * optimization. In both cases, we consider a system of non linear functions. Of
- * course, this should work, and even work very well if those functions are
- * actually linear. But if this is so, you should probably better use other
- * methods more fitted to this special case.
- *
- * One algorithm allows to find an extremum of such a system (Levenberg
- * Marquardt algorithm) and the second one is used to find
- * a zero for the system (Powell hybrid "dogleg" method).
- *
- * This code is a port of minpack (http://en.wikipedia.org/wiki/MINPACK).
- * Minpack is a very famous, old, robust and well-reknown package, written in
- * fortran. Those implementations have been carefully tuned, tested, and used
- * for several decades.
- *
- * The original fortran code was automatically translated using f2c (http://en.wikipedia.org/wiki/F2c) in C,
- * then c++, and then cleaned by several different authors.
- * The last one of those cleanings being our starting point :
- * http://devernay.free.fr/hacks/cminpack.html
- *
- * Finally, we ported this code to Eigen, creating classes and API
- * coherent with Eigen. When possible, we switched to Eigen
- * implementation, such as most linear algebra (vectors, matrices, stable norms).
- *
- * Doing so, we were very careful to check the tests we setup at the very
- * beginning, which ensure that the same results are found.
- *
- * \section Tests Tests
- *
- * The tests are placed in the file unsupported/test/NonLinear.cpp.
- *
- * There are two kinds of tests : those that come from examples bundled with cminpack.
- * They guaranty we get the same results as the original algorithms (value for 'x',
- * for the number of evaluations of the function, and for the number of evaluations
- * of the jacobian if ever).
- *
- * Other tests were added by myself at the very beginning of the
- * process and check the results for levenberg-marquardt using the reference data
- * on http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml. Since then i've
- * carefully checked that the same results were obtained when modifiying the
- * code. Please note that we do not always get the exact same decimals as they do,
- * but this is ok : they use 128bits float, and we do the tests using the C type 'double',
- * which is 64 bits on most platforms (x86 and amd64, at least).
- * I've performed those tests on several other implementations of levenberg-marquardt, and
- * (c)minpack performs VERY well compared to those, both in accuracy and speed.
- *
- * The documentation for running the tests is on the wiki
- * http://eigen.tuxfamily.org/index.php?title=Tests
- *
- * \section API API : overview of methods
- *
- * Both algorithms can use either the jacobian (provided by the user) or compute
- * an approximation by themselves (actually using Eigen \ref NumericalDiff_Module).
- * The part of API referring to the latter use 'NumericalDiff' in the method names
- * (exemple: LevenbergMarquardt.minimizeNumericalDiff() )
- *
- * The methods LevenbergMarquardt.lmder1()/lmdif1()/lmstr1() and
- * HybridNonLinearSolver.hybrj1()/hybrd1() are specific methods from the original
- * minpack package that you probably should NOT use until you are porting a code that
- * was previously using minpack. They just define a 'simple' API with default values
- * for some parameters.
- *
- * All algorithms are provided using Two APIs :
- * - one where the user inits the algorithm, and uses '*OneStep()' as much as he wants :
- * this way the caller have control over the steps
- * - one where the user just calls a method (optimize() or solve()) which will
- * handle the loop: init + loop until a stop condition is met. Those are provided for
- * convenience.
- *
- * As an example, the method LevenbergMarquardt::minimize() is
- * implemented as follow :
- * \code
- * Status LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x, const int mode)
- * {
- * Status status = minimizeInit(x, mode);
- * do {
- * status = minimizeOneStep(x, mode);
- * } while (status==Running);
- * return status;
- * }
- * \endcode
- *
- * \section examples Examples
- *
- * The easiest way to understand how to use this module is by looking at the many examples in the file
- * unsupported/test/NonLinearOptimization.cpp.
- */
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-#include "src/NonLinearOptimization/qrsolv.h"
-#include "src/NonLinearOptimization/r1updt.h"
-#include "src/NonLinearOptimization/r1mpyq.h"
-#include "src/NonLinearOptimization/rwupdt.h"
-#include "src/NonLinearOptimization/fdjac1.h"
-#include "src/NonLinearOptimization/lmpar.h"
-#include "src/NonLinearOptimization/dogleg.h"
-#include "src/NonLinearOptimization/covar.h"
-
-#include "src/NonLinearOptimization/chkder.h"
-
-#endif
-
-#include "src/NonLinearOptimization/HybridNonLinearSolver.h"
-#include "src/NonLinearOptimization/LevenbergMarquardt.h"
-
-
-#endif // EIGEN_NONLINEAROPTIMIZATION_MODULE
diff --git a/eigen/unsupported/Eigen/NumericalDiff b/eigen/unsupported/Eigen/NumericalDiff
deleted file mode 100644
index 433334c..0000000
--- a/eigen/unsupported/Eigen/NumericalDiff
+++ /dev/null
@@ -1,56 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NUMERICALDIFF_MODULE
-#define EIGEN_NUMERICALDIFF_MODULE
-
-#include <Eigen/Core>
-
-namespace Eigen {
-
-/**
- * \defgroup NumericalDiff_Module Numerical differentiation module
- *
- * \code
- * #include <unsupported/Eigen/NumericalDiff>
- * \endcode
- *
- * See http://en.wikipedia.org/wiki/Numerical_differentiation
- *
- * Warning : this should NOT be confused with automatic differentiation, which
- * is a different method and has its own module in Eigen : \ref
- * AutoDiff_Module.
- *
- * Currently only "Forward" and "Central" schemes are implemented. Those
- * are basic methods, and there exist some more elaborated way of
- * computing such approximates. They are implemented using both
- * proprietary and free software, and usually requires linking to an
- * external library. It is very easy for you to write a functor
- * using such software, and the purpose is quite orthogonal to what we
- * want to achieve with Eigen.
- *
- * This is why we will not provide wrappers for every great numerical
- * differentiation software that exist, but should rather stick with those
- * basic ones, that still are useful for testing.
- *
- * Also, the \ref NonLinearOptimization_Module needs this in order to
- * provide full features compatibility with the original (c)minpack
- * package.
- *
- */
-}
-
-//@{
-
-#include "src/NumericalDiff/NumericalDiff.h"
-
-//@}
-
-
-#endif // EIGEN_NUMERICALDIFF_MODULE
diff --git a/eigen/unsupported/Eigen/OpenGLSupport b/eigen/unsupported/Eigen/OpenGLSupport
deleted file mode 100644
index 085325c..0000000
--- a/eigen/unsupported/Eigen/OpenGLSupport
+++ /dev/null
@@ -1,322 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_OPENGL_MODULE
-#define EIGEN_OPENGL_MODULE
-
-#include <Eigen/Geometry>
-
-#if defined(__APPLE_CC__)
- #include <OpenGL/gl.h>
-#else
- #include <GL/gl.h>
-#endif
-
-namespace Eigen {
-
-/**
- * \defgroup OpenGLSUpport_Module OpenGL Support module
- *
- * This module provides wrapper functions for a couple of OpenGL functions
- * which simplify the way to pass Eigen's object to openGL.
- * Here is an exmaple:
- *
- * \code
- * // You need to add path_to_eigen/unsupported to your include path.
- * #include <Eigen/OpenGLSupport>
- * // ...
- * Vector3f x, y;
- * Matrix3f rot;
- *
- * glVertex(y + x * rot);
- *
- * Quaternion q;
- * glRotate(q);
- *
- * // ...
- * \endcode
- *
- */
-//@{
-
-#define EIGEN_GL_FUNC_DECLARATION(FUNC) \
-namespace internal { \
- template< typename XprType, \
- typename Scalar = typename XprType::Scalar, \
- int Rows = XprType::RowsAtCompileTime, \
- int Cols = XprType::ColsAtCompileTime, \
- bool IsGLCompatible = bool(internal::evaluator<XprType>::Flags&LinearAccessBit) \
- && bool(XprType::Flags&DirectAccessBit) \
- && (XprType::IsVectorAtCompileTime || (XprType::Flags&RowMajorBit)==0)> \
- struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl); \
- \
- template<typename XprType, typename Scalar, int Rows, int Cols> \
- struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType,Scalar,Rows,Cols,false> { \
- inline static void run(const XprType& p) { \
- EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<typename plain_matrix_type_column_major<XprType>::type>::run(p); } \
- }; \
-} \
- \
-template<typename Derived> inline void FUNC(const Eigen::DenseBase<Derived>& p) { \
- EIGEN_CAT(EIGEN_CAT(internal::gl_,FUNC),_impl)<Derived>::run(p.derived()); \
-}
-
-
-#define EIGEN_GL_FUNC_SPECIALIZATION_MAT(FUNC,SCALAR,ROWS,COLS,SUFFIX) \
-namespace internal { \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, ROWS, COLS, true> { \
- inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
- }; \
-}
-
-
-#define EIGEN_GL_FUNC_SPECIALIZATION_VEC(FUNC,SCALAR,SIZE,SUFFIX) \
-namespace internal { \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, SIZE, 1, true> { \
- inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
- }; \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, 1, SIZE, true> { \
- inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
- }; \
-}
-
-
-EIGEN_GL_FUNC_DECLARATION (glVertex)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 2,2iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 2,2sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 2,2fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 2,2dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 3,3iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 3,3sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 3,3dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 4,4iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 4,4sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 4,4fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 4,4dv)
-
-EIGEN_GL_FUNC_DECLARATION (glTexCoord)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 2,2iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 2,2sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 2,2fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 2,2dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 3,3iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 3,3sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 3,3dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 4,4iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 4,4sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 4,4fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 4,4dv)
-
-EIGEN_GL_FUNC_DECLARATION (glColor)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 2,2iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 2,2sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 2,2fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 2,2dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 3,3iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 3,3sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 3,3dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 4,4iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 4,4sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 4,4fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 4,4dv)
-
-EIGEN_GL_FUNC_DECLARATION (glNormal)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,int, 3,3iv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,short, 3,3sv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,double, 3,3dv)
-
-inline void glScale2fv(const float* v) { glScalef(v[0], v[1], 1.f); }
-inline void glScale2dv(const double* v) { glScaled(v[0], v[1], 1.0); }
-inline void glScale3fv(const float* v) { glScalef(v[0], v[1], v[2]); }
-inline void glScale3dv(const double* v) { glScaled(v[0], v[1], v[2]); }
-
-EIGEN_GL_FUNC_DECLARATION (glScale)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,float, 2,2fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,double, 2,2dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,double, 3,3dv)
-
-template<typename Scalar> void glScale(const UniformScaling<Scalar>& s) { glScale(Matrix<Scalar,3,1>::Constant(s.factor())); }
-
-inline void glTranslate2fv(const float* v) { glTranslatef(v[0], v[1], 0.f); }
-inline void glTranslate2dv(const double* v) { glTranslated(v[0], v[1], 0.0); }
-inline void glTranslate3fv(const float* v) { glTranslatef(v[0], v[1], v[2]); }
-inline void glTranslate3dv(const double* v) { glTranslated(v[0], v[1], v[2]); }
-
-EIGEN_GL_FUNC_DECLARATION (glTranslate)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,float, 2,2fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,double, 2,2dv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,float, 3,3fv)
-EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,double, 3,3dv)
-
-template<typename Scalar> void glTranslate(const Translation<Scalar,2>& t) { glTranslate(t.vector()); }
-template<typename Scalar> void glTranslate(const Translation<Scalar,3>& t) { glTranslate(t.vector()); }
-
-EIGEN_GL_FUNC_DECLARATION (glMultMatrix)
-EIGEN_GL_FUNC_SPECIALIZATION_MAT(glMultMatrix,float, 4,4,f)
-EIGEN_GL_FUNC_SPECIALIZATION_MAT(glMultMatrix,double, 4,4,d)
-
-template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,Affine>& t) { glMultMatrix(t.matrix()); }
-template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,Projective>& t) { glMultMatrix(t.matrix()); }
-template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,AffineCompact>& t) { glMultMatrix(Transform<Scalar,3,Affine>(t).matrix()); }
-
-EIGEN_GL_FUNC_DECLARATION (glLoadMatrix)
-EIGEN_GL_FUNC_SPECIALIZATION_MAT(glLoadMatrix,float, 4,4,f)
-EIGEN_GL_FUNC_SPECIALIZATION_MAT(glLoadMatrix,double, 4,4,d)
-
-template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Affine>& t) { glLoadMatrix(t.matrix()); }
-template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Projective>& t) { glLoadMatrix(t.matrix()); }
-template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,AffineCompact>& t) { glLoadMatrix(Transform<Scalar,3,Affine>(t).matrix()); }
-
-inline void glRotate(const Rotation2D<float>& rot)
-{
- glRotatef(rot.angle()*180.f/float(EIGEN_PI), 0.f, 0.f, 1.f);
-}
-inline void glRotate(const Rotation2D<double>& rot)
-{
- glRotated(rot.angle()*180.0/double(EIGEN_PI), 0.0, 0.0, 1.0);
-}
-
-template<typename Derived> void glRotate(const RotationBase<Derived,3>& rot)
-{
- Transform<typename Derived::Scalar,3,Projective> tr(rot);
- glMultMatrix(tr.matrix());
-}
-
-#define EIGEN_GL_MAKE_CONST_const const
-#define EIGEN_GL_MAKE_CONST__
-#define EIGEN_GL_EVAL(X) X
-
-#define EIGEN_GL_FUNC1_DECLARATION(FUNC,ARG1,CONST) \
-namespace internal { \
- template< typename XprType, \
- typename Scalar = typename XprType::Scalar, \
- int Rows = XprType::RowsAtCompileTime, \
- int Cols = XprType::ColsAtCompileTime, \
- bool IsGLCompatible = bool(internal::evaluator<XprType>::Flags&LinearAccessBit) \
- && bool(XprType::Flags&DirectAccessBit) \
- && (XprType::IsVectorAtCompileTime || (XprType::Flags&RowMajorBit)==0)> \
- struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl); \
- \
- template<typename XprType, typename Scalar, int Rows, int Cols> \
- struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType,Scalar,Rows,Cols,false> { \
- inline static void run(ARG1 a,EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { \
- EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<typename plain_matrix_type_column_major<XprType>::type>::run(a,p); } \
- }; \
-} \
- \
-template<typename Derived> inline void FUNC(ARG1 a,EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) Eigen::DenseBase<Derived>& p) { \
- EIGEN_CAT(EIGEN_CAT(internal::gl_,FUNC),_impl)<Derived>::run(a,p.derived()); \
-}
-
-
-#define EIGEN_GL_FUNC1_SPECIALIZATION_MAT(FUNC,ARG1,CONST,SCALAR,ROWS,COLS,SUFFIX) \
-namespace internal { \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, ROWS, COLS, true> { \
- inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
- }; \
-}
-
-
-#define EIGEN_GL_FUNC1_SPECIALIZATION_VEC(FUNC,ARG1,CONST,SCALAR,SIZE,SUFFIX) \
-namespace internal { \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, SIZE, 1, true> { \
- inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
- }; \
- template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, 1, SIZE, true> { \
- inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
- }; \
-}
-
-EIGEN_GL_FUNC1_DECLARATION (glGet,GLenum,_)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glGet,GLenum,_,float, 4,4,Floatv)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glGet,GLenum,_,double, 4,4,Doublev)
-
-// glUniform API
-
-#ifdef GL_VERSION_2_0
-
-inline void glUniform2fv_ei (GLint loc, const float* v) { glUniform2fv(loc,1,v); }
-inline void glUniform2iv_ei (GLint loc, const int* v) { glUniform2iv(loc,1,v); }
-
-inline void glUniform3fv_ei (GLint loc, const float* v) { glUniform3fv(loc,1,v); }
-inline void glUniform3iv_ei (GLint loc, const int* v) { glUniform3iv(loc,1,v); }
-
-inline void glUniform4fv_ei (GLint loc, const float* v) { glUniform4fv(loc,1,v); }
-inline void glUniform4iv_ei (GLint loc, const int* v) { glUniform4iv(loc,1,v); }
-
-inline void glUniformMatrix2fv_ei (GLint loc, const float* v) { glUniformMatrix2fv(loc,1,false,v); }
-inline void glUniformMatrix3fv_ei (GLint loc, const float* v) { glUniformMatrix3fv(loc,1,false,v); }
-inline void glUniformMatrix4fv_ei (GLint loc, const float* v) { glUniformMatrix4fv(loc,1,false,v); }
-
-
-EIGEN_GL_FUNC1_DECLARATION (glUniform,GLint,const)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 2,2fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 2,2iv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 3,3fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 3,3iv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 4,4fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 4,4iv_ei)
-
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,2,Matrix2fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,3,Matrix3fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,4,Matrix4fv_ei)
-
-#endif
-
-#ifdef GL_VERSION_2_1
-
-inline void glUniformMatrix2x3fv_ei(GLint loc, const float* v) { glUniformMatrix2x3fv(loc,1,false,v); }
-inline void glUniformMatrix3x2fv_ei(GLint loc, const float* v) { glUniformMatrix3x2fv(loc,1,false,v); }
-inline void glUniformMatrix2x4fv_ei(GLint loc, const float* v) { glUniformMatrix2x4fv(loc,1,false,v); }
-inline void glUniformMatrix4x2fv_ei(GLint loc, const float* v) { glUniformMatrix4x2fv(loc,1,false,v); }
-inline void glUniformMatrix3x4fv_ei(GLint loc, const float* v) { glUniformMatrix3x4fv(loc,1,false,v); }
-inline void glUniformMatrix4x3fv_ei(GLint loc, const float* v) { glUniformMatrix4x3fv(loc,1,false,v); }
-
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,3,Matrix2x3fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,2,Matrix3x2fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,4,Matrix2x4fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,2,Matrix4x2fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,4,Matrix3x4fv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,3,Matrix4x3fv_ei)
-
-#endif
-
-#ifdef GL_VERSION_3_0
-
-inline void glUniform2uiv_ei (GLint loc, const unsigned int* v) { glUniform2uiv(loc,1,v); }
-inline void glUniform3uiv_ei (GLint loc, const unsigned int* v) { glUniform3uiv(loc,1,v); }
-inline void glUniform4uiv_ei (GLint loc, const unsigned int* v) { glUniform4uiv(loc,1,v); }
-
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 2,2uiv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 3,3uiv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 4,4uiv_ei)
-
-#endif
-
-#ifdef GL_ARB_gpu_shader_fp64
-inline void glUniform2dv_ei (GLint loc, const double* v) { glUniform2dv(loc,1,v); }
-inline void glUniform3dv_ei (GLint loc, const double* v) { glUniform3dv(loc,1,v); }
-inline void glUniform4dv_ei (GLint loc, const double* v) { glUniform4dv(loc,1,v); }
-
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 2,2dv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 3,3dv_ei)
-EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 4,4dv_ei)
-#endif
-
-
-//@}
-
-}
-
-#endif // EIGEN_OPENGL_MODULE
diff --git a/eigen/unsupported/Eigen/Polynomials b/eigen/unsupported/Eigen/Polynomials
deleted file mode 100644
index cece563..0000000
--- a/eigen/unsupported/Eigen/Polynomials
+++ /dev/null
@@ -1,138 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_POLYNOMIALS_MODULE_H
-#define EIGEN_POLYNOMIALS_MODULE_H
-
-#include <Eigen/Core>
-
-#include <Eigen/src/Core/util/DisableStupidWarnings.h>
-
-#include <Eigen/Eigenvalues>
-
-// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
-#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
- #ifndef EIGEN_HIDE_HEAVY_CODE
- #define EIGEN_HIDE_HEAVY_CODE
- #endif
-#elif defined EIGEN_HIDE_HEAVY_CODE
- #undef EIGEN_HIDE_HEAVY_CODE
-#endif
-
-/**
- * \defgroup Polynomials_Module Polynomials module
- * \brief This module provides a QR based polynomial solver.
- *
- * To use this module, add
- * \code
- * #include <unsupported/Eigen/Polynomials>
- * \endcode
- * at the start of your source file.
- */
-
-#include "src/Polynomials/PolynomialUtils.h"
-#include "src/Polynomials/Companion.h"
-#include "src/Polynomials/PolynomialSolver.h"
-
-/**
- \page polynomials Polynomials defines functions for dealing with polynomials
- and a QR based polynomial solver.
- \ingroup Polynomials_Module
-
- The remainder of the page documents first the functions for evaluating, computing
- polynomials, computing estimates about polynomials and next the QR based polynomial
- solver.
-
- \section polynomialUtils convenient functions to deal with polynomials
- \subsection roots_to_monicPolynomial
- The function
- \code
- void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
- \endcode
- computes the coefficients \f$ a_i \f$ of
-
- \f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
-
- where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
-
- \subsection poly_eval
- The function
- \code
- T poly_eval( const Polynomials& poly, const T& x )
- \endcode
- evaluates a polynomial at a given point using stabilized H&ouml;rner method.
-
- The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
- then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
-
- \include PolynomialUtils1.cpp
- Output: \verbinclude PolynomialUtils1.out
-
- \subsection Cauchy bounds
- The function
- \code
- Real cauchy_max_bound( const Polynomial& poly )
- \endcode
- provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
- \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
- \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
- The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
-
-
- The function
- \code
- Real cauchy_min_bound( const Polynomial& poly )
- \endcode
- provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
- \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
- \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
-
-
-
-
- \section QR polynomial solver class
- Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
-
- The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
- \f$
- \left [
- \begin{array}{cccc}
- 0 & 0 & 0 & a_0 \\
- 1 & 0 & 0 & a_1 \\
- 0 & 1 & 0 & a_2 \\
- 0 & 0 & 1 & a_3
- \end{array} \right ]
- \f$
-
- However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
-
- Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
-
- \f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
-
- With 32bit (float) floating types this problem shows up frequently.
- However, almost always, correct accuracy is reached even in these cases for 64bit
- (double) floating types and small polynomial degree (<20).
-
- \include PolynomialSolver1.cpp
-
- In the above example:
-
- -# a simple use of the polynomial solver is shown;
- -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
- Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
- of the last root is bad;
- -# a simple way to circumvent the problem is shown: use doubles instead of floats.
-
- Output: \verbinclude PolynomialSolver1.out
-*/
-
-#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
-
-#endif // EIGEN_POLYNOMIALS_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/Skyline b/eigen/unsupported/Eigen/Skyline
deleted file mode 100644
index 71a68cb..0000000
--- a/eigen/unsupported/Eigen/Skyline
+++ /dev/null
@@ -1,39 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINE_MODULE_H
-#define EIGEN_SKYLINE_MODULE_H
-
-
-#include "Eigen/Core"
-
-#include "Eigen/src/Core/util/DisableStupidWarnings.h"
-
-#include <map>
-#include <cstdlib>
-#include <cstring>
-#include <algorithm>
-
-/**
- * \defgroup Skyline_Module Skyline module
- *
- *
- *
- *
- */
-
-#include "src/Skyline/SkylineUtil.h"
-#include "src/Skyline/SkylineMatrixBase.h"
-#include "src/Skyline/SkylineStorage.h"
-#include "src/Skyline/SkylineMatrix.h"
-#include "src/Skyline/SkylineInplaceLU.h"
-#include "src/Skyline/SkylineProduct.h"
-
-#include "Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SKYLINE_MODULE_H
diff --git a/eigen/unsupported/Eigen/SparseExtra b/eigen/unsupported/Eigen/SparseExtra
deleted file mode 100644
index 819cffa..0000000
--- a/eigen/unsupported/Eigen/SparseExtra
+++ /dev/null
@@ -1,53 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_EXTRA_MODULE_H
-#define EIGEN_SPARSE_EXTRA_MODULE_H
-
-#include "../../Eigen/Sparse"
-
-#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
-
-#include <vector>
-#include <map>
-#include <cstdlib>
-#include <cstring>
-#include <algorithm>
-#include <fstream>
-#include <sstream>
-
-#ifdef EIGEN_GOOGLEHASH_SUPPORT
- #include <google/dense_hash_map>
-#endif
-
-/**
- * \defgroup SparseExtra_Module SparseExtra module
- *
- * This module contains some experimental features extending the sparse module.
- *
- * \code
- * #include <Eigen/SparseExtra>
- * \endcode
- */
-
-
-#include "src/SparseExtra/DynamicSparseMatrix.h"
-#include "src/SparseExtra/BlockOfDynamicSparseMatrix.h"
-#include "src/SparseExtra/RandomSetter.h"
-
-#include "src/SparseExtra/MarketIO.h"
-
-#if !defined(_WIN32)
-#include <dirent.h>
-#include "src/SparseExtra/MatrixMarketIterator.h"
-#endif
-
-#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SPARSE_EXTRA_MODULE_H
diff --git a/eigen/unsupported/Eigen/SpecialFunctions b/eigen/unsupported/Eigen/SpecialFunctions
deleted file mode 100644
index a2ad492..0000000
--- a/eigen/unsupported/Eigen/SpecialFunctions
+++ /dev/null
@@ -1,63 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_MODULE
-#define EIGEN_SPECIALFUNCTIONS_MODULE
-
-#include <math.h>
-
-#include "../../Eigen/Core"
-
-#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
-
-namespace Eigen {
-
-/**
- * \defgroup SpecialFunctions_Module Special math functions module
- *
- * This module features additional coefficient-wise math functions available
- * within the numext:: namespace for the scalar version, and as method and/or free
- * functions of Array. Those include:
- *
- * - erf
- * - erfc
- * - lgamma
- * - igamma
- * - igammac
- * - digamma
- * - polygamma
- * - zeta
- * - betainc
- *
- * \code
- * #include <unsupported/Eigen/SpecialFunctions>
- * \endcode
- */
-//@{
-
-}
-
-#include "src/SpecialFunctions/SpecialFunctionsImpl.h"
-#include "src/SpecialFunctions/SpecialFunctionsPacketMath.h"
-#include "src/SpecialFunctions/SpecialFunctionsHalf.h"
-#include "src/SpecialFunctions/SpecialFunctionsFunctors.h"
-#include "src/SpecialFunctions/SpecialFunctionsArrayAPI.h"
-
-#if defined EIGEN_VECTORIZE_CUDA
- #include "src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h"
-#endif
-
-namespace Eigen {
-//@}
-}
-
-
-#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SPECIALFUNCTIONS_MODULE
diff --git a/eigen/unsupported/Eigen/Splines b/eigen/unsupported/Eigen/Splines
deleted file mode 100644
index 322e6b9..0000000
--- a/eigen/unsupported/Eigen/Splines
+++ /dev/null
@@ -1,31 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINES_MODULE_H
-#define EIGEN_SPLINES_MODULE_H
-
-namespace Eigen
-{
-/**
- * \defgroup Splines_Module Spline and spline fitting module
- *
- * This module provides a simple multi-dimensional spline class while
- * offering most basic functionality to fit a spline to point sets.
- *
- * \code
- * #include <unsupported/Eigen/Splines>
- * \endcode
- */
-}
-
-#include "src/Splines/SplineFwd.h"
-#include "src/Splines/Spline.h"
-#include "src/Splines/SplineFitting.h"
-
-#endif // EIGEN_SPLINES_MODULE_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
deleted file mode 100644
index 33b6c39..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
+++ /dev/null
@@ -1,108 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_JACOBIAN_H
-#define EIGEN_AUTODIFF_JACOBIAN_H
-
-namespace Eigen
-{
-
-template<typename Functor> class AutoDiffJacobian : public Functor
-{
-public:
- AutoDiffJacobian() : Functor() {}
- AutoDiffJacobian(const Functor& f) : Functor(f) {}
-
- // forward constructors
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- template<typename... T>
- AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
-#else
- template<typename T0>
- AutoDiffJacobian(const T0& a0) : Functor(a0) {}
- template<typename T0, typename T1>
- AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
- template<typename T0, typename T1, typename T2>
- AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
-#endif
-
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename ValueType::Scalar Scalar;
-
- enum {
- InputsAtCompileTime = InputType::RowsAtCompileTime,
- ValuesAtCompileTime = ValueType::RowsAtCompileTime
- };
-
- typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
- typedef typename JacobianType::Index Index;
-
- typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
- typedef AutoDiffScalar<DerivativeType> ActiveScalar;
-
- typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
- typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- // Some compilers don't accept variadic parameters after a default parameter,
- // i.e., we can't just write _jac=0 but we need to overload operator():
- EIGEN_STRONG_INLINE
- void operator() (const InputType& x, ValueType* v) const
- {
- this->operator()(x, v, 0);
- }
- template<typename... ParamsType>
- void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
- const ParamsType&... Params) const
-#else
- void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
-#endif
- {
- eigen_assert(v!=0);
-
- if (!_jac)
- {
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- Functor::operator()(x, v, Params...);
-#else
- Functor::operator()(x, v);
-#endif
- return;
- }
-
- JacobianType& jac = *_jac;
-
- ActiveInput ax = x.template cast<ActiveScalar>();
- ActiveValue av(jac.rows());
-
- if(InputsAtCompileTime==Dynamic)
- for (Index j=0; j<jac.rows(); j++)
- av[j].derivatives().resize(x.rows());
-
- for (Index i=0; i<jac.cols(); i++)
- ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
-
-#if EIGEN_HAS_VARIADIC_TEMPLATES
- Functor::operator()(ax, &av, Params...);
-#else
- Functor::operator()(ax, &av);
-#endif
-
- for (Index i=0; i<jac.rows(); i++)
- {
- (*v)[i] = av[i].value();
- jac.row(i) = av[i].derivatives();
- }
- }
-};
-
-}
-
-#endif // EIGEN_AUTODIFF_JACOBIAN_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
deleted file mode 100644
index 2f50e99..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ /dev/null
@@ -1,694 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_SCALAR_H
-#define EIGEN_AUTODIFF_SCALAR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename A, typename B>
-struct make_coherent_impl {
- static void run(A&, B&) {}
-};
-
-// resize a to match b is a.size()==0, and conversely.
-template<typename A, typename B>
-void make_coherent(const A& a, const B&b)
-{
- make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
-}
-
-template<typename _DerType, bool Enable> struct auto_diff_special_op;
-
-} // end namespace internal
-
-template<typename _DerType> class AutoDiffScalar;
-
-template<typename NewDerType>
-inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
- return AutoDiffScalar<NewDerType>(value,der);
-}
-
-/** \class AutoDiffScalar
- * \brief A scalar type replacement with automatic differentation capability
- *
- * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
- * as well as the number of derivatives to compute are determined from this type.
- * Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
- * if the number of derivatives is not known at compile time, and/or, the number
- * of derivatives is large.
- * Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
- * existing vector into an AutoDiffScalar.
- * Finally, _DerType can also be any Eigen compatible expression.
- *
- * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
- * template mechanism.
- *
- * It supports the following list of global math function:
- * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
- * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
- * - internal::conj, internal::real, internal::imag, numext::abs2.
- *
- * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
- * in that case, the expression template mechanism only occurs at the top Matrix level,
- * while derivatives are computed right away.
- *
- */
-
-template<typename _DerType>
-class AutoDiffScalar
- : public internal::auto_diff_special_op
- <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
- typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
-{
- public:
- typedef internal::auto_diff_special_op
- <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
- typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
- typedef typename internal::remove_all<_DerType>::type DerType;
- typedef typename internal::traits<DerType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- using Base::operator+;
- using Base::operator*;
-
- /** Default constructor without any initialization. */
- AutoDiffScalar() {}
-
- /** Constructs an active scalar from its \a value,
- and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
- AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
- : m_value(value), m_derivatives(DerType::Zero(nbDer))
- {
- m_derivatives.coeffRef(derNumber) = Scalar(1);
- }
-
- /** Conversion from a scalar constant to an active scalar.
- * The derivatives are set to zero. */
- /*explicit*/ AutoDiffScalar(const Real& value)
- : m_value(value)
- {
- if(m_derivatives.size()>0)
- m_derivatives.setZero();
- }
-
- /** Constructs an active scalar from its \a value and derivatives \a der */
- AutoDiffScalar(const Scalar& value, const DerType& der)
- : m_value(value), m_derivatives(der)
- {}
-
- template<typename OtherDerType>
- AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- , typename internal::enable_if<
- internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value
- && internal::is_convertible<OtherDerType,DerType>::value , void*>::type = 0
-#endif
- )
- : m_value(other.value()), m_derivatives(other.derivatives())
- {}
-
- friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
- {
- return s << a.value();
- }
-
- AutoDiffScalar(const AutoDiffScalar& other)
- : m_value(other.value()), m_derivatives(other.derivatives())
- {}
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
- {
- m_value = other.value();
- m_derivatives = other.derivatives();
- return *this;
- }
-
- inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
- {
- m_value = other.value();
- m_derivatives = other.derivatives();
- return *this;
- }
-
- inline AutoDiffScalar& operator=(const Scalar& other)
- {
- m_value = other;
- if(m_derivatives.size()>0)
- m_derivatives.setZero();
- return *this;
- }
-
-// inline operator const Scalar& () const { return m_value; }
-// inline operator Scalar& () { return m_value; }
-
- inline const Scalar& value() const { return m_value; }
- inline Scalar& value() { return m_value; }
-
- inline const DerType& derivatives() const { return m_derivatives; }
- inline DerType& derivatives() { return m_derivatives; }
-
- inline bool operator< (const Scalar& other) const { return m_value < other; }
- inline bool operator<=(const Scalar& other) const { return m_value <= other; }
- inline bool operator> (const Scalar& other) const { return m_value > other; }
- inline bool operator>=(const Scalar& other) const { return m_value >= other; }
- inline bool operator==(const Scalar& other) const { return m_value == other; }
- inline bool operator!=(const Scalar& other) const { return m_value != other; }
-
- friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
- friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
- friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
- friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
- friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
- friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
-
- template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); }
- template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); }
- template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); }
- template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); }
- template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); }
- template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); }
-
- inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
- {
- return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
- }
-
- friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
- {
- return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
- }
-
-// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
-// {
-// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
-// }
-
-// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
-// {
-// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
-// }
-
- inline AutoDiffScalar& operator+=(const Scalar& other)
- {
- value() += other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
- operator+(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
- m_value + other.value(),
- m_derivatives + other.derivatives());
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar&
- operator+=(const AutoDiffScalar<OtherDerType>& other)
- {
- (*this) = (*this) + other;
- return *this;
- }
-
- inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
- {
- return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
- }
-
- friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- operator-(const Scalar& a, const AutoDiffScalar& b)
- {
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- (a - b.value(), -b.derivatives());
- }
-
- inline AutoDiffScalar& operator-=(const Scalar& other)
- {
- value() -= other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
- operator-(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
- m_value - other.value(),
- m_derivatives - other.derivatives());
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar&
- operator-=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this - other;
- return *this;
- }
-
- inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
- operator-() const
- {
- return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
- -m_value,
- -m_derivatives);
- }
-
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator*(const Scalar& other) const
- {
- return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
- }
-
- friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator*(const Scalar& other, const AutoDiffScalar& a)
- {
- return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
- }
-
-// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator*(const Real& other) const
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// m_value * other,
-// (m_derivatives * other));
-// }
-//
-// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator*(const Real& other, const AutoDiffScalar& a)
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// a.value() * other,
-// a.derivatives() * other);
-// }
-
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator/(const Scalar& other) const
- {
- return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
- }
-
- friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
- operator/(const Scalar& other, const AutoDiffScalar& a)
- {
- return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
- }
-
-// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator/(const Real& other) const
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// m_value / other,
-// (m_derivatives * (Real(1)/other)));
-// }
-//
-// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
-// operator/(const Real& other, const AutoDiffScalar& a)
-// {
-// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
-// other / a.value(),
-// a.derivatives() * (-Real(1)/other));
-// }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
- CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
- operator/(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return MakeAutoDiffScalar(
- m_value / other.value(),
- ((m_derivatives * other.value()) - (other.derivatives() * m_value))
- * (Scalar(1)/(other.value()*other.value())));
- }
-
- template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
- const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
- operator*(const AutoDiffScalar<OtherDerType>& other) const
- {
- internal::make_coherent(m_derivatives, other.derivatives());
- return MakeAutoDiffScalar(
- m_value * other.value(),
- (m_derivatives * other.value()) + (other.derivatives() * m_value));
- }
-
- inline AutoDiffScalar& operator*=(const Scalar& other)
- {
- *this = *this * other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this * other;
- return *this;
- }
-
- inline AutoDiffScalar& operator/=(const Scalar& other)
- {
- *this = *this / other;
- return *this;
- }
-
- template<typename OtherDerType>
- inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
- {
- *this = *this / other;
- return *this;
- }
-
- protected:
- Scalar m_value;
- DerType m_derivatives;
-
-};
-
-namespace internal {
-
-template<typename _DerType>
-struct auto_diff_special_op<_DerType, true>
-// : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
-// is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
-{
- typedef typename remove_all<_DerType>::type DerType;
- typedef typename traits<DerType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
-// typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
-// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
-
-// using Base::operator+;
-// using Base::operator+=;
-// using Base::operator-;
-// using Base::operator-=;
-// using Base::operator*;
-// using Base::operator*=;
-
- const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
- AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
-
-
- inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
- {
- return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
- }
-
- friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
- {
- return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
- }
-
- inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
- {
- derived().value() += other;
- return derived();
- }
-
-
- inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >
- operator*(const Real& other) const
- {
- return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >(
- derived().value() * other,
- derived().derivatives() * other);
- }
-
- friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >
- operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
- {
- return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
- a.value() * other,
- a.derivatives() * other);
- }
-
- inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
- {
- *this = *this * other;
- return derived();
- }
-};
-
-template<typename _DerType>
-struct auto_diff_special_op<_DerType, false>
-{
- void operator*() const;
- void operator-() const;
- void operator+() const;
-};
-
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
-struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
- static void run(A& a, B& b) {
- if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
- {
- a.resize(b.size());
- a.setZero();
- }
- }
-};
-
-template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
-struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
- typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
- static void run(A& a, B& b) {
- if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
- {
- b.resize(a.size());
- b.setZero();
- }
- }
-};
-
-template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
- typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
-struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
- Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
- typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
- typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
- static void run(A& a, B& b) {
- if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
- {
- a.resize(b.size());
- a.setZero();
- }
- else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
- {
- b.resize(a.size());
- b.setZero();
- }
- }
-};
-
-} // end namespace internal
-
-template<typename DerType, typename BinOp>
-struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
-{
- typedef AutoDiffScalar<DerType> ReturnType;
-};
-
-template<typename DerType, typename BinOp>
-struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
-{
- typedef AutoDiffScalar<DerType> ReturnType;
-};
-
-
-// The following is an attempt to let Eigen's known about expression template, but that's more tricky!
-
-// template<typename DerType, typename BinOp>
-// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
-// {
-// enum { Defined = 1 };
-// typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
-// };
-//
-// template<typename DerType1,typename DerType2, typename BinOp>
-// struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
-// {
-// enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
-// typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
-// };
-
-#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
- template<typename DerType> \
- inline const Eigen::AutoDiffScalar< \
- EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
- FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
- using namespace Eigen; \
- typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
- EIGEN_UNUSED_VARIABLE(sizeof(Scalar)); \
- CODE; \
- }
-
-template<typename DerType>
-inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; }
-template<typename DerType>
-inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; }
-template<typename DerType>
-inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x <= y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x >= y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x < y ? ADS(x) : ADS(y));
-}
-template<typename DerType, typename T>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) {
- typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
- return (x > y ? ADS(x) : ADS(y));
-}
-template<typename DerType>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
- return (x.value() < y.value() ? x : y);
-}
-template<typename DerType>
-inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
- return (x.value() >= y.value() ? x : y);
-}
-
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
- using std::abs;
- return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
- using numext::abs2;
- return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
- using std::sqrt;
- Scalar sqrtx = sqrt(x.value());
- return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
- using std::cos;
- using std::sin;
- return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
- using std::sin;
- using std::cos;
- return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
- using std::exp;
- Scalar expx = exp(x.value());
- return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
- using std::log;
- return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
-
-template<typename DerType>
-inline const Eigen::AutoDiffScalar<
-EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
-pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
-{
- using namespace Eigen;
- using std::pow;
- return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
-}
-
-
-template<typename DerTypeA,typename DerTypeB>
-inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
-atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
-{
- using std::atan2;
- typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
- typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
- PlainADS ret;
- ret.value() = atan2(a.value(), b.value());
-
- Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
-
- // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
- ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
-
- return ret;
-}
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
- using std::tan;
- using std::cos;
- return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
- using std::sqrt;
- using std::asin;
- return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
- using std::sqrt;
- using std::acos;
- return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
- using std::cosh;
- using std::tanh;
- return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
- using std::sinh;
- using std::cosh;
- return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
-
-EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
- using std::sinh;
- using std::cosh;
- return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
-
-#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
-
-template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
- : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real >
-{
- typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
- typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
- 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
- typedef AutoDiffScalar<DerType> NonInteger;
- typedef AutoDiffScalar<DerType> Nested;
- typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
- enum{
- RequireInitialization = 1
- };
-};
-
-}
-
-namespace std {
-template <typename T>
-class numeric_limits<Eigen::AutoDiffScalar<T> >
- : public numeric_limits<typename T::Scalar> {};
-
-} // namespace std
-
-#endif // EIGEN_AUTODIFF_SCALAR_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
deleted file mode 100644
index 8c2d048..0000000
--- a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
+++ /dev/null
@@ -1,220 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_AUTODIFF_VECTOR_H
-#define EIGEN_AUTODIFF_VECTOR_H
-
-namespace Eigen {
-
-/* \class AutoDiffScalar
- * \brief A scalar type replacement with automatic differentation capability
- *
- * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
- *
- * This class represents a scalar value while tracking its respective derivatives.
- *
- * It supports the following list of global math function:
- * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
- * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
- * - internal::conj, internal::real, internal::imag, numext::abs2.
- *
- * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
- * in that case, the expression template mechanism only occurs at the top Matrix level,
- * while derivatives are computed right away.
- *
- */
-template<typename ValueType, typename JacobianType>
-class AutoDiffVector
-{
- public:
- //typedef typename internal::traits<ValueType>::Scalar Scalar;
- typedef typename internal::traits<ValueType>::Scalar BaseScalar;
- typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
- typedef ActiveScalar Scalar;
- typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
- typedef typename JacobianType::Index Index;
-
- inline AutoDiffVector() {}
-
- inline AutoDiffVector(const ValueType& values)
- : m_values(values)
- {
- m_jacobian.setZero();
- }
-
-
- CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
- const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
-
- Index size() const { return m_values.size(); }
-
- // FIXME here we could return an expression of the sum
- Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
-
-
- inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
- : m_values(values), m_jacobian(jac)
- {}
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
- : m_values(other.values()), m_jacobian(other.jacobian())
- {}
-
- inline AutoDiffVector(const AutoDiffVector& other)
- : m_values(other.values()), m_jacobian(other.jacobian())
- {}
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
- {
- m_values = other.values();
- m_jacobian = other.jacobian();
- return *this;
- }
-
- inline AutoDiffVector& operator=(const AutoDiffVector& other)
- {
- m_values = other.values();
- m_jacobian = other.jacobian();
- return *this;
- }
-
- inline const ValueType& values() const { return m_values; }
- inline ValueType& values() { return m_values; }
-
- inline const JacobianType& jacobian() const { return m_jacobian; }
- inline JacobianType& jacobian() { return m_jacobian; }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline const AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
- operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
- m_values + other.values(),
- m_jacobian + other.jacobian());
- }
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector&
- operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- m_values += other.values();
- m_jacobian += other.jacobian();
- return *this;
- }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline const AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
- operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
- typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
- m_values - other.values(),
- m_jacobian - other.jacobian());
- }
-
- template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffVector&
- operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- m_values -= other.values();
- m_jacobian -= other.jacobian();
- return *this;
- }
-
- inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >
- operator-() const
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >(
- -m_values,
- -m_jacobian);
- }
-
- inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type>
- operator*(const BaseScalar& other) const
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
- m_values * other,
- m_jacobian * other);
- }
-
- friend inline const AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >
- operator*(const Scalar& other, const AutoDiffVector& v)
- {
- return AutoDiffVector<
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
- typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
- v.values() * other,
- v.jacobian() * other);
- }
-
-// template<typename OtherValueType,typename OtherJacobianType>
-// inline const AutoDiffVector<
-// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
-// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >
-// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
-// {
-// return AutoDiffVector<
-// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
-// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
-// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >(
-// m_values.cwise() * other.values(),
-// (m_jacobian * other.values()) + (m_values * other.jacobian()));
-// }
-
- inline AutoDiffVector& operator*=(const Scalar& other)
- {
- m_values *= other;
- m_jacobian *= other;
- return *this;
- }
-
- template<typename OtherValueType,typename OtherJacobianType>
- inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
- {
- *this = *this * other;
- return *this;
- }
-
- protected:
- ValueType m_values;
- JacobianType m_jacobian;
-
-};
-
-}
-
-#endif // EIGEN_AUTODIFF_VECTOR_H
diff --git a/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h b/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
deleted file mode 100644
index 994c8af..0000000
--- a/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
+++ /dev/null
@@ -1,293 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BVALGORITHMS_H
-#define EIGEN_BVALGORITHMS_H
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename BVH, typename Intersector>
-bool intersect_helper(const BVH &tree, Intersector &intersector, typename BVH::Index root)
-{
- typedef typename BVH::Index Index;
- typedef typename BVH::VolumeIterator VolIter;
- typedef typename BVH::ObjectIterator ObjIter;
-
- VolIter vBegin = VolIter(), vEnd = VolIter();
- ObjIter oBegin = ObjIter(), oEnd = ObjIter();
-
- std::vector<Index> todo(1, root);
-
- while(!todo.empty()) {
- tree.getChildren(todo.back(), vBegin, vEnd, oBegin, oEnd);
- todo.pop_back();
-
- for(; vBegin != vEnd; ++vBegin) //go through child volumes
- if(intersector.intersectVolume(tree.getVolume(*vBegin)))
- todo.push_back(*vBegin);
-
- for(; oBegin != oEnd; ++oBegin) //go through child objects
- if(intersector.intersectObject(*oBegin))
- return true; //intersector said to stop query
- }
- return false;
-}
-#endif //not EIGEN_PARSED_BY_DOXYGEN
-
-template<typename Volume1, typename Object1, typename Object2, typename Intersector>
-struct intersector_helper1
-{
- intersector_helper1(const Object2 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
- bool intersectVolume(const Volume1 &vol) { return intersector.intersectVolumeObject(vol, stored); }
- bool intersectObject(const Object1 &obj) { return intersector.intersectObjectObject(obj, stored); }
- Object2 stored;
- Intersector &intersector;
-private:
- intersector_helper1& operator=(const intersector_helper1&);
-};
-
-template<typename Volume2, typename Object2, typename Object1, typename Intersector>
-struct intersector_helper2
-{
- intersector_helper2(const Object1 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
- bool intersectVolume(const Volume2 &vol) { return intersector.intersectObjectVolume(stored, vol); }
- bool intersectObject(const Object2 &obj) { return intersector.intersectObjectObject(stored, obj); }
- Object1 stored;
- Intersector &intersector;
-private:
- intersector_helper2& operator=(const intersector_helper2&);
-};
-
-} // end namespace internal
-
-/** Given a BVH, runs the query encapsulated by \a intersector.
- * The Intersector type must provide the following members: \code
- bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
- bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately
- \endcode
- */
-template<typename BVH, typename Intersector>
-void BVIntersect(const BVH &tree, Intersector &intersector)
-{
- internal::intersect_helper(tree, intersector, tree.getRootIndex());
-}
-
-/** Given two BVH's, runs the query on their Cartesian product encapsulated by \a intersector.
- * The Intersector type must provide the following members: \code
- bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
- bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
- bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
- bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately
- \endcode
- */
-template<typename BVH1, typename BVH2, typename Intersector>
-void BVIntersect(const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) //TODO: tandem descent when it makes sense
-{
- typedef typename BVH1::Index Index1;
- typedef typename BVH2::Index Index2;
- typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1;
- typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2;
- typedef typename BVH1::VolumeIterator VolIter1;
- typedef typename BVH1::ObjectIterator ObjIter1;
- typedef typename BVH2::VolumeIterator VolIter2;
- typedef typename BVH2::ObjectIterator ObjIter2;
-
- VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
- ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
- VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
- ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
-
- std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()));
-
- while(!todo.empty()) {
- tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1);
- tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2);
- todo.pop_back();
-
- for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
- const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2)))
- todo.push_back(std::make_pair(*vBegin1, *vCur2));
- }
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- Helper1 helper(*oCur2, intersector);
- if(internal::intersect_helper(tree1, helper, *vBegin1))
- return; //intersector said to stop query
- }
- }
-
- for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Helper2 helper(*oBegin1, intersector);
- if(internal::intersect_helper(tree2, helper, *vCur2))
- return; //intersector said to stop query
- }
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- if(intersector.intersectObjectObject(*oBegin1, *oCur2))
- return; //intersector said to stop query
- }
- }
- }
-}
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename BVH, typename Minimizer>
-typename Minimizer::Scalar minimize_helper(const BVH &tree, Minimizer &minimizer, typename BVH::Index root, typename Minimizer::Scalar minimum)
-{
- typedef typename Minimizer::Scalar Scalar;
- typedef typename BVH::Index Index;
- typedef std::pair<Scalar, Index> QueueElement; //first element is priority
- typedef typename BVH::VolumeIterator VolIter;
- typedef typename BVH::ObjectIterator ObjIter;
-
- VolIter vBegin = VolIter(), vEnd = VolIter();
- ObjIter oBegin = ObjIter(), oEnd = ObjIter();
- std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
-
- todo.push(std::make_pair(Scalar(), root));
-
- while(!todo.empty()) {
- tree.getChildren(todo.top().second, vBegin, vEnd, oBegin, oEnd);
- todo.pop();
-
- for(; oBegin != oEnd; ++oBegin) //go through child objects
- minimum = (std::min)(minimum, minimizer.minimumOnObject(*oBegin));
-
- for(; vBegin != vEnd; ++vBegin) { //go through child volumes
- Scalar val = minimizer.minimumOnVolume(tree.getVolume(*vBegin));
- if(val < minimum)
- todo.push(std::make_pair(val, *vBegin));
- }
- }
-
- return minimum;
-}
-#endif //not EIGEN_PARSED_BY_DOXYGEN
-
-
-template<typename Volume1, typename Object1, typename Object2, typename Minimizer>
-struct minimizer_helper1
-{
- typedef typename Minimizer::Scalar Scalar;
- minimizer_helper1(const Object2 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
- Scalar minimumOnVolume(const Volume1 &vol) { return minimizer.minimumOnVolumeObject(vol, stored); }
- Scalar minimumOnObject(const Object1 &obj) { return minimizer.minimumOnObjectObject(obj, stored); }
- Object2 stored;
- Minimizer &minimizer;
-private:
- minimizer_helper1& operator=(const minimizer_helper1&);
-};
-
-template<typename Volume2, typename Object2, typename Object1, typename Minimizer>
-struct minimizer_helper2
-{
- typedef typename Minimizer::Scalar Scalar;
- minimizer_helper2(const Object1 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
- Scalar minimumOnVolume(const Volume2 &vol) { return minimizer.minimumOnObjectVolume(stored, vol); }
- Scalar minimumOnObject(const Object2 &obj) { return minimizer.minimumOnObjectObject(stored, obj); }
- Object1 stored;
- Minimizer &minimizer;
-private:
- minimizer_helper2& operator=(const minimizer_helper2&);
-};
-
-} // end namespace internal
-
-/** Given a BVH, runs the query encapsulated by \a minimizer.
- * \returns the minimum value.
- * The Minimizer type must provide the following members: \code
- typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
- Scalar minimumOnVolume(const BVH::Volume &volume)
- Scalar minimumOnObject(const BVH::Object &object)
- \endcode
- */
-template<typename BVH, typename Minimizer>
-typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer)
-{
- return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
-}
-
-/** Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer.
- * \returns the minimum value.
- * The Minimizer type must provide the following members: \code
- typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
- Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
- Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
- Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
- Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)
- \endcode
- */
-template<typename BVH1, typename BVH2, typename Minimizer>
-typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
-{
- typedef typename Minimizer::Scalar Scalar;
- typedef typename BVH1::Index Index1;
- typedef typename BVH2::Index Index2;
- typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1;
- typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2;
- typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority
- typedef typename BVH1::VolumeIterator VolIter1;
- typedef typename BVH1::ObjectIterator ObjIter1;
- typedef typename BVH2::VolumeIterator VolIter2;
- typedef typename BVH2::ObjectIterator ObjIter2;
-
- VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
- ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
- VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
- ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
- std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
-
- Scalar minimum = (std::numeric_limits<Scalar>::max)();
- todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));
-
- while(!todo.empty()) {
- tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1);
- tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2);
- todo.pop();
-
- for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2));
- }
-
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Helper2 helper(*oBegin1, minimizer);
- minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum));
- }
- }
-
- for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
- const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
-
- for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
- Helper1 helper(*oCur2, minimizer);
- minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum));
- }
-
- for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
- Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2));
- if(val < minimum)
- todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2)));
- }
- }
- }
- return minimum;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_BVALGORITHMS_H
diff --git a/eigen/unsupported/Eigen/src/BVH/KdBVH.h b/eigen/unsupported/Eigen/src/BVH/KdBVH.h
deleted file mode 100644
index 5e39af2..0000000
--- a/eigen/unsupported/Eigen/src/BVH/KdBVH.h
+++ /dev/null
@@ -1,223 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef KDBVH_H_INCLUDED
-#define KDBVH_H_INCLUDED
-
-namespace Eigen {
-
-namespace internal {
-
-//internal pair class for the BVH--used instead of std::pair because of alignment
-template<typename Scalar, int Dim>
-struct vector_int_pair
-{
-EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
- typedef Matrix<Scalar, Dim, 1> VectorType;
-
- vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
-
- VectorType first;
- int second;
-};
-
-//these templates help the tree initializer get the bounding boxes either from a provided
-//iterator range or using bounding_box in a unified way
-template<typename ObjectList, typename VolumeList, typename BoxIter>
-struct get_boxes_helper {
- void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
- {
- outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
- eigen_assert(outBoxes.size() == objects.size());
- EIGEN_ONLY_USED_FOR_DEBUG(objects);
- }
-};
-
-template<typename ObjectList, typename VolumeList>
-struct get_boxes_helper<ObjectList, VolumeList, int> {
- void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
- {
- outBoxes.reserve(objects.size());
- for(int i = 0; i < (int)objects.size(); ++i)
- outBoxes.push_back(bounding_box(objects[i]));
- }
-};
-
-} // end namespace internal
-
-
-/** \class KdBVH
- * \brief A simple bounding volume hierarchy based on AlignedBox
- *
- * \param _Scalar The underlying scalar type of the bounding boxes
- * \param _Dim The dimension of the space in which the hierarchy lives
- * \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
- * be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
- *
- * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
- * Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
- * and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
- * it is useful for _Object to be a pointer.
- */
-template<typename _Scalar, int _Dim, typename _Object> class KdBVH
-{
-public:
- enum { Dim = _Dim };
- typedef _Object Object;
- typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
- typedef _Scalar Scalar;
- typedef AlignedBox<Scalar, Dim> Volume;
- typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
- typedef int Index;
- typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
- typedef const Object *ObjectIterator;
-
- KdBVH() {}
-
- /** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */
- template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
-
- /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
- template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
-
- /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
- * Requires that bounding_box(Object) return a Volume. */
- template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
-
- /** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
- * constructs the BVH, overwriting whatever is in there currently. */
- template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
- {
- objects.clear();
- boxes.clear();
- children.clear();
-
- objects.insert(objects.end(), begin, end);
- int n = static_cast<int>(objects.size());
-
- if(n < 2)
- return; //if we have at most one object, we don't need any internal nodes
-
- VolumeList objBoxes;
- VIPairList objCenters;
-
- //compute the bounding boxes depending on BIter type
- internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
-
- objCenters.reserve(n);
- boxes.reserve(n - 1);
- children.reserve(2 * n - 2);
-
- for(int i = 0; i < n; ++i)
- objCenters.push_back(VIPair(objBoxes[i].center(), i));
-
- build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
-
- ObjectList tmp(n);
- tmp.swap(objects);
- for(int i = 0; i < n; ++i)
- objects[i] = tmp[objCenters[i].second];
- }
-
- /** \returns the index of the root of the hierarchy */
- inline Index getRootIndex() const { return (int)boxes.size() - 1; }
-
- /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
- * and \a outOBegin and \a outOEnd range over the object children of the node */
- EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
- ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
- { //inlining this function should open lots of optimization opportunities to the compiler
- if(index < 0) {
- outVBegin = outVEnd;
- if(!objects.empty())
- outOBegin = &(objects[0]);
- outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
- return;
- }
-
- int numBoxes = static_cast<int>(boxes.size());
-
- int idx = index * 2;
- if(children[idx + 1] < numBoxes) { //second index is always bigger
- outVBegin = &(children[idx]);
- outVEnd = outVBegin + 2;
- outOBegin = outOEnd;
- }
- else if(children[idx] >= numBoxes) { //if both children are objects
- outVBegin = outVEnd;
- outOBegin = &(objects[children[idx] - numBoxes]);
- outOEnd = outOBegin + 2;
- } else { //if the first child is a volume and the second is an object
- outVBegin = &(children[idx]);
- outVEnd = outVBegin + 1;
- outOBegin = &(objects[children[idx + 1] - numBoxes]);
- outOEnd = outOBegin + 1;
- }
- }
-
- /** \returns the bounding box of the node at \a index */
- inline const Volume &getVolume(Index index) const
- {
- return boxes[index];
- }
-
-private:
- typedef internal::vector_int_pair<Scalar, Dim> VIPair;
- typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
- typedef Matrix<Scalar, Dim, 1> VectorType;
- struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
- {
- VectorComparator(int inDim) : dim(inDim) {}
- inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
- int dim;
- };
-
- //Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
- //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
- //the two halves, and adds their parent node. TODO: a cache-friendlier layout
- void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
- {
- eigen_assert(to - from > 1);
- if(to - from == 2) {
- boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
- children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
- children.push_back(from + (int)objects.size());
- }
- else if(to - from == 3) {
- int mid = from + 2;
- std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
- objCenters.begin() + to, VectorComparator(dim)); //partition
- build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
- int idx1 = (int)boxes.size() - 1;
- boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
- children.push_back(idx1);
- children.push_back(mid + (int)objects.size() - 1);
- }
- else {
- int mid = from + (to - from) / 2;
- nth_element(objCenters.begin() + from, objCenters.begin() + mid,
- objCenters.begin() + to, VectorComparator(dim)); //partition
- build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
- int idx1 = (int)boxes.size() - 1;
- build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
- int idx2 = (int)boxes.size() - 1;
- boxes.push_back(boxes[idx1].merged(boxes[idx2]));
- children.push_back(idx1);
- children.push_back(idx2);
- }
- }
-
- std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
- VolumeList boxes;
- ObjectList objects;
-};
-
-} // end namespace Eigen
-
-#endif //KDBVH_H_INCLUDED
diff --git a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
deleted file mode 100644
index 866a8a4..0000000
--- a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
+++ /dev/null
@@ -1,805 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 David Harmon <dharmon@gmail.com>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
-#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
-
-#include <Eigen/Dense>
-
-namespace Eigen {
-
-namespace internal {
- template<typename Scalar, typename RealScalar> struct arpack_wrapper;
- template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
-}
-
-
-
-template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
-class ArpackGeneralizedSelfAdjointEigenSolver
-{
-public:
- //typedef typename MatrixSolver::MatrixType MatrixType;
-
- /** \brief Scalar type for matrices of type \p MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- /** \brief Real scalar type for \p MatrixType.
- *
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
- * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
- * complex.
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #RealScalar.
- * The length of the vector is the size of \p nbrEigenvalues.
- */
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
-
- /** \brief Default constructor.
- *
- * The default constructor is for cases in which the user intends to
- * perform decompositions via compute().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver()
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- { }
-
- /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
- *
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
- * computed. By default, the upper triangular part is used, but can be changed
- * through the template parameter.
- * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
- * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
- * \p options equals #ComputeEigenvectors.
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0)
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- {
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
- }
-
- /** \brief Constructor; computes eigenvalues of given matrix.
- *
- * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
- * computed. By default, the upper triangular part is used, but can be changed
- * through the template parameter.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
- * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
- * \p options equals #ComputeEigenvectors.
- *
- */
-
- ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0)
- : m_eivec(),
- m_eivalues(),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_nbrConverged(0),
- m_nbrIterations(0)
- {
- compute(A, nbrEigenvalues, eigs_sigma, options, tol);
- }
-
-
- /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
- *
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
- * \param[in] B Selfadjoint matrix for generalized eigenvalues.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * \returns Reference to \c *this
- *
- * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
- * then the eigenvectors are also computed and can be retrieved by
- * calling eigenvectors().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0);
-
- /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
- *
- * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
- * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
- * Must be less than the size of the input matrix, or an error is returned.
- * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
- * respective meanings to find the largest magnitude , smallest magnitude,
- * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
- * value can contain floating point value in string form, in which case the
- * eigenvalues closest to this value will be found.
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
- * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
- * means machine precision.
- *
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
- * then the eigenvectors are also computed and can be retrieved by
- * calling eigenvectors().
- *
- */
- ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
- Index nbrEigenvalues, std::string eigs_sigma="LM",
- int options=ComputeEigenvectors, RealScalar tol=0.0);
-
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns A const reference to the matrix whose columns are the eigenvectors.
- *
- * \pre The eigenvectors have been computed before.
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
- * this object was used to solve the eigenproblem for the selfadjoint
- * matrix \f$ A \f$, then the matrix returned by this function is the
- * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
- * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
- *
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
- *
- * \sa eigenvalues()
- */
- const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre The eigenvalues have been computed before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are sorted in increasing order.
- *
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
- *
- * \sa eigenvectors(), MatrixBase::eigenvalues()
- */
- const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes the positive-definite square root of the matrix.
- *
- * \returns the positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * The square root of a positive-definite matrix \f$ A \f$ is the
- * positive-definite matrix whose square equals \f$ A \f$. This function
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
- *
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
- *
- * \sa operatorInverseSqrt(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Computes the inverse square root of the matrix.
- *
- * \returns the inverse positive-definite square root of the matrix
- *
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
- * have been computed before.
- *
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
- * cheaper than first computing the square root with operatorSqrt() and
- * then its inverse with MatrixBase::inverse().
- *
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
- *
- * \sa operatorSqrt(), MatrixBase::inverse(),
- * \ref MatrixFunctions_Module "MatrixFunctions Module"
- */
- Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
- {
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
- }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
- return m_info;
- }
-
- size_t getNbrConvergedEigenValues() const
- { return m_nbrConverged; }
-
- size_t getNbrIterations() const
- { return m_nbrIterations; }
-
-protected:
- Matrix<Scalar, Dynamic, Dynamic> m_eivec;
- Matrix<Scalar, Dynamic, 1> m_eivalues;
- ComputationInfo m_info;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
-
- size_t m_nbrConverged;
- size_t m_nbrIterations;
-};
-
-
-
-
-
-template<typename MatrixType, typename MatrixSolver, bool BisSPD>
-ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
-::compute(const MatrixType& A, Index nbrEigenvalues,
- std::string eigs_sigma, int options, RealScalar tol)
-{
- MatrixType B(0,0);
- compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
-
- return *this;
-}
-
-
-template<typename MatrixType, typename MatrixSolver, bool BisSPD>
-ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
- ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
-::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
- std::string eigs_sigma, int options, RealScalar tol)
-{
- eigen_assert(A.cols() == A.rows());
- eigen_assert(B.cols() == B.rows());
- eigen_assert(B.rows() == 0 || A.cols() == B.rows());
- eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
- && (options & EigVecMask) != EigVecMask
- && "invalid option parameter");
-
- bool isBempty = (B.rows() == 0) || (B.cols() == 0);
-
- // For clarity, all parameters match their ARPACK name
- //
- // Always 0 on the first call
- //
- int ido = 0;
-
- int n = (int)A.cols();
-
- // User options: "LA", "SA", "SM", "LM", "BE"
- //
- char whch[3] = "LM";
-
- // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
- //
- RealScalar sigma = 0.0;
-
- if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
- {
- eigs_sigma[0] = toupper(eigs_sigma[0]);
- eigs_sigma[1] = toupper(eigs_sigma[1]);
-
- // In the following special case we're going to invert the problem, since solving
- // for larger magnitude is much much faster
- // i.e., if 'SM' is specified, we're going to really use 'LM', the default
- //
- if (eigs_sigma.substr(0,2) != "SM")
- {
- whch[0] = eigs_sigma[0];
- whch[1] = eigs_sigma[1];
- }
- }
- else
- {
- eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
-
- // If it's not scalar values, then the user may be explicitly
- // specifying the sigma value to cluster the evs around
- //
- sigma = atof(eigs_sigma.c_str());
-
- // If atof fails, it returns 0.0, which is a fine default
- //
- }
-
- // "I" means normal eigenvalue problem, "G" means generalized
- //
- char bmat[2] = "I";
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
- bmat[0] = 'G';
-
- // Now we determine the mode to use
- //
- int mode = (bmat[0] == 'G') + 1;
- if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
- {
- // We're going to use shift-and-invert mode, and basically find
- // the largest eigenvalues of the inverse operator
- //
- mode = 3;
- }
-
- // The user-specified number of eigenvalues/vectors to compute
- //
- int nev = (int)nbrEigenvalues;
-
- // Allocate space for ARPACK to store the residual
- //
- Scalar *resid = new Scalar[n];
-
- // Number of Lanczos vectors, must satisfy nev < ncv <= n
- // Note that this indicates that nev != n, and we cannot compute
- // all eigenvalues of a mtrix
- //
- int ncv = std::min(std::max(2*nev, 20), n);
-
- // The working n x ncv matrix, also store the final eigenvectors (if computed)
- //
- Scalar *v = new Scalar[n*ncv];
- int ldv = n;
-
- // Working space
- //
- Scalar *workd = new Scalar[3*n];
- int lworkl = ncv*ncv+8*ncv; // Must be at least this length
- Scalar *workl = new Scalar[lworkl];
-
- int *iparam= new int[11];
- iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
- iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
- iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
-
- // Used during reverse communicate to notify where arrays start
- //
- int *ipntr = new int[11];
-
- // Error codes are returned in here, initial value of 0 indicates a random initial
- // residual vector is used, any other values means resid contains the initial residual
- // vector, possibly from a previous run
- //
- int info = 0;
-
- Scalar scale = 1.0;
- //if (!isBempty)
- //{
- //Scalar scale = B.norm() / std::sqrt(n);
- //scale = std::pow(2, std::floor(std::log(scale+1)));
- ////M /= scale;
- //for (size_t i=0; i<(size_t)B.outerSize(); i++)
- // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
- // it.valueRef() /= scale;
- //}
-
- MatrixSolver OP;
- if (mode == 1 || mode == 2)
- {
- if (!isBempty)
- OP.compute(B);
- }
- else if (mode == 3)
- {
- if (sigma == 0.0)
- {
- OP.compute(A);
- }
- else
- {
- // Note: We will never enter here because sigma must be 0.0
- //
- if (isBempty)
- {
- MatrixType AminusSigmaB(A);
- for (Index i=0; i<A.rows(); ++i)
- AminusSigmaB.coeffRef(i,i) -= sigma;
-
- OP.compute(AminusSigmaB);
- }
- else
- {
- MatrixType AminusSigmaB = A - sigma * B;
- OP.compute(AminusSigmaB);
- }
- }
- }
-
- if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
- std::cout << "Error factoring matrix" << std::endl;
-
- do
- {
- internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
- &ncv, v, &ldv, iparam, ipntr, workd, workl,
- &lworkl, &info);
-
- if (ido == -1 || ido == 1)
- {
- Scalar *in = workd + ipntr[0] - 1;
- Scalar *out = workd + ipntr[1] - 1;
-
- if (ido == 1 && mode != 2)
- {
- Scalar *out2 = workd + ipntr[2] - 1;
- if (isBempty || mode == 1)
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
- else
- Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
-
- in = workd + ipntr[2] - 1;
- }
-
- if (mode == 1)
- {
- if (isBempty)
- {
- // OP = A
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
- }
- else
- {
- // OP = L^{-1}AL^{-T}
- //
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
- }
- }
- else if (mode == 2)
- {
- if (ido == 1)
- Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
-
- // OP = B^{-1} A
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- }
- else if (mode == 3)
- {
- // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
- // The B * in is already computed and stored at in if ido == 1
- //
- if (ido == 1 || isBempty)
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- else
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
- }
- }
- else if (ido == 2)
- {
- Scalar *in = workd + ipntr[0] - 1;
- Scalar *out = workd + ipntr[1] - 1;
-
- if (isBempty || mode == 1)
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
- else
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
- }
- } while (ido != 99);
-
- if (info == 1)
- m_info = NoConvergence;
- else if (info == 3)
- m_info = NumericalIssue;
- else if (info < 0)
- m_info = InvalidInput;
- else if (info != 0)
- eigen_assert(false && "Unknown ARPACK return value!");
- else
- {
- // Do we compute eigenvectors or not?
- //
- int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
-
- // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
- //
- char howmny[2] = "A";
-
- // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
- //
- int *select = new int[ncv];
-
- // Final eigenvalues
- //
- m_eivalues.resize(nev, 1);
-
- internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
- &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
- v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
-
- if (info == -14)
- m_info = NoConvergence;
- else if (info != 0)
- m_info = InvalidInput;
- else
- {
- if (rvec)
- {
- m_eivec.resize(A.rows(), nev);
- for (int i=0; i<nev; i++)
- for (int j=0; j<n; j++)
- m_eivec(j,i) = v[i*n+j] / scale;
-
- if (mode == 1 && !isBempty && BisSPD)
- internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
-
- m_eigenvectorsOk = true;
- }
-
- m_nbrIterations = iparam[2];
- m_nbrConverged = iparam[4];
-
- m_info = Success;
- }
-
- delete[] select;
- }
-
- delete[] v;
- delete[] iparam;
- delete[] ipntr;
- delete[] workd;
- delete[] workl;
- delete[] resid;
-
- m_isInitialized = true;
-
- return *this;
-}
-
-
-// Single precision
-//
-extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
- int *nev, float *tol, float *resid, int *ncv,
- float *v, int *ldv, int *iparam, int *ipntr,
- float *workd, float *workl, int *lworkl,
- int *info);
-
-extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
- float *z, int *ldz, float *sigma,
- char *bmat, int *n, char *which, int *nev,
- float *tol, float *resid, int *ncv, float *v,
- int *ldv, int *iparam, int *ipntr, float *workd,
- float *workl, int *lworkl, int *ierr);
-
-// Double precision
-//
-extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
- int *nev, double *tol, double *resid, int *ncv,
- double *v, int *ldv, int *iparam, int *ipntr,
- double *workd, double *workl, int *lworkl,
- int *info);
-
-extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
- double *z, int *ldz, double *sigma,
- char *bmat, int *n, char *which, int *nev,
- double *tol, double *resid, int *ncv, double *v,
- int *ldv, int *iparam, int *ipntr, double *workd,
- double *workl, int *lworkl, int *ierr);
-
-
-namespace internal {
-
-template<typename Scalar, typename RealScalar> struct arpack_wrapper
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, RealScalar *tol, Scalar *resid, int *ncv,
- Scalar *v, int *ldv, int *iparam, int *ipntr,
- Scalar *workd, Scalar *workl, int *lworkl, int *info)
- {
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
- }
-
- static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
- Scalar *z, int *ldz, RealScalar *sigma,
- char *bmat, int *n, char *which, int *nev,
- RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
- int *ldv, int *iparam, int *ipntr, Scalar *workd,
- Scalar *workl, int *lworkl, int *ierr)
- {
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
- }
-};
-
-template <> struct arpack_wrapper<float, float>
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, float *tol, float *resid, int *ncv,
- float *v, int *ldv, int *iparam, int *ipntr,
- float *workd, float *workl, int *lworkl, int *info)
- {
- ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
- }
-
- static inline void seupd(int *rvec, char *All, int *select, float *d,
- float *z, int *ldz, float *sigma,
- char *bmat, int *n, char *which, int *nev,
- float *tol, float *resid, int *ncv, float *v,
- int *ldv, int *iparam, int *ipntr, float *workd,
- float *workl, int *lworkl, int *ierr)
- {
- sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
- workd, workl, lworkl, ierr);
- }
-};
-
-template <> struct arpack_wrapper<double, double>
-{
- static inline void saupd(int *ido, char *bmat, int *n, char *which,
- int *nev, double *tol, double *resid, int *ncv,
- double *v, int *ldv, int *iparam, int *ipntr,
- double *workd, double *workl, int *lworkl, int *info)
- {
- dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
- }
-
- static inline void seupd(int *rvec, char *All, int *select, double *d,
- double *z, int *ldz, double *sigma,
- char *bmat, int *n, char *which, int *nev,
- double *tol, double *resid, int *ncv, double *v,
- int *ldv, int *iparam, int *ipntr, double *workd,
- double *workl, int *lworkl, int *ierr)
- {
- dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
- workd, workl, lworkl, ierr);
- }
-};
-
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
-struct OP
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
-};
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar>
-struct OP<MatrixSolver, MatrixType, Scalar, true>
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
-{
- // OP = L^{-1} A L^{-T} (B = LL^T)
- //
- // First solve L^T out = in
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
-
- // Then compute out = A out
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
-
- // Then solve L out = out
- //
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
- Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
-}
-
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
-{
- // Solve L^T out = in
- //
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
- Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
-}
-
-};
-
-template<typename MatrixSolver, typename MatrixType, typename Scalar>
-struct OP<MatrixSolver, MatrixType, Scalar, false>
-{
- static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
-{
- eigen_assert(false && "Should never be in here...");
-}
-
- static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
-{
- eigen_assert(false && "Should never be in here...");
-}
-
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
-
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt b/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
deleted file mode 100644
index 40af550..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_EulerAngles_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_EulerAngles_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/EulerAngles COMPONENT Devel
- )
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
deleted file mode 100644
index 13a0da1..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
+++ /dev/null
@@ -1,386 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
-#define EIGEN_EULERANGLESCLASS_H
-
-namespace Eigen
-{
- /*template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
- struct ei_eulerangles_assign_impl;*/
-
- /** \class EulerAngles
- *
- * \ingroup EulerAngles_Module
- *
- * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
- *
- * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
- *
- * Here is how intrinsic Euler angles works:
- * - first, rotate the axes system over the alpha axis in angle alpha
- * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
- * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
- *
- * \note This class support only intrinsic Euler angles for simplicity,
- * see EulerSystem how to easily overcome this for extrinsic systems.
- *
- * ### Rotation representation and conversions ###
- *
- * It has been proved(see Wikipedia link below) that every rotation can be represented
- * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
- * Therefore, you can convert from Eigen rotation and to them
- * (including rotation matrices, which is not called "rotations" by Eigen design).
- *
- * Euler angles usually used for:
- * - convenient human representation of rotation, especially in interactive GUI.
- * - gimbal systems and robotics
- * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
- *
- * However, Euler angles are slow comparing to quaternion or matrices,
- * because their unnatural math definition, although it's simple for human.
- * To overcome this, this class provide easy movement from the math friendly representation
- * to the human friendly representation, and vise-versa.
- *
- * All the user need to do is a safe simple C++ type conversion,
- * and this class take care for the math.
- * Additionally, some axes related computation is done in compile time.
- *
- * #### Euler angles ranges in conversions ####
- *
- * When converting some rotation to Euler angles, there are some ways you can guarantee
- * the Euler angles ranges.
- *
- * #### implicit ranges ####
- * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
- * unless you convert from some other Euler angles.
- * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
- * \sa EulerAngles(const MatrixBase<Derived>&)
- * \sa EulerAngles(const RotationBase<Derived, 3>&)
- *
- * #### explicit ranges ####
- * When using explicit ranges, all angles are guarantee to be in the range you choose.
- * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
- * - _true_ - force the range between [0, +2*PI]
- * - _false_ - force the range between [-PI, +PI]
- *
- * ##### compile time ranges #####
- * This is when you have compile time ranges and you prefer to
- * use template parameter. (e.g. for performance)
- * \sa FromRotation()
- *
- * ##### run-time time ranges #####
- * Run-time ranges are also supported.
- * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
- * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
- *
- * ### Convenient user typedefs ###
- *
- * Convenient typedefs for EulerAngles exist for float and double scalar,
- * in a form of EulerAngles{A}{B}{C}{scalar},
- * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
- *
- * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
- * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
- * a word that represent what you need.
- *
- * ### Example ###
- *
- * \include EulerAngles.cpp
- * Output: \verbinclude EulerAngles.out
- *
- * ### Additional reading ###
- *
- * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
- *
- * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
- *
- * \tparam _Scalar the scalar type, i.e., the type of the angles.
- *
- * \tparam _System the EulerSystem to use, which represents the axes of rotation.
- */
- template <typename _Scalar, class _System>
- class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
- {
- public:
- /** the scalar type of the angles */
- typedef _Scalar Scalar;
-
- /** the EulerSystem to use, which represents the axes of rotation. */
- typedef _System System;
-
- typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
- typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
- typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
-
- /** \returns the axis vector of the first (alpha) rotation */
- static Vector3 AlphaAxisVector() {
- const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
- return System::IsAlphaOpposite ? -u : u;
- }
-
- /** \returns the axis vector of the second (beta) rotation */
- static Vector3 BetaAxisVector() {
- const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
- return System::IsBetaOpposite ? -u : u;
- }
-
- /** \returns the axis vector of the third (gamma) rotation */
- static Vector3 GammaAxisVector() {
- const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
- return System::IsGammaOpposite ? -u : u;
- }
-
- private:
- Vector3 m_angles;
-
- public:
- /** Default constructor without initialization. */
- EulerAngles() {}
- /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
- EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
- m_angles(alpha, beta, gamma) {}
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
- *
- * \note All angles will be in the range [-PI, PI].
- */
- template<typename Derived>
- EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const MatrixBase<Derived>& m,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot.
- *
- * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
- * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
- * (Use other functions here for enforcing range if this effect is desired)
- */
- template<typename Derived>
- EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const RotationBase<Derived, 3>& rot,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
-
- /** \returns The angle values stored in a vector (alpha, beta, gamma). */
- const Vector3& angles() const { return m_angles; }
- /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
- Vector3& angles() { return m_angles; }
-
- /** \returns The value of the first angle. */
- Scalar alpha() const { return m_angles[0]; }
- /** \returns A read-write reference to the angle of the first angle. */
- Scalar& alpha() { return m_angles[0]; }
-
- /** \returns The value of the second angle. */
- Scalar beta() const { return m_angles[1]; }
- /** \returns A read-write reference to the angle of the second angle. */
- Scalar& beta() { return m_angles[1]; }
-
- /** \returns The value of the third angle. */
- Scalar gamma() const { return m_angles[2]; }
- /** \returns A read-write reference to the angle of the third angle. */
- Scalar& gamma() { return m_angles[2]; }
-
- /** \returns The Euler angles rotation inverse (which is as same as the negative),
- * (-alpha, -beta, -gamma).
- */
- EulerAngles inverse() const
- {
- EulerAngles res;
- res.m_angles = -m_angles;
- return res;
- }
-
- /** \returns The Euler angles rotation negative (which is as same as the inverse),
- * (-alpha, -beta, -gamma).
- */
- EulerAngles operator -() const
- {
- return inverse();
- }
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const MatrixBase<Derived>& m)
- {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- EulerAngles e;
- System::template CalcEulerAngles<
- PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
- return e;
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
- {
- return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
- }
-
- /*EulerAngles& fromQuaternion(const QuaternionType& q)
- {
- // TODO: Implement it in a faster way for quaternions
- // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
- // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
- // Currently we compute all matrix cells from quaternion.
-
- // Special case only for ZYX
- //Scalar y2 = q.y() * q.y();
- //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
- //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
- //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
- }*/
-
- /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
- template<typename Derived>
- EulerAngles& operator=(const MatrixBase<Derived>& m) {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- System::CalcEulerAngles(*this, m);
- return *this;
- }
-
- // TODO: Assign and construct from another EulerAngles (with different system)
-
- /** Set \c *this from a rotation. */
- template<typename Derived>
- EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
- System::CalcEulerAngles(*this, rot.toRotationMatrix());
- return *this;
- }
-
- // TODO: Support isApprox function
-
- /** \returns an equivalent 3x3 rotation matrix. */
- Matrix3 toRotationMatrix() const
- {
- return static_cast<QuaternionType>(*this).toRotationMatrix();
- }
-
- /** Convert the Euler angles to quaternion. */
- operator QuaternionType() const
- {
- return
- AngleAxisType(alpha(), AlphaAxisVector()) *
- AngleAxisType(beta(), BetaAxisVector()) *
- AngleAxisType(gamma(), GammaAxisVector());
- }
-
- friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
- {
- s << eulerAngles.angles().transpose();
- return s;
- }
- };
-
-#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
- /** \ingroup EulerAngles_Module */ \
- typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
-
-#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
- \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
- \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
- EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
-
-EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
-EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
-
- namespace internal
- {
- template<typename _Scalar, class _System>
- struct traits<EulerAngles<_Scalar, _System> >
- {
- typedef _Scalar Scalar;
- };
- }
-
-}
-
-#endif // EIGEN_EULERANGLESCLASS_H
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
deleted file mode 100644
index 98f9f64..0000000
--- a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ /dev/null
@@ -1,326 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EULERSYSTEM_H
-#define EIGEN_EULERSYSTEM_H
-
-namespace Eigen
-{
- // Forward declerations
- template <typename _Scalar, class _System>
- class EulerAngles;
-
- namespace internal
- {
- // TODO: Check if already exists on the rest API
- template <int Num, bool IsPositive = (Num > 0)>
- struct Abs
- {
- enum { value = Num };
- };
-
- template <int Num>
- struct Abs<Num, false>
- {
- enum { value = -Num };
- };
-
- template <int Axis>
- struct IsValidAxis
- {
- enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
- };
- }
-
- #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
-
- /** \brief Representation of a fixed signed rotation axis for EulerSystem.
- *
- * \ingroup EulerAngles_Module
- *
- * Values here represent:
- * - The axis of the rotation: X, Y or Z.
- * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
- *
- * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
- *
- * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
- */
- enum EulerAxis
- {
- EULER_X = 1, /*!< the X axis */
- EULER_Y = 2, /*!< the Y axis */
- EULER_Z = 3 /*!< the Z axis */
- };
-
- /** \class EulerSystem
- *
- * \ingroup EulerAngles_Module
- *
- * \brief Represents a fixed Euler rotation system.
- *
- * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
- *
- * You can use this class to get two things:
- * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
- *
- * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
- * This meta-class store constantly those signed axes. (see \ref EulerAxis)
- *
- * ### Types of Euler systems ###
- *
- * All and only valid 3 dimension Euler rotation over standard
- * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
- * - all axes X, Y, Z in each valid order (see below what order is valid)
- * - rotation over the axis is supported both over the positive and negative directions.
- * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
- *
- * Since EulerSystem support both positive and negative directions,
- * you may call this rotation distinction in other names:
- * - _right handed_ or _left handed_
- * - _counterclockwise_ or _clockwise_
- *
- * Notice all axed combination are valid, and would trigger a static assertion.
- * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
- * This yield two and only two classes:
- * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
- * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
- * and the second is different, e.g. {X,Y,X}
- *
- * ### Intrinsic vs extrinsic Euler systems ###
- *
- * Only intrinsic Euler systems are supported for simplicity.
- * If you want to use extrinsic Euler systems,
- * just use the equal intrinsic opposite order for axes and angles.
- * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
- *
- * ### Convenient user typedefs ###
- *
- * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
- * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
- *
- * ### Additional reading ###
- *
- * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
- *
- * \tparam _AlphaAxis the first fixed EulerAxis
- *
- * \tparam _AlphaAxis the second fixed EulerAxis
- *
- * \tparam _AlphaAxis the third fixed EulerAxis
- */
- template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
- class EulerSystem
- {
- public:
- // It's defined this way and not as enum, because I think
- // that enum is not guerantee to support negative numbers
-
- /** The first rotation axis */
- static const int AlphaAxis = _AlphaAxis;
-
- /** The second rotation axis */
- static const int BetaAxis = _BetaAxis;
-
- /** The third rotation axis */
- static const int GammaAxis = _GammaAxis;
-
- enum
- {
- AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
- BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
- GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
-
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
-
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
-
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
- };
-
- private:
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
- ALPHA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
- BETA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
- GAMMA_AXIS_IS_INVALID);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
- ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
-
- EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
- BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
-
- enum
- {
- // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
- // They are used in this class converters.
- // They are always different from each other, and their possible values are: 0, 1, or 2.
- I = AlphaAxisAbs - 1,
- J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
- K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
- };
-
- // TODO: Get @mat parameter in form that avoids double evaluation.
- template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
- {
- using std::atan2;
- using std::sin;
- using std::cos;
-
- typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,K), mat(K,K));
- Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- res[1] = atan2(-mat(I,K), -c2);
- }
- else
- res[1] = atan2(-mat(I,K), c2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
- }
-
- template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
- {
- using std::atan2;
- using std::sin;
- using std::cos;
-
- typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,I), mat(K,I));
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
- {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = -atan2(s2, mat(I,I));
- }
- else
- {
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = atan2(s2, mat(I,I));
- }
-
- // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
- // we can compute their respective rotation, and apply its inverse to M. Since the result must
- // be a rotation around x, we have:
- //
- // c2 s1.s2 c1.s2 1 0 0
- // 0 c1 -s1 * M = 0 c3 s3
- // -s2 s1.c2 c1.c2 0 -s3 c3
- //
- // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
-
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, false, false, false);
- }
-
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma)
- {
- CalcEulerAngles_imp(
- res.angles(), mat,
- typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
-
- if (IsAlphaOpposite == IsOdd)
- res.alpha() = -res.alpha();
-
- if (IsBetaOpposite == IsOdd)
- res.beta() = -res.beta();
-
- if (IsGammaOpposite == IsOdd)
- res.gamma() = -res.gamma();
-
- // Saturate results to the requested range
- if (PositiveRangeAlpha && (res.alpha() < 0))
- res.alpha() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeBeta && (res.beta() < 0))
- res.beta() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeGamma && (res.gamma() < 0))
- res.gamma() += Scalar(2 * EIGEN_PI);
- }
-
- template <typename _Scalar, class _System>
- friend class Eigen::EulerAngles;
- };
-
-#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
- /** \ingroup EulerAngles_Module */ \
- typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
-
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
-
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
-
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
- EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
-}
-
-#endif // EIGEN_EULERSYSTEM_H
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
deleted file mode 100644
index d49aa17..0000000
--- a/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
+++ /dev/null
@@ -1,261 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Mark Borgerding mark a borgerding net
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-namespace Eigen {
-
-namespace internal {
-
- // FFTW uses non-const arguments
- // so we must use ugly const_cast calls for all the args it uses
- //
- // This should be safe as long as
- // 1. we use FFTW_ESTIMATE for all our planning
- // see the FFTW docs section 4.3.2 "Planner Flags"
- // 2. fftw_complex is compatible with std::complex
- // This assumes std::complex<T> layout is array of size 2 with real,imag
- template <typename T>
- inline
- T * fftw_cast(const T* p)
- {
- return const_cast<T*>( p);
- }
-
- inline
- fftw_complex * fftw_cast( const std::complex<double> * p)
- {
- return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
- }
-
- inline
- fftwf_complex * fftw_cast( const std::complex<float> * p)
- {
- return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
- }
-
- inline
- fftwl_complex * fftw_cast( const std::complex<long double> * p)
- {
- return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
- }
-
- template <typename T>
- struct fftw_plan {};
-
- template <>
- struct fftw_plan<float>
- {
- typedef float scalar_type;
- typedef fftwf_complex complex_type;
- fftwf_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_c2r( m_plan, src,dst);
- }
-
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
- }
-
- };
- template <>
- struct fftw_plan<double>
- {
- typedef double scalar_type;
- typedef fftw_complex complex_type;
- ::fftw_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_c2r( m_plan, src,dst);
- }
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
- }
- };
- template <>
- struct fftw_plan<long double>
- {
- typedef long double scalar_type;
- typedef fftwl_complex complex_type;
- fftwl_plan m_plan;
- fftw_plan() :m_plan(NULL) {}
- ~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
-
- inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_r2c( m_plan,src,dst);
- }
- inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_c2r( m_plan, src,dst);
- }
- inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
- }
- };
-
- template <typename _Scalar>
- struct fftw_impl
- {
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
-
- inline
- void clear()
- {
- m_plans.clear();
- }
-
- // complex-to-complex forward FFT
- inline
- void fwd( Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // real-to-complex forward FFT
- inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
- {
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
- }
-
- // 2-d complex-to-complex
- inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
- {
- get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
- }
-
- // inverse complex-to-complex
- inline
- void inv(Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // half-complex to scalar
- inline
- void inv( Scalar * dst,const Complex * src,int nfft)
- {
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
- }
-
- // 2-d complex-to-complex
- inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
- {
- get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
- }
-
-
- protected:
- typedef fftw_plan<Scalar> PlanData;
-
- typedef std::map<int64_t,PlanData> PlanMap;
-
- PlanMap m_plans;
-
- inline
- PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
- {
- bool inplace = (dst==src);
- bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
- int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
- return m_plans[key];
- }
-
- inline
- PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
- {
- bool inplace = (dst==src);
- bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
- int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
- return m_plans[key];
- }
- };
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
deleted file mode 100644
index be51b4e..0000000
--- a/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
+++ /dev/null
@@ -1,420 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Mark Borgerding mark a borgerding net
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-namespace Eigen {
-
-namespace internal {
-
- // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
- // Copyright 2003-2009 Mark Borgerding
-
-template <typename _Scalar>
-struct kiss_cpx_fft
-{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
- std::vector<Complex> m_twiddles;
- std::vector<int> m_stageRadix;
- std::vector<int> m_stageRemainder;
- std::vector<Complex> m_scratchBuf;
- bool m_inverse;
-
- inline
- void make_twiddles(int nfft,bool inverse)
- {
- using std::acos;
- m_inverse = inverse;
- m_twiddles.resize(nfft);
- Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
- for (int i=0;i<nfft;++i)
- m_twiddles[i] = exp( Complex(0,i*phinc) );
- }
-
- void factorize(int nfft)
- {
- //start factoring out 4's, then 2's, then 3,5,7,9,...
- int n= nfft;
- int p=4;
- do {
- while (n % p) {
- switch (p) {
- case 4: p = 2; break;
- case 2: p = 3; break;
- default: p += 2; break;
- }
- if (p*p>n)
- p=n;// impossible to have a factor > sqrt(n)
- }
- n /= p;
- m_stageRadix.push_back(p);
- m_stageRemainder.push_back(n);
- if ( p > 5 )
- m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
- }while(n>1);
- }
-
- template <typename _Src>
- inline
- void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
- {
- int p = m_stageRadix[stage];
- int m = m_stageRemainder[stage];
- Complex * Fout_beg = xout;
- Complex * Fout_end = xout + p*m;
-
- if (m>1) {
- do{
- // recursive call:
- // DFT of size m*p performed by doing
- // p instances of smaller DFTs of size m,
- // each one takes a decimated version of the input
- work(stage+1, xout , xin, fstride*p,in_stride);
- xin += fstride*in_stride;
- }while( (xout += m) != Fout_end );
- }else{
- do{
- *xout = *xin;
- xin += fstride*in_stride;
- }while(++xout != Fout_end );
- }
- xout=Fout_beg;
-
- // recombine the p smaller DFTs
- switch (p) {
- case 2: bfly2(xout,fstride,m); break;
- case 3: bfly3(xout,fstride,m); break;
- case 4: bfly4(xout,fstride,m); break;
- case 5: bfly5(xout,fstride,m); break;
- default: bfly_generic(xout,fstride,m,p); break;
- }
- }
-
- inline
- void bfly2( Complex * Fout, const size_t fstride, int m)
- {
- for (int k=0;k<m;++k) {
- Complex t = Fout[m+k] * m_twiddles[k*fstride];
- Fout[m+k] = Fout[k] - t;
- Fout[k] += t;
- }
- }
-
- inline
- void bfly4( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex scratch[6];
- int negative_if_inverse = m_inverse * -2 +1;
- for (size_t k=0;k<m;++k) {
- scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
- scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
- scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
- scratch[5] = Fout[k] - scratch[1];
-
- Fout[k] += scratch[1];
- scratch[3] = scratch[0] + scratch[2];
- scratch[4] = scratch[0] - scratch[2];
- scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
-
- Fout[k+2*m] = Fout[k] - scratch[3];
- Fout[k] += scratch[3];
- Fout[k+m] = scratch[5] + scratch[4];
- Fout[k+3*m] = scratch[5] - scratch[4];
- }
- }
-
- inline
- void bfly3( Complex * Fout, const size_t fstride, const size_t m)
- {
- size_t k=m;
- const size_t m2 = 2*m;
- Complex *tw1,*tw2;
- Complex scratch[5];
- Complex epi3;
- epi3 = m_twiddles[fstride*m];
-
- tw1=tw2=&m_twiddles[0];
-
- do{
- scratch[1]=Fout[m] * *tw1;
- scratch[2]=Fout[m2] * *tw2;
-
- scratch[3]=scratch[1]+scratch[2];
- scratch[0]=scratch[1]-scratch[2];
- tw1 += fstride;
- tw2 += fstride*2;
- Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
- scratch[0] *= epi3.imag();
- *Fout += scratch[3];
- Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
- Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
- ++Fout;
- }while(--k);
- }
-
- inline
- void bfly5( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
- size_t u;
- Complex scratch[13];
- Complex * twiddles = &m_twiddles[0];
- Complex *tw;
- Complex ya,yb;
- ya = twiddles[fstride*m];
- yb = twiddles[fstride*2*m];
-
- Fout0=Fout;
- Fout1=Fout0+m;
- Fout2=Fout0+2*m;
- Fout3=Fout0+3*m;
- Fout4=Fout0+4*m;
-
- tw=twiddles;
- for ( u=0; u<m; ++u ) {
- scratch[0] = *Fout0;
-
- scratch[1] = *Fout1 * tw[u*fstride];
- scratch[2] = *Fout2 * tw[2*u*fstride];
- scratch[3] = *Fout3 * tw[3*u*fstride];
- scratch[4] = *Fout4 * tw[4*u*fstride];
-
- scratch[7] = scratch[1] + scratch[4];
- scratch[10] = scratch[1] - scratch[4];
- scratch[8] = scratch[2] + scratch[3];
- scratch[9] = scratch[2] - scratch[3];
-
- *Fout0 += scratch[7];
- *Fout0 += scratch[8];
-
- scratch[5] = scratch[0] + Complex(
- (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
- (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
- );
-
- scratch[6] = Complex(
- (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
- -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
- );
-
- *Fout1 = scratch[5] - scratch[6];
- *Fout4 = scratch[5] + scratch[6];
-
- scratch[11] = scratch[0] +
- Complex(
- (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
- (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
- );
-
- scratch[12] = Complex(
- -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
- (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
- );
-
- *Fout2=scratch[11]+scratch[12];
- *Fout3=scratch[11]-scratch[12];
-
- ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
- }
- }
-
- /* perform the butterfly for one stage of a mixed radix FFT */
- inline
- void bfly_generic(
- Complex * Fout,
- const size_t fstride,
- int m,
- int p
- )
- {
- int u,k,q1,q;
- Complex * twiddles = &m_twiddles[0];
- Complex t;
- int Norig = static_cast<int>(m_twiddles.size());
- Complex * scratchbuf = &m_scratchBuf[0];
-
- for ( u=0; u<m; ++u ) {
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- scratchbuf[q1] = Fout[ k ];
- k += m;
- }
-
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- int twidx=0;
- Fout[ k ] = scratchbuf[0];
- for (q=1;q<p;++q ) {
- twidx += static_cast<int>(fstride) * k;
- if (twidx>=Norig) twidx-=Norig;
- t=scratchbuf[q] * twiddles[twidx];
- Fout[ k ] += t;
- }
- k += m;
- }
- }
- }
-};
-
-template <typename _Scalar>
-struct kissfft_impl
-{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
-
- void clear()
- {
- m_plans.clear();
- m_realTwiddles.clear();
- }
-
- inline
- void fwd( Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,false).work(0, dst, src, 1,1);
- }
-
- inline
- void fwd2( Complex * dst,const Complex *src,int n0,int n1)
- {
- EIGEN_UNUSED_VARIABLE(dst);
- EIGEN_UNUSED_VARIABLE(src);
- EIGEN_UNUSED_VARIABLE(n0);
- EIGEN_UNUSED_VARIABLE(n1);
- }
-
- inline
- void inv2( Complex * dst,const Complex *src,int n0,int n1)
- {
- EIGEN_UNUSED_VARIABLE(dst);
- EIGEN_UNUSED_VARIABLE(src);
- EIGEN_UNUSED_VARIABLE(n0);
- EIGEN_UNUSED_VARIABLE(n1);
- }
-
- // real-to-complex forward FFT
- // perform two FFTs of src even and src odd
- // then twiddle to recombine them into the half-spectrum format
- // then fill in the conjugate symmetric half
- inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
- {
- if ( nfft&3 ) {
- // use generic mode for odd
- m_tmpBuf1.resize(nfft);
- get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
- std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
- }else{
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
-
- // use optimized mode for even real
- fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
- Complex dc = dst[0].real() + dst[0].imag();
- Complex nyquist = dst[0].real() - dst[0].imag();
- int k;
- for ( k=1;k <= ncfft2 ; ++k ) {
- Complex fpk = dst[k];
- Complex fpnk = conj(dst[ncfft-k]);
- Complex f1k = fpk + fpnk;
- Complex f2k = fpk - fpnk;
- Complex tw= f2k * rtw[k-1];
- dst[k] = (f1k + tw) * Scalar(.5);
- dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
- }
- dst[0] = dc;
- dst[ncfft] = nyquist;
- }
- }
-
- // inverse complex-to-complex
- inline
- void inv(Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,true).work(0, dst, src, 1,1);
- }
-
- // half-complex to scalar
- inline
- void inv( Scalar * dst,const Complex * src,int nfft)
- {
- if (nfft&3) {
- m_tmpBuf1.resize(nfft);
- m_tmpBuf2.resize(nfft);
- std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
- for (int k=1;k<(nfft>>1)+1;++k)
- m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
- inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
- for (int k=0;k<nfft;++k)
- dst[k] = m_tmpBuf2[k].real();
- }else{
- // optimized version for multiple of 4
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
- m_tmpBuf1.resize(ncfft);
- m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
- for (int k = 1; k <= ncfft / 2; ++k) {
- Complex fk = src[k];
- Complex fnkc = conj(src[ncfft-k]);
- Complex fek = fk + fnkc;
- Complex tmp = fk - fnkc;
- Complex fok = tmp * conj(rtw[k-1]);
- m_tmpBuf1[k] = fek + fok;
- m_tmpBuf1[ncfft-k] = conj(fek - fok);
- }
- get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
- }
- }
-
- protected:
- typedef kiss_cpx_fft<Scalar> PlanData;
- typedef std::map<int,PlanData> PlanMap;
-
- PlanMap m_plans;
- std::map<int, std::vector<Complex> > m_realTwiddles;
- std::vector<Complex> m_tmpBuf1;
- std::vector<Complex> m_tmpBuf2;
-
- inline
- int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
-
- inline
- PlanData & get_plan(int nfft, bool inverse)
- {
- // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
- PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
- if ( pd.m_twiddles.size() == 0 ) {
- pd.make_twiddles(nfft,inverse);
- pd.factorize(nfft);
- }
- return pd;
- }
-
- inline
- Complex * real_twiddles(int ncfft2)
- {
- using std::acos;
- std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
- if ( (int)twidref.size() != ncfft2 ) {
- twidref.resize(ncfft2);
- int ncfft= ncfft2<<1;
- Scalar pi = acos( Scalar(-1) );
- for (int k=1;k<=ncfft2;++k)
- twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
- }
- return &twidref[0];
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
deleted file mode 100644
index dc0093e..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
+++ /dev/null
@@ -1,189 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/* NOTE The functions of this file have been adapted from the GMM++ library */
-
-//========================================================================
-//
-// Copyright (C) 2002-2007 Yves Renard
-//
-// This file is a part of GETFEM++
-//
-// Getfem++ is free software; you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as
-// published by the Free Software Foundation; version 2.1 of the License.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-// You should have received a copy of the GNU Lesser General Public
-// License along with this program; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
-// USA.
-//
-//========================================================================
-
-#include "../../../../Eigen/src/Core/util/NonMPL2.h"
-
-#ifndef EIGEN_CONSTRAINEDCG_H
-#define EIGEN_CONSTRAINEDCG_H
-
-#include <Eigen/Core>
-
-namespace Eigen {
-
-namespace internal {
-
-/** \ingroup IterativeSolvers_Module
- * Compute the pseudo inverse of the non-square matrix C such that
- * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method.
- *
- * This function is internally used by constrained_cg.
- */
-template <typename CMatrix, typename CINVMatrix>
-void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV)
-{
- // optimisable : copie de la ligne, precalcul de C * trans(C).
- typedef typename CMatrix::Scalar Scalar;
- typedef typename CMatrix::Index Index;
- // FIXME use sparse vectors ?
- typedef Matrix<Scalar,Dynamic,1> TmpVec;
-
- Index rows = C.rows(), cols = C.cols();
-
- TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows);
- Scalar rho, rho_1, alpha;
- d.setZero();
-
- typedef Triplet<double> T;
- std::vector<T> tripletList;
-
- for (Index i = 0; i < rows; ++i)
- {
- d[i] = 1.0;
- rho = 1.0;
- e.setZero();
- r = d;
- p = d;
-
- while (rho >= 1e-38)
- { /* conjugate gradient to compute e */
- /* which is the i-th row of inv(C * trans(C)) */
- l = C.transpose() * p;
- q = C * l;
- alpha = rho / p.dot(q);
- e += alpha * p;
- r += -alpha * q;
- rho_1 = rho;
- rho = r.dot(r);
- p = (rho/rho_1) * p + r;
- }
-
- l = C.transpose() * e; // l is the i-th row of CINV
- // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse
- for (Index j=0; j<l.size(); ++j)
- if (l[j]<1e-15)
- tripletList.push_back(T(i,j,l(j)));
-
-
- d[i] = 0.0;
- }
- CINV.setFromTriplets(tripletList.begin(), tripletList.end());
-}
-
-
-
-/** \ingroup IterativeSolvers_Module
- * Constrained conjugate gradient
- *
- * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$
- */
-template<typename TMatrix, typename CMatrix,
- typename VectorX, typename VectorB, typename VectorF>
-void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x,
- const VectorB& b, const VectorF& f, IterationController &iter)
-{
- using std::sqrt;
- typedef typename TMatrix::Scalar Scalar;
- typedef typename TMatrix::Index Index;
- typedef Matrix<Scalar,Dynamic,1> TmpVec;
-
- Scalar rho = 1.0, rho_1, lambda, gamma;
- Index xSize = x.size();
- TmpVec p(xSize), q(xSize), q2(xSize),
- r(xSize), old_z(xSize), z(xSize),
- memox(xSize);
- std::vector<bool> satured(C.rows());
- p.setZero();
- iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b)
- if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0);
-
- SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols());
- pseudo_inverse(C, CINV);
-
- while(true)
- {
- // computation of residual
- old_z = z;
- memox = x;
- r = b;
- r += A * -x;
- z = r;
- bool transition = false;
- for (Index i = 0; i < C.rows(); ++i)
- {
- Scalar al = C.row(i).dot(x) - f.coeff(i);
- if (al >= -1.0E-15)
- {
- if (!satured[i])
- {
- satured[i] = true;
- transition = true;
- }
- Scalar bb = CINV.row(i).dot(z);
- if (bb > 0.0)
- // FIXME: we should allow that: z += -bb * C.row(i);
- for (typename CMatrix::InnerIterator it(C,i); it; ++it)
- z.coeffRef(it.index()) -= bb*it.value();
- }
- else
- satured[i] = false;
- }
-
- // descent direction
- rho_1 = rho;
- rho = r.dot(z);
-
- if (iter.finished(rho)) break;
-
- if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n";
- if (transition || iter.first()) gamma = 0.0;
- else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1);
- p = z + gamma*p;
-
- ++iter;
- // one dimensionnal optimization
- q = A * p;
- lambda = rho / q.dot(p);
- for (Index i = 0; i < C.rows(); ++i)
- {
- if (!satured[i])
- {
- Scalar bb = C.row(i).dot(p) - f[i];
- if (bb > 0.0)
- lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb);
- }
- }
- x += lambda * p;
- memox -= x;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CONSTRAINEDCG_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
deleted file mode 100644
index 4079e23..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
+++ /dev/null
@@ -1,510 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DGMRES_H
-#define EIGEN_DGMRES_H
-
-#include <Eigen/Eigenvalues>
-
-namespace Eigen {
-
-template< typename _MatrixType,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class DGMRES;
-
-namespace internal {
-
-template< typename _MatrixType, typename _Preconditioner>
-struct traits<DGMRES<_MatrixType,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-/** \brief Computes a permutation vector to have a sorted sequence
- * \param vec The vector to reorder.
- * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
- * \param ncut Put the ncut smallest elements at the end of the vector
- * WARNING This is an expensive sort, so should be used only
- * for small size vectors
- * TODO Use modified QuickSplit or std::nth_element to get the smallest values
- */
-template <typename VectorType, typename IndexType>
-void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
-{
- eigen_assert(vec.size() == perm.size());
- bool flag;
- for (Index k = 0; k < ncut; k++)
- {
- flag = false;
- for (Index j = 0; j < vec.size()-1; j++)
- {
- if ( vec(perm(j)) < vec(perm(j+1)) )
- {
- std::swap(perm(j),perm(j+1));
- flag = true;
- }
- if (!flag) break; // The vector is in sorted order
- }
- }
-}
-
-}
-/**
- * \ingroup IterativeLInearSolvers_Module
- * \brief A Restarted GMRES with deflation.
- * This class implements a modification of the GMRES solver for
- * sparse linear systems. The basis is built with modified
- * Gram-Schmidt. At each restart, a few approximated eigenvectors
- * corresponding to the smallest eigenvalues are used to build a
- * preconditioner for the next cycle. This preconditioner
- * for deflation can be combined with any other preconditioner,
- * the IncompleteLUT for instance. The preconditioner is applied
- * at right of the matrix and the combination is multiplicative.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- * Typical usage :
- * \code
- * SparseMatrix<double> A;
- * VectorXd x, b;
- * //Fill A and b ...
- * DGMRES<SparseMatrix<double> > solver;
- * solver.set_restart(30); // Set restarting value
- * solver.setEigenv(1); // Set the number of eigenvalues to deflate
- * solver.compute(A);
- * x = solver.solve(b);
- * \endcode
- *
- * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * References :
- * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
- * Algebraic Solvers for Linear Systems Arising from Compressible
- * Flows, Computers and Fluids, In Press,
- * http://dx.doi.org/10.1016/j.compfluid.2012.03.023
- * [2] K. Burrage and J. Erhel, On the performance of various
- * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
- * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
- * preconditioned by deflation,J. Computational and Applied
- * Mathematics, 69(1996), 303-318.
-
- *
- */
-template< typename _MatrixType, typename _Preconditioner>
-class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
-{
- typedef IterativeSolverBase<DGMRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
- using Base::m_tolerance;
- public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
- typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
- typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
- typedef Matrix<Scalar,Dynamic,1> DenseVector;
- typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
- typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
-
-
- /** Default constructor. */
- DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
-
- ~DGMRES() {}
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- bool failed = false;
- for(Index j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
- }
- m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
- m_isInitialized = true;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
- {
- x = b;
- _solve_with_guess_impl(b,x.derived());
- }
- /**
- * Get the restart value
- */
- Index restart() { return m_restart; }
-
- /**
- * Set the restart value (default is 30)
- */
- void set_restart(const Index restart) { m_restart=restart; }
-
- /**
- * Set the number of eigenvalues to deflate at each restart
- */
- void setEigenv(const Index neig)
- {
- m_neig = neig;
- if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
- }
-
- /**
- * Get the size of the deflation subspace size
- */
- Index deflSize() {return m_r; }
-
- /**
- * Set the maximum size of the deflation subspace
- */
- void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
-
- protected:
- // DGMRES algorithm
- template<typename Rhs, typename Dest>
- void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
- // Perform one cycle of GMRES
- template<typename Dest>
- Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const;
- // Compute data to use for deflation
- Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
- // Apply deflation to a vector
- template<typename RhsType, typename DestType>
- Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
- ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
- ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
- // Init data for deflation
- void dgmresInitDeflation(Index& rows) const;
- mutable DenseMatrix m_V; // Krylov basis vectors
- mutable DenseMatrix m_H; // Hessenberg matrix
- mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
- mutable Index m_restart; // Maximum size of the Krylov subspace
- mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
- mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
- mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
- mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
- mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
- mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
- mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
- mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
- mutable bool m_isDeflAllocated;
- mutable bool m_isDeflInitialized;
-
- //Adaptive strategy
- mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
- mutable bool m_force; // Force the use of deflation at each restart
-
-};
-/**
- * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
- *
- * A right preconditioner is used combined with deflation.
- *
- */
-template< typename _MatrixType, typename _Preconditioner>
-template<typename Rhs, typename Dest>
-void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
- const Preconditioner& precond) const
-{
- //Initialization
- Index n = mat.rows();
- DenseVector r0(n);
- Index nbIts = 0;
- m_H.resize(m_restart+1, m_restart);
- m_Hes.resize(m_restart, m_restart);
- m_V.resize(n,m_restart+1);
- //Initial residual vector and intial norm
- x = precond.solve(x);
- r0 = rhs - mat * x;
- RealScalar beta = r0.norm();
- RealScalar normRhs = rhs.norm();
- m_error = beta/normRhs;
- if(m_error < m_tolerance)
- m_info = Success;
- else
- m_info = NoConvergence;
-
- // Iterative process
- while (nbIts < m_iterations && m_info == NoConvergence)
- {
- dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
-
- // Compute the new residual vector for the restart
- if (nbIts < m_iterations && m_info == NoConvergence)
- r0 = rhs - mat * x;
- }
-}
-
-/**
- * \brief Perform one restart cycle of DGMRES
- * \param mat The coefficient matrix
- * \param precond The preconditioner
- * \param x the new approximated solution
- * \param r0 The initial residual vector
- * \param beta The norm of the residual computed so far
- * \param normRhs The norm of the right hand side vector
- * \param nbIts The number of iterations
- */
-template< typename _MatrixType, typename _Preconditioner>
-template<typename Dest>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const
-{
- //Initialization
- DenseVector g(m_restart+1); // Right hand side of the least square problem
- g.setZero();
- g(0) = Scalar(beta);
- m_V.col(0) = r0/beta;
- m_info = NoConvergence;
- std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
- Index it = 0; // Number of inner iterations
- Index n = mat.rows();
- DenseVector tv1(n), tv2(n); //Temporary vectors
- while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
- {
- // Apply preconditioner(s) at right
- if (m_isDeflInitialized )
- {
- dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
- tv2 = precond.solve(tv1);
- }
- else
- {
- tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
- }
- tv1 = mat * tv2;
-
- // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
- Scalar coef;
- for (Index i = 0; i <= it; ++i)
- {
- coef = tv1.dot(m_V.col(i));
- tv1 = tv1 - coef * m_V.col(i);
- m_H(i,it) = coef;
- m_Hes(i,it) = coef;
- }
- // Normalize the vector
- coef = tv1.norm();
- m_V.col(it+1) = tv1/coef;
- m_H(it+1, it) = coef;
-// m_Hes(it+1,it) = coef;
-
- // FIXME Check for happy breakdown
-
- // Update Hessenberg matrix with Givens rotations
- for (Index i = 1; i <= it; ++i)
- {
- m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
- }
- // Compute the new plane rotation
- gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
- // Apply the new rotation
- m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
- g.applyOnTheLeft(it,it+1, gr[it].adjoint());
-
- beta = std::abs(g(it+1));
- m_error = beta/normRhs;
- // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
- it++; nbIts++;
-
- if (m_error < m_tolerance)
- {
- // The method has converged
- m_info = Success;
- break;
- }
- }
-
- // Compute the new coefficients by solving the least square problem
-// it++;
- //FIXME Check first if the matrix is singular ... zero diagonal
- DenseVector nrs(m_restart);
- nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
-
- // Form the new solution
- if (m_isDeflInitialized)
- {
- tv1 = m_V.leftCols(it) * nrs;
- dgmresApplyDeflation(tv1, tv2);
- x = x + precond.solve(tv2);
- }
- else
- x = x + precond.solve(m_V.leftCols(it) * nrs);
-
- // Go for a new cycle and compute data for deflation
- if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
- dgmresComputeDeflationData(mat, precond, it, m_neig);
- return 0;
-
-}
-
-
-template< typename _MatrixType, typename _Preconditioner>
-void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
-{
- m_U.resize(rows, m_maxNeig);
- m_MU.resize(rows, m_maxNeig);
- m_T.resize(m_maxNeig, m_maxNeig);
- m_lambdaN = 0.0;
- m_isDeflAllocated = true;
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
-{
- return schurofH.matrixT().diagonal();
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
-{
- const DenseMatrix& T = schurofH.matrixT();
- Index it = T.rows();
- ComplexVector eig(it);
- Index j = 0;
- while (j < it-1)
- {
- if (T(j+1,j) ==Scalar(0))
- {
- eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
- j++;
- }
- else
- {
- eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
- eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
- j++;
- }
- }
- if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
- return eig;
-}
-
-template< typename _MatrixType, typename _Preconditioner>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
-{
- // First, find the Schur form of the Hessenberg matrix H
- typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
- bool computeU = true;
- DenseMatrix matrixQ(it,it);
- matrixQ.setIdentity();
- schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
-
- ComplexVector eig(it);
- Matrix<StorageIndex,Dynamic,1>perm(it);
- eig = this->schurValues(schurofH);
-
- // Reorder the absolute values of Schur values
- DenseRealVector modulEig(it);
- for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
- perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1));
- internal::sortWithPermutation(modulEig, perm, neig);
-
- if (!m_lambdaN)
- {
- m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
- }
- //Count the real number of extracted eigenvalues (with complex conjugates)
- Index nbrEig = 0;
- while (nbrEig < neig)
- {
- if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
- else nbrEig += 2;
- }
- // Extract the Schur vectors corresponding to the smallest Ritz values
- DenseMatrix Sr(it, nbrEig);
- Sr.setZero();
- for (Index j = 0; j < nbrEig; j++)
- {
- Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
- }
-
- // Form the Schur vectors of the initial matrix using the Krylov basis
- DenseMatrix X;
- X = m_V.leftCols(it) * Sr;
- if (m_r)
- {
- // Orthogonalize X against m_U using modified Gram-Schmidt
- for (Index j = 0; j < nbrEig; j++)
- for (Index k =0; k < m_r; k++)
- X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
- }
-
- // Compute m_MX = A * M^-1 * X
- Index m = m_V.rows();
- if (!m_isDeflAllocated)
- dgmresInitDeflation(m);
- DenseMatrix MX(m, nbrEig);
- DenseVector tv1(m);
- for (Index j = 0; j < nbrEig; j++)
- {
- tv1 = mat * X.col(j);
- MX.col(j) = precond.solve(tv1);
- }
-
- //Update m_T = [U'MU U'MX; X'MU X'MX]
- m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
- if(m_r)
- {
- m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
- m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
- }
-
- // Save X into m_U and m_MX in m_MU
- for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
- for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
- // Increase the size of the invariant subspace
- m_r += nbrEig;
-
- // Factorize m_T into m_luT
- m_luT.compute(m_T.topLeftCorner(m_r, m_r));
-
- //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
- m_isDeflInitialized = true;
- return 0;
-}
-template<typename _MatrixType, typename _Preconditioner>
-template<typename RhsType, typename DestType>
-Index DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
-{
- DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
- y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
- return 0;
-}
-
-} // end namespace Eigen
-#endif
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
deleted file mode 100644
index 92618b1..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
+++ /dev/null
@@ -1,343 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_GMRES_H
-#define EIGEN_GMRES_H
-
-namespace Eigen {
-
-namespace internal {
-
-/**
-* Generalized Minimal Residual Algorithm based on the
-* Arnoldi algorithm implemented with Householder reflections.
-*
-* Parameters:
-* \param mat matrix of linear system of equations
-* \param rhs right hand side vector of linear system of equations
-* \param x on input: initial guess, on output: solution
-* \param precond preconditioner used
-* \param iters on input: maximum number of iterations to perform
-* on output: number of iterations performed
-* \param restart number of iterations for a restart
-* \param tol_error on input: relative residual tolerance
-* on output: residuum achieved
-*
-* \sa IterativeMethods::bicgstab()
-*
-*
-* For references, please see:
-*
-* Saad, Y. and Schultz, M. H.
-* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
-* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
-*
-* Saad, Y.
-* Iterative Methods for Sparse Linear Systems.
-* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
-*
-* Walker, H. F.
-* Implementations of the GMRES method.
-* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
-*
-* Walker, H. F.
-* Implementation of the GMRES Method using Householder Transformations.
-* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
-*
-*/
-template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
-bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
- Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
-
- using std::sqrt;
- using std::abs;
-
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix < Scalar, Dynamic, 1 > VectorType;
- typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType;
-
- RealScalar tol = tol_error;
- const Index maxIters = iters;
- iters = 0;
-
- const Index m = mat.rows();
-
- // residual and preconditioned residual
- VectorType p0 = rhs - mat*x;
- VectorType r0 = precond.solve(p0);
-
- const RealScalar r0Norm = r0.norm();
-
- // is initial guess already good enough?
- if(r0Norm == 0)
- {
- tol_error = 0;
- return true;
- }
-
- // storage for Hessenberg matrix and Householder data
- FMatrixType H = FMatrixType::Zero(m, restart + 1);
- VectorType w = VectorType::Zero(restart + 1);
- VectorType tau = VectorType::Zero(restart + 1);
-
- // storage for Jacobi rotations
- std::vector < JacobiRotation < Scalar > > G(restart);
-
- // storage for temporaries
- VectorType t(m), v(m), workspace(m), x_new(m);
-
- // generate first Householder vector
- Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
- RealScalar beta;
- r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
- w(0) = Scalar(beta);
-
- for (Index k = 1; k <= restart; ++k)
- {
- ++iters;
-
- v = VectorType::Unit(m, k - 1);
-
- // apply Householder reflections H_{1} ... H_{k-1} to v
- // TODO: use a HouseholderSequence
- for (Index i = k - 1; i >= 0; --i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- // apply matrix M to v: v = mat * v;
- t.noalias() = mat * v;
- v = precond.solve(t);
-
- // apply Householder reflections H_{k-1} ... H_{1} to v
- // TODO: use a HouseholderSequence
- for (Index i = 0; i < k; ++i) {
- v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- if (v.tail(m - k).norm() != 0.0)
- {
- if (k <= restart)
- {
- // generate new Householder vector
- Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
- v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
-
- // apply Householder reflection H_{k} to v
- v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
- }
- }
-
- if (k > 1)
- {
- for (Index i = 0; i < k - 1; ++i)
- {
- // apply old Givens rotations to v
- v.applyOnTheLeft(i, i + 1, G[i].adjoint());
- }
- }
-
- if (k<m && v(k) != (Scalar) 0)
- {
- // determine next Givens rotation
- G[k - 1].makeGivens(v(k - 1), v(k));
-
- // apply Givens rotation to v and w
- v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
- w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
- }
-
- // insert coefficients into upper matrix triangle
- H.col(k-1).head(k) = v.head(k);
-
- tol_error = abs(w(k)) / r0Norm;
- bool stop = (k==m || tol_error < tol || iters == maxIters);
-
- if (stop || k == restart)
- {
- // solve upper triangular system
- Ref<VectorType> y = w.head(k);
- H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
-
- // use Horner-like scheme to calculate solution vector
- x_new.setZero();
- for (Index i = k - 1; i >= 0; --i)
- {
- x_new(i) += y(i);
- // apply Householder reflection H_{i} to x_new
- x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
- }
-
- x += x_new;
-
- if(stop)
- {
- return true;
- }
- else
- {
- k=0;
-
- // reset data for restart
- p0.noalias() = rhs - mat*x;
- r0 = precond.solve(p0);
-
- // clear Hessenberg matrix and Householder data
- H.setZero();
- w.setZero();
- tau.setZero();
-
- // generate first Householder vector
- r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
- w(0) = Scalar(beta);
- }
- }
- }
-
- return false;
-
-}
-
-}
-
-template< typename _MatrixType,
- typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
-class GMRES;
-
-namespace internal {
-
-template< typename _MatrixType, typename _Preconditioner>
-struct traits<GMRES<_MatrixType,_Preconditioner> >
-{
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
-};
-
-}
-
-/** \ingroup IterativeLinearSolvers_Module
- * \brief A GMRES solver for sparse square problems
- *
- * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
- * residual method. The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * GMRES<SparseMatrix<double> > solver(A);
- * x = solver.solve(b);
- * std::cout << "#iterations: " << solver.iterations() << std::endl;
- * std::cout << "estimated error: " << solver.error() << std::endl;
- * // update b, and solve again
- * x = solver.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method.
- *
- * GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
-template< typename _MatrixType, typename _Preconditioner>
-class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
-{
- typedef IterativeSolverBase<GMRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
-
-private:
- Index m_restart;
-
-public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
-public:
-
- /** Default constructor. */
- GMRES() : Base(), m_restart(30) {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
-
- ~GMRES() {}
-
- /** Get the number of iterations after that a restart is performed.
- */
- Index get_restart() { return m_restart; }
-
- /** Set the number of iterations after that a restart is performed.
- * \param restart number of iterations for a restarti, default is 30.
- */
- void set_restart(const Index restart) { m_restart=restart; }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- bool failed = false;
- for(Index j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
- failed = true;
- }
- m_info = failed ? NumericalIssue
- : m_error <= Base::m_tolerance ? Success
- : NoConvergence;
- m_isInitialized = true;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
- {
- x = b;
- if(x.squaredNorm() == 0) return; // Check Zero right hand side
- _solve_with_guess_impl(b,x.derived());
- }
-
-protected:
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_GMRES_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
deleted file mode 100644
index 7d08c35..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
+++ /dev/null
@@ -1,90 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_INCOMPLETE_LU_H
-#define EIGEN_INCOMPLETE_LU_H
-
-namespace Eigen {
-
-template <typename _Scalar>
-class IncompleteLU : public SparseSolverBase<IncompleteLU<_Scalar> >
-{
- protected:
- typedef SparseSolverBase<IncompleteLU<_Scalar> > Base;
- using Base::m_isInitialized;
-
- typedef _Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef typename Vector::Index Index;
- typedef SparseMatrix<Scalar,RowMajor> FactorType;
-
- public:
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- IncompleteLU() {}
-
- template<typename MatrixType>
- IncompleteLU(const MatrixType& mat)
- {
- compute(mat);
- }
-
- Index rows() const { return m_lu.rows(); }
- Index cols() const { return m_lu.cols(); }
-
- template<typename MatrixType>
- IncompleteLU& compute(const MatrixType& mat)
- {
- m_lu = mat;
- int size = mat.cols();
- Vector diag(size);
- for(int i=0; i<size; ++i)
- {
- typename FactorType::InnerIterator k_it(m_lu,i);
- for(; k_it && k_it.index()<i; ++k_it)
- {
- int k = k_it.index();
- k_it.valueRef() /= diag(k);
-
- typename FactorType::InnerIterator j_it(k_it);
- typename FactorType::InnerIterator kj_it(m_lu, k);
- while(kj_it && kj_it.index()<=k) ++kj_it;
- for(++j_it; j_it; )
- {
- if(kj_it.index()==j_it.index())
- {
- j_it.valueRef() -= k_it.value() * kj_it.value();
- ++j_it;
- ++kj_it;
- }
- else if(kj_it.index()<j_it.index()) ++kj_it;
- else ++j_it;
- }
- }
- if(k_it && k_it.index()==i) diag(i) = k_it.value();
- else diag(i) = 1;
- }
- m_isInitialized = true;
- return *this;
- }
-
- template<typename Rhs, typename Dest>
- void _solve_impl(const Rhs& b, Dest& x) const
- {
- x = m_lu.template triangularView<UnitLower>().solve(b);
- x = m_lu.template triangularView<Upper>().solve(x);
- }
-
- protected:
- FactorType m_lu;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_INCOMPLETE_LU_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
deleted file mode 100644
index c9c1a4b..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
+++ /dev/null
@@ -1,154 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-
-/* NOTE The class IterationController has been adapted from the iteration
- * class of the GMM++ and ITL libraries.
- */
-
-//=======================================================================
-// Copyright (C) 1997-2001
-// Authors: Andrew Lumsdaine <lums@osl.iu.edu>
-// Lie-Quan Lee <llee@osl.iu.edu>
-//
-// This file is part of the Iterative Template Library
-//
-// You should have received a copy of the License Agreement for the
-// Iterative Template Library along with the software; see the
-// file LICENSE.
-//
-// Permission to modify the code and to distribute modified code is
-// granted, provided the text of this NOTICE is retained, a notice that
-// the code was modified is included with the above COPYRIGHT NOTICE and
-// with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE
-// file is distributed with the modified code.
-//
-// LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
-// By way of example, but not limitation, Licensor MAKES NO
-// REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
-// PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS
-// OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS
-// OR OTHER RIGHTS.
-//=======================================================================
-
-//========================================================================
-//
-// Copyright (C) 2002-2007 Yves Renard
-//
-// This file is a part of GETFEM++
-//
-// Getfem++ is free software; you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as
-// published by the Free Software Foundation; version 2.1 of the License.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-// You should have received a copy of the GNU Lesser General Public
-// License along with this program; if not, write to the Free Software
-// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
-// USA.
-//
-//========================================================================
-
-#include "../../../../Eigen/src/Core/util/NonMPL2.h"
-
-#ifndef EIGEN_ITERATION_CONTROLLER_H
-#define EIGEN_ITERATION_CONTROLLER_H
-
-namespace Eigen {
-
-/** \ingroup IterativeSolvers_Module
- * \class IterationController
- *
- * \brief Controls the iterations of the iterative solvers
- *
- * This class has been adapted from the iteration class of GMM++ and ITL libraries.
- *
- */
-class IterationController
-{
- protected :
- double m_rhsn; ///< Right hand side norm
- size_t m_maxiter; ///< Max. number of iterations
- int m_noise; ///< if noise > 0 iterations are printed
- double m_resmax; ///< maximum residual
- double m_resminreach, m_resadd;
- size_t m_nit; ///< iteration number
- double m_res; ///< last computed residual
- bool m_written;
- void (*m_callback)(const IterationController&);
- public :
-
- void init()
- {
- m_nit = 0; m_res = 0.0; m_written = false;
- m_resminreach = 1E50; m_resadd = 0.0;
- m_callback = 0;
- }
-
- IterationController(double r = 1.0E-8, int noi = 0, size_t mit = size_t(-1))
- : m_rhsn(1.0), m_maxiter(mit), m_noise(noi), m_resmax(r) { init(); }
-
- void operator ++(int) { m_nit++; m_written = false; m_resadd += m_res; }
- void operator ++() { (*this)++; }
-
- bool first() { return m_nit == 0; }
-
- /* get/set the "noisyness" (verbosity) of the solvers */
- int noiseLevel() const { return m_noise; }
- void setNoiseLevel(int n) { m_noise = n; }
- void reduceNoiseLevel() { if (m_noise > 0) m_noise--; }
-
- double maxResidual() const { return m_resmax; }
- void setMaxResidual(double r) { m_resmax = r; }
-
- double residual() const { return m_res; }
-
- /* change the user-definable callback, called after each iteration */
- void setCallback(void (*t)(const IterationController&))
- {
- m_callback = t;
- }
-
- size_t iteration() const { return m_nit; }
- void setIteration(size_t i) { m_nit = i; }
-
- size_t maxIterarions() const { return m_maxiter; }
- void setMaxIterations(size_t i) { m_maxiter = i; }
-
- double rhsNorm() const { return m_rhsn; }
- void setRhsNorm(double r) { m_rhsn = r; }
-
- bool converged() const { return m_res <= m_rhsn * m_resmax; }
- bool converged(double nr)
- {
- using std::abs;
- m_res = abs(nr);
- m_resminreach = (std::min)(m_resminreach, m_res);
- return converged();
- }
- template<typename VectorType> bool converged(const VectorType &v)
- { return converged(v.squaredNorm()); }
-
- bool finished(double nr)
- {
- if (m_callback) m_callback(*this);
- if (m_noise > 0 && !m_written)
- {
- converged(nr);
- m_written = true;
- }
- return (m_nit >= m_maxiter || converged(nr));
- }
- template <typename VectorType>
- bool finished(const MatrixBase<VectorType> &v)
- { return finished(double(v.squaredNorm())); }
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_ITERATION_CONTROLLER_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
deleted file mode 100644
index 256990c..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
+++ /dev/null
@@ -1,289 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
-// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_MINRES_H_
-#define EIGEN_MINRES_H_
-
-
-namespace Eigen {
-
- namespace internal {
-
- /** \internal Low-level MINRES algorithm
- * \param mat The matrix A
- * \param rhs The right hand side vector b
- * \param x On input and initial solution, on output the computed solution.
- * \param precond A right preconditioner being able to efficiently solve for an
- * approximation of Ax=b (regardless of b)
- * \param iters On input the max number of iteration, on output the number of performed iterations.
- * \param tol_error On input the tolerance error, on output an estimation of the relative error.
- */
- template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
- EIGEN_DONT_INLINE
- void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
- const Preconditioner& precond, Index& iters,
- typename Dest::RealScalar& tol_error)
- {
- using std::sqrt;
- typedef typename Dest::RealScalar RealScalar;
- typedef typename Dest::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
-
- // Check for zero rhs
- const RealScalar rhsNorm2(rhs.squaredNorm());
- if(rhsNorm2 == 0)
- {
- x.setZero();
- iters = 0;
- tol_error = 0;
- return;
- }
-
- // initialize
- const Index maxIters(iters); // initialize maxIters to iters
- const Index N(mat.cols()); // the size of the matrix
- const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
-
- // Initialize preconditioned Lanczos
- VectorType v_old(N); // will be initialized inside loop
- VectorType v( VectorType::Zero(N) ); //initialize v
- VectorType v_new(rhs-mat*x); //initialize v_new
- RealScalar residualNorm2(v_new.squaredNorm());
- VectorType w(N); // will be initialized inside loop
- VectorType w_new(precond.solve(v_new)); // initialize w_new
-// RealScalar beta; // will be initialized inside loop
- RealScalar beta_new2(v_new.dot(w_new));
- eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
- RealScalar beta_new(sqrt(beta_new2));
- const RealScalar beta_one(beta_new);
- v_new /= beta_new;
- w_new /= beta_new;
- // Initialize other variables
- RealScalar c(1.0); // the cosine of the Givens rotation
- RealScalar c_old(1.0);
- RealScalar s(0.0); // the sine of the Givens rotation
- RealScalar s_old(0.0); // the sine of the Givens rotation
- VectorType p_oold(N); // will be initialized in loop
- VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
- VectorType p(p_old); // initialize p=0
- RealScalar eta(1.0);
-
- iters = 0; // reset iters
- while ( iters < maxIters )
- {
- // Preconditioned Lanczos
- /* Note that there are 4 variants on the Lanczos algorithm. These are
- * described in Paige, C. C. (1972). Computational variants of
- * the Lanczos method for the eigenproblem. IMA Journal of Applied
- * Mathematics, 10(3), 373–381. The current implementation corresponds
- * to the case A(2,7) in the paper. It also corresponds to
- * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
- * Systems, 2003 p.173. For the preconditioned version see
- * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
- */
- const RealScalar beta(beta_new);
- v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
-// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
- v = v_new; // update
- w = w_new; // update
-// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
- v_new.noalias() = mat*w - beta*v_old; // compute v_new
- const RealScalar alpha = v_new.dot(w);
- v_new -= alpha*v; // overwrite v_new
- w_new = precond.solve(v_new); // overwrite w_new
- beta_new2 = v_new.dot(w_new); // compute beta_new
- eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
- beta_new = sqrt(beta_new2); // compute beta_new
- v_new /= beta_new; // overwrite v_new for next iteration
- w_new /= beta_new; // overwrite w_new for next iteration
-
- // Givens rotation
- const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
- const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
- const RealScalar r1_hat=c*alpha-c_old*s*beta;
- const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
- c_old = c; // store for next iteration
- s_old = s; // store for next iteration
- c=r1_hat/r1; // new cosine
- s=beta_new/r1; // new sine
-
- // Update solution
- p_oold = p_old;
-// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
- p_old = p;
- p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
- x += beta_one*c*eta*p;
-
- /* Update the squared residual. Note that this is the estimated residual.
- The real residual |Ax-b|^2 may be slightly larger */
- residualNorm2 *= s*s;
-
- if ( residualNorm2 < threshold2)
- {
- break;
- }
-
- eta=-s*eta; // update eta
- iters++; // increment iteration number (for output purposes)
- }
-
- /* Compute error. Note that this is the estimated error. The real
- error |Ax-b|/|b| may be slightly larger */
- tol_error = std::sqrt(residualNorm2 / rhsNorm2);
- }
-
- }
-
- template< typename _MatrixType, int _UpLo=Lower,
- typename _Preconditioner = IdentityPreconditioner>
- class MINRES;
-
- namespace internal {
-
- template< typename _MatrixType, int _UpLo, typename _Preconditioner>
- struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
- {
- typedef _MatrixType MatrixType;
- typedef _Preconditioner Preconditioner;
- };
-
- }
-
- /** \ingroup IterativeLinearSolvers_Module
- * \brief A minimal residual solver for sparse symmetric problems
- *
- * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
- * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
- * The vectors x and b can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
- * Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
- * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
- *
- * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
- * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
- * and NumTraits<Scalar>::epsilon() for the tolerance.
- *
- * This class can be used as the direct solver classes. Here is a typical usage example:
- * \code
- * int n = 10000;
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A(n,n);
- * // fill A and b
- * MINRES<SparseMatrix<double> > mr;
- * mr.compute(A);
- * x = mr.solve(b);
- * std::cout << "#iterations: " << mr.iterations() << std::endl;
- * std::cout << "estimated error: " << mr.error() << std::endl;
- * // update b, and solve again
- * x = mr.solve(b);
- * \endcode
- *
- * By default the iterations start with x=0 as an initial guess of the solution.
- * One can control the start using the solveWithGuess() method.
- *
- * MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
- *
- * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
- */
- template< typename _MatrixType, int _UpLo, typename _Preconditioner>
- class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
- {
-
- typedef IterativeSolverBase<MINRES> Base;
- using Base::matrix;
- using Base::m_error;
- using Base::m_iterations;
- using Base::m_info;
- using Base::m_isInitialized;
- public:
- using Base::_solve_impl;
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef _Preconditioner Preconditioner;
-
- enum {UpLo = _UpLo};
-
- public:
-
- /** Default constructor. */
- MINRES() : Base() {}
-
- /** Initialize the solver with matrix \a A for further \c Ax=b solving.
- *
- * This constructor is a shortcut for the default constructor followed
- * by a call to compute().
- *
- * \warning this class stores a reference to the matrix A as well as some
- * precomputed values that depend on it. Therefore, if \a A is changed
- * this class becomes invalid. Call compute() to update it with the new
- * matrix A, or modify a copy of A.
- */
- template<typename MatrixDerived>
- explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
-
- /** Destructor. */
- ~MINRES(){}
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_with_guess_impl(const Rhs& b, Dest& x) const
- {
- typedef typename Base::MatrixWrapper MatrixWrapper;
- typedef typename Base::ActualMatrixType ActualMatrixType;
- enum {
- TransposeInput = (!MatrixWrapper::MatrixFree)
- && (UpLo==(Lower|Upper))
- && (!MatrixType::IsRowMajor)
- && (!NumTraits<Scalar>::IsComplex)
- };
- typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper;
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
- typedef typename internal::conditional<UpLo==(Lower|Upper),
- RowMajorWrapper,
- typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type
- >::type SelfAdjointWrapper;
-
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
- RowMajorWrapper row_mat(matrix());
- for(int j=0; j<b.cols(); ++j)
- {
- m_iterations = Base::maxIterations();
- m_error = Base::m_tolerance;
-
- typename Dest::ColXpr xj(x,j);
- internal::minres(SelfAdjointWrapper(row_mat), b.col(j), xj,
- Base::m_preconditioner, m_iterations, m_error);
- }
-
- m_isInitialized = true;
- m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
- }
-
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
- {
- x.setZero();
- _solve_with_guess_impl(b,x.derived());
- }
-
- protected:
-
- };
-
-} // end namespace Eigen
-
-#endif // EIGEN_MINRES_H
-
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h b/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
deleted file mode 100644
index d113e6e..0000000
--- a/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
+++ /dev/null
@@ -1,187 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_ITERSCALING_H
-#define EIGEN_ITERSCALING_H
-
-namespace Eigen {
-
-/**
- * \ingroup IterativeSolvers_Module
- * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
- *
- * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods
- *
- * This feature is useful to limit the pivoting amount during LU/ILU factorization
- * The scaling strategy as presented here preserves the symmetry of the problem
- * NOTE It is assumed that the matrix does not have empty row or column,
- *
- * Example with key steps
- * \code
- * VectorXd x(n), b(n);
- * SparseMatrix<double> A;
- * // fill A and b;
- * IterScaling<SparseMatrix<double> > scal;
- * // Compute the left and right scaling vectors. The matrix is equilibrated at output
- * scal.computeRef(A);
- * // Scale the right hand side
- * b = scal.LeftScaling().cwiseProduct(b);
- * // Now, solve the equilibrated linear system with any available solver
- *
- * // Scale back the computed solution
- * x = scal.RightScaling().cwiseProduct(x);
- * \endcode
- *
- * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix
- *
- * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552
- *
- * \sa \ref IncompleteLUT
- */
-template<typename _MatrixType>
-class IterScaling
-{
- public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- public:
- IterScaling() { init(); }
-
- IterScaling(const MatrixType& matrix)
- {
- init();
- compute(matrix);
- }
-
- ~IterScaling() { }
-
- /**
- * Compute the left and right diagonal matrices to scale the input matrix @p mat
- *
- * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
- *
- * \sa LeftScaling() RightScaling()
- */
- void compute (const MatrixType& mat)
- {
- using std::abs;
- int m = mat.rows();
- int n = mat.cols();
- eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
- m_left.resize(m);
- m_right.resize(n);
- m_left.setOnes();
- m_right.setOnes();
- m_matrix = mat;
- VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors
- Dr.resize(m); Dc.resize(n);
- DrRes.resize(m); DcRes.resize(n);
- double EpsRow = 1.0, EpsCol = 1.0;
- int its = 0;
- do
- { // Iterate until the infinite norm of each row and column is approximately 1
- // Get the maximum value in each row and column
- Dr.setZero(); Dc.setZero();
- for (int k=0; k<m_matrix.outerSize(); ++k)
- {
- for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
- {
- if ( Dr(it.row()) < abs(it.value()) )
- Dr(it.row()) = abs(it.value());
-
- if ( Dc(it.col()) < abs(it.value()) )
- Dc(it.col()) = abs(it.value());
- }
- }
- for (int i = 0; i < m; ++i)
- {
- Dr(i) = std::sqrt(Dr(i));
- Dc(i) = std::sqrt(Dc(i));
- }
- // Save the scaling factors
- for (int i = 0; i < m; ++i)
- {
- m_left(i) /= Dr(i);
- m_right(i) /= Dc(i);
- }
- // Scale the rows and the columns of the matrix
- DrRes.setZero(); DcRes.setZero();
- for (int k=0; k<m_matrix.outerSize(); ++k)
- {
- for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
- {
- it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) );
- // Accumulate the norms of the row and column vectors
- if ( DrRes(it.row()) < abs(it.value()) )
- DrRes(it.row()) = abs(it.value());
-
- if ( DcRes(it.col()) < abs(it.value()) )
- DcRes(it.col()) = abs(it.value());
- }
- }
- DrRes.array() = (1-DrRes.array()).abs();
- EpsRow = DrRes.maxCoeff();
- DcRes.array() = (1-DcRes.array()).abs();
- EpsCol = DcRes.maxCoeff();
- its++;
- }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) );
- m_isInitialized = true;
- }
- /** Compute the left and right vectors to scale the vectors
- * the input matrix is scaled with the computed vectors at output
- *
- * \sa compute()
- */
- void computeRef (MatrixType& mat)
- {
- compute (mat);
- mat = m_matrix;
- }
- /** Get the vector to scale the rows of the matrix
- */
- VectorXd& LeftScaling()
- {
- return m_left;
- }
-
- /** Get the vector to scale the columns of the matrix
- */
- VectorXd& RightScaling()
- {
- return m_right;
- }
-
- /** Set the tolerance for the convergence of the iterative scaling algorithm
- */
- void setTolerance(double tol)
- {
- m_tol = tol;
- }
-
- protected:
-
- void init()
- {
- m_tol = 1e-10;
- m_maxits = 5;
- m_isInitialized = false;
- }
-
- MatrixType m_matrix;
- mutable ComputationInfo m_info;
- bool m_isInitialized;
- VectorXd m_left; // Left scaling vector
- VectorXd m_right; // m_right scaling vector
- double m_tol;
- int m_maxits; // Maximum number of iterations allowed
-};
-}
-#endif
diff --git a/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
deleted file mode 100644
index 582fa85..0000000
--- a/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
+++ /dev/null
@@ -1,305 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
-// Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
-// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef KRONECKER_TENSOR_PRODUCT_H
-#define KRONECKER_TENSOR_PRODUCT_H
-
-namespace Eigen {
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief The base class of dense and sparse Kronecker product.
- *
- * \tparam Derived is the derived type.
- */
-template<typename Derived>
-class KroneckerProductBase : public ReturnByValue<Derived>
-{
- private:
- typedef typename internal::traits<Derived> Traits;
- typedef typename Traits::Scalar Scalar;
-
- protected:
- typedef typename Traits::Lhs Lhs;
- typedef typename Traits::Rhs Rhs;
-
- public:
- /*! \brief Constructor. */
- KroneckerProductBase(const Lhs& A, const Rhs& B)
- : m_A(A), m_B(B)
- {}
-
- inline Index rows() const { return m_A.rows() * m_B.rows(); }
- inline Index cols() const { return m_A.cols() * m_B.cols(); }
-
- /*!
- * This overrides ReturnByValue::coeff because this function is
- * efficient enough.
- */
- Scalar coeff(Index row, Index col) const
- {
- return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
- m_B.coeff(row % m_B.rows(), col % m_B.cols());
- }
-
- /*!
- * This overrides ReturnByValue::coeff because this function is
- * efficient enough.
- */
- Scalar coeff(Index i) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
- return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
- }
-
- protected:
- typename Lhs::Nested m_A;
- typename Rhs::Nested m_B;
-};
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief Kronecker tensor product helper class for dense matrices
- *
- * This class is the return value of kroneckerProduct(MatrixBase,
- * MatrixBase). Use the function rather than construct this class
- * directly to avoid specifying template prarameters.
- *
- * \tparam Lhs Type of the left-hand side, a matrix expression.
- * \tparam Rhs Type of the rignt-hand side, a matrix expression.
- */
-template<typename Lhs, typename Rhs>
-class KroneckerProduct : public KroneckerProductBase<KroneckerProduct<Lhs,Rhs> >
-{
- private:
- typedef KroneckerProductBase<KroneckerProduct> Base;
- using Base::m_A;
- using Base::m_B;
-
- public:
- /*! \brief Constructor. */
- KroneckerProduct(const Lhs& A, const Rhs& B)
- : Base(A, B)
- {}
-
- /*! \brief Evaluate the Kronecker tensor product. */
- template<typename Dest> void evalTo(Dest& dst) const;
-};
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * \brief Kronecker tensor product helper class for sparse matrices
- *
- * If at least one of the operands is a sparse matrix expression,
- * then this class is returned and evaluates into a sparse matrix.
- *
- * This class is the return value of kroneckerProduct(EigenBase,
- * EigenBase). Use the function rather than construct this class
- * directly to avoid specifying template prarameters.
- *
- * \tparam Lhs Type of the left-hand side, a matrix expression.
- * \tparam Rhs Type of the rignt-hand side, a matrix expression.
- */
-template<typename Lhs, typename Rhs>
-class KroneckerProductSparse : public KroneckerProductBase<KroneckerProductSparse<Lhs,Rhs> >
-{
- private:
- typedef KroneckerProductBase<KroneckerProductSparse> Base;
- using Base::m_A;
- using Base::m_B;
-
- public:
- /*! \brief Constructor. */
- KroneckerProductSparse(const Lhs& A, const Rhs& B)
- : Base(A, B)
- {}
-
- /*! \brief Evaluate the Kronecker tensor product. */
- template<typename Dest> void evalTo(Dest& dst) const;
-};
-
-template<typename Lhs, typename Rhs>
-template<typename Dest>
-void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const
-{
- const int BlockRows = Rhs::RowsAtCompileTime,
- BlockCols = Rhs::ColsAtCompileTime;
- const Index Br = m_B.rows(),
- Bc = m_B.cols();
- for (Index i=0; i < m_A.rows(); ++i)
- for (Index j=0; j < m_A.cols(); ++j)
- Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B;
-}
-
-template<typename Lhs, typename Rhs>
-template<typename Dest>
-void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
-{
- Index Br = m_B.rows(), Bc = m_B.cols();
- dst.resize(this->rows(), this->cols());
- dst.resizeNonZeros(0);
-
- // 1 - evaluate the operands if needed:
- typedef typename internal::nested_eval<Lhs,Dynamic>::type Lhs1;
- typedef typename internal::remove_all<Lhs1>::type Lhs1Cleaned;
- const Lhs1 lhs1(m_A);
- typedef typename internal::nested_eval<Rhs,Dynamic>::type Rhs1;
- typedef typename internal::remove_all<Rhs1>::type Rhs1Cleaned;
- const Rhs1 rhs1(m_B);
-
- // 2 - construct respective iterators
- typedef Eigen::InnerIterator<Lhs1Cleaned> LhsInnerIterator;
- typedef Eigen::InnerIterator<Rhs1Cleaned> RhsInnerIterator;
-
- // compute number of non-zeros per innervectors of dst
- {
- // TODO VectorXi is not necessarily big enough!
- VectorXi nnzA = VectorXi::Zero(Dest::IsRowMajor ? m_A.rows() : m_A.cols());
- for (Index kA=0; kA < m_A.outerSize(); ++kA)
- for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
- nnzA(Dest::IsRowMajor ? itA.row() : itA.col())++;
-
- VectorXi nnzB = VectorXi::Zero(Dest::IsRowMajor ? m_B.rows() : m_B.cols());
- for (Index kB=0; kB < m_B.outerSize(); ++kB)
- for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
- nnzB(Dest::IsRowMajor ? itB.row() : itB.col())++;
-
- Matrix<int,Dynamic,Dynamic,ColMajor> nnzAB = nnzB * nnzA.transpose();
- dst.reserve(VectorXi::Map(nnzAB.data(), nnzAB.size()));
- }
-
- for (Index kA=0; kA < m_A.outerSize(); ++kA)
- {
- for (Index kB=0; kB < m_B.outerSize(); ++kB)
- {
- for (LhsInnerIterator itA(lhs1,kA); itA; ++itA)
- {
- for (RhsInnerIterator itB(rhs1,kB); itB; ++itB)
- {
- Index i = itA.row() * Br + itB.row(),
- j = itA.col() * Bc + itB.col();
- dst.insert(i,j) = itA.value() * itB.value();
- }
- }
- }
- }
-}
-
-namespace internal {
-
-template<typename _Lhs, typename _Rhs>
-struct traits<KroneckerProduct<_Lhs,_Rhs> >
-{
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
-
- enum {
- Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
- Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
- MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret
- };
-
- typedef Matrix<Scalar,Rows,Cols> ReturnType;
-};
-
-template<typename _Lhs, typename _Rhs>
-struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename ScalarBinaryOpTraits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind, scalar_product_op<typename Lhs::Scalar, typename Rhs::Scalar> >::ret StorageKind;
- typedef typename promote_index_type<typename Lhs::StorageIndex, typename Rhs::StorageIndex>::type StorageIndex;
-
- enum {
- LhsFlags = Lhs::Flags,
- RhsFlags = Rhs::Flags,
-
- RowsAtCompileTime = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
- ColsAtCompileTime = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
- MaxRowsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxColsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
-
- EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit),
- RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
-
- Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeNestingBit,
- CoeffReadCost = HugeCost
- };
-
- typedef SparseMatrix<Scalar, 0, StorageIndex> ReturnType;
-};
-
-} // end namespace internal
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * Computes Kronecker tensor product of two dense matrices
- *
- * \warning If you want to replace a matrix by its Kronecker product
- * with some matrix, do \b NOT do this:
- * \code
- * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
- * \endcode
- * instead, use eval() to work around this:
- * \code
- * A = kroneckerProduct(A,B).eval();
- * \endcode
- *
- * \param a Dense matrix a
- * \param b Dense matrix b
- * \return Kronecker tensor product of a and b
- */
-template<typename A, typename B>
-KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b)
-{
- return KroneckerProduct<A, B>(a.derived(), b.derived());
-}
-
-/*!
- * \ingroup KroneckerProduct_Module
- *
- * Computes Kronecker tensor product of two matrices, at least one of
- * which is sparse
- *
- * \warning If you want to replace a matrix by its Kronecker product
- * with some matrix, do \b NOT do this:
- * \code
- * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
- * \endcode
- * instead, use eval() to work around this:
- * \code
- * A = kroneckerProduct(A,B).eval();
- * \endcode
- *
- * \param a Dense/sparse matrix a
- * \param b Dense/sparse matrix b
- * \return Kronecker tensor product of a and b, stored in a sparse
- * matrix
- */
-template<typename A, typename B>
-KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b)
-{
- return KroneckerProductSparse<A,B>(a.derived(), b.derived());
-}
-
-} // end namespace Eigen
-
-#endif // KRONECKER_TENSOR_PRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
deleted file mode 100644
index ae7984d..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-Minpack Copyright Notice (1999) University of Chicago. All rights reserved
-
-Redistribution and use in source and binary forms, with or
-without modification, are permitted provided that the
-following conditions are met:
-
-1. Redistributions of source code must retain the above
-copyright notice, this list of conditions and the following
-disclaimer.
-
-2. Redistributions in binary form must reproduce the above
-copyright notice, this list of conditions and the following
-disclaimer in the documentation and/or other materials
-provided with the distribution.
-
-3. The end-user documentation included with the
-redistribution, if any, must include the following
-acknowledgment:
-
- "This product includes software developed by the
- University of Chicago, as Operator of Argonne National
- Laboratory.
-
-Alternately, this acknowledgment may appear in the software
-itself, if and wherever such third-party acknowledgments
-normally appear.
-
-4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
-WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
-UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
-THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
-OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
-OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
-OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
-USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
-THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
-DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
-UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
-BE CORRECTED.
-
-5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
-HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
-ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
-INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
-ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
-PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
-SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
-(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
-EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
-POSSIBILITY OF SUCH LOSS OR DAMAGES.
-
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
deleted file mode 100644
index b75bea2..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
+++ /dev/null
@@ -1,84 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMCOVAR_H
-#define EIGEN_LMCOVAR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void covar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi& ipvt,
- Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
-{
- using std::abs;
- /* Local variables */
- Index i, j, k, l, ii, jj;
- bool sing;
- Scalar temp;
-
- /* Function Body */
- const Index n = r.cols();
- const Scalar tolr = tol * abs(r(0,0));
- Matrix< Scalar, Dynamic, 1 > wa(n);
- eigen_assert(ipvt.size()==n);
-
- /* form the inverse of r in the full upper triangle of r. */
- l = -1;
- for (k = 0; k < n; ++k)
- if (abs(r(k,k)) > tolr) {
- r(k,k) = 1. / r(k,k);
- for (j = 0; j <= k-1; ++j) {
- temp = r(k,k) * r(j,k);
- r(j,k) = 0.;
- r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
- }
- l = k;
- }
-
- /* form the full upper triangle of the inverse of (r transpose)*r */
- /* in the full upper triangle of r. */
- for (k = 0; k <= l; ++k) {
- for (j = 0; j <= k-1; ++j)
- r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
- r.col(k).head(k+1) *= r(k,k);
- }
-
- /* form the full lower triangle of the covariance matrix */
- /* in the strict lower triangle of r and in wa. */
- for (j = 0; j < n; ++j) {
- jj = ipvt[j];
- sing = j > l;
- for (i = 0; i <= j; ++i) {
- if (sing)
- r(i,j) = 0.;
- ii = ipvt[i];
- if (ii > jj)
- r(ii,jj) = r(i,j);
- if (ii < jj)
- r(jj,ii) = r(i,j);
- }
- wa[jj] = r(j,j);
- }
-
- /* symmetrize the covariance matrix in r. */
- r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
- r.diagonal() = wa;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMCOVAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
deleted file mode 100644
index 25b32ec..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
+++ /dev/null
@@ -1,202 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMONESTEP_H
-#define EIGEN_LMONESTEP_H
-
-namespace Eigen {
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
- RealScalar temp, temp1,temp2;
- RealScalar ratio;
- RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- temp = 0.0; xnorm = 0.0;
- /* calculate the jacobian matrix. */
- Index df_ret = m_functor.df(x, m_fjac);
- if (df_ret<0)
- return LevenbergMarquardtSpace::UserAsked;
- if (df_ret>0)
- // numerical diff, we evaluated the function df_ret times
- m_nfev += df_ret;
- else m_njev++;
-
- /* compute the qr factorization of the jacobian. */
- for (int j = 0; j < x.size(); ++j)
- m_wa2(j) = m_fjac.col(j).blueNorm();
- QRSolver qrfac(m_fjac);
- if(qrfac.info() != Success) {
- m_info = NumericalIssue;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
- // Make a copy of the first factor with the associated permutation
- m_rfactor = qrfac.matrixR();
- m_permutation = (qrfac.colsPermutation());
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (m_iter == 1) {
- if (!m_useExternalScaling)
- for (Index j = 0; j < n; ++j)
- m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound m_delta. */
- xnorm = m_diag.cwiseProduct(x).stableNorm();
- m_delta = m_factor * xnorm;
- if (m_delta == 0.)
- m_delta = m_factor;
- }
-
- /* form (q transpose)*m_fvec and store the first n components in */
- /* m_qtf. */
- m_wa4 = m_fvec;
- m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
- m_qtf = m_wa4.head(n);
-
- /* compute the norm of the scaled gradient. */
- m_gnorm = 0.;
- if (m_fnorm != 0.)
- for (Index j = 0; j < n; ++j)
- if (m_wa2[m_permutation.indices()[j]] != 0.)
- m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (m_gnorm <= m_gtol) {
- m_info = Success;
- return LevenbergMarquardtSpace::CosinusTooSmall;
- }
-
- /* rescale if necessary. */
- if (!m_useExternalScaling)
- m_diag = m_diag.cwiseMax(m_wa2);
-
- do {
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- m_wa1 = -m_wa1;
- m_wa2 = x + m_wa1;
- pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (m_iter == 1)
- m_delta = (std::min)(m_delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( m_functor(m_wa2, m_wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++m_nfev;
- fnorm1 = m_wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < m_fnorm)
- actred = 1. - numext::abs2(fnorm1 / m_fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
- temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
- temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = RealScalar(.5);
- if (actred < 0.)
- temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
- if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
- m_par /= temp;
- } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
- m_delta = pnorm / RealScalar(.5);
- m_par = RealScalar(.5) * m_par;
- }
-
- /* test for successful iteration. */
- if (ratio >= RealScalar(1e-4)) {
- /* successful iteration. update x, m_fvec, and their norms. */
- x = m_wa2;
- m_wa2 = m_diag.cwiseProduct(x);
- m_fvec = m_wa4;
- xnorm = m_wa2.stableNorm();
- m_fnorm = fnorm1;
- ++m_iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- }
- if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- }
- if (m_delta <= m_xtol * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
- }
-
- /* tests for termination and stringent tolerances. */
- if (m_nfev >= m_maxfev)
- {
- m_info = NoConvergence;
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- }
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::FtolTooSmall;
- }
- if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
- {
- m_info = Success;
- return LevenbergMarquardtSpace::XtolTooSmall;
- }
- if (m_gnorm <= NumTraits<Scalar>::epsilon())
- {
- m_info = Success;
- return LevenbergMarquardtSpace::GtolTooSmall;
- }
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMONESTEP_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
deleted file mode 100644
index 9a48365..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
+++ /dev/null
@@ -1,160 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMPAR_H
-#define EIGEN_LMPAR_H
-
-namespace Eigen {
-
-namespace internal {
-
- template <typename QRSolver, typename VectorType>
- void lmpar2(
- const QRSolver &qr,
- const VectorType &diag,
- const VectorType &qtb,
- typename VectorType::Scalar m_delta,
- typename VectorType::Scalar &par,
- VectorType &x)
-
- {
- using std::sqrt;
- using std::abs;
- typedef typename QRSolver::MatrixType MatrixType;
- typedef typename QRSolver::Scalar Scalar;
-// typedef typename QRSolver::StorageIndex StorageIndex;
-
- /* Local variables */
- Index j;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
- // Make a copy of the triangular factor.
- // This copy is modified during call the qrsolv
- MatrixType s;
- s = qr.matrixR();
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = qr.matrixR().cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
-
- VectorType wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
-
- // const Index rank = qr.nonzeroPivots(); // exactly double(0.)
- const Index rank = qr.rank(); // use a threshold
- wa1 = qtb;
- wa1.tail(n-rank).setZero();
- //FIXME There is no solve in place for sparse triangularView
- wa1.head(rank) = s.topLeftCorner(rank,rank).template triangularView<Upper>().solve(qtb.head(rank));
-
- x = qr.colsPermutation()*wa1;
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - m_delta;
- if (fp <= Scalar(0.1) * m_delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (rank==n) {
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
- s.topLeftCorner(n,n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- temp = wa1.blueNorm();
- parl = fp / m_delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = s.col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / m_delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(m_delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- VectorType sdiag(n);
- lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - m_delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
- // we could almost use this here, but the diagonal is outside qr, in sdiag[]
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (Index i = j+1; i < n; ++i)
- wa1[i] -= s.coeff(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / m_delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- par = (std::max)(parl,par+parc);
- }
- if (iter == 0)
- par = 0.;
- return;
- }
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMPAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
deleted file mode 100644
index ae9d793..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
+++ /dev/null
@@ -1,188 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// This code initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-
-#ifndef EIGEN_LMQRSOLV_H
-#define EIGEN_LMQRSOLV_H
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar,int Rows, int Cols, typename PermIndex>
-void lmqrsolv(
- Matrix<Scalar,Rows,Cols> &s,
- const PermutationMatrix<Dynamic,Dynamic,PermIndex> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- Index i, j, k;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize s. */
- /* in particular, save the diagonal elements of r in x. */
- x = s.diagonal();
- wa = qtb;
-
-
- s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
- /* eliminate the diagonal matrix d using a givens rotation. */
- for (j = 0; j < n; ++j) {
-
- /* prepare the row of d to be eliminated, locating the */
- /* diagonal element using p from the qr factorization. */
- const PermIndex l = iPerm.indices()(j);
- if (diag[l] == 0.)
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
-
- /* the transformations to eliminate the row of d */
- /* modify only a single element of (q transpose)*b */
- /* beyond the first n, which is initially zero. */
- Scalar qtbpj = 0.;
- for (k = j; k < n; ++k) {
- /* determine a givens rotation which eliminates the */
- /* appropriate element in the current row of d. */
- givens.makeGivens(-s(k,k), sdiag[k]);
-
- /* compute the modified diagonal element of r and */
- /* the modified element of ((q transpose)*b,0). */
- s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
- temp = givens.c() * wa[k] + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
- wa[k] = temp;
-
- /* accumulate the tranformation in the row of s. */
- for (i = k+1; i<n; ++i) {
- temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
- sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
- s(i,k) = temp;
- }
- }
- }
-
- /* solve the triangular system for z. if the system is */
- /* singular, then obtain a least squares solution. */
- Index nsing;
- for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
- s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
-
- // restore
- sdiag = s.diagonal();
- s.diagonal() = x;
-
- /* permute the components of z back to components of x. */
- x = iPerm * wa;
-}
-
-template <typename Scalar, int _Options, typename Index>
-void lmqrsolv(
- SparseMatrix<Scalar,_Options,Index> &s,
- const PermutationMatrix<Dynamic,Dynamic> &iPerm,
- const Matrix<Scalar,Dynamic,1> &diag,
- const Matrix<Scalar,Dynamic,1> &qtb,
- Matrix<Scalar,Dynamic,1> &x,
- Matrix<Scalar,Dynamic,1> &sdiag)
-{
- /* Local variables */
- typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
- Index i, j, k, l;
- Scalar temp;
- Index n = s.cols();
- Matrix<Scalar,Dynamic,1> wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize R. */
- wa = qtb;
- FactorType R(s);
- // Eliminate the diagonal matrix d using a givens rotation
- for (j = 0; j < n; ++j)
- {
- // Prepare the row of d to be eliminated, locating the
- // diagonal element using p from the qr factorization
- l = iPerm.indices()(j);
- if (diag(l) == Scalar(0))
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
- // the transformations to eliminate the row of d
- // modify only a single element of (q transpose)*b
- // beyond the first n, which is initially zero.
-
- Scalar qtbpj = 0;
- // Browse the nonzero elements of row j of the upper triangular s
- for (k = j; k < n; ++k)
- {
- typename FactorType::InnerIterator itk(R,k);
- for (; itk; ++itk){
- if (itk.index() < k) continue;
- else break;
- }
- //At this point, we have the diagonal element R(k,k)
- // Determine a givens rotation which eliminates
- // the appropriate element in the current row of d
- givens.makeGivens(-itk.value(), sdiag(k));
-
- // Compute the modified diagonal element of r and
- // the modified element of ((q transpose)*b,0).
- itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
- temp = givens.c() * wa(k) + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
- wa(k) = temp;
-
- // Accumulate the transformation in the remaining k row/column of R
- for (++itk; itk; ++itk)
- {
- i = itk.index();
- temp = givens.c() * itk.value() + givens.s() * sdiag(i);
- sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
- itk.valueRef() = temp;
- }
- }
- }
-
- // Solve the triangular system for z. If the system is
- // singular, then obtain a least squares solution
- Index nsing;
- for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
-// x = wa;
- wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
-
- sdiag = R.diagonal();
- // Permute the components of z back to components of x
- x = iPerm * wa;
-}
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_LMQRSOLV_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
deleted file mode 100644
index 9954279..0000000
--- a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
+++ /dev/null
@@ -1,396 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-//
-// The algorithm of this class initially comes from MINPACK whose original authors are:
-// Copyright Jorge More - Argonne National Laboratory
-// Copyright Burt Garbow - Argonne National Laboratory
-// Copyright Ken Hillstrom - Argonne National Laboratory
-//
-// This Source Code Form is subject to the terms of the Minpack license
-// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LEVENBERGMARQUARDT_H
-#define EIGEN_LEVENBERGMARQUARDT_H
-
-
-namespace Eigen {
-namespace LevenbergMarquardtSpace {
- enum Status {
- NotStarted = -2,
- Running = -1,
- ImproperInputParameters = 0,
- RelativeReductionTooSmall = 1,
- RelativeErrorTooSmall = 2,
- RelativeErrorAndReductionTooSmall = 3,
- CosinusTooSmall = 4,
- TooManyFunctionEvaluation = 5,
- FtolTooSmall = 6,
- XtolTooSmall = 7,
- GtolTooSmall = 8,
- UserAsked = 9
- };
-}
-
-template <typename _Scalar, int NX=Dynamic, int NY=Dynamic>
-struct DenseFunctor
-{
- typedef _Scalar Scalar;
- enum {
- InputsAtCompileTime = NX,
- ValuesAtCompileTime = NY
- };
- typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
- typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
- typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
- typedef ColPivHouseholderQR<JacobianType> QRSolver;
- const int m_inputs, m_values;
-
- DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
- DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
-
- int inputs() const { return m_inputs; }
- int values() const { return m_values; }
-
- //int operator()(const InputType &x, ValueType& fvec) { }
- // should be defined in derived classes
-
- //int df(const InputType &x, JacobianType& fjac) { }
- // should be defined in derived classes
-};
-
-template <typename _Scalar, typename _Index>
-struct SparseFunctor
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Matrix<Scalar,Dynamic,1> InputType;
- typedef Matrix<Scalar,Dynamic,1> ValueType;
- typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType;
- typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver;
- enum {
- InputsAtCompileTime = Dynamic,
- ValuesAtCompileTime = Dynamic
- };
-
- SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
-
- int inputs() const { return m_inputs; }
- int values() const { return m_values; }
-
- const int m_inputs, m_values;
- //int operator()(const InputType &x, ValueType& fvec) { }
- // to be defined in the functor
-
- //int df(const InputType &x, JacobianType& fjac) { }
- // to be defined in the functor if no automatic differentiation
-
-};
-namespace internal {
-template <typename QRSolver, typename VectorType>
-void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
- typename VectorType::Scalar m_delta, typename VectorType::Scalar &par,
- VectorType &x);
- }
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Performs non linear optimization over a non-linear function,
- * using a variant of the Levenberg Marquardt algorithm.
- *
- * Check wikipedia for more information.
- * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
- */
-template<typename _FunctorType>
-class LevenbergMarquardt : internal::no_assignment_operator
-{
- public:
- typedef _FunctorType FunctorType;
- typedef typename FunctorType::QRSolver QRSolver;
- typedef typename FunctorType::JacobianType JacobianType;
- typedef typename JacobianType::Scalar Scalar;
- typedef typename JacobianType::RealScalar RealScalar;
- typedef typename QRSolver::StorageIndex PermIndex;
- typedef Matrix<Scalar,Dynamic,1> FVectorType;
- typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
- public:
- LevenbergMarquardt(FunctorType& functor)
- : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0),
- m_isInitialized(false),m_info(InvalidInput)
- {
- resetParameters();
- m_useExternalScaling=false;
- }
-
- LevenbergMarquardtSpace::Status minimize(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
- LevenbergMarquardtSpace::Status lmder1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
- static LevenbergMarquardtSpace::Status lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- /** Sets the default parameters */
- void resetParameters()
- {
- using std::sqrt;
-
- m_factor = 100.;
- m_maxfev = 400;
- m_ftol = sqrt(NumTraits<RealScalar>::epsilon());
- m_xtol = sqrt(NumTraits<RealScalar>::epsilon());
- m_gtol = 0. ;
- m_epsfcn = 0. ;
- }
-
- /** Sets the tolerance for the norm of the solution vector*/
- void setXtol(RealScalar xtol) { m_xtol = xtol; }
-
- /** Sets the tolerance for the norm of the vector function*/
- void setFtol(RealScalar ftol) { m_ftol = ftol; }
-
- /** Sets the tolerance for the norm of the gradient of the error vector*/
- void setGtol(RealScalar gtol) { m_gtol = gtol; }
-
- /** Sets the step bound for the diagonal shift */
- void setFactor(RealScalar factor) { m_factor = factor; }
-
- /** Sets the error precision */
- void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; }
-
- /** Sets the maximum number of function evaluation */
- void setMaxfev(Index maxfev) {m_maxfev = maxfev; }
-
- /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
- void setExternalScaling(bool value) {m_useExternalScaling = value; }
-
- /** \returns the tolerance for the norm of the solution vector */
- RealScalar xtol() const {return m_xtol; }
-
- /** \returns the tolerance for the norm of the vector function */
- RealScalar ftol() const {return m_ftol; }
-
- /** \returns the tolerance for the norm of the gradient of the error vector */
- RealScalar gtol() const {return m_gtol; }
-
- /** \returns the step bound for the diagonal shift */
- RealScalar factor() const {return m_factor; }
-
- /** \returns the error precision */
- RealScalar epsilon() const {return m_epsfcn; }
-
- /** \returns the maximum number of function evaluation */
- Index maxfev() const {return m_maxfev; }
-
- /** \returns a reference to the diagonal of the jacobian */
- FVectorType& diag() {return m_diag; }
-
- /** \returns the number of iterations performed */
- Index iterations() { return m_iter; }
-
- /** \returns the number of functions evaluation */
- Index nfev() { return m_nfev; }
-
- /** \returns the number of jacobian evaluation */
- Index njev() { return m_njev; }
-
- /** \returns the norm of current vector function */
- RealScalar fnorm() {return m_fnorm; }
-
- /** \returns the norm of the gradient of the error */
- RealScalar gnorm() {return m_gnorm; }
-
- /** \returns the LevenbergMarquardt parameter */
- RealScalar lm_param(void) { return m_par; }
-
- /** \returns a reference to the current vector function
- */
- FVectorType& fvec() {return m_fvec; }
-
- /** \returns a reference to the matrix where the current Jacobian matrix is stored
- */
- JacobianType& jacobian() {return m_fjac; }
-
- /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix.
- * \sa jacobian()
- */
- JacobianType& matrixR() {return m_rfactor; }
-
- /** the permutation used in the QR factorization
- */
- PermutationType permutation() {return m_permutation; }
-
- /**
- * \brief Reports whether the minimization was successful
- * \returns \c Success if the minimization was succesful,
- * \c NumericalIssue if a numerical problem arises during the
- * minimization process, for exemple during the QR factorization
- * \c NoConvergence if the minimization did not converge after
- * the maximum number of function evaluation allowed
- * \c InvalidInput if the input matrix is invalid
- */
- ComputationInfo info() const
- {
-
- return m_info;
- }
- private:
- JacobianType m_fjac;
- JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac
- FunctorType &m_functor;
- FVectorType m_fvec, m_qtf, m_diag;
- Index n;
- Index m;
- Index m_nfev;
- Index m_njev;
- RealScalar m_fnorm; // Norm of the current vector function
- RealScalar m_gnorm; //Norm of the gradient of the error
- RealScalar m_factor; //
- Index m_maxfev; // Maximum number of function evaluation
- RealScalar m_ftol; //Tolerance in the norm of the vector function
- RealScalar m_xtol; //
- RealScalar m_gtol; //tolerance of the norm of the error gradient
- RealScalar m_epsfcn; //
- Index m_iter; // Number of iterations performed
- RealScalar m_delta;
- bool m_useExternalScaling;
- PermutationType m_permutation;
- FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors
- RealScalar m_par;
- bool m_isInitialized; // Check whether the minimization step has been called
- ComputationInfo m_info;
-};
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimize(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters) {
- m_isInitialized = true;
- return status;
- }
- do {
-// std::cout << " uv " << x.transpose() << "\n";
- status = minimizeOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- m_isInitialized = true;
- return status;
-}
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
-{
- n = x.size();
- m = m_functor.values();
-
- m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n);
- m_wa4.resize(m);
- m_fvec.resize(m);
- //FIXME Sparse Case : Allocate space for the jacobian
- m_fjac.resize(m, n);
-// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
- if (!m_useExternalScaling)
- m_diag.resize(n);
- eigen_assert( (!m_useExternalScaling || m_diag.size()==n) && "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
- m_qtf.resize(n);
-
- /* Function Body */
- m_nfev = 0;
- m_njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.){
- m_info = InvalidInput;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
-
- if (m_useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (m_diag[j] <= 0.)
- {
- m_info = InvalidInput;
- return LevenbergMarquardtSpace::ImproperInputParameters;
- }
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- m_nfev = 1;
- if ( m_functor(x, m_fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- m_fnorm = m_fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- m_par = 0.;
- m_iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::lmder1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = m_functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- m_ftol = tol;
- m_xtol = tol;
- m_maxfev = 100*(n+1);
-
- return minimize(x);
-}
-
-
-template<typename FunctorType>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType>::lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol
- )
-{
- Index n = x.size();
- Index m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- NumericalDiff<FunctorType> numDiff(functor);
- // embedded LevenbergMarquardt
- LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
- lm.setFtol(tol);
- lm.setXtol(tol);
- lm.setMaxfev(200*(n+1));
-
- LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
- if (nfev)
- * nfev = lm.nfev();
- return info;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LEVENBERGMARQUARDT_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
deleted file mode 100644
index e5ebbcf..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ /dev/null
@@ -1,442 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_EXPONENTIAL
-#define EIGEN_MATRIX_EXPONENTIAL
-
-#include "StemFunction.h"
-
-namespace Eigen {
-namespace internal {
-
-/** \brief Scaling operator.
- *
- * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
- */
-template <typename RealScalar>
-struct MatrixExponentialScalingOp
-{
- /** \brief Constructor.
- *
- * \param[in] squarings The integer \f$ s \f$ in this document.
- */
- MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
-
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const RealScalar operator() (const RealScalar& x) const
- {
- using std::ldexp;
- return ldexp(x, -m_squarings);
- }
-
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Scale a matrix coefficient.
- *
- * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
- */
- inline const ComplexScalar operator() (const ComplexScalar& x) const
- {
- using std::ldexp;
- return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
- }
-
- private:
- int m_squarings;
-};
-
-/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
- const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-
-}
-
-/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
- 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A6 * A2;
- const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- */
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
- 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
- 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
- MatrixType tmp = A6 * V;
- tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
- V.noalias() = A6 * tmp;
- V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-
-/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
- *
- * This function activates only if your long double is double-double or quadruple.
- */
-#if LDBL_MANT_DIG > 64
-template <typename MatA, typename MatU, typename MatV>
-void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
-{
- typedef typename MatA::PlainObject MatrixType;
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
- 100610229646136770560000.L, 15720348382208870400000.L,
- 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
- 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
- 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
- 46512.L, 306.L, 1.L};
- const MatrixType A2 = A * A;
- const MatrixType A4 = A2 * A2;
- const MatrixType A6 = A4 * A2;
- const MatrixType A8 = A4 * A4;
- V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
- MatrixType tmp = A8 * V;
- tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
- + b[1] * MatrixType::Identity(A.rows(), A.cols());
- U.noalias() = A * tmp;
- tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
- V.noalias() = tmp * A8;
- V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
- + b[0] * MatrixType::Identity(A.rows(), A.cols());
-}
-#endif
-
-template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
-struct matrix_exp_computeUV
-{
- /** \brief Compute Pad&eacute; approximant to the exponential.
- *
- * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
- * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
- * denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
- * are chosen such that the approximation error is no more than the round-off error.
- */
- static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, float>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 4.258730016922831e-001f) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.880152677804762e+000f) {
- matrix_exp_pade5(arg, U, V);
- } else {
- const float maxnorm = 3.925724783138660f;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
- matrix_exp_pade7(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, double>
-{
- typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
- using std::frexp;
- using std::pow;
- const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
- if (l1norm < 1.495585217958292e-002) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 2.539398330063230e-001) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 9.504178996162932e-001) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.097847961257068e+000) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const RealScalar maxnorm = 5.371920351148152;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
- matrix_exp_pade13(A, U, V);
- }
- }
-};
-
-template <typename MatrixType>
-struct matrix_exp_computeUV<MatrixType, long double>
-{
- template <typename ArgType>
- static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
- {
-#if LDBL_MANT_DIG == 53 // double precision
- matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
-
-#else
-
- using std::frexp;
- using std::pow;
- const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
- squarings = 0;
-
-#if LDBL_MANT_DIG <= 64 // extended precision
-
- if (l1norm < 4.1968497232266989671e-003L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 1.1848116734693823091e-001L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.5170388480686700274e-001L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 1.3759868875587845383e+000L) {
- matrix_exp_pade9(arg, U, V);
- } else {
- const long double maxnorm = 4.0246098906697353063L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade13(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 106 // double-double
-
- if (l1norm < 3.2787892205607026992947488108213e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 3.2579440895405400856599663723517L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#elif LDBL_MANT_DIG <= 112 // quadruple precison
-
- if (l1norm < 1.639394610288918690547467954466970e-005L) {
- matrix_exp_pade3(arg, U, V);
- } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
- matrix_exp_pade5(arg, U, V);
- } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
- matrix_exp_pade7(arg, U, V);
- } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
- matrix_exp_pade9(arg, U, V);
- } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
- matrix_exp_pade13(arg, U, V);
- } else {
- const long double maxnorm = 2.884233277829519311757165057717815L;
- frexp(l1norm / maxnorm, &squarings);
- if (squarings < 0) squarings = 0;
- MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
- matrix_exp_pade17(A, U, V);
- }
-
-#else
-
- // this case should be handled in compute()
- eigen_assert(false && "Bug in MatrixExponential");
-
-#endif
-#endif // LDBL_MANT_DIG
- }
-};
-
-template<typename T> struct is_exp_known_type : false_type {};
-template<> struct is_exp_known_type<float> : true_type {};
-template<> struct is_exp_known_type<double> : true_type {};
-#if LDBL_MANT_DIG <= 112
-template<> struct is_exp_known_type<long double> : true_type {};
-#endif
-
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
-{
- typedef typename ArgType::PlainObject MatrixType;
- MatrixType U, V;
- int squarings;
- matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
- MatrixType numer = U + V;
- MatrixType denom = -U + V;
- result = denom.partialPivLu().solve(numer);
- for (int i=0; i<squarings; i++)
- result *= result; // undo scaling by repeated squaring
-}
-
-
-/* Computes the matrix exponential
- *
- * \param arg argument of matrix exponential (should be plain object)
- * \param result variable in which result will be stored
- */
-template <typename ArgType, typename ResultType>
-void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
-{
- typedef typename ArgType::PlainObject MatrixType;
- typedef typename traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> ComplexScalar;
- result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
-}
-
-} // end namespace Eigen::internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix exponential of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix exponential.
- *
- * This class holds the argument to the matrix exponential until it is assigned or evaluated for
- * some other reason (so the argument should not be changed in the meantime). It is the return type
- * of MatrixBase::exp() and most of the time this is the only way it is used.
- */
-template<typename Derived> struct MatrixExponentialReturnValue
-: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::Index Index;
- public:
- /** \brief Constructor.
- *
- * \param src %Matrix (expression) forming the argument of the matrix exponential.
- */
- MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix exponential.
- *
- * \param result the matrix exponential of \p src in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
- internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::Scalar>());
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const typename internal::ref_selector<Derived>::type m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixExponentialReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
-{
- eigen_assert(rows() == cols());
- return MatrixExponentialReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_EXPONENTIAL
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
deleted file mode 100644
index 3df8239..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ /dev/null
@@ -1,580 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_FUNCTION_H
-#define EIGEN_MATRIX_FUNCTION_H
-
-#include "StemFunction.h"
-
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief Maximum distance allowed between eigenvalues to be considered "close". */
-static const float matrix_function_separation = 0.1f;
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixFunctionAtomic
- * \brief Helper class for computing matrix functions of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- */
-template <typename MatrixType>
-class MatrixFunctionAtomic
-{
- public:
-
- typedef typename MatrixType::Scalar Scalar;
- typedef typename stem_function<Scalar>::type StemFunction;
-
- /** \brief Constructor
- * \param[in] f matrix function to compute.
- */
- MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
-
- /** \brief Compute matrix function of atomic matrix
- * \param[in] A argument of matrix function, should be upper triangular and atomic
- * \returns f(A), the matrix function evaluated at the given matrix
- */
- MatrixType compute(const MatrixType& A);
-
- private:
- StemFunction* m_f;
-};
-
-template <typename MatrixType>
-typename NumTraits<typename MatrixType::Scalar>::Real matrix_function_compute_mu(const MatrixType& A)
-{
- typedef typename plain_col_type<MatrixType>::type VectorType;
- typename MatrixType::Index rows = A.rows();
- const MatrixType N = MatrixType::Identity(rows, rows) - A;
- VectorType e = VectorType::Ones(rows);
- N.template triangularView<Upper>().solveInPlace(e);
- return e.cwiseAbs().maxCoeff();
-}
-
-template <typename MatrixType>
-MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
-{
- // TODO: Use that A is upper triangular
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- Index rows = A.rows();
- Scalar avgEival = A.trace() / Scalar(RealScalar(rows));
- MatrixType Ashifted = A - avgEival * MatrixType::Identity(rows, rows);
- RealScalar mu = matrix_function_compute_mu(Ashifted);
- MatrixType F = m_f(avgEival, 0) * MatrixType::Identity(rows, rows);
- MatrixType P = Ashifted;
- MatrixType Fincr;
- for (Index s = 1; s < 1.1 * rows + 10; s++) { // upper limit is fairly arbitrary
- Fincr = m_f(avgEival, static_cast<int>(s)) * P;
- F += Fincr;
- P = Scalar(RealScalar(1.0/(s + 1))) * P * Ashifted;
-
- // test whether Taylor series converged
- const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
- const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
- if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
- RealScalar delta = 0;
- RealScalar rfactorial = 1;
- for (Index r = 0; r < rows; r++) {
- RealScalar mx = 0;
- for (Index i = 0; i < rows; i++)
- mx = (std::max)(mx, std::abs(m_f(Ashifted(i, i) + avgEival, static_cast<int>(s+r))));
- if (r != 0)
- rfactorial *= RealScalar(r);
- delta = (std::max)(delta, mx / rfactorial);
- }
- const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
- if (mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) // series converged
- break;
- }
- }
- return F;
-}
-
-/** \brief Find cluster in \p clusters containing some value
- * \param[in] key Value to find
- * \returns Iterator to cluster containing \p key, or \c clusters.end() if no cluster in \p m_clusters
- * contains \p key.
- */
-template <typename Index, typename ListOfClusters>
-typename ListOfClusters::iterator matrix_function_find_cluster(Index key, ListOfClusters& clusters)
-{
- typename std::list<Index>::iterator j;
- for (typename ListOfClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
- j = std::find(i->begin(), i->end(), key);
- if (j != i->end())
- return i;
- }
- return clusters.end();
-}
-
-/** \brief Partition eigenvalues in clusters of ei'vals close to each other
- *
- * \param[in] eivals Eigenvalues
- * \param[out] clusters Resulting partition of eigenvalues
- *
- * The partition satisfies the following two properties:
- * # Any eigenvalue in a certain cluster is at most matrix_function_separation() away from another eigenvalue
- * in the same cluster.
- * # The distance between two eigenvalues in different clusters is more than matrix_function_separation().
- * The implementation follows Algorithm 4.1 in the paper of Davies and Higham.
- */
-template <typename EivalsType, typename Cluster>
-void matrix_function_partition_eigenvalues(const EivalsType& eivals, std::list<Cluster>& clusters)
-{
- typedef typename EivalsType::Index Index;
- typedef typename EivalsType::RealScalar RealScalar;
- for (Index i=0; i<eivals.rows(); ++i) {
- // Find cluster containing i-th ei'val, adding a new cluster if necessary
- typename std::list<Cluster>::iterator qi = matrix_function_find_cluster(i, clusters);
- if (qi == clusters.end()) {
- Cluster l;
- l.push_back(i);
- clusters.push_back(l);
- qi = clusters.end();
- --qi;
- }
-
- // Look for other element to add to the set
- for (Index j=i+1; j<eivals.rows(); ++j) {
- if (abs(eivals(j) - eivals(i)) <= RealScalar(matrix_function_separation)
- && std::find(qi->begin(), qi->end(), j) == qi->end()) {
- typename std::list<Cluster>::iterator qj = matrix_function_find_cluster(j, clusters);
- if (qj == clusters.end()) {
- qi->push_back(j);
- } else {
- qi->insert(qi->end(), qj->begin(), qj->end());
- clusters.erase(qj);
- }
- }
- }
- }
-}
-
-/** \brief Compute size of each cluster given a partitioning */
-template <typename ListOfClusters, typename Index>
-void matrix_function_compute_cluster_size(const ListOfClusters& clusters, Matrix<Index, Dynamic, 1>& clusterSize)
-{
- const Index numClusters = static_cast<Index>(clusters.size());
- clusterSize.setZero(numClusters);
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- clusterSize[clusterIndex] = cluster->size();
- ++clusterIndex;
- }
-}
-
-/** \brief Compute start of each block using clusterSize */
-template <typename VectorType>
-void matrix_function_compute_block_start(const VectorType& clusterSize, VectorType& blockStart)
-{
- blockStart.resize(clusterSize.rows());
- blockStart(0) = 0;
- for (typename VectorType::Index i = 1; i < clusterSize.rows(); i++) {
- blockStart(i) = blockStart(i-1) + clusterSize(i-1);
- }
-}
-
-/** \brief Compute mapping of eigenvalue indices to cluster indices */
-template <typename EivalsType, typename ListOfClusters, typename VectorType>
-void matrix_function_compute_map(const EivalsType& eivals, const ListOfClusters& clusters, VectorType& eivalToCluster)
-{
- typedef typename EivalsType::Index Index;
- eivalToCluster.resize(eivals.rows());
- Index clusterIndex = 0;
- for (typename ListOfClusters::const_iterator cluster = clusters.begin(); cluster != clusters.end(); ++cluster) {
- for (Index i = 0; i < eivals.rows(); ++i) {
- if (std::find(cluster->begin(), cluster->end(), i) != cluster->end()) {
- eivalToCluster[i] = clusterIndex;
- }
- }
- ++clusterIndex;
- }
-}
-
-/** \brief Compute permutation which groups ei'vals in same cluster together */
-template <typename DynVectorType, typename VectorType>
-void matrix_function_compute_permutation(const DynVectorType& blockStart, const DynVectorType& eivalToCluster, VectorType& permutation)
-{
- typedef typename VectorType::Index Index;
- DynVectorType indexNextEntry = blockStart;
- permutation.resize(eivalToCluster.rows());
- for (Index i = 0; i < eivalToCluster.rows(); i++) {
- Index cluster = eivalToCluster[i];
- permutation[i] = indexNextEntry[cluster];
- ++indexNextEntry[cluster];
- }
-}
-
-/** \brief Permute Schur decomposition in U and T according to permutation */
-template <typename VectorType, typename MatrixType>
-void matrix_function_permute_schur(VectorType& permutation, MatrixType& U, MatrixType& T)
-{
- typedef typename VectorType::Index Index;
- for (Index i = 0; i < permutation.rows() - 1; i++) {
- Index j;
- for (j = i; j < permutation.rows(); j++) {
- if (permutation(j) == i) break;
- }
- eigen_assert(permutation(j) == i);
- for (Index k = j-1; k >= i; k--) {
- JacobiRotation<typename MatrixType::Scalar> rotation;
- rotation.makeGivens(T(k, k+1), T(k+1, k+1) - T(k, k));
- T.applyOnTheLeft(k, k+1, rotation.adjoint());
- T.applyOnTheRight(k, k+1, rotation);
- U.applyOnTheRight(k, k+1, rotation);
- std::swap(permutation.coeffRef(k), permutation.coeffRef(k+1));
- }
- }
-}
-
-/** \brief Compute block diagonal part of matrix function.
- *
- * This routine computes the matrix function applied to the block diagonal part of \p T (which should be
- * upper triangular), with the blocking given by \p blockStart and \p clusterSize. The matrix function of
- * each diagonal block is computed by \p atomic. The off-diagonal parts of \p fT are set to zero.
- */
-template <typename MatrixType, typename AtomicType, typename VectorType>
-void matrix_function_compute_block_atomic(const MatrixType& T, AtomicType& atomic, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- fT.setZero(T.rows(), T.cols());
- for (typename VectorType::Index i = 0; i < clusterSize.rows(); ++i) {
- fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i)));
- }
-}
-
-/** \brief Solve a triangular Sylvester equation AX + XB = C
- *
- * \param[in] A the matrix A; should be square and upper triangular
- * \param[in] B the matrix B; should be square and upper triangular
- * \param[in] C the matrix C; should have correct size.
- *
- * \returns the solution X.
- *
- * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. The (i,j)-th component of the Sylvester
- * equation is
- * \f[
- * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
- * \f]
- * This can be re-arranged to yield:
- * \f[
- * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
- * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
- * \f]
- * It is assumed that A and B are such that the numerator is never zero (otherwise the Sylvester equation
- * does not have a unique solution). In that case, these equations can be evaluated in the order
- * \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
- */
-template <typename MatrixType>
-MatrixType matrix_function_solve_triangular_sylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- eigen_assert(A.rows() == A.cols());
- eigen_assert(A.isUpperTriangular());
- eigen_assert(B.rows() == B.cols());
- eigen_assert(B.isUpperTriangular());
- eigen_assert(C.rows() == A.rows());
- eigen_assert(C.cols() == B.rows());
-
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
-
- Index m = A.rows();
- Index n = B.rows();
- MatrixType X(m, n);
-
- for (Index i = m - 1; i >= 0; --i) {
- for (Index j = 0; j < n; ++j) {
-
- // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
- Scalar AX;
- if (i == m - 1) {
- AX = 0;
- } else {
- Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
- AX = AXmatrix(0,0);
- }
-
- // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
- Scalar XB;
- if (j == 0) {
- XB = 0;
- } else {
- Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
- XB = XBmatrix(0,0);
- }
-
- X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
- }
- }
- return X;
-}
-
-/** \brief Compute part of matrix function above block diagonal.
- *
- * This routine completes the computation of \p fT, denoting a matrix function applied to the triangular
- * matrix \p T. It assumes that the block diagonal part of \p fT has already been computed. The part below
- * the diagonal is zero, because \p T is upper triangular.
- */
-template <typename MatrixType, typename VectorType>
-void matrix_function_compute_above_diagonal(const MatrixType& T, const VectorType& blockStart, const VectorType& clusterSize, MatrixType& fT)
-{
- typedef internal::traits<MatrixType> Traits;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = MatrixType::Options;
- typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- for (Index k = 1; k < clusterSize.rows(); k++) {
- for (Index i = 0; i < clusterSize.rows() - k; i++) {
- // compute (i, i+k) block
- DynMatrixType A = T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i));
- DynMatrixType B = -T.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- DynMatrixType C = fT.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))
- * T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- * fT.block(blockStart(i+k), blockStart(i+k), clusterSize(i+k), clusterSize(i+k));
- for (Index m = i + 1; m < i + k; m++) {
- C += fT.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * T.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- C -= T.block(blockStart(i), blockStart(m), clusterSize(i), clusterSize(m))
- * fT.block(blockStart(m), blockStart(i+k), clusterSize(m), clusterSize(i+k));
- }
- fT.block(blockStart(i), blockStart(i+k), clusterSize(i), clusterSize(i+k))
- = matrix_function_solve_triangular_sylvester(A, B, C);
- }
- }
-}
-
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix functions.
- * \tparam MatrixType type of the argument of the matrix function,
- * expected to be an instantiation of the Matrix class template.
- * \tparam AtomicType type for computing matrix function of atomic blocks.
- * \tparam IsComplex used internally to select correct specialization.
- *
- * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
- * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
- * computation of the matrix function on every block corresponding to these clusters to an object of type
- * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
- * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
- *
- * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_function_compute
-{
- /** \brief Compute the matrix function.
- *
- * \param[in] A argument of matrix function, should be a square matrix.
- * \param[in] atomic class for computing matrix function of atomic blocks.
- * \param[out] result the function \p f applied to \p A, as
- * specified in the constructor.
- *
- * See MatrixBase::matrixFunction() for details on how this computation
- * is implemented.
- */
- template <typename AtomicType, typename ResultType>
- static void run(const MatrixType& A, AtomicType& atomic, ResultType &result);
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for real matrices
- *
- * This converts the real matrix to a complex matrix, compute the matrix function of that matrix, and then
- * converts the result back to a real matrix.
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 0>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
- typedef typename Traits::Scalar Scalar;
- static const int Rows = Traits::RowsAtCompileTime, Cols = Traits::ColsAtCompileTime;
- static const int MaxRows = Traits::MaxRowsAtCompileTime, MaxCols = Traits::MaxColsAtCompileTime;
-
- typedef std::complex<Scalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Rows, Cols, 0, MaxRows, MaxCols> ComplexMatrix;
-
- ComplexMatrix CA = A.template cast<ComplexScalar>();
- ComplexMatrix Cresult;
- matrix_function_compute<ComplexMatrix>::run(CA, atomic, Cresult);
- result = Cresult.real();
- }
-};
-
-/** \internal \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for complex matrices
- */
-template <typename MatrixType>
-struct matrix_function_compute<MatrixType, 1>
-{
- template <typename MatA, typename AtomicType, typename ResultType>
- static void run(const MatA& A, AtomicType& atomic, ResultType &result)
- {
- typedef internal::traits<MatrixType> Traits;
-
- // compute Schur decomposition of A
- const ComplexSchur<MatrixType> schurOfA(A);
- MatrixType T = schurOfA.matrixT();
- MatrixType U = schurOfA.matrixU();
-
- // partition eigenvalues into clusters of ei'vals "close" to each other
- std::list<std::list<Index> > clusters;
- matrix_function_partition_eigenvalues(T.diagonal(), clusters);
-
- // compute size of each cluster
- Matrix<Index, Dynamic, 1> clusterSize;
- matrix_function_compute_cluster_size(clusters, clusterSize);
-
- // blockStart[i] is row index at which block corresponding to i-th cluster starts
- Matrix<Index, Dynamic, 1> blockStart;
- matrix_function_compute_block_start(clusterSize, blockStart);
-
- // compute map so that eivalToCluster[i] = j means that i-th ei'val is in j-th cluster
- Matrix<Index, Dynamic, 1> eivalToCluster;
- matrix_function_compute_map(T.diagonal(), clusters, eivalToCluster);
-
- // compute permutation which groups ei'vals in same cluster together
- Matrix<Index, Traits::RowsAtCompileTime, 1> permutation;
- matrix_function_compute_permutation(blockStart, eivalToCluster, permutation);
-
- // permute Schur decomposition
- matrix_function_permute_schur(permutation, U, T);
-
- // compute result
- MatrixType fT; // matrix function applied to T
- matrix_function_compute_block_atomic(T, atomic, blockStart, clusterSize, fT);
- matrix_function_compute_above_diagonal(T, blockStart, clusterSize, fT);
- result = U * (fT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix function of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is assigned or evaluated for some other
- * reason (so the argument should not be changed in the meantime). It is the return type of
- * matrixBase::matrixFunction() and related functions and most of the time this is the only way it is used.
- */
-template<typename Derived> class MatrixFunctionReturnValue
-: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
-{
- public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
- typedef typename internal::stem_function<Scalar>::type StemFunction;
-
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix function.
- * \param[in] f Stem function for matrix function under consideration.
- */
- MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
-
- /** \brief Compute the matrix function.
- *
- * \param[out] result \p f applied to \p A, where \p f and \p A are as in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
- typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
- typedef internal::traits<NestedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
-
- typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
- AtomicType atomic(m_f);
-
- internal::matrix_function_compute<typename NestedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const DerivedNested m_A;
- StemFunction *m_f;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixFunctionReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-
-/********** MatrixBase methods **********/
-
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
-{
- eigen_assert(rows() == cols());
- return MatrixFunctionReturnValue<Derived>(derived(), f);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sin<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cos<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_sinh<ComplexScalar>);
-}
-
-template <typename Derived>
-const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
-{
- eigen_assert(rows() == cols());
- typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
- return MatrixFunctionReturnValue<Derived>(derived(), internal::stem_function_cosh<ComplexScalar>);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
deleted file mode 100644
index cf5fffa..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ /dev/null
@@ -1,373 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_LOGARITHM
-#define EIGEN_MATRIX_LOGARITHM
-
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-struct matrix_log_min_pade_degree
-{
- static const int value = 3;
-};
-
-template <typename Scalar>
-struct matrix_log_max_pade_degree
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
- std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
- std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
- std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
- 11; // quadruple precision
-};
-
-/** \brief Compute logarithm of 2x2 triangular matrix. */
-template <typename MatrixType>
-void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- using std::abs;
- using std::ceil;
- using std::imag;
- using std::log;
-
- Scalar logA00 = log(A(0,0));
- Scalar logA11 = log(A(1,1));
-
- result(0,0) = logA00;
- result(1,0) = Scalar(0);
- result(1,1) = logA11;
-
- Scalar y = A(1,1) - A(0,0);
- if (y==Scalar(0))
- {
- result(0,1) = A(0,1) / A(0,0);
- }
- else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
- {
- result(0,1) = A(0,1) * (logA11 - logA00) / y;
- }
- else
- {
- // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
- int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
- result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
- }
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
-inline int matrix_log_get_pade_degree(float normTminusI)
-{
- const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
- 5.3149729967117310e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
-inline int matrix_log_get_pade_degree(double normTminusI)
-{
- const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
- 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
- const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
-inline int matrix_log_get_pade_degree(long double normTminusI)
-{
-#if LDBL_MANT_DIG == 53 // double precision
- const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
- 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
-#elif LDBL_MANT_DIG <= 64 // extended precision
- const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
- 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
- 2.32777776523703892094e-1L };
-#elif LDBL_MANT_DIG <= 106 // double-double
- const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
- 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
- 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
- 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
- 1.05026503471351080481093652651105e-1L };
-#else // quadruple precision
- const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
- 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
- 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
- 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
- 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
-#endif
- const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
- const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
- int degree = minPadeDegree;
- for (; degree <= maxPadeDegree; ++degree)
- if (normTminusI <= maxNormForPade[degree - minPadeDegree])
- break;
- return degree;
-}
-
-/* \brief Compute Pade approximation to matrix logarithm */
-template <typename MatrixType>
-void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
-{
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- const int minPadeDegree = 3;
- const int maxPadeDegree = 11;
- assert(degree >= minPadeDegree && degree <= maxPadeDegree);
-
- const RealScalar nodes[][maxPadeDegree] = {
- { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
- 0.8872983346207416885179265399782400L },
- { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
- 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
- { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
- 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
- 0.9530899229693319963988134391496965L },
- { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
- 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
- 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
- { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
- 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
- 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
- 0.9745539561713792622630948420239256L },
- { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
- 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
- 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
- 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
- { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
- 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
- 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
- 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
- 0.9840801197538130449177881014518364L },
- { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
- 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
- 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
- 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
- 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
- { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
- 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
- 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
- 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
- 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
- 0.9891143290730284964019690005614287L } };
-
- const RealScalar weights[][maxPadeDegree] = {
- { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
- 0.2777777777777777777777777777777778L },
- { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
- 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
- { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
- 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
- 0.1184634425280945437571320203599587L },
- { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
- 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
- 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
- { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
- 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
- 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
- 0.0647424830844348466353057163395410L },
- { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
- 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
- 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
- 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
- { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
- 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
- 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
- 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
- 0.0406371941807872059859460790552618L },
- { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
- 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
- 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
- 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
- 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
- { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
- 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
- 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
- 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
- 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
- 0.0278342835580868332413768602212743L } };
-
- MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
- result.setZero(T.rows(), T.rows());
- for (int k = 0; k < degree; ++k) {
- RealScalar weight = weights[degree-minPadeDegree][k];
- RealScalar node = nodes[degree-minPadeDegree][k];
- result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
- .template triangularView<Upper>().solve(TminusI);
- }
-}
-
-/** \brief Compute logarithm of triangular matrices with size > 2.
- * \details This uses a inverse scale-and-square algorithm. */
-template <typename MatrixType>
-void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- using std::pow;
-
- int numberOfSquareRoots = 0;
- int numberOfExtraSquareRoots = 0;
- int degree;
- MatrixType T = A, sqrtT;
-
- int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
- const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision
- maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision
- maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
- maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
- 1.1880960220216759245467951592883642e-1L; // quadruple precision
-
- while (true) {
- RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
- if (normTminusI < maxNormForPade) {
- degree = matrix_log_get_pade_degree(normTminusI);
- int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
- if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
- break;
- ++numberOfExtraSquareRoots;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
-
- matrix_log_compute_pade(result, T, degree);
- result *= pow(RealScalar(2), numberOfSquareRoots);
-}
-
-/** \ingroup MatrixFunctions_Module
- * \class MatrixLogarithmAtomic
- * \brief Helper class for computing matrix logarithm of atomic matrices.
- *
- * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
- *
- * \sa class MatrixFunctionAtomic, MatrixBase::log()
- */
-template <typename MatrixType>
-class MatrixLogarithmAtomic
-{
-public:
- /** \brief Compute matrix logarithm of atomic matrix
- * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
- * \returns The logarithm of \p A.
- */
- MatrixType compute(const MatrixType& A);
-};
-
-template <typename MatrixType>
-MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
-{
- using std::log;
- MatrixType result(A.rows(), A.rows());
- if (A.rows() == 1)
- result(0,0) = log(A(0,0));
- else if (A.rows() == 2)
- matrix_log_compute_2x2(A, result);
- else
- matrix_log_compute_big(A, result);
- return result;
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix logarithm of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix function.
- *
- * This class holds the argument to the matrix function until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::log() and most of the time this is the only way it
- * is used.
- */
-template<typename Derived> class MatrixLogarithmReturnValue
-: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
-{
-public:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
-protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
-public:
-
- /** \brief Constructor.
- *
- * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
- */
- explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
-
- /** \brief Compute the matrix logarithm.
- *
- * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- typedef internal::traits<DerivedEvalTypeClean> Traits;
- static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
- static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
- typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
- AtomicType atomic;
-
- internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
- }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
-private:
- const DerivedNested m_A;
-};
-
-namespace internal {
- template<typename Derived>
- struct traits<MatrixLogarithmReturnValue<Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
-}
-
-
-/********** MatrixBase method **********/
-
-
-template <typename Derived>
-const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
-{
- eigen_assert(rows() == cols());
- return MatrixLogarithmReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_LOGARITHM
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
deleted file mode 100644
index a3273da..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ /dev/null
@@ -1,709 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_POWER
-#define EIGEN_MATRIX_POWER
-
-namespace Eigen {
-
-template<typename MatrixType> class MatrixPower;
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix.
- *
- * \tparam MatrixType type of the base, a matrix.
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixPower::operator() and related functions and most of the
- * time this is the only way it is used.
- */
-/* TODO This class is only used by MatrixPower, so it should be nested
- * into MatrixPower, like MatrixPower::ReturnValue. However, my
- * compiler complained about unused template parameter in the
- * following declaration in namespace internal.
- *
- * template<typename MatrixType>
- * struct traits<MatrixPower<MatrixType>::ReturnValue>;
- */
-template<typename MatrixType>
-class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
-{
- public:
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] pow %MatrixPower storing the base.
- * \param[in] p scalar, the exponent of the matrix power.
- */
- MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { m_pow.compute(result, m_p); }
-
- Index rows() const { return m_pow.rows(); }
- Index cols() const { return m_pow.cols(); }
-
- private:
- MatrixPower<MatrixType>& m_pow;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing triangular real/complex matrices
- * raised to a power in the interval \f$ (-1, 1) \f$.
- *
- * \note Currently this class is only used by MatrixPower. One may
- * insist that this be nested into MatrixPower. This class is here to
- * faciliate future development of triangular matrix functions.
- */
-template<typename MatrixType>
-class MatrixPowerAtomic : internal::noncopyable
-{
- private:
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef std::complex<RealScalar> ComplexScalar;
- typedef typename MatrixType::Index Index;
- typedef Block<MatrixType,Dynamic,Dynamic> ResultType;
-
- const MatrixType& m_A;
- RealScalar m_p;
-
- void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
- void compute2x2(ResultType& res, RealScalar p) const;
- void computeBig(ResultType& res) const;
- static int getPadeDegree(float normIminusT);
- static int getPadeDegree(double normIminusT);
- static int getPadeDegree(long double normIminusT);
- static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
- static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] T the base of the matrix power.
- * \param[in] p the exponent of the matrix power, should be in
- * \f$ (-1, 1) \f$.
- *
- * The class stores a reference to T, so it should not be changed
- * (or destroyed) before evaluation. Only the upper triangular
- * part of T is read.
- */
- MatrixPowerAtomic(const MatrixType& T, RealScalar p);
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] res \f$ A^p \f$ where A and p are specified in the
- * constructor.
- */
- void compute(ResultType& res) const;
-};
-
-template<typename MatrixType>
-MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
- m_A(T), m_p(p)
-{
- eigen_assert(T.rows() == T.cols());
- eigen_assert(p > -1 && p < 1);
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
-{
- using std::pow;
- switch (m_A.rows()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A(0,0), m_p);
- break;
- case 2:
- compute2x2(res, m_p);
- break;
- default:
- computeBig(res);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
-{
- int i = 2*degree;
- res = (m_p-degree) / (2*i-2) * IminusT;
-
- for (--i; i; --i) {
- res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
- .solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
- }
- res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
-}
-
-// This function assumes that res has the correct size (see bug 614)
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
-{
- using std::abs;
- using std::pow;
- res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
-
- for (Index i=1; i < m_A.cols(); ++i) {
- res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
- if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
- res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
- else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
- res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
- else
- res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
- res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
- }
-}
-
-template<typename MatrixType>
-void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
-{
- using std::ldexp;
- const int digits = std::numeric_limits<RealScalar>::digits;
- const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1L // single precision
- : digits <= 53? 2.789358995219730e-1L // double precision
- : digits <= 64? 2.4471944416607995472e-1L // extended precision
- : digits <= 106? 1.1016843812851143391275867258512e-1L // double-double
- : 9.134603732914548552537150753385375e-2L; // quadruple precision
- MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
- RealScalar normIminusT;
- int degree, degree2, numberOfSquareRoots = 0;
- bool hasExtraSquareRoot = false;
-
- for (Index i=0; i < m_A.cols(); ++i)
- eigen_assert(m_A(i,i) != RealScalar(0));
-
- while (true) {
- IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
- normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
- if (normIminusT < maxNormForPade) {
- degree = getPadeDegree(normIminusT);
- degree2 = getPadeDegree(normIminusT/2);
- if (degree - degree2 <= 1 || hasExtraSquareRoot)
- break;
- hasExtraSquareRoot = true;
- }
- matrix_sqrt_triangular(T, sqrtT);
- T = sqrtT.template triangularView<Upper>();
- ++numberOfSquareRoots;
- }
- computePade(degree, IminusT, res);
-
- for (; numberOfSquareRoots; --numberOfSquareRoots) {
- compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
- res = res.template triangularView<Upper>() * res;
- }
- compute2x2(res, m_p);
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
-{
- const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
- int degree = 3;
- for (; degree <= 4; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
-{
- const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
- 1.999045567181744e-1, 2.789358995219730e-1 };
- int degree = 3;
- for (; degree <= 7; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
-{
-#if LDBL_MANT_DIG == 53
- const int maxPadeDegree = 7;
- const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
- 1.999045567181744e-1L, 2.789358995219730e-1L };
-#elif LDBL_MANT_DIG <= 64
- const int maxPadeDegree = 8;
- const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
- 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
-#elif LDBL_MANT_DIG <= 106
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
- 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
- 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
- 1.1016843812851143391275867258512e-1L };
-#else
- const int maxPadeDegree = 10;
- const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
- 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
- 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
- 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
- 9.134603732914548552537150753385375e-2L };
-#endif
- int degree = 3;
- for (; degree <= maxPadeDegree; ++degree)
- if (normIminusT <= maxNormForPade[degree - 3])
- break;
- return degree;
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
-{
- using std::ceil;
- using std::exp;
- using std::log;
- using std::sinh;
-
- ComplexScalar logCurr = log(curr);
- ComplexScalar logPrev = log(prev);
- int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
- ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, EIGEN_PI*unwindingNumber);
- return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
-}
-
-template<typename MatrixType>
-inline typename MatrixPowerAtomic<MatrixType>::RealScalar
-MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
-{
- using std::exp;
- using std::log;
- using std::sinh;
-
- RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2);
- return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
-}
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Class for computing matrix powers.
- *
- * \tparam MatrixType type of the base, expected to be an instantiation
- * of the Matrix class template.
- *
- * This class is capable of computing real/complex matrices raised to
- * an arbitrary real power. Meanwhile, it saves the result of Schur
- * decomposition if an non-integral power has even been calculated.
- * Therefore, if you want to compute multiple (>= 2) matrix powers
- * for the same matrix, using the class directly is more efficient than
- * calling MatrixBase::pow().
- *
- * Example:
- * \include MatrixPower_optimal.cpp
- * Output: \verbinclude MatrixPower_optimal.out
- */
-template<typename MatrixType>
-class MatrixPower : internal::noncopyable
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
-
- public:
- /**
- * \brief Constructor.
- *
- * \param[in] A the base of the matrix power.
- *
- * The class stores a reference to A, so it should not be changed
- * (or destroyed) before evaluation.
- */
- explicit MatrixPower(const MatrixType& A) :
- m_A(A),
- m_conditionNumber(0),
- m_rank(A.cols()),
- m_nulls(0)
- { eigen_assert(A.rows() == A.cols()); }
-
- /**
- * \brief Returns the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \return The expression \f$ A^p \f$, where A is specified in the
- * constructor.
- */
- const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
- { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[in] p exponent, a real scalar.
- * \param[out] res \f$ A^p \f$ where A is specified in the
- * constructor.
- */
- template<typename ResultType>
- void compute(ResultType& res, RealScalar p);
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- typedef std::complex<RealScalar> ComplexScalar;
- typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0,
- MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;
-
- /** \brief Reference to the base of matrix power. */
- typename MatrixType::Nested m_A;
-
- /** \brief Temporary storage. */
- MatrixType m_tmp;
-
- /** \brief Store the result of Schur decomposition. */
- ComplexMatrix m_T, m_U;
-
- /** \brief Store fractional power of m_T. */
- ComplexMatrix m_fT;
-
- /**
- * \brief Condition number of m_A.
- *
- * It is initialized as 0 to avoid performing unnecessary Schur
- * decomposition, which is the bottleneck.
- */
- RealScalar m_conditionNumber;
-
- /** \brief Rank of m_A. */
- Index m_rank;
-
- /** \brief Rank deficiency of m_A. */
- Index m_nulls;
-
- /**
- * \brief Split p into integral part and fractional part.
- *
- * \param[in] p The exponent.
- * \param[out] p The fractional part ranging in \f$ (-1, 1) \f$.
- * \param[out] intpart The integral part.
- *
- * Only if the fractional part is nonzero, it calls initialize().
- */
- void split(RealScalar& p, RealScalar& intpart);
-
- /** \brief Perform Schur decomposition for fractional power. */
- void initialize();
-
- template<typename ResultType>
- void computeIntPower(ResultType& res, RealScalar p);
-
- template<typename ResultType>
- void computeFracPower(ResultType& res, RealScalar p);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-
- template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
- static void revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U);
-};
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
-{
- using std::pow;
- switch (cols()) {
- case 0:
- break;
- case 1:
- res(0,0) = pow(m_A.coeff(0,0), p);
- break;
- default:
- RealScalar intpart;
- split(p, intpart);
-
- res = MatrixType::Identity(rows(), cols());
- computeIntPower(res, intpart);
- if (p) computeFracPower(res, p);
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
-{
- using std::floor;
- using std::pow;
-
- intpart = floor(p);
- p -= intpart;
-
- // Perform Schur decomposition if it is not yet performed and the power is
- // not an integer.
- if (!m_conditionNumber && p)
- initialize();
-
- // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
- if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
- --p;
- ++intpart;
- }
-}
-
-template<typename MatrixType>
-void MatrixPower<MatrixType>::initialize()
-{
- const ComplexSchur<MatrixType> schurOfA(m_A);
- JacobiRotation<ComplexScalar> rot;
- ComplexScalar eigenvalue;
-
- m_fT.resizeLike(m_A);
- m_T = schurOfA.matrixT();
- m_U = schurOfA.matrixU();
- m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();
-
- // Move zero eigenvalues to the bottom right corner.
- for (Index i = cols()-1; i>=0; --i) {
- if (m_rank <= 2)
- return;
- if (m_T.coeff(i,i) == RealScalar(0)) {
- for (Index j=i+1; j < m_rank; ++j) {
- eigenvalue = m_T.coeff(j,j);
- rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
- m_T.applyOnTheRight(j-1, j, rot);
- m_T.applyOnTheLeft(j-1, j, rot.adjoint());
- m_T.coeffRef(j-1,j-1) = eigenvalue;
- m_T.coeffRef(j,j) = RealScalar(0);
- m_U.applyOnTheRight(j-1, j, rot);
- }
- --m_rank;
- }
- }
-
- m_nulls = rows() - m_rank;
- if (m_nulls) {
- eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
- && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
- m_fT.bottomRows(m_nulls).fill(RealScalar(0));
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
-{
- using std::abs;
- using std::fmod;
- RealScalar pp = abs(p);
-
- if (p<0)
- m_tmp = m_A.inverse();
- else
- m_tmp = m_A;
-
- while (true) {
- if (fmod(pp, 2) >= 1)
- res = m_tmp * res;
- pp /= 2;
- if (pp < 1)
- break;
- m_tmp *= m_tmp;
- }
-}
-
-template<typename MatrixType>
-template<typename ResultType>
-void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
-{
- Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
- eigen_assert(m_conditionNumber);
- eigen_assert(m_rank + m_nulls == rows());
-
- MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
- if (m_nulls) {
- m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
- .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
- }
- revertSchur(m_tmp, m_fT, m_U);
- res = m_tmp * res;
-}
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
-
-template<typename MatrixType>
-template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-inline void MatrixPower<MatrixType>::revertSchur(
- Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
- const ComplexMatrix& T,
- const ComplexMatrix& U)
-{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename Derived::RealScalar RealScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p real scalar, the exponent of the matrix power.
- */
- MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const RealScalar m_p;
-};
-
-/**
- * \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix power of some matrix (expression).
- *
- * \tparam Derived type of the base, a matrix (expression).
- *
- * This class holds the arguments to the matrix power until it is
- * assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::pow() and related functions and most of the
- * time this is the only way it is used.
- */
-template<typename Derived>
-class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
-{
- public:
- typedef typename Derived::PlainObject PlainObject;
- typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
- typedef typename Derived::Index Index;
-
- /**
- * \brief Constructor.
- *
- * \param[in] A %Matrix (expression), the base of the matrix power.
- * \param[in] p complex scalar, the exponent of the matrix power.
- */
- MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
- { }
-
- /**
- * \brief Compute the matrix power.
- *
- * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
- * \exp(p \log(A)) \f$.
- *
- * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
- * constructor.
- */
- template<typename ResultType>
- inline void evalTo(ResultType& result) const
- { result = (m_p * m_A.log()).exp(); }
-
- Index rows() const { return m_A.rows(); }
- Index cols() const { return m_A.cols(); }
-
- private:
- const Derived& m_A;
- const ComplexScalar m_p;
-};
-
-namespace internal {
-
-template<typename MatrixPowerType>
-struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
-{ typedef typename MatrixPowerType::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-template<typename Derived>
-struct traits< MatrixComplexPowerReturnValue<Derived> >
-{ typedef typename Derived::PlainObject ReturnType; };
-
-}
-
-template<typename Derived>
-const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
-{ return MatrixPowerReturnValue<Derived>(derived(), p); }
-
-template<typename Derived>
-const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
-{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }
-
-} // namespace Eigen
-
-#endif // EIGEN_MATRIX_POWER
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
deleted file mode 100644
index 2e5abda..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ /dev/null
@@ -1,366 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MATRIX_SQUARE_ROOT
-#define EIGEN_MATRIX_SQUARE_ROOT
-
-namespace Eigen {
-
-namespace internal {
-
-// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
-// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
-{
- // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
- // in EigenSolver. If we expose it, we could call it directly from here.
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
- EigenSolver<Matrix<Scalar,2,2> > es(block);
- sqrtT.template block<2,2>(i,i)
- = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
-}
-
-// pre: block structure of T is such that (i,j) is a 1x1 block,
-// all blocks of sqrtT to left of and below (i,j) are correct
-// post: sqrtT(i,j) has the correct value
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
- sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
- if (j-i > 1)
- rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
- Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(j,j).transpose();
- sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
- if (j-i > 2)
- rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
- Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
- A += sqrtT.template block<2,2>(i,i);
- sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
-}
-
-// solves the equation A X + X B = C where all matrices are 2-by-2
-template <typename MatrixType>
-void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
- coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
- coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
- coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
- coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
- coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
- coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
- coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
- coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
- coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
- coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
- coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
- coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
-
- Matrix<Scalar,4,1> rhs;
- rhs.coeffRef(0) = C.coeff(0,0);
- rhs.coeffRef(1) = C.coeff(0,1);
- rhs.coeffRef(2) = C.coeff(1,0);
- rhs.coeffRef(3) = C.coeff(1,1);
-
- Matrix<Scalar,4,1> result;
- result = coeffMatrix.fullPivLu().solve(rhs);
-
- X.coeffRef(0,0) = result.coeff(0);
- X.coeffRef(0,1) = result.coeff(1);
- X.coeffRef(1,0) = result.coeff(2);
- X.coeffRef(1,1) = result.coeff(3);
-}
-
-// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
-{
- typedef typename traits<MatrixType>::Scalar Scalar;
- Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
- Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
- Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
- if (j-i > 2)
- C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
- Matrix<Scalar,2,2> X;
- matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
- sqrtT.template block<2,2>(i,j) = X;
-}
-
-// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
-// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- using std::sqrt;
- const Index size = T.rows();
- for (Index i = 0; i < size; i++) {
- if (i == size - 1 || T.coeff(i+1, i) == 0) {
- eigen_assert(T(i,i) >= 0);
- sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
- }
- else {
- matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
- ++i;
- }
- }
-}
-
-// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
-// post: sqrtT is the square root of T.
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
-{
- const Index size = T.rows();
- for (Index j = 1; j < size; j++) {
- if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
- continue;
- for (Index i = j-1; i >= 0; i--) {
- if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
- continue;
- bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
- bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
- if (iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
- else if (iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
- else if (!iBlockIs2x2 && !jBlockIs2x2)
- matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
- }
- }
-}
-
-} // end of namespace internal
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of quasi-triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper Hessenberg part of \p arg.
- *
- * This function computes the square root of the upper quasi-triangular matrix stored in the upper
- * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
- * not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
-{
- eigen_assert(arg.rows() == arg.cols());
- result.resize(arg.rows(), arg.cols());
- internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
- internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
-}
-
-
-/** \ingroup MatrixFunctions_Module
- * \brief Compute matrix square root of triangular matrix.
- *
- * \tparam MatrixType type of \p arg, the argument of matrix square root,
- * expected to be an instantiation of the Matrix class template.
- * \tparam ResultType type of \p result, where result is to be stored.
- * \param[in] arg argument of matrix square root.
- * \param[out] result matrix square root of upper triangular part of \p arg.
- *
- * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
- * touched. See MatrixBase::sqrt() for details on how this computation is implemented.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
- */
-template <typename MatrixType, typename ResultType>
-void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
-{
- using std::sqrt;
- typedef typename MatrixType::Scalar Scalar;
-
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute square root of arg and store it in upper triangular part of result
- // This uses that the square root of triangular matrices can be computed directly.
- result.resize(arg.rows(), arg.cols());
- for (Index i = 0; i < arg.rows(); i++) {
- result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
- }
- for (Index j = 1; j < arg.cols(); j++) {
- for (Index i = j-1; i >= 0; i--) {
- // if i = j-1, then segment has length 0 so tmp = 0
- Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
- // denominator may be zero if original matrix is singular
- result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
- }
- }
-}
-
-
-namespace internal {
-
-/** \ingroup MatrixFunctions_Module
- * \brief Helper struct for computing matrix square roots of general matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
- * expected to be an instantiation of the Matrix class template.
- *
- * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
- */
-template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-struct matrix_sqrt_compute
-{
- /** \brief Compute the matrix square root
- *
- * \param[in] arg matrix whose square root is to be computed.
- * \param[out] result square root of \p arg.
- *
- * See MatrixBase::sqrt() for details on how this computation is implemented.
- */
- template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
-};
-
-
-// ********** Partial specialization for real matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 0>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const RealSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
- matrix_sqrt_quasi_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * sqrtT * U.adjoint();
- }
-};
-
-
-// ********** Partial specialization for complex matrices **********
-
-template <typename MatrixType>
-struct matrix_sqrt_compute<MatrixType, 1>
-{
- template <typename ResultType>
- static void run(const MatrixType &arg, ResultType &result)
- {
- eigen_assert(arg.rows() == arg.cols());
-
- // Compute Schur decomposition of arg
- const ComplexSchur<MatrixType> schurOfA(arg);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT;
- matrix_sqrt_triangular(T, sqrtT);
-
- // Compute square root of arg
- result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
- }
-};
-
-} // end namespace internal
-
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Proxy for the matrix square root of some matrix (expression).
- *
- * \tparam Derived Type of the argument to the matrix square root.
- *
- * This class holds the argument to the matrix square root until it
- * is assigned or evaluated for some other reason (so the argument
- * should not be changed in the meantime). It is the return type of
- * MatrixBase::sqrt() and most of the time this is the only way it is
- * used.
- */
-template<typename Derived> class MatrixSquareRootReturnValue
-: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
-{
- protected:
- typedef typename internal::ref_selector<Derived>::type DerivedNested;
-
- public:
- /** \brief Constructor.
- *
- * \param[in] src %Matrix (expression) forming the argument of the
- * matrix square root.
- */
- explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
-
- /** \brief Compute the matrix square root.
- *
- * \param[out] result the matrix square root of \p src in the
- * constructor.
- */
- template <typename ResultType>
- inline void evalTo(ResultType& result) const
- {
- typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
- typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
- DerivedEvalType tmp(m_src);
- internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
- }
-
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
-
- protected:
- const DerivedNested m_src;
-};
-
-namespace internal {
-template<typename Derived>
-struct traits<MatrixSquareRootReturnValue<Derived> >
-{
- typedef typename Derived::PlainObject ReturnType;
-};
-}
-
-template <typename Derived>
-const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
-{
- eigen_assert(rows() == cols());
- return MatrixSquareRootReturnValue<Derived>(derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MATRIX_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
deleted file mode 100644
index 7604df9..0000000
--- a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
+++ /dev/null
@@ -1,117 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_STEM_FUNCTION
-#define EIGEN_STEM_FUNCTION
-
-namespace Eigen {
-
-namespace internal {
-
-/** \brief The exponential function (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_exp(Scalar x, int)
-{
- using std::exp;
- return exp(x);
-}
-
-/** \brief Cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cos(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::cos(x);
- break;
- case 1:
- res = -std::sin(x);
- break;
- case 2:
- res = -std::cos(x);
- break;
- case 3:
- res = std::sin(x);
- break;
- }
- return res;
-}
-
-/** \brief Sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sin(Scalar x, int n)
-{
- using std::cos;
- using std::sin;
- Scalar res;
-
- switch (n % 4) {
- case 0:
- res = std::sin(x);
- break;
- case 1:
- res = std::cos(x);
- break;
- case 2:
- res = -std::sin(x);
- break;
- case 3:
- res = -std::cos(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic cosine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_cosh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::cosh(x);
- break;
- case 1:
- res = std::sinh(x);
- break;
- }
- return res;
-}
-
-/** \brief Hyperbolic sine (and its derivatives). */
-template <typename Scalar>
-Scalar stem_function_sinh(Scalar x, int n)
-{
- using std::cosh;
- using std::sinh;
- Scalar res;
-
- switch (n % 2) {
- case 0:
- res = std::sinh(x);
- break;
- case 1:
- res = std::cosh(x);
- break;
- }
- return res;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_STEM_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h b/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
deleted file mode 100644
index 63cb28d..0000000
--- a/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
+++ /dev/null
@@ -1,95 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
-#define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal \returns the arcsin of \a a (coeff-wise) */
-template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); }
-
-#ifdef EIGEN_VECTORIZE_SSE
-
-template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x)
-{
- _EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
- _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
- _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
-
- _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
-
- _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
- _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5);
-
- _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
- _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
-
- Packet4f a = pabs(x);//got the absolute value
-
- Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit
-
- Packet4f z1,z2;//will need them during computation
-
-
-//will compute the two branches for asin
-//so first compare with half
-
- Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take
-//both will be taken, and finally results will be merged
-//the branch for values >0.5
-
- {
-//the core series expansion
- z1=pmadd(p4f_minus_half,a,p4f_half);
- Packet4f x1=psqrt(z1);
- Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2);
- Packet4f s2=pmadd(s1, z1, p4f_asin3);
- Packet4f s3=pmadd(s2,z1, p4f_asin4);
- Packet4f s4=pmadd(s3,z1, p4f_asin5);
- Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd
- z1=pmadd(temp,x1,x1);
- z1=padd(z1,z1);
- z1=psub(p4f_pi_over_2,z1);
- }
-
- {
-//the core series expansion
- Packet4f x2=a;
- z2=pmul(x2,x2);
- Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2);
- Packet4f s2=pmadd(s1, z2, p4f_asin3);
- Packet4f s3=pmadd(s2,z2, p4f_asin4);
- Packet4f s4=pmadd(s3,z2, p4f_asin5);
- Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd
- z2=pmadd(temp,x2,x2);
- }
-
-/* select the correct result from the two branch evaluations */
- z1 = _mm_and_ps(branch_mask, z1);
- z2 = _mm_andnot_ps(branch_mask, z2);
- Packet4f z = _mm_or_ps(z1,z2);
-
-/* update the sign */
- return _mm_xor_ps(z, sign_bit);
-}
-
-#endif // EIGEN_VECTORIZE_SSE
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
deleted file mode 100644
index 8fe3ed8..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
+++ /dev/null
@@ -1,601 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
-#define EIGEN_HYBRIDNONLINEARSOLVER_H
-
-namespace Eigen {
-
-namespace HybridNonLinearSolverSpace {
- enum Status {
- Running = -1,
- ImproperInputParameters = 0,
- RelativeErrorTooSmall = 1,
- TooManyFunctionEvaluation = 2,
- TolTooSmall = 3,
- NotMakingProgressJacobian = 4,
- NotMakingProgressIterations = 5,
- UserAsked = 6
- };
-}
-
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Finds a zero of a system of n
- * nonlinear functions in n variables by a modification of the Powell
- * hybrid method ("dogleg").
- *
- * The user must provide a subroutine which calculates the
- * functions. The Jacobian is either provided by the user, or approximated
- * using a forward-difference method.
- *
- */
-template<typename FunctorType, typename Scalar=double>
-class HybridNonLinearSolver
-{
-public:
- typedef DenseIndex Index;
-
- HybridNonLinearSolver(FunctorType &_functor)
- : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
-
- struct Parameters {
- Parameters()
- : factor(Scalar(100.))
- , maxfev(1000)
- , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
- , nb_of_subdiagonals(-1)
- , nb_of_superdiagonals(-1)
- , epsfcn(Scalar(0.)) {}
- Scalar factor;
- Index maxfev; // maximum number of function evaluation
- Scalar xtol;
- Index nb_of_subdiagonals;
- Index nb_of_superdiagonals;
- Scalar epsfcn;
- };
- typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
- typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
- /* TODO: if eigen provides a triangular storage, use it here */
- typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
-
- HybridNonLinearSolverSpace::Status hybrj1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
- HybridNonLinearSolverSpace::Status solve(FVectorType &x);
-
- HybridNonLinearSolverSpace::Status hybrd1(
- FVectorType &x,
- const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
- );
-
- HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
- HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
-
- void resetParameters(void) { parameters = Parameters(); }
- Parameters parameters;
- FVectorType fvec, qtf, diag;
- JacobianType fjac;
- UpperTriangularType R;
- Index nfev;
- Index njev;
- Index iter;
- Scalar fnorm;
- bool useExternalScaling;
-private:
- FunctorType &functor;
- Index n;
- Scalar sum;
- bool sing;
- Scalar temp;
- Scalar delta;
- bool jeval;
- Index ncsuc;
- Scalar ratio;
- Scalar pnorm, xnorm, fnorm1;
- Index nslow1, nslow2;
- Index ncfail;
- Scalar actred, prered;
- FVectorType wa1, wa2, wa3, wa4;
-
- HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
-};
-
-
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
-
- /* check the input parameters for errors. */
- if (n <= 0 || tol < 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.maxfev = 100*(n+1);
- parameters.xtol = tol;
- diag.setConstant(n, 1.);
- useExternalScaling = true;
- return solve(x);
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
-{
- n = x.size();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
- fvec.resize(n);
- qtf.resize(n);
- fjac.resize(n, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
- return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize iteration counter and monitors. */
- iter = 1;
- ncsuc = 0;
- ncfail = 0;
- nslow1 = 0;
- nslow2 = 0;
-
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
-{
- using std::abs;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- Index j;
- std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
-
- jeval = true;
-
- /* calculate the jacobian matrix. */
- if ( functor.df(x, fjac) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++njev;
-
- wa2 = fjac.colwise().blueNorm();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the qr factorization of the jacobian. */
- HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
-
- /* copy the triangular factor of the qr factorization into r. */
- R = qrfac.matrixQR();
-
- /* accumulate the orthogonal factor in fjac. */
- fjac = qrfac.householderQ();
-
- /* form (q transpose)*fvec and store in qtf. */
- qtf = fjac.transpose() * fvec;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- while (true) {
- /* determine the direction p. */
- internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (fnorm1 < fnorm) /* Computing 2nd power */
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction. */
- wa3 = R.template triangularView<Upper>()*wa1 + qtf;
- temp = wa3.stableNorm();
- prered = 0.;
- if (temp < fnorm) /* Computing 2nd power */
- prered = 1. - numext::abs2(temp / fnorm);
-
- /* compute the ratio of the actual to the predicted reduction. */
- ratio = 0.;
- if (prered > 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio < Scalar(.1)) {
- ncsuc = 0;
- ++ncfail;
- delta = Scalar(.5) * delta;
- } else {
- ncfail = 0;
- ++ncsuc;
- if (ratio >= Scalar(.5) || ncsuc > 1)
- delta = (std::max)(delta, pnorm / Scalar(.5));
- if (abs(ratio - 1.) <= Scalar(.1)) {
- delta = pnorm / Scalar(.5);
- }
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* determine the progress of the iteration. */
- ++nslow1;
- if (actred >= Scalar(.001))
- nslow1 = 0;
- if (jeval)
- ++nslow2;
- if (actred >= Scalar(.1))
- nslow2 = 0;
-
- /* test for convergence. */
- if (delta <= parameters.xtol * xnorm || fnorm == 0.)
- return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
- if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
- return HybridNonLinearSolverSpace::TolTooSmall;
- if (nslow2 == 5)
- return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
- if (nslow1 == 10)
- return HybridNonLinearSolverSpace::NotMakingProgressIterations;
-
- /* criterion for recalculating jacobian. */
- if (ncfail == 2)
- break; // leave inner loop and go for the next outer loop iteration
-
- /* calculate the rank one modification to the jacobian */
- /* and update qtf if necessary. */
- wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
- wa2 = fjac.transpose() * wa4;
- if (ratio >= Scalar(1e-4))
- qtf = wa2;
- wa2 = (wa2-wa3)/pnorm;
-
- /* compute the qr factorization of the updated jacobian. */
- internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
- internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
- internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
-
- jeval = false;
- }
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
-{
- HybridNonLinearSolverSpace::Status status = solveInit(x);
- if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
- return status;
- while (status==HybridNonLinearSolverSpace::Running)
- status = solveOneStep(x);
- return status;
-}
-
-
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
-
- /* check the input parameters for errors. */
- if (n <= 0 || tol < 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.maxfev = 200*(n+1);
- parameters.xtol = tol;
-
- diag.setConstant(n, 1.);
- useExternalScaling = true;
- return solveNumericalDiff(x);
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
-{
- n = x.size();
-
- if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
- if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
- qtf.resize(n);
- fjac.resize(n, n);
- fvec.resize(n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
- return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return HybridNonLinearSolverSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize iteration counter and monitors. */
- iter = 1;
- ncsuc = 0;
- ncfail = 0;
- nslow1 = 0;
- nslow2 = 0;
-
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
-{
- using std::sqrt;
- using std::abs;
-
- assert(x.size()==n); // check the caller is not cheating us
-
- Index j;
- std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
-
- jeval = true;
- if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
- if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
-
- /* calculate the jacobian matrix. */
- if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
- return HybridNonLinearSolverSpace::UserAsked;
- nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
-
- wa2 = fjac.colwise().blueNorm();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the qr factorization of the jacobian. */
- HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
-
- /* copy the triangular factor of the qr factorization into r. */
- R = qrfac.matrixQR();
-
- /* accumulate the orthogonal factor in fjac. */
- fjac = qrfac.householderQ();
-
- /* form (q transpose)*fvec and store in qtf. */
- qtf = fjac.transpose() * fvec;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- while (true) {
- /* determine the direction p. */
- internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return HybridNonLinearSolverSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (fnorm1 < fnorm) /* Computing 2nd power */
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction. */
- wa3 = R.template triangularView<Upper>()*wa1 + qtf;
- temp = wa3.stableNorm();
- prered = 0.;
- if (temp < fnorm) /* Computing 2nd power */
- prered = 1. - numext::abs2(temp / fnorm);
-
- /* compute the ratio of the actual to the predicted reduction. */
- ratio = 0.;
- if (prered > 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio < Scalar(.1)) {
- ncsuc = 0;
- ++ncfail;
- delta = Scalar(.5) * delta;
- } else {
- ncfail = 0;
- ++ncsuc;
- if (ratio >= Scalar(.5) || ncsuc > 1)
- delta = (std::max)(delta, pnorm / Scalar(.5));
- if (abs(ratio - 1.) <= Scalar(.1)) {
- delta = pnorm / Scalar(.5);
- }
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* determine the progress of the iteration. */
- ++nslow1;
- if (actred >= Scalar(.001))
- nslow1 = 0;
- if (jeval)
- ++nslow2;
- if (actred >= Scalar(.1))
- nslow2 = 0;
-
- /* test for convergence. */
- if (delta <= parameters.xtol * xnorm || fnorm == 0.)
- return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
- if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
- return HybridNonLinearSolverSpace::TolTooSmall;
- if (nslow2 == 5)
- return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
- if (nslow1 == 10)
- return HybridNonLinearSolverSpace::NotMakingProgressIterations;
-
- /* criterion for recalculating jacobian. */
- if (ncfail == 2)
- break; // leave inner loop and go for the next outer loop iteration
-
- /* calculate the rank one modification to the jacobian */
- /* and update qtf if necessary. */
- wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
- wa2 = fjac.transpose() * wa4;
- if (ratio >= Scalar(1e-4))
- qtf = wa2;
- wa2 = (wa2-wa3)/pnorm;
-
- /* compute the qr factorization of the updated jacobian. */
- internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
- internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
- internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
-
- jeval = false;
- }
- return HybridNonLinearSolverSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
-{
- HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
- if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
- return status;
- while (status==HybridNonLinearSolverSpace::Running)
- status = solveNumericalDiffOneStep(x);
- return status;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
-
-//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
deleted file mode 100644
index fe3b79c..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ /dev/null
@@ -1,657 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_LEVENBERGMARQUARDT__H
-#define EIGEN_LEVENBERGMARQUARDT__H
-
-namespace Eigen {
-
-namespace LevenbergMarquardtSpace {
- enum Status {
- NotStarted = -2,
- Running = -1,
- ImproperInputParameters = 0,
- RelativeReductionTooSmall = 1,
- RelativeErrorTooSmall = 2,
- RelativeErrorAndReductionTooSmall = 3,
- CosinusTooSmall = 4,
- TooManyFunctionEvaluation = 5,
- FtolTooSmall = 6,
- XtolTooSmall = 7,
- GtolTooSmall = 8,
- UserAsked = 9
- };
-}
-
-
-
-/**
- * \ingroup NonLinearOptimization_Module
- * \brief Performs non linear optimization over a non-linear function,
- * using a variant of the Levenberg Marquardt algorithm.
- *
- * Check wikipedia for more information.
- * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
- */
-template<typename FunctorType, typename Scalar=double>
-class LevenbergMarquardt
-{
- static Scalar sqrt_epsilon()
- {
- using std::sqrt;
- return sqrt(NumTraits<Scalar>::epsilon());
- }
-
-public:
- LevenbergMarquardt(FunctorType &_functor)
- : functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
-
- typedef DenseIndex Index;
-
- struct Parameters {
- Parameters()
- : factor(Scalar(100.))
- , maxfev(400)
- , ftol(sqrt_epsilon())
- , xtol(sqrt_epsilon())
- , gtol(Scalar(0.))
- , epsfcn(Scalar(0.)) {}
- Scalar factor;
- Index maxfev; // maximum number of function evaluation
- Scalar ftol;
- Scalar xtol;
- Scalar gtol;
- Scalar epsfcn;
- };
-
- typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
- typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
-
- LevenbergMarquardtSpace::Status lmder1(
- FVectorType &x,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status minimize(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
-
- static LevenbergMarquardtSpace::Status lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status lmstr1(
- FVectorType &x,
- const Scalar tol = sqrt_epsilon()
- );
-
- LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x);
- LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x);
-
- void resetParameters(void) { parameters = Parameters(); }
-
- Parameters parameters;
- FVectorType fvec, qtf, diag;
- JacobianType fjac;
- PermutationMatrix<Dynamic,Dynamic> permutation;
- Index nfev;
- Index njev;
- Index iter;
- Scalar fnorm, gnorm;
- bool useExternalScaling;
-
- Scalar lm_param(void) { return par; }
-private:
-
- FunctorType &functor;
- Index n;
- Index m;
- FVectorType wa1, wa2, wa3, wa4;
-
- Scalar par, sum;
- Scalar temp, temp1, temp2;
- Scalar delta;
- Scalar ratio;
- Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
-
- LevenbergMarquardt& operator=(const LevenbergMarquardt&);
-};
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmder1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.ftol = tol;
- parameters.xtol = tol;
- parameters.maxfev = 100*(n+1);
-
- return minimize(x);
-}
-
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters)
- return status;
- do {
- status = minimizeOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- return status;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
-{
- n = x.size();
- m = functor.values();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n);
- wa4.resize(m);
- fvec.resize(m);
- fjac.resize(m, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
- qtf.resize(n);
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- par = 0.;
- iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- /* calculate the jacobian matrix. */
- Index df_ret = functor.df(x, fjac);
- if (df_ret<0)
- return LevenbergMarquardtSpace::UserAsked;
- if (df_ret>0)
- // numerical diff, we evaluated the function df_ret times
- nfev += df_ret;
- else njev++;
-
- /* compute the qr factorization of the jacobian. */
- wa2 = fjac.colwise().blueNorm();
- ColPivHouseholderQR<JacobianType> qrfac(fjac);
- fjac = qrfac.matrixQR();
- permutation = qrfac.colsPermutation();
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (Index j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.)? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* form (q transpose)*fvec and store the first n components in */
- /* qtf. */
- wa4 = fvec;
- wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
- qtf = wa4.head(n);
-
- /* compute the norm of the scaled gradient. */
- gnorm = 0.;
- if (fnorm != 0.)
- for (Index j = 0; j < n; ++j)
- if (wa2[permutation.indices()[j]] != 0.)
- gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (gnorm <= parameters.gtol)
- return LevenbergMarquardtSpace::CosinusTooSmall;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- do {
-
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < fnorm)
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
- temp1 = numext::abs2(wa3.stableNorm() / fnorm);
- temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = Scalar(.5);
- if (actred < 0.)
- temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
- if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- delta = temp * (std::min)(delta, pnorm / Scalar(.1));
- par /= temp;
- } else if (!(par != 0. && ratio < Scalar(.75))) {
- delta = pnorm / Scalar(.5);
- par = Scalar(.5) * par;
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- if (delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::FtolTooSmall;
- if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
- return LevenbergMarquardtSpace::XtolTooSmall;
- if (gnorm <= NumTraits<Scalar>::epsilon())
- return LevenbergMarquardtSpace::GtolTooSmall;
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
- FVectorType &x,
- const Scalar tol
- )
-{
- n = x.size();
- m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- resetParameters();
- parameters.ftol = tol;
- parameters.xtol = tol;
- parameters.maxfev = 100*(n+1);
-
- return minimizeOptimumStorage(x);
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x)
-{
- n = x.size();
- m = functor.values();
-
- wa1.resize(n); wa2.resize(n); wa3.resize(n);
- wa4.resize(m);
- fvec.resize(m);
- // Only R is stored in fjac. Q is only used to compute 'qtf', which is
- // Q.transpose()*rhs. qtf will be updated using givens rotation,
- // instead of storing them in Q.
- // The purpose it to only use a nxn matrix, instead of mxn here, so
- // that we can handle cases where m>>n :
- fjac.resize(n, n);
- if (!useExternalScaling)
- diag.resize(n);
- eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");
- qtf.resize(n);
-
- /* Function Body */
- nfev = 0;
- njev = 0;
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- if (useExternalScaling)
- for (Index j = 0; j < n; ++j)
- if (diag[j] <= 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- /* evaluate the function at the starting point */
- /* and calculate its norm. */
- nfev = 1;
- if ( functor(x, fvec) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- fnorm = fvec.stableNorm();
-
- /* initialize levenberg-marquardt parameter and iteration counter. */
- par = 0.;
- iter = 1;
-
- return LevenbergMarquardtSpace::NotStarted;
-}
-
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x)
-{
- using std::abs;
- using std::sqrt;
-
- eigen_assert(x.size()==n); // check the caller is not cheating us
-
- Index i, j;
- bool sing;
-
- /* compute the qr factorization of the jacobian matrix */
- /* calculated one row at a time, while simultaneously */
- /* forming (q transpose)*fvec and storing the first */
- /* n components in qtf. */
- qtf.fill(0.);
- fjac.fill(0.);
- Index rownb = 2;
- for (i = 0; i < m; ++i) {
- if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
- internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
- ++rownb;
- }
- ++njev;
-
- /* if the jacobian is rank deficient, call qrfac to */
- /* reorder its columns and update the components of qtf. */
- sing = false;
- for (j = 0; j < n; ++j) {
- if (fjac(j,j) == 0.)
- sing = true;
- wa2[j] = fjac.col(j).head(j).stableNorm();
- }
- permutation.setIdentity(n);
- if (sing) {
- wa2 = fjac.colwise().blueNorm();
- // TODO We have no unit test covering this code path, do not modify
- // until it is carefully tested
- ColPivHouseholderQR<JacobianType> qrfac(fjac);
- fjac = qrfac.matrixQR();
- wa1 = fjac.diagonal();
- fjac.diagonal() = qrfac.hCoeffs();
- permutation = qrfac.colsPermutation();
- // TODO : avoid this:
- for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors
-
- for (j = 0; j < n; ++j) {
- if (fjac(j,j) != 0.) {
- sum = 0.;
- for (i = j; i < n; ++i)
- sum += fjac(i,j) * qtf[i];
- temp = -sum / fjac(j,j);
- for (i = j; i < n; ++i)
- qtf[i] += fjac(i,j) * temp;
- }
- fjac(j,j) = wa1[j];
- }
- }
-
- /* on the first iteration and if external scaling is not used, scale according */
- /* to the norms of the columns of the initial jacobian. */
- if (iter == 1) {
- if (!useExternalScaling)
- for (j = 0; j < n; ++j)
- diag[j] = (wa2[j]==0.)? 1. : wa2[j];
-
- /* on the first iteration, calculate the norm of the scaled x */
- /* and initialize the step bound delta. */
- xnorm = diag.cwiseProduct(x).stableNorm();
- delta = parameters.factor * xnorm;
- if (delta == 0.)
- delta = parameters.factor;
- }
-
- /* compute the norm of the scaled gradient. */
- gnorm = 0.;
- if (fnorm != 0.)
- for (j = 0; j < n; ++j)
- if (wa2[permutation.indices()[j]] != 0.)
- gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
-
- /* test for convergence of the gradient norm. */
- if (gnorm <= parameters.gtol)
- return LevenbergMarquardtSpace::CosinusTooSmall;
-
- /* rescale if necessary. */
- if (!useExternalScaling)
- diag = diag.cwiseMax(wa2);
-
- do {
-
- /* determine the levenberg-marquardt parameter. */
- internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);
-
- /* store the direction p and x + p. calculate the norm of p. */
- wa1 = -wa1;
- wa2 = x + wa1;
- pnorm = diag.cwiseProduct(wa1).stableNorm();
-
- /* on the first iteration, adjust the initial step bound. */
- if (iter == 1)
- delta = (std::min)(delta,pnorm);
-
- /* evaluate the function at x + p and calculate its norm. */
- if ( functor(wa2, wa4) < 0)
- return LevenbergMarquardtSpace::UserAsked;
- ++nfev;
- fnorm1 = wa4.stableNorm();
-
- /* compute the scaled actual reduction. */
- actred = -1.;
- if (Scalar(.1) * fnorm1 < fnorm)
- actred = 1. - numext::abs2(fnorm1 / fnorm);
-
- /* compute the scaled predicted reduction and */
- /* the scaled directional derivative. */
- wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
- temp1 = numext::abs2(wa3.stableNorm() / fnorm);
- temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
- prered = temp1 + temp2 / Scalar(.5);
- dirder = -(temp1 + temp2);
-
- /* compute the ratio of the actual to the predicted */
- /* reduction. */
- ratio = 0.;
- if (prered != 0.)
- ratio = actred / prered;
-
- /* update the step bound. */
- if (ratio <= Scalar(.25)) {
- if (actred >= 0.)
- temp = Scalar(.5);
- if (actred < 0.)
- temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
- if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
- temp = Scalar(.1);
- /* Computing MIN */
- delta = temp * (std::min)(delta, pnorm / Scalar(.1));
- par /= temp;
- } else if (!(par != 0. && ratio < Scalar(.75))) {
- delta = pnorm / Scalar(.5);
- par = Scalar(.5) * par;
- }
-
- /* test for successful iteration. */
- if (ratio >= Scalar(1e-4)) {
- /* successful iteration. update x, fvec, and their norms. */
- x = wa2;
- wa2 = diag.cwiseProduct(x);
- fvec = wa4;
- xnorm = wa2.stableNorm();
- fnorm = fnorm1;
- ++iter;
- }
-
- /* tests for convergence. */
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
- if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::RelativeReductionTooSmall;
- if (delta <= parameters.xtol * xnorm)
- return LevenbergMarquardtSpace::RelativeErrorTooSmall;
-
- /* tests for termination and stringent tolerances. */
- if (nfev >= parameters.maxfev)
- return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
- if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
- return LevenbergMarquardtSpace::FtolTooSmall;
- if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
- return LevenbergMarquardtSpace::XtolTooSmall;
- if (gnorm <= NumTraits<Scalar>::epsilon())
- return LevenbergMarquardtSpace::GtolTooSmall;
-
- } while (ratio < Scalar(1e-4));
-
- return LevenbergMarquardtSpace::Running;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x)
-{
- LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
- if (status==LevenbergMarquardtSpace::ImproperInputParameters)
- return status;
- do {
- status = minimizeOptimumStorageOneStep(x);
- } while (status==LevenbergMarquardtSpace::Running);
- return status;
-}
-
-template<typename FunctorType, typename Scalar>
-LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
- FunctorType &functor,
- FVectorType &x,
- Index *nfev,
- const Scalar tol
- )
-{
- Index n = x.size();
- Index m = functor.values();
-
- /* check the input parameters for errors. */
- if (n <= 0 || m < n || tol < 0.)
- return LevenbergMarquardtSpace::ImproperInputParameters;
-
- NumericalDiff<FunctorType> numDiff(functor);
- // embedded LevenbergMarquardt
- LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff);
- lm.parameters.ftol = tol;
- lm.parameters.xtol = tol;
- lm.parameters.maxfev = 200*(n+1);
-
- LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
- if (nfev)
- * nfev = lm.nfev;
- return info;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_LEVENBERGMARQUARDT__H
-
-//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
deleted file mode 100644
index db8ff7d..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
+++ /dev/null
@@ -1,66 +0,0 @@
-#define chkder_log10e 0.43429448190325182765
-#define chkder_factor 100.
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar>
-void chkder(
- const Matrix< Scalar, Dynamic, 1 > &x,
- const Matrix< Scalar, Dynamic, 1 > &fvec,
- const Matrix< Scalar, Dynamic, Dynamic > &fjac,
- Matrix< Scalar, Dynamic, 1 > &xp,
- const Matrix< Scalar, Dynamic, 1 > &fvecp,
- int mode,
- Matrix< Scalar, Dynamic, 1 > &err
- )
-{
- using std::sqrt;
- using std::abs;
- using std::log;
-
- typedef DenseIndex Index;
-
- const Scalar eps = sqrt(NumTraits<Scalar>::epsilon());
- const Scalar epsf = chkder_factor * NumTraits<Scalar>::epsilon();
- const Scalar epslog = chkder_log10e * log(eps);
- Scalar temp;
-
- const Index m = fvec.size(), n = x.size();
-
- if (mode != 2) {
- /* mode = 1. */
- xp.resize(n);
- for (Index j = 0; j < n; ++j) {
- temp = eps * abs(x[j]);
- if (temp == 0.)
- temp = eps;
- xp[j] = x[j] + temp;
- }
- }
- else {
- /* mode = 2. */
- err.setZero(m);
- for (Index j = 0; j < n; ++j) {
- temp = abs(x[j]);
- if (temp == 0.)
- temp = 1.;
- err += temp * fjac.col(j);
- }
- for (Index i = 0; i < m; ++i) {
- temp = 1.;
- if (fvec[i] != 0. && fvecp[i] != 0. && abs(fvecp[i] - fvec[i]) >= epsf * abs(fvec[i]))
- temp = eps * abs((fvecp[i] - fvec[i]) / eps - err[i]) / (abs(fvec[i]) + abs(fvecp[i]));
- err[i] = 1.;
- if (temp > NumTraits<Scalar>::epsilon() && temp < eps)
- err[i] = (chkder_log10e * log(temp) - epslog) / epslog;
- if (temp >= eps)
- err[i] = 0.;
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
deleted file mode 100644
index 68260d1..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
+++ /dev/null
@@ -1,70 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void covar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi &ipvt,
- Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
-{
- using std::abs;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, k, l, ii, jj;
- bool sing;
- Scalar temp;
-
- /* Function Body */
- const Index n = r.cols();
- const Scalar tolr = tol * abs(r(0,0));
- Matrix< Scalar, Dynamic, 1 > wa(n);
- eigen_assert(ipvt.size()==n);
-
- /* form the inverse of r in the full upper triangle of r. */
- l = -1;
- for (k = 0; k < n; ++k)
- if (abs(r(k,k)) > tolr) {
- r(k,k) = 1. / r(k,k);
- for (j = 0; j <= k-1; ++j) {
- temp = r(k,k) * r(j,k);
- r(j,k) = 0.;
- r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
- }
- l = k;
- }
-
- /* form the full upper triangle of the inverse of (r transpose)*r */
- /* in the full upper triangle of r. */
- for (k = 0; k <= l; ++k) {
- for (j = 0; j <= k-1; ++j)
- r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
- r.col(k).head(k+1) *= r(k,k);
- }
-
- /* form the full lower triangle of the covariance matrix */
- /* in the strict lower triangle of r and in wa. */
- for (j = 0; j < n; ++j) {
- jj = ipvt[j];
- sing = j > l;
- for (i = 0; i <= j; ++i) {
- if (sing)
- r(i,j) = 0.;
- ii = ipvt[i];
- if (ii > jj)
- r(ii,jj) = r(i,j);
- if (ii < jj)
- r(jj,ii) = r(i,j);
- }
- wa[jj] = r(j,j);
- }
-
- /* symmetrize the covariance matrix in r. */
- r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
- r.diagonal() = wa;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
deleted file mode 100644
index 80c5d27..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
+++ /dev/null
@@ -1,107 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void dogleg(
- const Matrix< Scalar, Dynamic, Dynamic > &qrfac,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Matrix< Scalar, Dynamic, 1 > &x)
-{
- using std::abs;
- using std::sqrt;
-
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j;
- Scalar sum, temp, alpha, bnorm;
- Scalar gnorm, qnorm;
- Scalar sgnorm;
-
- /* Function Body */
- const Scalar epsmch = NumTraits<Scalar>::epsilon();
- const Index n = qrfac.cols();
- eigen_assert(n==qtb.size());
- eigen_assert(n==x.size());
- eigen_assert(n==diag.size());
- Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
-
- /* first, calculate the gauss-newton direction. */
- for (j = n-1; j >=0; --j) {
- temp = qrfac(j,j);
- if (temp == 0.) {
- temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
- if (temp == 0.)
- temp = epsmch;
- }
- if (j==n-1)
- x[j] = qtb[j] / temp;
- else
- x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
- }
-
- /* test whether the gauss-newton direction is acceptable. */
- qnorm = diag.cwiseProduct(x).stableNorm();
- if (qnorm <= delta)
- return;
-
- // TODO : this path is not tested by Eigen unit tests
-
- /* the gauss-newton direction is not acceptable. */
- /* next, calculate the scaled gradient direction. */
-
- wa1.fill(0.);
- for (j = 0; j < n; ++j) {
- wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
- wa1[j] /= diag[j];
- }
-
- /* calculate the norm of the scaled gradient and test for */
- /* the special case in which the scaled gradient is zero. */
- gnorm = wa1.stableNorm();
- sgnorm = 0.;
- alpha = delta / qnorm;
- if (gnorm == 0.)
- goto algo_end;
-
- /* calculate the point along the scaled gradient */
- /* at which the quadratic is minimized. */
- wa1.array() /= (diag*gnorm).array();
- // TODO : once unit tests cover this part,:
- // wa2 = qrfac.template triangularView<Upper>() * wa1;
- for (j = 0; j < n; ++j) {
- sum = 0.;
- for (i = j; i < n; ++i) {
- sum += qrfac(j,i) * wa1[i];
- }
- wa2[j] = sum;
- }
- temp = wa2.stableNorm();
- sgnorm = gnorm / temp / temp;
-
- /* test whether the scaled gradient direction is acceptable. */
- alpha = 0.;
- if (sgnorm >= delta)
- goto algo_end;
-
- /* the scaled gradient direction is not acceptable. */
- /* finally, calculate the point along the dogleg */
- /* at which the quadratic is minimized. */
- bnorm = qtb.stableNorm();
- temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
- temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
- alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
-algo_end:
-
- /* form appropriate convex combination of the gauss-newton */
- /* direction and the scaled gradient direction. */
- temp = (1.-alpha) * (std::min)(sgnorm,delta);
- x = temp * wa1 + alpha * x;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
deleted file mode 100644
index bb7cf26..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
+++ /dev/null
@@ -1,79 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template<typename FunctorType, typename Scalar>
-DenseIndex fdjac1(
- const FunctorType &Functor,
- Matrix< Scalar, Dynamic, 1 > &x,
- Matrix< Scalar, Dynamic, 1 > &fvec,
- Matrix< Scalar, Dynamic, Dynamic > &fjac,
- DenseIndex ml, DenseIndex mu,
- Scalar epsfcn)
-{
- using std::sqrt;
- using std::abs;
-
- typedef DenseIndex Index;
-
- /* Local variables */
- Scalar h;
- Index j, k;
- Scalar eps, temp;
- Index msum;
- int iflag;
- Index start, length;
-
- /* Function Body */
- const Scalar epsmch = NumTraits<Scalar>::epsilon();
- const Index n = x.size();
- eigen_assert(fvec.size()==n);
- Matrix< Scalar, Dynamic, 1 > wa1(n);
- Matrix< Scalar, Dynamic, 1 > wa2(n);
-
- eps = sqrt((std::max)(epsfcn,epsmch));
- msum = ml + mu + 1;
- if (msum >= n) {
- /* computation of dense approximate jacobian. */
- for (j = 0; j < n; ++j) {
- temp = x[j];
- h = eps * abs(temp);
- if (h == 0.)
- h = eps;
- x[j] = temp + h;
- iflag = Functor(x, wa1);
- if (iflag < 0)
- return iflag;
- x[j] = temp;
- fjac.col(j) = (wa1-fvec)/h;
- }
-
- }else {
- /* computation of banded approximate jacobian. */
- for (k = 0; k < msum; ++k) {
- for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
- wa2[j] = x[j];
- h = eps * abs(wa2[j]);
- if (h == 0.) h = eps;
- x[j] = wa2[j] + h;
- }
- iflag = Functor(x, wa1);
- if (iflag < 0)
- return iflag;
- for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
- x[j] = wa2[j];
- h = eps * abs(wa2[j]);
- if (h == 0.) h = eps;
- fjac.col(j).setZero();
- start = std::max<Index>(0,j-mu);
- length = (std::min)(n-1, j+ml) - start + 1;
- fjac.col(j).segment(start, length) = ( wa1.segment(start, length)-fvec.segment(start, length))/h;
- }
- }
- }
- return 0;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
deleted file mode 100644
index 4c17d4c..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
+++ /dev/null
@@ -1,298 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void lmpar(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const VectorXi &ipvt,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Scalar &par,
- Matrix< Scalar, Dynamic, 1 > &x)
-{
- using std::abs;
- using std::sqrt;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, l;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = r.cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
- eigen_assert(n==x.size());
-
- Matrix< Scalar, Dynamic, 1 > wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
- Index nsing = n-1;
- wa1 = qtb;
- for (j = 0; j < n; ++j) {
- if (r(j,j) == 0. && nsing == n-1)
- nsing = j - 1;
- if (nsing < n-1)
- wa1[j] = 0.;
- }
- for (j = nsing; j>=0; --j) {
- wa1[j] /= r(j,j);
- temp = wa1[j];
- for (i = 0; i < j ; ++i)
- wa1[i] -= r(i,j) * temp;
- }
-
- for (j = 0; j < n; ++j)
- x[ipvt[j]] = wa1[j];
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - delta;
- if (fp <= Scalar(0.1) * delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (nsing >= n-1) {
- for (j = 0; j < n; ++j) {
- l = ipvt[j];
- wa1[j] = diag[l] * (wa2[l] / dxnorm);
- }
- // it's actually a triangularView.solveInplace(), though in a weird
- // way:
- for (j = 0; j < n; ++j) {
- Scalar sum = 0.;
- for (i = 0; i < j; ++i)
- sum += r(i,j) * wa1[i];
- wa1[j] = (wa1[j] - sum) / r(j,j);
- }
- temp = wa1.blueNorm();
- parl = fp / delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- Matrix< Scalar, Dynamic, 1 > sdiag(n);
- qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- for (j = 0; j < n; ++j) {
- l = ipvt[j];
- wa1[j] = diag[l] * (wa2[l] / dxnorm);
- }
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (i = j+1; i < n; ++i)
- wa1[i] -= r(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- /* Computing MAX */
- par = (std::max)(parl,par+parc);
-
- /* end of an iteration. */
- }
-
- /* termination. */
- if (iter == 0)
- par = 0.;
- return;
-}
-
-template <typename Scalar>
-void lmpar2(
- const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Scalar delta,
- Scalar &par,
- Matrix< Scalar, Dynamic, 1 > &x)
-
-{
- using std::sqrt;
- using std::abs;
- typedef DenseIndex Index;
-
- /* Local variables */
- Index j;
- Scalar fp;
- Scalar parc, parl;
- Index iter;
- Scalar temp, paru;
- Scalar gnorm;
- Scalar dxnorm;
-
-
- /* Function Body */
- const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
- const Index n = qr.matrixQR().cols();
- eigen_assert(n==diag.size());
- eigen_assert(n==qtb.size());
-
- Matrix< Scalar, Dynamic, 1 > wa1, wa2;
-
- /* compute and store in x the gauss-newton direction. if the */
- /* jacobian is rank-deficient, obtain a least squares solution. */
-
-// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
- const Index rank = qr.rank(); // use a threshold
- wa1 = qtb;
- wa1.tail(n-rank).setZero();
- qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
-
- x = qr.colsPermutation()*wa1;
-
- /* initialize the iteration counter. */
- /* evaluate the function at the origin, and test */
- /* for acceptance of the gauss-newton direction. */
- iter = 0;
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- fp = dxnorm - delta;
- if (fp <= Scalar(0.1) * delta) {
- par = 0;
- return;
- }
-
- /* if the jacobian is not rank deficient, the newton */
- /* step provides a lower bound, parl, for the zero of */
- /* the function. otherwise set this bound to zero. */
- parl = 0.;
- if (rank==n) {
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
- qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- temp = wa1.blueNorm();
- parl = fp / delta / temp / temp;
- }
-
- /* calculate an upper bound, paru, for the zero of the function. */
- for (j = 0; j < n; ++j)
- wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
-
- gnorm = wa1.stableNorm();
- paru = gnorm / delta;
- if (paru == 0.)
- paru = dwarf / (std::min)(delta,Scalar(0.1));
-
- /* if the input par lies outside of the interval (parl,paru), */
- /* set par to the closer endpoint. */
- par = (std::max)(par,parl);
- par = (std::min)(par,paru);
- if (par == 0.)
- par = gnorm / dxnorm;
-
- /* beginning of an iteration. */
- Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
- while (true) {
- ++iter;
-
- /* evaluate the function at the current value of par. */
- if (par == 0.)
- par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
- wa1 = sqrt(par)* diag;
-
- Matrix< Scalar, Dynamic, 1 > sdiag(n);
- qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
-
- wa2 = diag.cwiseProduct(x);
- dxnorm = wa2.blueNorm();
- temp = fp;
- fp = dxnorm - delta;
-
- /* if the function is small enough, accept the current value */
- /* of par. also test for the exceptional cases where parl */
- /* is zero or the number of iterations has reached 10. */
- if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
- break;
-
- /* compute the newton correction. */
- wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
- // we could almost use this here, but the diagonal is outside qr, in sdiag[]
- // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
- for (j = 0; j < n; ++j) {
- wa1[j] /= sdiag[j];
- temp = wa1[j];
- for (Index i = j+1; i < n; ++i)
- wa1[i] -= s(i,j) * temp;
- }
- temp = wa1.blueNorm();
- parc = fp / delta / temp / temp;
-
- /* depending on the sign of the function, update parl or paru. */
- if (fp > 0.)
- parl = (std::max)(parl,par);
- if (fp < 0.)
- paru = (std::min)(paru,par);
-
- /* compute an improved estimate for par. */
- par = (std::max)(parl,par+parc);
- }
- if (iter == 0)
- par = 0.;
- return;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
deleted file mode 100644
index feafd62..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
+++ /dev/null
@@ -1,91 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-// TODO : once qrsolv2 is removed, use ColPivHouseholderQR or PermutationMatrix instead of ipvt
-template <typename Scalar>
-void qrsolv(
- Matrix< Scalar, Dynamic, Dynamic > &s,
- // TODO : use a PermutationMatrix once lmpar is no more:
- const VectorXi &ipvt,
- const Matrix< Scalar, Dynamic, 1 > &diag,
- const Matrix< Scalar, Dynamic, 1 > &qtb,
- Matrix< Scalar, Dynamic, 1 > &x,
- Matrix< Scalar, Dynamic, 1 > &sdiag)
-
-{
- typedef DenseIndex Index;
-
- /* Local variables */
- Index i, j, k, l;
- Scalar temp;
- Index n = s.cols();
- Matrix< Scalar, Dynamic, 1 > wa(n);
- JacobiRotation<Scalar> givens;
-
- /* Function Body */
- // the following will only change the lower triangular part of s, including
- // the diagonal, though the diagonal is restored afterward
-
- /* copy r and (q transpose)*b to preserve input and initialize s. */
- /* in particular, save the diagonal elements of r in x. */
- x = s.diagonal();
- wa = qtb;
-
- s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
-
- /* eliminate the diagonal matrix d using a givens rotation. */
- for (j = 0; j < n; ++j) {
-
- /* prepare the row of d to be eliminated, locating the */
- /* diagonal element using p from the qr factorization. */
- l = ipvt[j];
- if (diag[l] == 0.)
- break;
- sdiag.tail(n-j).setZero();
- sdiag[j] = diag[l];
-
- /* the transformations to eliminate the row of d */
- /* modify only a single element of (q transpose)*b */
- /* beyond the first n, which is initially zero. */
- Scalar qtbpj = 0.;
- for (k = j; k < n; ++k) {
- /* determine a givens rotation which eliminates the */
- /* appropriate element in the current row of d. */
- givens.makeGivens(-s(k,k), sdiag[k]);
-
- /* compute the modified diagonal element of r and */
- /* the modified element of ((q transpose)*b,0). */
- s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
- temp = givens.c() * wa[k] + givens.s() * qtbpj;
- qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
- wa[k] = temp;
-
- /* accumulate the tranformation in the row of s. */
- for (i = k+1; i<n; ++i) {
- temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
- sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
- s(i,k) = temp;
- }
- }
- }
-
- /* solve the triangular system for z. if the system is */
- /* singular, then obtain a least squares solution. */
- Index nsing;
- for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
-
- wa.tail(n-nsing).setZero();
- s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
-
- // restore
- sdiag = s.diagonal();
- s.diagonal() = x;
-
- /* permute the components of z back to components of x. */
- for (j = 0; j < n; ++j) x[ipvt[j]] = wa[j];
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
deleted file mode 100644
index 36ff700..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
+++ /dev/null
@@ -1,30 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-// TODO : move this to GivensQR once there's such a thing in Eigen
-
-template <typename Scalar>
-void r1mpyq(DenseIndex m, DenseIndex n, Scalar *a, const std::vector<JacobiRotation<Scalar> > &v_givens, const std::vector<JacobiRotation<Scalar> > &w_givens)
-{
- typedef DenseIndex Index;
-
- /* apply the first set of givens rotations to a. */
- for (Index j = n-2; j>=0; --j)
- for (Index i = 0; i<m; ++i) {
- Scalar temp = v_givens[j].c() * a[i+m*j] - v_givens[j].s() * a[i+m*(n-1)];
- a[i+m*(n-1)] = v_givens[j].s() * a[i+m*j] + v_givens[j].c() * a[i+m*(n-1)];
- a[i+m*j] = temp;
- }
- /* apply the second set of givens rotations to a. */
- for (Index j = 0; j<n-1; ++j)
- for (Index i = 0; i<m; ++i) {
- Scalar temp = w_givens[j].c() * a[i+m*j] + w_givens[j].s() * a[i+m*(n-1)];
- a[i+m*(n-1)] = -w_givens[j].s() * a[i+m*j] + w_givens[j].c() * a[i+m*(n-1)];
- a[i+m*j] = temp;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
deleted file mode 100644
index f287660..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
+++ /dev/null
@@ -1,99 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void r1updt(
- Matrix< Scalar, Dynamic, Dynamic > &s,
- const Matrix< Scalar, Dynamic, 1> &u,
- std::vector<JacobiRotation<Scalar> > &v_givens,
- std::vector<JacobiRotation<Scalar> > &w_givens,
- Matrix< Scalar, Dynamic, 1> &v,
- Matrix< Scalar, Dynamic, 1> &w,
- bool *sing)
-{
- typedef DenseIndex Index;
- const JacobiRotation<Scalar> IdentityRotation = JacobiRotation<Scalar>(1,0);
-
- /* Local variables */
- const Index m = s.rows();
- const Index n = s.cols();
- Index i, j=1;
- Scalar temp;
- JacobiRotation<Scalar> givens;
-
- // r1updt had a broader usecase, but we dont use it here. And, more
- // importantly, we can not test it.
- eigen_assert(m==n);
- eigen_assert(u.size()==m);
- eigen_assert(v.size()==n);
- eigen_assert(w.size()==n);
-
- /* move the nontrivial part of the last column of s into w. */
- w[n-1] = s(n-1,n-1);
-
- /* rotate the vector v into a multiple of the n-th unit vector */
- /* in such a way that a spike is introduced into w. */
- for (j=n-2; j>=0; --j) {
- w[j] = 0.;
- if (v[j] != 0.) {
- /* determine a givens rotation which eliminates the */
- /* j-th element of v. */
- givens.makeGivens(-v[n-1], v[j]);
-
- /* apply the transformation to v and store the information */
- /* necessary to recover the givens rotation. */
- v[n-1] = givens.s() * v[j] + givens.c() * v[n-1];
- v_givens[j] = givens;
-
- /* apply the transformation to s and extend the spike in w. */
- for (i = j; i < m; ++i) {
- temp = givens.c() * s(j,i) - givens.s() * w[i];
- w[i] = givens.s() * s(j,i) + givens.c() * w[i];
- s(j,i) = temp;
- }
- } else
- v_givens[j] = IdentityRotation;
- }
-
- /* add the spike from the rank 1 update to w. */
- w += v[n-1] * u;
-
- /* eliminate the spike. */
- *sing = false;
- for (j = 0; j < n-1; ++j) {
- if (w[j] != 0.) {
- /* determine a givens rotation which eliminates the */
- /* j-th element of the spike. */
- givens.makeGivens(-s(j,j), w[j]);
-
- /* apply the transformation to s and reduce the spike in w. */
- for (i = j; i < m; ++i) {
- temp = givens.c() * s(j,i) + givens.s() * w[i];
- w[i] = -givens.s() * s(j,i) + givens.c() * w[i];
- s(j,i) = temp;
- }
-
- /* store the information necessary to recover the */
- /* givens rotation. */
- w_givens[j] = givens;
- } else
- v_givens[j] = IdentityRotation;
-
- /* test for zero diagonal elements in the output s. */
- if (s(j,j) == 0.) {
- *sing = true;
- }
- }
- /* move w back into the last column of the output s. */
- s(n-1,n-1) = w[n-1];
-
- if (s(j,j) == 0.) {
- *sing = true;
- }
- return;
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
deleted file mode 100644
index 6ebf856..0000000
--- a/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
+++ /dev/null
@@ -1,49 +0,0 @@
-namespace Eigen {
-
-namespace internal {
-
-template <typename Scalar>
-void rwupdt(
- Matrix< Scalar, Dynamic, Dynamic > &r,
- const Matrix< Scalar, Dynamic, 1> &w,
- Matrix< Scalar, Dynamic, 1> &b,
- Scalar alpha)
-{
- typedef DenseIndex Index;
-
- const Index n = r.cols();
- eigen_assert(r.rows()>=n);
- std::vector<JacobiRotation<Scalar> > givens(n);
-
- /* Local variables */
- Scalar temp, rowj;
-
- /* Function Body */
- for (Index j = 0; j < n; ++j) {
- rowj = w[j];
-
- /* apply the previous transformations to */
- /* r(i,j), i=0,1,...,j-1, and to w(j). */
- for (Index i = 0; i < j; ++i) {
- temp = givens[i].c() * r(i,j) + givens[i].s() * rowj;
- rowj = -givens[i].s() * r(i,j) + givens[i].c() * rowj;
- r(i,j) = temp;
- }
-
- /* determine a givens rotation which eliminates w(j). */
- givens[j].makeGivens(-r(j,j), rowj);
-
- if (rowj == 0.)
- continue; // givens[j] is identity
-
- /* apply the current transformation to r(j,j), b(j), and alpha. */
- r(j,j) = givens[j].c() * r(j,j) + givens[j].s() * rowj;
- temp = givens[j].c() * b[j] + givens[j].s() * alpha;
- alpha = -givens[j].s() * b[j] + givens[j].c() * alpha;
- b[j] = temp;
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
deleted file mode 100644
index ea5d8bc..0000000
--- a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// -*- coding: utf-8
-// vim: set fileencoding=utf-8
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_NUMERICAL_DIFF_H
-#define EIGEN_NUMERICAL_DIFF_H
-
-namespace Eigen {
-
-enum NumericalDiffMode {
- Forward,
- Central
-};
-
-
-/**
- * This class allows you to add a method df() to your functor, which will
- * use numerical differentiation to compute an approximate of the
- * derivative for the functor. Of course, if you have an analytical form
- * for the derivative, you should rather implement df() by yourself.
- *
- * More information on
- * http://en.wikipedia.org/wiki/Numerical_differentiation
- *
- * Currently only "Forward" and "Central" scheme are implemented.
- */
-template<typename _Functor, NumericalDiffMode mode=Forward>
-class NumericalDiff : public _Functor
-{
-public:
- typedef _Functor Functor;
- typedef typename Functor::Scalar Scalar;
- typedef typename Functor::InputType InputType;
- typedef typename Functor::ValueType ValueType;
- typedef typename Functor::JacobianType JacobianType;
-
- NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
- NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}
-
- // forward constructors
- template<typename T0>
- NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
- template<typename T0, typename T1>
- NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
- template<typename T0, typename T1, typename T2>
- NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {}
-
- enum {
- InputsAtCompileTime = Functor::InputsAtCompileTime,
- ValuesAtCompileTime = Functor::ValuesAtCompileTime
- };
-
- /**
- * return the number of evaluation of functor
- */
- int df(const InputType& _x, JacobianType &jac) const
- {
- using std::sqrt;
- using std::abs;
- /* Local variables */
- Scalar h;
- int nfev=0;
- const typename InputType::Index n = _x.size();
- const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() )));
- ValueType val1, val2;
- InputType x = _x;
- // TODO : we should do this only if the size is not already known
- val1.resize(Functor::values());
- val2.resize(Functor::values());
-
- // initialization
- switch(mode) {
- case Forward:
- // compute f(x)
- Functor::operator()(x, val1); nfev++;
- break;
- case Central:
- // do nothing
- break;
- default:
- eigen_assert(false);
- };
-
- // Function Body
- for (int j = 0; j < n; ++j) {
- h = eps * abs(x[j]);
- if (h == 0.) {
- h = eps;
- }
- switch(mode) {
- case Forward:
- x[j] += h;
- Functor::operator()(x, val2);
- nfev++;
- x[j] = _x[j];
- jac.col(j) = (val2-val1)/h;
- break;
- case Central:
- x[j] += h;
- Functor::operator()(x, val2); nfev++;
- x[j] -= 2*h;
- Functor::operator()(x, val1); nfev++;
- x[j] = _x[j];
- jac.col(j) = (val2-val1)/(2*h);
- break;
- default:
- eigen_assert(false);
- };
- }
- return nfev;
- }
-private:
- Scalar epsfcn;
-
- NumericalDiff& operator=(const NumericalDiff&);
-};
-
-} // end namespace Eigen
-
-//vim: ai ts=4 sts=4 et sw=4
-#endif // EIGEN_NUMERICAL_DIFF_H
-
diff --git a/eigen/unsupported/Eigen/src/Polynomials/Companion.h b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
deleted file mode 100644
index b515c29..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/Companion.h
+++ /dev/null
@@ -1,276 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPANION_H
-#define EIGEN_COMPANION_H
-
-// This file requires the user to include
-// * Eigen/Core
-// * Eigen/src/PolynomialSolver.h
-
-namespace Eigen {
-
-namespace internal {
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
-template <typename T>
-T radix(){ return 2; }
-
-template <typename T>
-T radix2(){ return radix<T>()*radix<T>(); }
-
-template<int Size>
-struct decrement_if_fixed_size
-{
- enum {
- ret = (Size == Dynamic) ? Dynamic : Size-1 };
-};
-
-#endif
-
-template< typename _Scalar, int _Deg >
-class companion
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- enum {
- Deg = _Deg,
- Deg_1=decrement_if_fixed_size<Deg>::ret
- };
-
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, Deg, 1> RightColumn;
- //typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
- typedef Matrix<Scalar, Deg_1, 1> BottomLeftDiagonal;
-
- typedef Matrix<Scalar, Deg, Deg> DenseCompanionMatrixType;
- typedef Matrix< Scalar, _Deg, Deg_1 > LeftBlock;
- typedef Matrix< Scalar, Deg_1, Deg_1 > BottomLeftBlock;
- typedef Matrix< Scalar, 1, Deg_1 > LeftBlockFirstRow;
-
- typedef DenseIndex Index;
-
- public:
- EIGEN_STRONG_INLINE const _Scalar operator()(Index row, Index col ) const
- {
- if( m_bl_diag.rows() > col )
- {
- if( 0 < row ){ return m_bl_diag[col]; }
- else{ return 0; }
- }
- else{ return m_monic[row]; }
- }
-
- public:
- template<typename VectorType>
- void setPolynomial( const VectorType& poly )
- {
- const Index deg = poly.size()-1;
- m_monic = -1/poly[deg] * poly.head(deg);
- //m_bl_diag.setIdentity( deg-1 );
- m_bl_diag.setOnes(deg-1);
- }
-
- template<typename VectorType>
- companion( const VectorType& poly ){
- setPolynomial( poly ); }
-
- public:
- DenseCompanionMatrixType denseMatrix() const
- {
- const Index deg = m_monic.size();
- const Index deg_1 = deg-1;
- DenseCompanionMatrixType companion(deg,deg);
- companion <<
- ( LeftBlock(deg,deg_1)
- << LeftBlockFirstRow::Zero(1,deg_1),
- BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
- , m_monic;
- return companion;
- }
-
-
-
- protected:
- /** Helper function for the balancing algorithm.
- * \returns true if the row and the column, having colNorm and rowNorm
- * as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
- * the column and the row in order to balance them.
- * */
- bool balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
-
- /** Helper function for the balancing algorithm.
- * \returns true if the row and the column, having colNorm and rowNorm
- * as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
- * the column and the row in order to balance them.
- * */
- bool balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
-
- public:
- /**
- * Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
- * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
- * adapted to the case of companion matrices.
- * A matrix with non zero row and non zero column is balanced
- * for a certain norm if the i-th row and the i-th column
- * have same norm for all i.
- */
- void balance();
-
- protected:
- RightColumn m_monic;
- BottomLeftDiagonal m_bl_diag;
-};
-
-
-
-template< typename _Scalar, int _Deg >
-inline
-bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
-{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
- else
- {
- //To find the balancing coefficients, if the radix is 2,
- //one finds \f$ \sigma \f$ such that
- // \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
- // then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
- // and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
- rowB = rowNorm / radix<Scalar>();
- colB = Scalar(1);
- const Scalar s = colNorm + rowNorm;
-
- while (colNorm < rowB)
- {
- colB *= radix<Scalar>();
- colNorm *= radix2<Scalar>();
- }
-
- rowB = rowNorm * radix<Scalar>();
-
- while (colNorm >= rowB)
- {
- colB /= radix<Scalar>();
- colNorm /= radix2<Scalar>();
- }
-
- //This line is used to avoid insubstantial balancing
- if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
- {
- isBalanced = false;
- rowB = Scalar(1) / colB;
- return false;
- }
- else{
- return true; }
- }
-}
-
-template< typename _Scalar, int _Deg >
-inline
-bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
-{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
- else
- {
- /**
- * Set the norm of the column and the row to the geometric mean
- * of the row and column norm
- */
- const _Scalar q = colNorm/rowNorm;
- if( !isApprox( q, _Scalar(1) ) )
- {
- rowB = sqrt( colNorm/rowNorm );
- colB = Scalar(1)/rowB;
-
- isBalanced = false;
- return false;
- }
- else{
- return true; }
- }
-}
-
-
-template< typename _Scalar, int _Deg >
-void companion<_Scalar,_Deg>::balance()
-{
- using std::abs;
- EIGEN_STATIC_ASSERT( Deg == Dynamic || 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
- const Index deg = m_monic.size();
- const Index deg_1 = deg-1;
-
- bool hasConverged=false;
- while( !hasConverged )
- {
- hasConverged = true;
- Scalar colNorm,rowNorm;
- Scalar colB,rowB;
-
- //First row, first column excluding the diagonal
- //==============================================
- colNorm = abs(m_bl_diag[0]);
- rowNorm = abs(m_monic[0]);
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- m_bl_diag[0] *= colB;
- m_monic[0] *= rowB;
- }
-
- //Middle rows and columns excluding the diagonal
- //==============================================
- for( Index i=1; i<deg_1; ++i )
- {
- // column norm, excluding the diagonal
- colNorm = abs(m_bl_diag[i]);
-
- // row norm, excluding the diagonal
- rowNorm = abs(m_bl_diag[i-1]) + abs(m_monic[i]);
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- m_bl_diag[i] *= colB;
- m_bl_diag[i-1] *= rowB;
- m_monic[i] *= rowB;
- }
- }
-
- //Last row, last column excluding the diagonal
- //============================================
- const Index ebl = m_bl_diag.size()-1;
- VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
- colNorm = headMonic.array().abs().sum();
- rowNorm = abs( m_bl_diag[ebl] );
-
- //Compute balancing of the row and the column
- if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
- {
- headMonic *= colB;
- m_bl_diag[ebl] *= rowB;
- }
- }
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPANION_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
deleted file mode 100644
index 03198ec..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
+++ /dev/null
@@ -1,406 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_POLYNOMIAL_SOLVER_H
-#define EIGEN_POLYNOMIAL_SOLVER_H
-
-namespace Eigen {
-
-/** \ingroup Polynomials_Module
- * \class PolynomialSolverBase.
- *
- * \brief Defined to be inherited by polynomial solvers: it provides
- * convenient methods such as
- * - real roots,
- * - greatest, smallest complex roots,
- * - real roots with greatest, smallest absolute real value,
- * - greatest, smallest real roots.
- *
- * It stores the set of roots as a vector of complexes.
- *
- */
-template< typename _Scalar, int _Deg >
-class PolynomialSolverBase
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef std::complex<RealScalar> RootType;
- typedef Matrix<RootType,_Deg,1> RootsType;
-
- typedef DenseIndex Index;
-
- protected:
- template< typename OtherPolynomial >
- inline void setPolynomial( const OtherPolynomial& poly ){
- m_roots.resize(poly.size()-1); }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolverBase( const OtherPolynomial& poly ){
- setPolynomial( poly() ); }
-
- inline PolynomialSolverBase(){}
-
- public:
- /** \returns the complex roots of the polynomial */
- inline const RootsType& roots() const { return m_roots; }
-
- public:
- /** Clear and fills the back insertion sequence with the real roots of the polynomial
- * i.e. the real part of the complex roots that have an imaginary part which
- * absolute value is smaller than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- *
- * \param[out] bi_seq : the back insertion sequence (stl concept)
- * \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
- * number that is considered as real.
- * */
- template<typename Stl_back_insertion_sequence>
- inline void realRoots( Stl_back_insertion_sequence& bi_seq,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- bi_seq.clear();
- for(Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold ){
- bi_seq.push_back( m_roots[i].real() ); }
- }
- }
-
- protected:
- template<typename squaredNormBinaryPredicate>
- inline const RootType& selectComplexRoot_withRespectToNorm( squaredNormBinaryPredicate& pred ) const
- {
- Index res=0;
- RealScalar norm2 = numext::abs2( m_roots[0] );
- for( Index i=1; i<m_roots.size(); ++i )
- {
- const RealScalar currNorm2 = numext::abs2( m_roots[i] );
- if( pred( currNorm2, norm2 ) ){
- res=i; norm2=currNorm2; }
- }
- return m_roots[res];
- }
-
- public:
- /**
- * \returns the complex root with greatest norm.
- */
- inline const RootType& greatestRoot() const
- {
- std::greater<Scalar> greater;
- return selectComplexRoot_withRespectToNorm( greater );
- }
-
- /**
- * \returns the complex root with smallest norm.
- */
- inline const RootType& smallestRoot() const
- {
- std::less<Scalar> less;
- return selectComplexRoot_withRespectToNorm( less );
- }
-
- protected:
- template<typename squaredRealPartBinaryPredicate>
- inline const RealScalar& selectRealRoot_withRespectToAbsRealPart(
- squaredRealPartBinaryPredicate& pred,
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- hasArealRoot = false;
- Index res=0;
- RealScalar abs2(0);
-
- for( Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
- {
- if( !hasArealRoot )
- {
- hasArealRoot = true;
- res = i;
- abs2 = m_roots[i].real() * m_roots[i].real();
- }
- else
- {
- const RealScalar currAbs2 = m_roots[i].real() * m_roots[i].real();
- if( pred( currAbs2, abs2 ) )
- {
- abs2 = currAbs2;
- res = i;
- }
- }
- }
- else
- {
- if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
- res = i; }
- }
- }
- return numext::real_ref(m_roots[res]);
- }
-
-
- template<typename RealPartBinaryPredicate>
- inline const RealScalar& selectRealRoot_withRespectToRealPart(
- RealPartBinaryPredicate& pred,
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- using std::abs;
- hasArealRoot = false;
- Index res=0;
- RealScalar val(0);
-
- for( Index i=0; i<m_roots.size(); ++i )
- {
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
- {
- if( !hasArealRoot )
- {
- hasArealRoot = true;
- res = i;
- val = m_roots[i].real();
- }
- else
- {
- const RealScalar curr = m_roots[i].real();
- if( pred( curr, val ) )
- {
- val = curr;
- res = i;
- }
- }
- }
- else
- {
- if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
- res = i; }
- }
- }
- return numext::real_ref(m_roots[res]);
- }
-
- public:
- /**
- * \returns a real root with greatest absolute magnitude.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& absGreatestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::greater<Scalar> greater;
- return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns a real root with smallest absolute magnitude.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& absSmallestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::less<Scalar> less;
- return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns the real root with greatest value.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& greatestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::greater<Scalar> greater;
- return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
- }
-
-
- /**
- * \returns the real root with smallest value.
- * A real root is defined as the real part of a complex root with absolute imaginary
- * part smallest than absImaginaryThreshold.
- * absImaginaryThreshold takes the dummy_precision associated
- * with the _Scalar template parameter of the PolynomialSolver class as the default value.
- * If no real root is found the boolean hasArealRoot is set to false and the real part of
- * the root with smallest absolute imaginary part is returned instead.
- *
- * \param[out] hasArealRoot : boolean true if a real root is found according to the
- * absImaginaryThreshold criterion, false otherwise.
- * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
- * whether or not a root is real.
- */
- inline const RealScalar& smallestRealRoot(
- bool& hasArealRoot,
- const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
- {
- std::less<Scalar> less;
- return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
- }
-
- protected:
- RootsType m_roots;
-};
-
-#define EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( BASE ) \
- typedef typename BASE::Scalar Scalar; \
- typedef typename BASE::RealScalar RealScalar; \
- typedef typename BASE::RootType RootType; \
- typedef typename BASE::RootsType RootsType;
-
-
-
-/** \ingroup Polynomials_Module
- *
- * \class PolynomialSolver
- *
- * \brief A polynomial solver
- *
- * Computes the complex roots of a real polynomial.
- *
- * \param _Scalar the scalar type, i.e., the type of the polynomial coefficients
- * \param _Deg the degree of the polynomial, can be a compile time value or Dynamic.
- * Notice that the number of polynomial coefficients is _Deg+1.
- *
- * This class implements a polynomial solver and provides convenient methods such as
- * - real roots,
- * - greatest, smallest complex roots,
- * - real roots with greatest, smallest absolute real value.
- * - greatest, smallest real roots.
- *
- * WARNING: this polynomial solver is experimental, part of the unsupported Eigen modules.
- *
- *
- * Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
- * the polynomial to compute its roots.
- * This supposes that the complex moduli of the roots are all distinct: e.g. there should
- * be no multiple roots or conjugate roots for instance.
- * With 32bit (float) floating types this problem shows up frequently.
- * However, almost always, correct accuracy is reached even in these cases for 64bit
- * (double) floating types and small polynomial degree (<20).
- */
-template< typename _Scalar, int _Deg >
-class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
-{
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
-
- typedef PolynomialSolverBase<_Scalar,_Deg> PS_Base;
- EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
-
- typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
- typedef EigenSolver<CompanionMatrixType> EigenSolverType;
-
- public:
- /** Computes the complex roots of a new polynomial. */
- template< typename OtherPolynomial >
- void compute( const OtherPolynomial& poly )
- {
- eigen_assert( Scalar(0) != poly[poly.size()-1] );
- eigen_assert( poly.size() > 1 );
- if(poly.size() > 2 )
- {
- internal::companion<Scalar,_Deg> companion( poly );
- companion.balance();
- m_eigenSolver.compute( companion.denseMatrix() );
- m_roots = m_eigenSolver.eigenvalues();
- }
- else if(poly.size () == 2)
- {
- m_roots.resize(1);
- m_roots[0] = -poly[0]/poly[1];
- }
- }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolver( const OtherPolynomial& poly ){
- compute( poly ); }
-
- inline PolynomialSolver(){}
-
- protected:
- using PS_Base::m_roots;
- EigenSolverType m_eigenSolver;
-};
-
-
-template< typename _Scalar >
-class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
-{
- public:
- typedef PolynomialSolverBase<_Scalar,1> PS_Base;
- EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
-
- public:
- /** Computes the complex roots of a new polynomial. */
- template< typename OtherPolynomial >
- void compute( const OtherPolynomial& poly )
- {
- eigen_assert( poly.size() == 2 );
- eigen_assert( Scalar(0) != poly[1] );
- m_roots[0] = -poly[0]/poly[1];
- }
-
- public:
- template< typename OtherPolynomial >
- inline PolynomialSolver( const OtherPolynomial& poly ){
- compute( poly ); }
-
- inline PolynomialSolver(){}
-
- protected:
- using PS_Base::m_roots;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_POLYNOMIAL_SOLVER_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
deleted file mode 100644
index 394e857..0000000
--- a/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
+++ /dev/null
@@ -1,143 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_POLYNOMIAL_UTILS_H
-#define EIGEN_POLYNOMIAL_UTILS_H
-
-namespace Eigen {
-
-/** \ingroup Polynomials_Module
- * \returns the evaluation of the polynomial at x using Horner algorithm.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- * \param[in] x : the value to evaluate the polynomial at.
- *
- * \note for stability:
- * \f$ |x| \le 1 \f$
- */
-template <typename Polynomials, typename T>
-inline
-T poly_eval_horner( const Polynomials& poly, const T& x )
-{
- T val=poly[poly.size()-1];
- for(DenseIndex i=poly.size()-2; i>=0; --i ){
- val = val*x + poly[i]; }
- return val;
-}
-
-/** \ingroup Polynomials_Module
- * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- * \param[in] x : the value to evaluate the polynomial at.
- */
-template <typename Polynomials, typename T>
-inline
-T poly_eval( const Polynomials& poly, const T& x )
-{
- typedef typename NumTraits<T>::Real Real;
-
- if( numext::abs2( x ) <= Real(1) ){
- return poly_eval_horner( poly, x ); }
- else
- {
- T val=poly[0];
- T inv_x = T(1)/x;
- for( DenseIndex i=1; i<poly.size(); ++i ){
- val = val*inv_x + poly[i]; }
-
- return numext::pow(x,(T)(poly.size()-1)) * val;
- }
-}
-
-/** \ingroup Polynomials_Module
- * \returns a maximum bound for the absolute value of any root of the polynomial.
- *
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- *
- * \pre
- * the leading coefficient of the input polynomial poly must be non zero
- */
-template <typename Polynomial>
-inline
-typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
-{
- using std::abs;
- typedef typename Polynomial::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- eigen_assert( Scalar(0) != poly[poly.size()-1] );
- const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
- Real cb(0);
-
- for( DenseIndex i=0; i<poly.size()-1; ++i ){
- cb += abs(poly[i]*inv_leading_coeff); }
- return cb + Real(1);
-}
-
-/** \ingroup Polynomials_Module
- * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
- * \param[in] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
- */
-template <typename Polynomial>
-inline
-typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
-{
- using std::abs;
- typedef typename Polynomial::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real Real;
-
- DenseIndex i=0;
- while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
- if( poly.size()-1 == i ){
- return Real(1); }
-
- const Scalar inv_min_coeff = Scalar(1)/poly[i];
- Real cb(1);
- for( DenseIndex j=i+1; j<poly.size(); ++j ){
- cb += abs(poly[j]*inv_min_coeff); }
- return Real(1)/cb;
-}
-
-/** \ingroup Polynomials_Module
- * Given the roots of a polynomial compute the coefficients in the
- * monomial basis of the monic polynomial with same roots and minimal degree.
- * If RootVector is a vector of complexes, Polynomial should also be a vector
- * of complexes.
- * \param[in] rv : a vector containing the roots of a polynomial.
- * \param[out] poly : the vector of coefficients of the polynomial ordered
- * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
- * e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
- */
-template <typename RootVector, typename Polynomial>
-void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
-{
-
- typedef typename Polynomial::Scalar Scalar;
-
- poly.setZero( rv.size()+1 );
- poly[0] = -rv[0]; poly[1] = Scalar(1);
- for( DenseIndex i=1; i< rv.size(); ++i )
- {
- for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
- poly[0] = -rv[i]*poly[0];
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_POLYNOMIAL_UTILS_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h b/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
deleted file mode 100644
index a1f54ed..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
+++ /dev/null
@@ -1,352 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEINPLACELU_H
-#define EIGEN_SKYLINEINPLACELU_H
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineInplaceLU
- *
- * \brief Inplace LU decomposition of a skyline matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU factorization
- *
- */
-template<typename MatrixType>
-class SkylineInplaceLU {
-protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
-
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
-
-public:
-
- /** Creates a LU object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SkylineInplaceLU(MatrixType& matrix, int flags = 0)
- : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0), m_lu(matrix) {
- m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
- m_lu.IsRowMajor ? computeRowMajor() : compute();
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) {
- m_precision = v;
- }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const {
- return m_precision;
- }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient
- * - one of the ordering methods
- * - etc...
- *
- * \sa flags() */
- void setFlags(int f) {
- m_flags = f;
- }
-
- /** \returns the current flags */
- int flags() const {
- return m_flags;
- }
-
- void setOrderingMethod(int m) {
- m_flags = m;
- }
-
- int orderingMethod() const {
- return m_flags;
- }
-
- /** Computes/re-computes the LU factorization */
- void compute();
- void computeRowMajor();
-
- /** \returns the lower triangular matrix L */
- //inline const MatrixType& matrixL() const { return m_matrixL; }
-
- /** \returns the upper triangular matrix U */
- //inline const MatrixType& matrixU() const { return m_matrixU; }
-
- template<typename BDerived, typename XDerived>
- bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
- const int transposed = 0) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const {
- return m_succeeded;
- }
-
-protected:
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
- MatrixType& m_lu;
-};
-
-/** Computes / recomputes the in place LU decomposition of the SkylineInplaceLU.
- * using the default algorithm.
- */
-template<typename MatrixType>
-//template<typename _Scalar>
-void SkylineInplaceLU<MatrixType>::compute() {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
- eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
- eigen_assert(!m_lu.IsRowMajor && "LU decomposition does not work with rowMajor Storage");
-
- for (Index row = 0; row < rows; row++) {
- const double pivot = m_lu.coeffDiag(row);
-
- //Lower matrix Columns update
- const Index& col = row;
- for (typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
- lIt.valueRef() /= pivot;
- }
-
- //Upper matrix update -> contiguous memory access
- typename MatrixType::InnerLowerIterator lIt(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
- const double coef = lIt.value();
-
- uItPivot += (rrow - row - 1);
-
- //update upper part -> contiguous memory access
- for (++uItPivot; uIt && uItPivot;) {
- uIt.valueRef() -= uItPivot.value() * coef;
-
- ++uIt;
- ++uItPivot;
- }
- ++lIt;
- }
-
- //Upper matrix update -> non contiguous memory access
- typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- const double coef = lIt3.value();
-
- //update lower part -> non contiguous memory access
- for (Index i = 0; i < rrow - row - 1; i++) {
- m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
- ++uItPivot;
- }
- ++lIt3;
- }
- //update diag -> contiguous
- typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
- for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
-
- typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
- const double coef = lIt2.value();
-
- uItPivot += (rrow - row - 1);
- m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
- ++lIt2;
- }
- }
-}
-
-template<typename MatrixType>
-void SkylineInplaceLU<MatrixType>::computeRowMajor() {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
- eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
- eigen_assert(m_lu.IsRowMajor && "You're trying to apply rowMajor decomposition on a ColMajor matrix !");
-
- for (Index row = 0; row < rows; row++) {
- typename MatrixType::InnerLowerIterator llIt(m_lu, row);
-
-
- for (Index col = llIt.col(); col < row; col++) {
- if (m_lu.coeffExistLower(row, col)) {
- const double diag = m_lu.coeffDiag(col);
-
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
-
-
- const Index offset = lIt.col() - uIt.row();
-
-
- Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();
-
- //#define VECTORIZE
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
-
-
- Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffLower(row, col);
-
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
- ++lIt;
- ++uIt;
- }
-#endif
-
- m_lu.coeffRefLower(row, col) = newCoeff / diag;
- }
- }
-
- //Upper matrix update
- const Index col = row;
- typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
- for (Index rrow = uuIt.row(); rrow < col; rrow++) {
-
- typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
- const Index offset = lIt.col() - uIt.row();
-
- Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();
-
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
-
- Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffUpper(rrow, col);
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
-
- ++lIt;
- ++uIt;
- }
-#endif
- m_lu.coeffRefUpper(rrow, col) = newCoeff;
- }
-
-
- //Diag matrix update
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
- typename MatrixType::InnerUpperIterator uIt(m_lu, row);
-
- const Index offset = lIt.col() - uIt.row();
-
-
- Index stop = offset > 0 ? lIt.size() : uIt.size();
-#ifdef VECTORIZE
- Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
- Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
- Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
-#else
- if (offset > 0) //Skip zero value of lIt
- uIt += offset;
- else //Skip zero values of uIt
- lIt += -offset;
- Scalar newCoeff = m_lu.coeffDiag(row);
- for (Index k = 0; k < stop; ++k) {
- const Scalar tmp = newCoeff;
- newCoeff = tmp - lIt.value() * uIt.value();
- ++lIt;
- ++uIt;
- }
-#endif
- m_lu.coeffRefDiag(row) = newCoeff;
- }
-}
-
-/** Computes *x = U^-1 L^-1 b
- *
- * If \a transpose is set to SvTranspose or SvAdjoint, the solution
- * of the transposed/adjoint system is computed instead.
- *
- * Not all backends implement the solution of the transposed or
- * adjoint system.
- */
-template<typename MatrixType>
-template<typename BDerived, typename XDerived>
-bool SkylineInplaceLU<MatrixType>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const {
- const size_t rows = m_lu.rows();
- const size_t cols = m_lu.cols();
-
-
- for (Index row = 0; row < rows; row++) {
- x->coeffRef(row) = b.coeff(row);
- Scalar newVal = x->coeff(row);
- typename MatrixType::InnerLowerIterator lIt(m_lu, row);
-
- Index col = lIt.col();
- while (lIt.col() < row) {
-
- newVal -= x->coeff(col++) * lIt.value();
- ++lIt;
- }
-
- x->coeffRef(row) = newVal;
- }
-
-
- for (Index col = rows - 1; col > 0; col--) {
- x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);
-
- const Scalar x_col = x->coeff(col);
-
- typename MatrixType::InnerUpperIterator uIt(m_lu, col);
- uIt += uIt.size()-1;
-
-
- while (uIt) {
- x->coeffRef(uIt.row()) -= x_col * uIt.value();
- //TODO : introduce --operator
- uIt += -1;
- }
-
-
- }
- x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);
-
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINELU_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
deleted file mode 100644
index a2a8933..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
+++ /dev/null
@@ -1,862 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEMATRIX_H
-#define EIGEN_SKYLINEMATRIX_H
-
-#include "SkylineStorage.h"
-#include "SkylineMatrixBase.h"
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineMatrix
- *
- * \brief The main skyline matrix class
- *
- * This class implements a skyline matrix using the very uncommon storage
- * scheme.
- *
- * \param _Scalar the scalar type, i.e. the type of the coefficients
- * \param _Options Union of bit flags controlling the storage scheme. Currently the only possibility
- * is RowMajor. The default is 0 which means column-major.
- *
- *
- */
-namespace internal {
-template<typename _Scalar, int _Options>
-struct traits<SkylineMatrix<_Scalar, _Options> > {
- typedef _Scalar Scalar;
- typedef Sparse StorageKind;
-
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = SkylineBit | _Options,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- };
-};
-}
-
-template<typename _Scalar, int _Options>
-class SkylineMatrix
-: public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
-public:
- EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)
-
- using Base::IsRowMajor;
-
-protected:
-
- typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;
-
- Index m_outerSize;
- Index m_innerSize;
-
-public:
- Index* m_colStartIndex;
- Index* m_rowStartIndex;
- SkylineStorage<Scalar> m_data;
-
-public:
-
- inline Index rows() const {
- return IsRowMajor ? m_outerSize : m_innerSize;
- }
-
- inline Index cols() const {
- return IsRowMajor ? m_innerSize : m_outerSize;
- }
-
- inline Index innerSize() const {
- return m_innerSize;
- }
-
- inline Index outerSize() const {
- return m_outerSize;
- }
-
- inline Index upperNonZeros() const {
- return m_data.upperSize();
- }
-
- inline Index lowerNonZeros() const {
- return m_data.lowerSize();
- }
-
- inline Index upperNonZeros(Index j) const {
- return m_colStartIndex[j + 1] - m_colStartIndex[j];
- }
-
- inline Index lowerNonZeros(Index j) const {
- return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
- }
-
- inline const Scalar* _diagPtr() const {
- return &m_data.diag(0);
- }
-
- inline Scalar* _diagPtr() {
- return &m_data.diag(0);
- }
-
- inline const Scalar* _upperPtr() const {
- return &m_data.upper(0);
- }
-
- inline Scalar* _upperPtr() {
- return &m_data.upper(0);
- }
-
- inline const Scalar* _lowerPtr() const {
- return &m_data.lower(0);
- }
-
- inline Scalar* _lowerPtr() {
- return &m_data.lower(0);
- }
-
- inline const Index* _upperProfilePtr() const {
- return &m_data.upperProfile(0);
- }
-
- inline Index* _upperProfilePtr() {
- return &m_data.upperProfile(0);
- }
-
- inline const Index* _lowerProfilePtr() const {
- return &m_data.lowerProfile(0);
- }
-
- inline Index* _lowerProfilePtr() {
- return &m_data.lowerProfile(0);
- }
-
- inline Scalar coeff(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return this->m_data.diag(outer);
-
- if (IsRowMajor) {
- if (inner > outer) //upper matrix
- {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- if (outer >= minOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- else
- return Scalar(0);
- }
- if (inner < outer) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner >= minInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- else
- return Scalar(0);
- }
- return m_data.upper(m_colStartIndex[inner] + outer - inner);
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer <= maxOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- else
- return Scalar(0);
- }
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
-
- if (inner <= maxInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- else
- return Scalar(0);
- }
- }
- }
-
- inline Scalar& coeffRef(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return this->m_data.diag(outer);
-
- if (IsRowMajor) {
- if (col > row) //upper matrix
- {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- }
- if (col < row) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- }
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- }
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- }
- }
- }
-
- inline Scalar coeffDiag(Index idx) const {
- eigen_assert(idx < outerSize());
- eigen_assert(idx < innerSize());
- return this->m_data.diag(idx);
- }
-
- inline Scalar coeffLower(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner >= minInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- else
- return Scalar(0);
-
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- if (inner <= maxInnerIndex)
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- else
- return Scalar(0);
- }
- }
-
- inline Scalar coeffUpper(Index row, Index col) const {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- if (outer >= minOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- else
- return Scalar(0);
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer <= maxOuterIndex)
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- else
- return Scalar(0);
- }
- }
-
- inline Scalar& coeffRefDiag(Index idx) {
- eigen_assert(idx < outerSize());
- eigen_assert(idx < innerSize());
- return this->m_data.diag(idx);
- }
-
- inline Scalar& coeffRefLower(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
- }
- }
-
- inline bool coeffExistLower(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- return inner >= minInnerIndex;
- } else {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- return inner <= maxInnerIndex;
- }
- }
-
- inline Scalar& coeffRefUpper(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
- return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
- }
- }
-
- inline bool coeffExistUpper(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
- eigen_assert(inner != outer);
-
- if (IsRowMajor) {
- const Index minOuterIndex = inner - m_data.upperProfile(inner);
- return outer >= minOuterIndex;
- } else {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- return outer <= maxOuterIndex;
- }
- }
-
-
-protected:
-
-public:
- class InnerUpperIterator;
- class InnerLowerIterator;
-
- class OuterUpperIterator;
- class OuterLowerIterator;
-
- /** Removes all non zeros */
- inline void setZero() {
- m_data.clear();
- memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
- memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
- }
-
- /** \returns the number of non zero coefficients */
- inline Index nonZeros() const {
- return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
- }
-
- /** Preallocates \a reserveSize non zeros */
- inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
- m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
- }
-
- /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
-
- *
- * \warning This function can be extremely slow if the non zero coefficients
- * are not inserted in a coherent order.
- *
- * After an insertion session, you should call the finalize() function.
- */
- EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(outer < outerSize());
- eigen_assert(inner < innerSize());
-
- if (outer == inner)
- return m_data.diag(col);
-
- if (IsRowMajor) {
- if (outer < inner) //upper matrix
- {
- Index minOuterIndex = 0;
- minOuterIndex = inner - m_data.upperProfile(inner);
-
- if (outer < minOuterIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.upperProfile(inner);
-
- m_data.upperProfile(inner) = inner - outer;
-
-
- const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_colStartIndex[cols()];
- const Index start = m_colStartIndex[inner];
-
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
- }
-
- for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
- m_colStartIndex[innerIdx] += bandIncrement;
- }
-
- //zeros new data
- memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
-
- return m_data.upper(m_colStartIndex[inner]);
- } else {
- return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
- }
- }
-
- if (outer > inner) //lower matrix
- {
- const Index minInnerIndex = outer - m_data.lowerProfile(outer);
- if (inner < minInnerIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.lowerProfile(outer);
- m_data.lowerProfile(outer) = outer - inner;
-
- const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_rowStartIndex[rows()];
- const Index start = m_rowStartIndex[outer];
-
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
- }
-
- for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
- m_rowStartIndex[innerIdx] += bandIncrement;
- }
-
- //zeros new data
- memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.lower(m_rowStartIndex[outer]);
- } else {
- return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
- }
- }
- } else {
- if (outer > inner) //upper matrix
- {
- const Index maxOuterIndex = inner + m_data.upperProfile(inner);
- if (outer > maxOuterIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.upperProfile(inner);
- m_data.upperProfile(inner) = outer - inner;
-
- const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_rowStartIndex[rows()];
- const Index start = m_rowStartIndex[inner + 1];
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
- }
-
- for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
- m_rowStartIndex[innerIdx] += bandIncrement;
- }
- memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
- } else {
- return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
- }
- }
-
- if (outer < inner) //lower matrix
- {
- const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
- if (inner > maxInnerIndex) //The value does not yet exist
- {
- const Index previousProfile = m_data.lowerProfile(outer);
- m_data.lowerProfile(outer) = inner - outer;
-
- const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
- //shift data stored after this new one
- const Index stop = m_colStartIndex[cols()];
- const Index start = m_colStartIndex[outer + 1];
-
- for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
- m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
- }
-
- for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
- m_colStartIndex[innerIdx] += bandIncrement;
- }
- memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
- return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
- } else {
- return m_data.lower(m_colStartIndex[outer] + (inner - outer));
- }
- }
- }
- }
-
- /** Must be called after inserting a set of non zero entries.
- */
- inline void finalize() {
- if (IsRowMajor) {
- if (rows() > cols())
- m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
- else
- m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
-
- // eigen_assert(rows() == cols() && "memory reorganisatrion only works with suare matrix");
- //
- // Scalar* newArray = new Scalar[m_colStartIndex[cols()] + 1 + m_rowStartIndex[rows()] + 1];
- // Index dataIdx = 0;
- // for (Index row = 0; row < rows(); row++) {
- //
- // const Index nbLowerElts = m_rowStartIndex[row + 1] - m_rowStartIndex[row];
- // // std::cout << "nbLowerElts" << nbLowerElts << std::endl;
- // memcpy(newArray + dataIdx, m_data.m_lower + m_rowStartIndex[row], nbLowerElts * sizeof (Scalar));
- // m_rowStartIndex[row] = dataIdx;
- // dataIdx += nbLowerElts;
- //
- // const Index nbUpperElts = m_colStartIndex[row + 1] - m_colStartIndex[row];
- // memcpy(newArray + dataIdx, m_data.m_upper + m_colStartIndex[row], nbUpperElts * sizeof (Scalar));
- // m_colStartIndex[row] = dataIdx;
- // dataIdx += nbUpperElts;
- //
- //
- // }
- // //todo : don't access m_data profile directly : add an accessor from SkylineMatrix
- // m_rowStartIndex[rows()] = m_rowStartIndex[rows()-1] + m_data.lowerProfile(rows()-1);
- // m_colStartIndex[cols()] = m_colStartIndex[cols()-1] + m_data.upperProfile(cols()-1);
- //
- // delete[] m_data.m_lower;
- // delete[] m_data.m_upper;
- //
- // m_data.m_lower = newArray;
- // m_data.m_upper = newArray;
- } else {
- if (rows() > cols())
- m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
- else
- m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
- }
- }
-
- inline void squeeze() {
- finalize();
- m_data.squeeze();
- }
-
- void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
- //TODO
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
- * \sa resizeNonZeros(Index), reserve(), setZero()
- */
- void resize(size_t rows, size_t cols) {
- const Index diagSize = rows > cols ? cols : rows;
- m_innerSize = IsRowMajor ? cols : rows;
-
- eigen_assert(rows == cols && "Skyline matrix must be square matrix");
-
- if (diagSize % 2) { // diagSize is odd
- const Index k = (diagSize - 1) / 2;
-
- m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
- 2 * k * k + k + 1,
- 2 * k * k + k + 1);
-
- } else // diagSize is even
- {
- const Index k = diagSize / 2;
- m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
- 2 * k * k - k + 1,
- 2 * k * k - k + 1);
- }
-
- if (m_colStartIndex && m_rowStartIndex) {
- delete[] m_colStartIndex;
- delete[] m_rowStartIndex;
- }
- m_colStartIndex = new Index [cols + 1];
- m_rowStartIndex = new Index [rows + 1];
- m_outerSize = diagSize;
-
- m_data.reset();
- m_data.clear();
-
- m_outerSize = diagSize;
- memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
- memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
- }
-
- void resizeNonZeros(Index size) {
- m_data.resize(size);
- }
-
- inline SkylineMatrix()
- : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- resize(0, 0);
- }
-
- inline SkylineMatrix(size_t rows, size_t cols)
- : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- resize(rows, cols);
- }
-
- template<typename OtherDerived>
- inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
- : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- *this = other.derived();
- }
-
- inline SkylineMatrix(const SkylineMatrix & other)
- : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
- *this = other.derived();
- }
-
- inline void swap(SkylineMatrix & other) {
- //EIGEN_DBG_SKYLINE(std::cout << "SkylineMatrix:: swap\n");
- std::swap(m_colStartIndex, other.m_colStartIndex);
- std::swap(m_rowStartIndex, other.m_rowStartIndex);
- std::swap(m_innerSize, other.m_innerSize);
- std::swap(m_outerSize, other.m_outerSize);
- m_data.swap(other.m_data);
- }
-
- inline SkylineMatrix & operator=(const SkylineMatrix & other) {
- std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
- if (other.isRValue()) {
- swap(other.const_cast_derived());
- } else {
- resize(other.rows(), other.cols());
- memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
- memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
- m_data = other.m_data;
- }
- return *this;
- }
-
- template<typename OtherDerived>
- inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
- const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- if (needToTranspose) {
- // TODO
- // return *this;
- } else {
- // there is no special optimization
- return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
- }
- }
-
- friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {
-
- EIGEN_DBG_SKYLINE(
- std::cout << "upper elements : " << std::endl;
- for (Index i = 0; i < m.m_data.upperSize(); i++)
- std::cout << m.m_data.upper(i) << "\t";
- std::cout << std::endl;
- std::cout << "upper profile : " << std::endl;
- for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
- std::cout << m.m_data.upperProfile(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower startIdx : " << std::endl;
- for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
- std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
- std::cout << std::endl;
-
-
- std::cout << "lower elements : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerSize(); i++)
- std::cout << m.m_data.lower(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower profile : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
- std::cout << m.m_data.lowerProfile(i) << "\t";
- std::cout << std::endl;
- std::cout << "lower startIdx : " << std::endl;
- for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
- std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
- std::cout << std::endl;
- );
- for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
- for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
- s << m.coeff(rowIdx, colIdx) << "\t";
- }
- s << std::endl;
- }
- return s;
- }
-
- /** Destructor */
- inline ~SkylineMatrix() {
- delete[] m_colStartIndex;
- delete[] m_rowStartIndex;
- }
-
- /** Overloaded for performance */
- Scalar sum() const;
-};
-
-template<typename Scalar, int _Options>
-class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
-public:
-
- InnerUpperIterator(const SkylineMatrix& mat, Index outer)
- : m_matrix(mat), m_outer(outer),
- m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
- m_start(m_id),
- m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
- }
-
- inline InnerUpperIterator & operator++() {
- m_id++;
- return *this;
- }
-
- inline InnerUpperIterator & operator+=(Index shift) {
- m_id += shift;
- return *this;
- }
-
- inline Scalar value() const {
- return m_matrix.m_data.upper(m_id);
- }
-
- inline Scalar* valuePtr() {
- return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
- }
-
- inline Scalar& valueRef() {
- return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
- }
-
- inline Index index() const {
- return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
- m_outer + (m_id - m_start) + 1;
- }
-
- inline Index row() const {
- return IsRowMajor ? index() : m_outer;
- }
-
- inline Index col() const {
- return IsRowMajor ? m_outer : index();
- }
-
- inline size_t size() const {
- return m_matrix.m_data.upperProfile(m_outer);
- }
-
- inline operator bool() const {
- return (m_id < m_end) && (m_id >= m_start);
- }
-
-protected:
- const SkylineMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-template<typename Scalar, int _Options>
-class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
-public:
-
- InnerLowerIterator(const SkylineMatrix& mat, Index outer)
- : m_matrix(mat),
- m_outer(outer),
- m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
- m_start(m_id),
- m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
- }
-
- inline InnerLowerIterator & operator++() {
- m_id++;
- return *this;
- }
-
- inline InnerLowerIterator & operator+=(Index shift) {
- m_id += shift;
- return *this;
- }
-
- inline Scalar value() const {
- return m_matrix.m_data.lower(m_id);
- }
-
- inline Scalar* valuePtr() {
- return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
- }
-
- inline Scalar& valueRef() {
- return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
- }
-
- inline Index index() const {
- return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
- m_outer + (m_id - m_start) + 1;
- ;
- }
-
- inline Index row() const {
- return IsRowMajor ? m_outer : index();
- }
-
- inline Index col() const {
- return IsRowMajor ? index() : m_outer;
- }
-
- inline size_t size() const {
- return m_matrix.m_data.lowerProfile(m_outer);
- }
-
- inline operator bool() const {
- return (m_id < m_end) && (m_id >= m_start);
- }
-
-protected:
- const SkylineMatrix& m_matrix;
- const Index m_outer;
- Index m_id;
- const Index m_start;
- const Index m_end;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SkylineMatrix_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
deleted file mode 100644
index b3a2372..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
+++ /dev/null
@@ -1,212 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEMATRIXBASE_H
-#define EIGEN_SKYLINEMATRIXBASE_H
-
-#include "SkylineUtil.h"
-
-namespace Eigen {
-
-/** \ingroup Skyline_Module
- *
- * \class SkylineMatrixBase
- *
- * \brief Base class of any skyline matrices or skyline expressions
- *
- * \param Derived
- *
- */
-template<typename Derived> class SkylineMatrixBase : public EigenBase<Derived> {
-public:
-
- typedef typename internal::traits<Derived>::Scalar Scalar;
- typedef typename internal::traits<Derived>::StorageKind StorageKind;
- typedef typename internal::index<StorageKind>::type Index;
-
- enum {
- RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
- /**< The number of rows at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
-
- ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
- /**< The number of columns at compile-time. This is just a copy of the value provided
- * by the \a Derived type. If a value is not known at compile-time,
- * it is set to the \a Dynamic constant.
- * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
-
-
- SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
- internal::traits<Derived>::ColsAtCompileTime>::ret),
- /**< This is equal to the number of coefficients, i.e. the number of
- * rows times the number of columns, or to \a Dynamic if this is not
- * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
-
- MaxRowsAtCompileTime = RowsAtCompileTime,
- MaxColsAtCompileTime = ColsAtCompileTime,
-
- MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
- MaxColsAtCompileTime>::ret),
-
- IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
- /**< This is set to true if either the number of rows or the number of
- * columns is known at compile-time to be equal to 1. Indeed, in that case,
- * we are dealing with a column-vector (if there is only one column) or with
- * a row-vector (if there is only one row). */
-
- Flags = internal::traits<Derived>::Flags,
- /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
- * constructed from this one. See the \ref flags "list of flags".
- */
-
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
- IsRowMajor = Flags & RowMajorBit ? 1 : 0
- };
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** This is the "real scalar" type; if the \a Scalar type is already real numbers
- * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
- * \a Scalar is \a std::complex<T> then RealScalar is \a T.
- *
- * \sa class NumTraits
- */
- typedef typename NumTraits<Scalar>::Real RealScalar;
-
- /** type of the equivalent square matrix */
- typedef Matrix<Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime),
- EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime) > SquareMatrixType;
-
- inline const Derived& derived() const {
- return *static_cast<const Derived*> (this);
- }
-
- inline Derived& derived() {
- return *static_cast<Derived*> (this);
- }
-
- inline Derived& const_cast_derived() const {
- return *static_cast<Derived*> (const_cast<SkylineMatrixBase*> (this));
- }
-#endif // not EIGEN_PARSED_BY_DOXYGEN
-
- /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
- inline Index rows() const {
- return derived().rows();
- }
-
- /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
- inline Index cols() const {
- return derived().cols();
- }
-
- /** \returns the number of coefficients, which is \a rows()*cols().
- * \sa rows(), cols(), SizeAtCompileTime. */
- inline Index size() const {
- return rows() * cols();
- }
-
- /** \returns the number of nonzero coefficients which is in practice the number
- * of stored coefficients. */
- inline Index nonZeros() const {
- return derived().nonZeros();
- }
-
- /** \returns the size of the storage major dimension,
- * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
- Index outerSize() const {
- return (int(Flags) & RowMajorBit) ? this->rows() : this->cols();
- }
-
- /** \returns the size of the inner dimension according to the storage order,
- * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
- Index innerSize() const {
- return (int(Flags) & RowMajorBit) ? this->cols() : this->rows();
- }
-
- bool isRValue() const {
- return m_isRValue;
- }
-
- Derived& markAsRValue() {
- m_isRValue = true;
- return derived();
- }
-
- SkylineMatrixBase() : m_isRValue(false) {
- /* TODO check flags */
- }
-
- inline Derived & operator=(const Derived& other) {
- this->operator=<Derived > (other);
- return derived();
- }
-
- template<typename OtherDerived>
- inline void assignGeneric(const OtherDerived& other) {
- derived().resize(other.rows(), other.cols());
- for (Index row = 0; row < rows(); row++)
- for (Index col = 0; col < cols(); col++) {
- if (other.coeff(row, col) != Scalar(0))
- derived().insert(row, col) = other.coeff(row, col);
- }
- derived().finalize();
- }
-
- template<typename OtherDerived>
- inline Derived & operator=(const SkylineMatrixBase<OtherDerived>& other) {
- //TODO
- }
-
- template<typename Lhs, typename Rhs>
- inline Derived & operator=(const SkylineProduct<Lhs, Rhs, SkylineTimeSkylineProduct>& product);
-
- friend std::ostream & operator <<(std::ostream & s, const SkylineMatrixBase& m) {
- s << m.derived();
- return s;
- }
-
- template<typename OtherDerived>
- const typename SkylineProductReturnType<Derived, OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-
- /** \internal use operator= */
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& dst) const {
- dst.setZero();
- for (Index i = 0; i < rows(); i++)
- for (Index j = 0; j < rows(); j++)
- dst(i, j) = derived().coeff(i, j);
- }
-
- Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime> toDense() const {
- return derived();
- }
-
- /** \returns the matrix or vector obtained by evaluating this expression.
- *
- * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
- * a const reference, in order to avoid a useless copy.
- */
- EIGEN_STRONG_INLINE const typename internal::eval<Derived, IsSkyline>::type eval() const {
- return typename internal::eval<Derived>::type(derived());
- }
-
-protected:
- bool m_isRValue;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_SkylineMatrixBase_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h b/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
deleted file mode 100644
index d9eb814..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
+++ /dev/null
@@ -1,295 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEPRODUCT_H
-#define EIGEN_SKYLINEPRODUCT_H
-
-namespace Eigen {
-
-template<typename Lhs, typename Rhs, int ProductMode>
-struct SkylineProductReturnType {
- typedef const typename internal::nested_eval<Lhs, Rhs::RowsAtCompileTime>::type LhsNested;
- typedef const typename internal::nested_eval<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef SkylineProduct<LhsNested, RhsNested, ProductMode> Type;
-};
-
-template<typename LhsNested, typename RhsNested, int ProductMode>
-struct internal::traits<SkylineProduct<LhsNested, RhsNested, ProductMode> > {
- // clean the nested types:
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
- typedef typename _LhsNested::Scalar Scalar;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
- ResultIsSkyline = ProductMode == SkylineTimeSkylineProduct,
-
- RemovedBits = ~((EvalToRowMajor ? 0 : RowMajorBit) | (ResultIsSkyline ? 0 : SkylineBit)),
-
- Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeAssigningBit
- | EvalBeforeNestingBit,
-
- CoeffReadCost = HugeCost
- };
-
- typedef typename internal::conditional<ResultIsSkyline,
- SkylineMatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> >,
- MatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> > >::type Base;
-};
-
-namespace internal {
-template<typename LhsNested, typename RhsNested, int ProductMode>
-class SkylineProduct : no_assignment_operator,
-public traits<SkylineProduct<LhsNested, RhsNested, ProductMode> >::Base {
-public:
-
- EIGEN_GENERIC_PUBLIC_INTERFACE(SkylineProduct)
-
-private:
-
- typedef typename traits<SkylineProduct>::_LhsNested _LhsNested;
- typedef typename traits<SkylineProduct>::_RhsNested _RhsNested;
-
-public:
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SkylineProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs) {
- eigen_assert(lhs.cols() == rhs.rows());
-
- enum {
- ProductIsValid = _LhsNested::ColsAtCompileTime == Dynamic
- || _RhsNested::RowsAtCompileTime == Dynamic
- || int(_LhsNested::ColsAtCompileTime) == int(_RhsNested::RowsAtCompileTime),
- AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested, _RhsNested)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwise()*v2
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- }
-
- EIGEN_STRONG_INLINE Index rows() const {
- return m_lhs.rows();
- }
-
- EIGEN_STRONG_INLINE Index cols() const {
- return m_rhs.cols();
- }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const {
- return m_lhs;
- }
-
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const {
- return m_rhs;
- }
-
-protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
-};
-
-// dense = skyline * dense
-// Note that here we force no inlining and separate the setZero() because GCC messes up otherwise
-
-template<typename Lhs, typename Rhs, typename Dest>
-EIGEN_DONT_INLINE void skyline_row_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename traits<Lhs>::Scalar Scalar;
-
- enum {
- LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
- LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
- ProcessFirstHalf = LhsIsSelfAdjoint
- && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
- || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
- || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
- ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
- };
-
- //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
- for (Index col = 0; col < rhs.cols(); col++) {
- for (Index row = 0; row < lhs.rows(); row++) {
- dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
- }
- }
- //Use matrix lower triangular part
- for (Index row = 0; row < lhs.rows(); row++) {
- typename _Lhs::InnerLowerIterator lIt(lhs, row);
- const Index stop = lIt.col() + lIt.size();
- for (Index col = 0; col < rhs.cols(); col++) {
-
- Index k = lIt.col();
- Scalar tmp = 0;
- while (k < stop) {
- tmp +=
- lIt.value() *
- rhs(k++, col);
- ++lIt;
- }
- dst(row, col) += tmp;
- lIt += -lIt.size();
- }
-
- }
-
- //Use matrix upper triangular part
- for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
- typename _Lhs::InnerUpperIterator uIt(lhs, lhscol);
- const Index stop = uIt.size() + uIt.row();
- for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
-
-
- const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
- Index k = uIt.row();
- while (k < stop) {
- dst(k++, rhscol) +=
- uIt.value() *
- rhsCoeff;
- ++uIt;
- }
- uIt += -uIt.size();
- }
- }
-
-}
-
-template<typename Lhs, typename Rhs, typename Dest>
-EIGEN_DONT_INLINE void skyline_col_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename traits<Lhs>::Scalar Scalar;
-
- enum {
- LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
- LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
- ProcessFirstHalf = LhsIsSelfAdjoint
- && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
- || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
- || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
- ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
- };
-
- //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
- for (Index col = 0; col < rhs.cols(); col++) {
- for (Index row = 0; row < lhs.rows(); row++) {
- dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
- }
- }
-
- //Use matrix upper triangular part
- for (Index row = 0; row < lhs.rows(); row++) {
- typename _Lhs::InnerUpperIterator uIt(lhs, row);
- const Index stop = uIt.col() + uIt.size();
- for (Index col = 0; col < rhs.cols(); col++) {
-
- Index k = uIt.col();
- Scalar tmp = 0;
- while (k < stop) {
- tmp +=
- uIt.value() *
- rhs(k++, col);
- ++uIt;
- }
-
-
- dst(row, col) += tmp;
- uIt += -uIt.size();
- }
- }
-
- //Use matrix lower triangular part
- for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
- typename _Lhs::InnerLowerIterator lIt(lhs, lhscol);
- const Index stop = lIt.size() + lIt.row();
- for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
-
- const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
- Index k = lIt.row();
- while (k < stop) {
- dst(k++, rhscol) +=
- lIt.value() *
- rhsCoeff;
- ++lIt;
- }
- lIt += -lIt.size();
- }
- }
-
-}
-
-template<typename Lhs, typename Rhs, typename ResultType,
- int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit>
- struct skyline_product_selector;
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct skyline_product_selector<Lhs, Rhs, ResultType, RowMajor> {
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
- skyline_row_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename ResultType>
-struct skyline_product_selector<Lhs, Rhs, ResultType, ColMajor> {
- typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
-
- static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
- skyline_col_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
- }
-};
-
-} // end namespace internal
-
-// template<typename Derived>
-// template<typename Lhs, typename Rhs >
-// Derived & MatrixBase<Derived>::lazyAssign(const SkylineProduct<Lhs, Rhs, SkylineTimeDenseProduct>& product) {
-// typedef typename internal::remove_all<Lhs>::type _Lhs;
-// internal::skyline_product_selector<typename internal::remove_all<Lhs>::type,
-// typename internal::remove_all<Rhs>::type,
-// Derived>::run(product.lhs(), product.rhs(), derived());
-//
-// return derived();
-// }
-
-// skyline * dense
-
-template<typename Derived>
-template<typename OtherDerived >
-EIGEN_STRONG_INLINE const typename SkylineProductReturnType<Derived, OtherDerived>::Type
-SkylineMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const {
-
- return typename SkylineProductReturnType<Derived, OtherDerived>::Type(derived(), other.derived());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINEPRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h b/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
deleted file mode 100644
index 378a8de..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
+++ /dev/null
@@ -1,259 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINE_STORAGE_H
-#define EIGEN_SKYLINE_STORAGE_H
-
-namespace Eigen {
-
-/** Stores a skyline set of values in three structures :
- * The diagonal elements
- * The upper elements
- * The lower elements
- *
- */
-template<typename Scalar>
-class SkylineStorage {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef SparseIndex Index;
-public:
-
- SkylineStorage()
- : m_diag(0),
- m_lower(0),
- m_upper(0),
- m_lowerProfile(0),
- m_upperProfile(0),
- m_diagSize(0),
- m_upperSize(0),
- m_lowerSize(0),
- m_upperProfileSize(0),
- m_lowerProfileSize(0),
- m_allocatedSize(0) {
- }
-
- SkylineStorage(const SkylineStorage& other)
- : m_diag(0),
- m_lower(0),
- m_upper(0),
- m_lowerProfile(0),
- m_upperProfile(0),
- m_diagSize(0),
- m_upperSize(0),
- m_lowerSize(0),
- m_upperProfileSize(0),
- m_lowerProfileSize(0),
- m_allocatedSize(0) {
- *this = other;
- }
-
- SkylineStorage & operator=(const SkylineStorage& other) {
- resize(other.diagSize(), other.m_upperProfileSize, other.m_lowerProfileSize, other.upperSize(), other.lowerSize());
- memcpy(m_diag, other.m_diag, m_diagSize * sizeof (Scalar));
- memcpy(m_upper, other.m_upper, other.upperSize() * sizeof (Scalar));
- memcpy(m_lower, other.m_lower, other.lowerSize() * sizeof (Scalar));
- memcpy(m_upperProfile, other.m_upperProfile, m_upperProfileSize * sizeof (Index));
- memcpy(m_lowerProfile, other.m_lowerProfile, m_lowerProfileSize * sizeof (Index));
- return *this;
- }
-
- void swap(SkylineStorage& other) {
- std::swap(m_diag, other.m_diag);
- std::swap(m_upper, other.m_upper);
- std::swap(m_lower, other.m_lower);
- std::swap(m_upperProfile, other.m_upperProfile);
- std::swap(m_lowerProfile, other.m_lowerProfile);
- std::swap(m_diagSize, other.m_diagSize);
- std::swap(m_upperSize, other.m_upperSize);
- std::swap(m_lowerSize, other.m_lowerSize);
- std::swap(m_allocatedSize, other.m_allocatedSize);
- }
-
- ~SkylineStorage() {
- delete[] m_diag;
- delete[] m_upper;
- if (m_upper != m_lower)
- delete[] m_lower;
- delete[] m_upperProfile;
- delete[] m_lowerProfile;
- }
-
- void reserve(Index size, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
- Index newAllocatedSize = size + upperSize + lowerSize;
- if (newAllocatedSize > m_allocatedSize)
- reallocate(size, upperProfileSize, lowerProfileSize, upperSize, lowerSize);
- }
-
- void squeeze() {
- if (m_allocatedSize > m_diagSize + m_upperSize + m_lowerSize)
- reallocate(m_diagSize, m_upperProfileSize, m_lowerProfileSize, m_upperSize, m_lowerSize);
- }
-
- void resize(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize, float reserveSizeFactor = 0) {
- if (m_allocatedSize < diagSize + upperSize + lowerSize)
- reallocate(diagSize, upperProfileSize, lowerProfileSize, upperSize + Index(reserveSizeFactor * upperSize), lowerSize + Index(reserveSizeFactor * lowerSize));
- m_diagSize = diagSize;
- m_upperSize = upperSize;
- m_lowerSize = lowerSize;
- m_upperProfileSize = upperProfileSize;
- m_lowerProfileSize = lowerProfileSize;
- }
-
- inline Index diagSize() const {
- return m_diagSize;
- }
-
- inline Index upperSize() const {
- return m_upperSize;
- }
-
- inline Index lowerSize() const {
- return m_lowerSize;
- }
-
- inline Index upperProfileSize() const {
- return m_upperProfileSize;
- }
-
- inline Index lowerProfileSize() const {
- return m_lowerProfileSize;
- }
-
- inline Index allocatedSize() const {
- return m_allocatedSize;
- }
-
- inline void clear() {
- m_diagSize = 0;
- }
-
- inline Scalar& diag(Index i) {
- return m_diag[i];
- }
-
- inline const Scalar& diag(Index i) const {
- return m_diag[i];
- }
-
- inline Scalar& upper(Index i) {
- return m_upper[i];
- }
-
- inline const Scalar& upper(Index i) const {
- return m_upper[i];
- }
-
- inline Scalar& lower(Index i) {
- return m_lower[i];
- }
-
- inline const Scalar& lower(Index i) const {
- return m_lower[i];
- }
-
- inline Index& upperProfile(Index i) {
- return m_upperProfile[i];
- }
-
- inline const Index& upperProfile(Index i) const {
- return m_upperProfile[i];
- }
-
- inline Index& lowerProfile(Index i) {
- return m_lowerProfile[i];
- }
-
- inline const Index& lowerProfile(Index i) const {
- return m_lowerProfile[i];
- }
-
- static SkylineStorage Map(Index* upperProfile, Index* lowerProfile, Scalar* diag, Scalar* upper, Scalar* lower, Index size, Index upperSize, Index lowerSize) {
- SkylineStorage res;
- res.m_upperProfile = upperProfile;
- res.m_lowerProfile = lowerProfile;
- res.m_diag = diag;
- res.m_upper = upper;
- res.m_lower = lower;
- res.m_allocatedSize = res.m_diagSize = size;
- res.m_upperSize = upperSize;
- res.m_lowerSize = lowerSize;
- return res;
- }
-
- inline void reset() {
- memset(m_diag, 0, m_diagSize * sizeof (Scalar));
- memset(m_upper, 0, m_upperSize * sizeof (Scalar));
- memset(m_lower, 0, m_lowerSize * sizeof (Scalar));
- memset(m_upperProfile, 0, m_diagSize * sizeof (Index));
- memset(m_lowerProfile, 0, m_diagSize * sizeof (Index));
- }
-
- void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>()) {
- //TODO
- }
-
-protected:
-
- inline void reallocate(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
-
- Scalar* diag = new Scalar[diagSize];
- Scalar* upper = new Scalar[upperSize];
- Scalar* lower = new Scalar[lowerSize];
- Index* upperProfile = new Index[upperProfileSize];
- Index* lowerProfile = new Index[lowerProfileSize];
-
- Index copyDiagSize = (std::min)(diagSize, m_diagSize);
- Index copyUpperSize = (std::min)(upperSize, m_upperSize);
- Index copyLowerSize = (std::min)(lowerSize, m_lowerSize);
- Index copyUpperProfileSize = (std::min)(upperProfileSize, m_upperProfileSize);
- Index copyLowerProfileSize = (std::min)(lowerProfileSize, m_lowerProfileSize);
-
- // copy
- memcpy(diag, m_diag, copyDiagSize * sizeof (Scalar));
- memcpy(upper, m_upper, copyUpperSize * sizeof (Scalar));
- memcpy(lower, m_lower, copyLowerSize * sizeof (Scalar));
- memcpy(upperProfile, m_upperProfile, copyUpperProfileSize * sizeof (Index));
- memcpy(lowerProfile, m_lowerProfile, copyLowerProfileSize * sizeof (Index));
-
-
-
- // delete old stuff
- delete[] m_diag;
- delete[] m_upper;
- delete[] m_lower;
- delete[] m_upperProfile;
- delete[] m_lowerProfile;
- m_diag = diag;
- m_upper = upper;
- m_lower = lower;
- m_upperProfile = upperProfile;
- m_lowerProfile = lowerProfile;
- m_allocatedSize = diagSize + upperSize + lowerSize;
- m_upperSize = upperSize;
- m_lowerSize = lowerSize;
- }
-
-public:
- Scalar* m_diag;
- Scalar* m_upper;
- Scalar* m_lower;
- Index* m_upperProfile;
- Index* m_lowerProfile;
- Index m_diagSize;
- Index m_upperSize;
- Index m_lowerSize;
- Index m_upperProfileSize;
- Index m_lowerProfileSize;
- Index m_allocatedSize;
-
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPRESSED_STORAGE_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h b/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
deleted file mode 100644
index 75eb612..0000000
--- a/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
+++ /dev/null
@@ -1,89 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Guillaume Saupin <guillaume.saupin@cea.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SKYLINEUTIL_H
-#define EIGEN_SKYLINEUTIL_H
-
-namespace Eigen {
-
-#ifdef NDEBUG
-#define EIGEN_DBG_SKYLINE(X)
-#else
-#define EIGEN_DBG_SKYLINE(X) X
-#endif
-
-const unsigned int SkylineBit = 0x1200;
-template<typename Lhs, typename Rhs, int ProductMode> class SkylineProduct;
-enum AdditionalProductEvaluationMode {SkylineTimeDenseProduct, SkylineTimeSkylineProduct, DenseTimeSkylineProduct};
-enum {IsSkyline = SkylineBit};
-
-
-#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename OtherDerived> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SkylineMatrixBase<OtherDerived>& other) \
-{ \
- return Base::operator Op(other.derived()); \
-} \
-EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
-{ \
- return Base::operator Op(other); \
-}
-
-#define EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
-template<typename Other> \
-EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
-{ \
- return Base::operator Op(scalar); \
-}
-
-#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
- EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
- EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
- EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
-
-#define _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, BaseClass) \
- typedef BaseClass Base; \
- typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; \
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
- typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
- typedef typename Eigen::internal::index<StorageKind>::type Index; \
- enum { Flags = Eigen::internal::traits<Derived>::Flags, };
-
-#define EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived) \
- _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, Eigen::SkylineMatrixBase<Derived>)
-
-template<typename Derived> class SkylineMatrixBase;
-template<typename _Scalar, int _Flags = 0> class SkylineMatrix;
-template<typename _Scalar, int _Flags = 0> class DynamicSkylineMatrix;
-template<typename _Scalar, int _Flags = 0> class SkylineVector;
-template<typename _Scalar, int _Flags = 0> class MappedSkylineMatrix;
-
-namespace internal {
-
-template<typename Lhs, typename Rhs> struct skyline_product_mode;
-template<typename Lhs, typename Rhs, int ProductMode = skyline_product_mode<Lhs,Rhs>::value> struct SkylineProductReturnType;
-
-template<typename T> class eval<T,IsSkyline>
-{
- typedef typename traits<T>::Scalar _Scalar;
- enum {
- _Flags = traits<T>::Flags
- };
-
- public:
- typedef SkylineMatrix<_Scalar, _Flags> type;
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SKYLINEUTIL_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
deleted file mode 100644
index e9ec746..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
+++ /dev/null
@@ -1,122 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
-#define EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
-
-namespace Eigen {
-
-#if 0
-
-// NOTE Have to be reimplemented as a specialization of BlockImpl< DynamicSparseMatrix<_Scalar, _Options, _Index>, ... >
-// See SparseBlock.h for an example
-
-
-/***************************************************************************
-* specialisation for DynamicSparseMatrix
-***************************************************************************/
-
-template<typename _Scalar, int _Options, typename _Index, int Size>
-class SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size>
- : public SparseMatrixBase<SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size> >
-{
- typedef DynamicSparseMatrix<_Scalar, _Options, _Index> MatrixType;
- public:
-
- enum { IsRowMajor = internal::traits<SparseInnerVectorSet>::IsRowMajor };
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseInnerVectorSet)
- class InnerIterator: public MatrixType::InnerIterator
- {
- public:
- inline InnerIterator(const SparseInnerVectorSet& xpr, Index outer)
- : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
-
- inline SparseInnerVectorSet(const MatrixType& matrix, Index outerStart, Index outerSize)
- : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize)
- {
- eigen_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) );
- }
-
- inline SparseInnerVectorSet(const MatrixType& matrix, Index outer)
- : m_matrix(matrix), m_outerStart(outer), m_outerSize(Size)
- {
- eigen_assert(Size!=Dynamic);
- eigen_assert( (outer>=0) && (outer<matrix.outerSize()) );
- }
-
- template<typename OtherDerived>
- inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit))
- {
- // need to transpose => perform a block evaluation followed by a big swap
- DynamicSparseMatrix<Scalar,IsRowMajor?RowMajorBit:0> aux(other);
- *this = aux.markAsRValue();
- }
- else
- {
- // evaluate/copy vector per vector
- for (Index j=0; j<m_outerSize.value(); ++j)
- {
- SparseVector<Scalar,IsRowMajor ? RowMajorBit : 0> aux(other.innerVector(j));
- m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data());
- }
- }
- return *this;
- }
-
- inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other)
- {
- return operator=<SparseInnerVectorSet>(other);
- }
-
- Index nonZeros() const
- {
- Index count = 0;
- for (Index j=0; j<m_outerSize.value(); ++j)
- count += m_matrix._data()[m_outerStart+j].size();
- return count;
- }
-
- const Scalar& lastCoeff() const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(SparseInnerVectorSet);
- eigen_assert(m_matrix.data()[m_outerStart].size()>0);
- return m_matrix.data()[m_outerStart].vale(m_matrix.data()[m_outerStart].size()-1);
- }
-
-// template<typename Sparse>
-// inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
-// {
-// return *this;
-// }
-
- EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
-
- protected:
-
- const typename MatrixType::Nested m_matrix;
- Index m_outerStart;
- const internal::variable_if_dynamic<Index, Size> m_outerSize;
-
-};
-
-#endif
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
deleted file mode 100644
index 536a0c3..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h
+++ /dev/null
@@ -1,1079 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEBLOCKMATRIX_H
-#define EIGEN_SPARSEBLOCKMATRIX_H
-
-namespace Eigen {
-/** \ingroup SparseCore_Module
- *
- * \class BlockSparseMatrix
- *
- * \brief A versatile sparse matrix representation where each element is a block
- *
- * This class provides routines to manipulate block sparse matrices stored in a
- * BSR-like representation. There are two main types :
- *
- * 1. All blocks have the same number of rows and columns, called block size
- * in the following. In this case, if this block size is known at compile time,
- * it can be given as a template parameter like
- * \code
- * BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols);
- * \endcode
- * Here, bmat is a b_rows x b_cols block sparse matrix
- * where each coefficient is a 3x3 dense matrix.
- * If the block size is fixed but will be given at runtime,
- * \code
- * BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols);
- * bmat.setBlockSize(block_size);
- * \endcode
- *
- * 2. The second case is for variable-block sparse matrices.
- * Here each block has its own dimensions. The only restriction is that all the blocks
- * in a row (resp. a column) should have the same number of rows (resp. of columns).
- * It is thus required in this case to describe the layout of the matrix by calling
- * setBlockLayout(rowBlocks, colBlocks).
- *
- * In any of the previous case, the matrix can be filled by calling setFromTriplets().
- * A regular sparse matrix can be converted to a block sparse matrix and vice versa.
- * It is obviously required to describe the block layout beforehand by calling either
- * setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks.
- *
- * \tparam _Scalar The Scalar type
- * \tparam _BlockAtCompileTime The block layout option. It takes the following values
- * Dynamic : block size known at runtime
- * a numeric number : fixed-size block known at compile time
- */
-template<typename _Scalar, int _BlockAtCompileTime=Dynamic, int _Options=ColMajor, typename _StorageIndex=int> class BlockSparseMatrix;
-
-template<typename BlockSparseMatrixT> class BlockSparseMatrixView;
-
-namespace internal {
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _Index>
-struct traits<BlockSparseMatrix<_Scalar,_BlockAtCompileTime,_Options, _Index> >
-{
- typedef _Scalar Scalar;
- typedef _Index Index;
- typedef Sparse StorageKind; // FIXME Where is it used ??
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- BlockSize = _BlockAtCompileTime,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-template<typename BlockSparseMatrixT>
-struct traits<BlockSparseMatrixView<BlockSparseMatrixT> >
-{
- typedef Ref<Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > Scalar;
- typedef Ref<Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > RealScalar;
-
-};
-
-// Function object to sort a triplet list
-template<typename Iterator, bool IsColMajor>
-struct TripletComp
-{
- typedef typename Iterator::value_type Triplet;
- bool operator()(const Triplet& a, const Triplet& b)
- { if(IsColMajor)
- return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col()));
- else
- return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row()));
- }
-};
-} // end namespace internal
-
-
-/* Proxy to view the block sparse matrix as a regular sparse matrix */
-template<typename BlockSparseMatrixT>
-class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT>
-{
- public:
- typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar;
- typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar;
- typedef typename BlockSparseMatrixT::Index Index;
- typedef BlockSparseMatrixT Nested;
- enum {
- Flags = BlockSparseMatrixT::Options,
- Options = BlockSparseMatrixT::Options,
- RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime,
- ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime,
- MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime,
- MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime
- };
- public:
- BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat)
- : m_spblockmat(spblockmat)
- {}
-
- Index outerSize() const
- {
- return (Flags&RowMajorBit) == 1 ? this->rows() : this->cols();
- }
- Index cols() const
- {
- return m_spblockmat.blockCols();
- }
- Index rows() const
- {
- return m_spblockmat.blockRows();
- }
- Scalar coeff(Index row, Index col)
- {
- return m_spblockmat.coeff(row, col);
- }
- Scalar coeffRef(Index row, Index col)
- {
- return m_spblockmat.coeffRef(row, col);
- }
- // Wrapper to iterate over all blocks
- class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator
- {
- public:
- InnerIterator(const BlockSparseMatrixView& mat, Index outer)
- : BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer)
- {}
-
- };
-
- protected:
- const BlockSparseMatrixT& m_spblockmat;
-};
-
-// Proxy to view a regular vector as a block vector
-template<typename BlockSparseMatrixT, typename VectorType>
-class BlockVectorView
-{
- public:
- enum {
- BlockSize = BlockSparseMatrixT::BlockSize,
- ColsAtCompileTime = VectorType::ColsAtCompileTime,
- RowsAtCompileTime = VectorType::RowsAtCompileTime,
- Flags = VectorType::Flags
- };
- typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime==1)? 1 : BlockSize, (ColsAtCompileTime==1)? 1 : BlockSize> >Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- public:
- BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec)
- : m_spblockmat(spblockmat),m_vec(vec)
- { }
- inline Index cols() const
- {
- return m_vec.cols();
- }
- inline Index size() const
- {
- return m_spblockmat.blockRows();
- }
- inline Scalar coeff(Index bi) const
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.middleRows(startRow, rowSize);
- }
- inline Scalar coeff(Index bi, Index j) const
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.block(startRow, j, rowSize, 1);
- }
- protected:
- const BlockSparseMatrixT& m_spblockmat;
- const VectorType& m_vec;
-};
-
-template<typename VectorType, typename Index> class BlockVectorReturn;
-
-
-// Proxy to view a regular vector as a block vector
-template<typename BlockSparseMatrixT, typename VectorType>
-class BlockVectorReturn
-{
- public:
- enum {
- ColsAtCompileTime = VectorType::ColsAtCompileTime,
- RowsAtCompileTime = VectorType::RowsAtCompileTime,
- Flags = VectorType::Flags
- };
- typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- public:
- BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec)
- : m_spblockmat(spblockmat),m_vec(vec)
- { }
- inline Index size() const
- {
- return m_spblockmat.blockRows();
- }
- inline Scalar coeffRef(Index bi)
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.middleRows(startRow, rowSize);
- }
- inline Scalar coeffRef(Index bi, Index j)
- {
- Index startRow = m_spblockmat.blockRowsIndex(bi);
- Index rowSize = m_spblockmat.blockRowsIndex(bi+1) - startRow;
- return m_vec.block(startRow, j, rowSize, 1);
- }
-
- protected:
- const BlockSparseMatrixT& m_spblockmat;
- VectorType& m_vec;
-};
-
-// Block version of the sparse dense product
-template<typename Lhs, typename Rhs>
-class BlockSparseTimeDenseProduct;
-
-namespace internal {
-
-template<typename BlockSparseMatrixT, typename VecType>
-struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> >
-{
- typedef Dense StorageKind;
- typedef MatrixXpr XprKind;
- typedef typename BlockSparseMatrixT::Scalar Scalar;
- typedef typename BlockSparseMatrixT::Index Index;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = 0,
- CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost
- };
-};
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class BlockSparseTimeDenseProduct
- : public ProductBase<BlockSparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct)
-
- BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const
- {
- BlockVectorReturn<Lhs,Dest> tmpDest(m_lhs, dest);
- internal::sparse_time_dense_product( BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), tmpDest, alpha);
- }
-
- private:
- BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&);
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix : public SparseMatrixBase<BlockSparseMatrix<_Scalar,_BlockAtCompileTime, _Options,_StorageIndex> >
-{
- public:
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef _StorageIndex StorageIndex;
- typedef typename internal::ref_selector<BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex> >::type Nested;
-
- enum {
- Options = _Options,
- Flags = Options,
- BlockSize=_BlockAtCompileTime,
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- IsVectorAtCompileTime = 0,
- IsColMajor = Flags&RowMajorBit ? 0 : 1
- };
- typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockScalar;
- typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime,IsColMajor ? ColMajor : RowMajor> BlockRealScalar;
- typedef typename internal::conditional<_BlockAtCompileTime==Dynamic, Scalar, BlockScalar>::type BlockScalarReturnType;
- typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject;
- public:
- // Default constructor
- BlockSparseMatrix()
- : m_innerBSize(0),m_outerBSize(0),m_innerOffset(0),m_outerOffset(0),
- m_nonzerosblocks(0),m_values(0),m_blockPtr(0),m_indices(0),
- m_outerIndex(0),m_blockSize(BlockSize)
- { }
-
-
- /**
- * \brief Construct and resize
- *
- */
- BlockSparseMatrix(Index brow, Index bcol)
- : m_innerBSize(IsColMajor ? brow : bcol),
- m_outerBSize(IsColMajor ? bcol : brow),
- m_innerOffset(0),m_outerOffset(0),m_nonzerosblocks(0),
- m_values(0),m_blockPtr(0),m_indices(0),
- m_outerIndex(0),m_blockSize(BlockSize)
- { }
-
- /**
- * \brief Copy-constructor
- */
- BlockSparseMatrix(const BlockSparseMatrix& other)
- : m_innerBSize(other.m_innerBSize),m_outerBSize(other.m_outerBSize),
- m_nonzerosblocks(other.m_nonzerosblocks),m_nonzeros(other.m_nonzeros),
- m_blockPtr(0),m_blockSize(other.m_blockSize)
- {
- // should we allow copying between variable-size blocks and fixed-size blocks ??
- eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS");
-
- std::copy(other.m_innerOffset, other.m_innerOffset+m_innerBSize+1, m_innerOffset);
- std::copy(other.m_outerOffset, other.m_outerOffset+m_outerBSize+1, m_outerOffset);
- std::copy(other.m_values, other.m_values+m_nonzeros, m_values);
-
- if(m_blockSize != Dynamic)
- std::copy(other.m_blockPtr, other.m_blockPtr+m_nonzerosblocks, m_blockPtr);
-
- std::copy(other.m_indices, other.m_indices+m_nonzerosblocks, m_indices);
- std::copy(other.m_outerIndex, other.m_outerIndex+m_outerBSize, m_outerIndex);
- }
-
- friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second)
- {
- std::swap(first.m_innerBSize, second.m_innerBSize);
- std::swap(first.m_outerBSize, second.m_outerBSize);
- std::swap(first.m_innerOffset, second.m_innerOffset);
- std::swap(first.m_outerOffset, second.m_outerOffset);
- std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks);
- std::swap(first.m_nonzeros, second.m_nonzeros);
- std::swap(first.m_values, second.m_values);
- std::swap(first.m_blockPtr, second.m_blockPtr);
- std::swap(first.m_indices, second.m_indices);
- std::swap(first.m_outerIndex, second.m_outerIndex);
- std::swap(first.m_BlockSize, second.m_blockSize);
- }
-
- BlockSparseMatrix& operator=(BlockSparseMatrix other)
- {
- //Copy-and-swap paradigm ... avoid leaked data if thrown
- swap(*this, other);
- return *this;
- }
-
- // Destructor
- ~BlockSparseMatrix()
- {
- delete[] m_outerIndex;
- delete[] m_innerOffset;
- delete[] m_outerOffset;
- delete[] m_indices;
- delete[] m_blockPtr;
- delete[] m_values;
- }
-
-
- /**
- * \brief Constructor from a sparse matrix
- *
- */
- template<typename MatrixType>
- inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize)
- {
- EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE);
-
- *this = spmat;
- }
-
- /**
- * \brief Assignment from a sparse matrix with the same storage order
- *
- * Convert from a sparse matrix to block sparse matrix.
- * \warning Before calling this function, tt is necessary to call
- * either setBlockLayout() (matrices with variable-size blocks)
- * or setBlockSize() (for fixed-size blocks).
- */
- template<typename MatrixType>
- inline BlockSparseMatrix& operator=(const MatrixType& spmat)
- {
- eigen_assert((m_innerBSize != 0 && m_outerBSize != 0)
- && "Trying to assign to a zero-size matrix, call resize() first");
- eigen_assert(((MatrixType::Options&RowMajorBit) != IsColMajor) && "Wrong storage order");
- typedef SparseMatrix<bool,MatrixType::Options,typename MatrixType::Index> MatrixPatternType;
- MatrixPatternType blockPattern(blockRows(), blockCols());
- m_nonzeros = 0;
-
- // First, compute the number of nonzero blocks and their locations
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- // Browse each outer block and compute the structure
- std::vector<bool> nzblocksFlag(m_innerBSize,false); // Record the existing blocks
- blockPattern.startVec(bj);
- for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
- {
- typename MatrixType::InnerIterator it_spmat(spmat, j);
- for(; it_spmat; ++it_spmat)
- {
- StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
- if(!nzblocksFlag[bi])
- {
- // Save the index of this nonzero block
- nzblocksFlag[bi] = true;
- blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true;
- // Compute the total number of nonzeros (including explicit zeros in blocks)
- m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi);
- }
- }
- } // end current outer block
- }
- blockPattern.finalize();
-
- // Allocate the internal arrays
- setBlockStructure(blockPattern);
-
- for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- // Now copy the values
- for(StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj+1); ++j)
- {
- // Browse the outer block column by column (for column-major matrices)
- typename MatrixType::InnerIterator it_spmat(spmat, j);
- for(; it_spmat; ++it_spmat)
- {
- StorageIndex idx = 0; // Position of this block in the column block
- StorageIndex bi = innerToBlock(it_spmat.index()); // Index of the current nonzero block
- // Go to the inner block where this element belongs to
- while(bi > m_indices[m_outerIndex[bj]+idx]) ++idx; // Not expensive for ordered blocks
- StorageIndex idxVal;// Get the right position in the array of values for this element
- if(m_blockSize == Dynamic)
- {
- // Offset from all blocks before ...
- idxVal = m_blockPtr[m_outerIndex[bj]+idx];
- // ... and offset inside the block
- idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi];
- }
- else
- {
- // All blocks before
- idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize;
- // inside the block
- idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index()%m_blockSize);
- }
- // Insert the value
- m_values[idxVal] = it_spmat.value();
- } // end of this column
- } // end of this block
- } // end of this outer block
-
- return *this;
- }
-
- /**
- * \brief Set the nonzero block pattern of the matrix
- *
- * Given a sparse matrix describing the nonzero block pattern,
- * this function prepares the internal pointers for values.
- * After calling this function, any *nonzero* block (bi, bj) can be set
- * with a simple call to coeffRef(bi,bj).
- *
- *
- * \warning Before calling this function, tt is necessary to call
- * either setBlockLayout() (matrices with variable-size blocks)
- * or setBlockSize() (for fixed-size blocks).
- *
- * \param blockPattern Sparse matrix of boolean elements describing the block structure
- *
- * \sa setBlockLayout() \sa setBlockSize()
- */
- template<typename MatrixType>
- void setBlockStructure(const MatrixType& blockPattern)
- {
- resize(blockPattern.rows(), blockPattern.cols());
- reserve(blockPattern.nonZeros());
-
- // Browse the block pattern and set up the various pointers
- m_outerIndex[0] = 0;
- if(m_blockSize == Dynamic) m_blockPtr[0] = 0;
- for(StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0);
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- //Browse each outer block
-
- //First, copy and save the indices of nonzero blocks
- //FIXME : find a way to avoid this ...
- std::vector<int> nzBlockIdx;
- typename MatrixType::InnerIterator it(blockPattern, bj);
- for(; it; ++it)
- {
- nzBlockIdx.push_back(it.index());
- }
- std::sort(nzBlockIdx.begin(), nzBlockIdx.end());
-
- // Now, fill block indices and (eventually) pointers to blocks
- for(StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx)
- {
- StorageIndex offset = m_outerIndex[bj]+idx; // offset in m_indices
- m_indices[offset] = nzBlockIdx[idx];
- if(m_blockSize == Dynamic)
- m_blockPtr[offset] = m_blockPtr[offset-1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj);
- // There is no blockPtr for fixed-size blocks... not needed !???
- }
- // Save the pointer to the next outer block
- m_outerIndex[bj+1] = m_outerIndex[bj] + nzBlockIdx.size();
- }
- }
-
- /**
- * \brief Set the number of rows and columns blocks
- */
- inline void resize(Index brow, Index bcol)
- {
- m_innerBSize = IsColMajor ? brow : bcol;
- m_outerBSize = IsColMajor ? bcol : brow;
- }
-
- /**
- * \brief set the block size at runtime for fixed-size block layout
- *
- * Call this only for fixed-size blocks
- */
- inline void setBlockSize(Index blockSize)
- {
- m_blockSize = blockSize;
- }
-
- /**
- * \brief Set the row and column block layouts,
- *
- * This function set the size of each row and column block.
- * So this function should be used only for blocks with variable size.
- * \param rowBlocks : Number of rows per row block
- * \param colBlocks : Number of columns per column block
- * \sa resize(), setBlockSize()
- */
- inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks)
- {
- const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks;
- const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks;
- eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
- eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS");
- m_outerBSize = outerBlocks.size();
- // starting index of blocks... cumulative sums
- m_innerOffset = new StorageIndex[m_innerBSize+1];
- m_outerOffset = new StorageIndex[m_outerBSize+1];
- m_innerOffset[0] = 0;
- m_outerOffset[0] = 0;
- std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize-1]+1, &m_innerOffset[1]);
- std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize-1]+1, &m_outerOffset[1]);
-
- // Compute the total number of nonzeros
- m_nonzeros = 0;
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- for(StorageIndex bi = 0; bi < m_innerBSize; ++bi)
- m_nonzeros += outerBlocks[bj] * innerBlocks[bi];
-
- }
-
- /**
- * \brief Allocate the internal array of pointers to blocks and their inner indices
- *
- * \note For fixed-size blocks, call setBlockSize() to set the block.
- * And For variable-size blocks, call setBlockLayout() before using this function
- *
- * \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is
- * is computed in setBlockLayout() for variable-size blocks
- * \sa setBlockSize()
- */
- inline void reserve(const Index nonzerosblocks)
- {
- eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) &&
- "TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first");
-
- //FIXME Should free if already allocated
- m_outerIndex = new StorageIndex[m_outerBSize+1];
-
- m_nonzerosblocks = nonzerosblocks;
- if(m_blockSize != Dynamic)
- {
- m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize);
- m_blockPtr = 0;
- }
- else
- {
- // m_nonzeros is already computed in setBlockLayout()
- m_blockPtr = new StorageIndex[m_nonzerosblocks+1];
- }
- m_indices = new StorageIndex[m_nonzerosblocks+1];
- m_values = new Scalar[m_nonzeros];
- }
-
-
- /**
- * \brief Fill values in a matrix from a triplet list.
- *
- * Each triplet item has a block stored in an Eigen dense matrix.
- * The InputIterator class should provide the functions row(), col() and value()
- *
- * \note For fixed-size blocks, call setBlockSize() before this function.
- *
- * FIXME Do not accept duplicates
- */
- template<typename InputIterator>
- void setFromTriplets(const InputIterator& begin, const InputIterator& end)
- {
- eigen_assert((m_innerBSize!=0 && m_outerBSize !=0) && "ZERO BLOCKS, PLEASE CALL resize() before");
-
- /* First, sort the triplet list
- * FIXME This can be unnecessarily expensive since only the inner indices have to be sorted
- * The best approach is like in SparseMatrix::setFromTriplets()
- */
- internal::TripletComp<InputIterator, IsColMajor> tripletcomp;
- std::sort(begin, end, tripletcomp);
-
- /* Count the number of rows and column blocks,
- * and the number of nonzero blocks per outer dimension
- */
- VectorXi rowBlocks(m_innerBSize); // Size of each block row
- VectorXi colBlocks(m_outerBSize); // Size of each block column
- rowBlocks.setZero(); colBlocks.setZero();
- VectorXi nzblock_outer(m_outerBSize); // Number of nz blocks per outer vector
- VectorXi nz_outer(m_outerBSize); // Number of nz per outer vector...for variable-size blocks
- nzblock_outer.setZero();
- nz_outer.setZero();
- for(InputIterator it(begin); it !=end; ++it)
- {
- eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols());
- eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize))
- || (m_blockSize == Dynamic));
-
- if(m_blockSize == Dynamic)
- {
- eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) &&
- "NON CORRESPONDING SIZES FOR ROW BLOCKS");
- eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) &&
- "NON CORRESPONDING SIZES FOR COLUMN BLOCKS");
- rowBlocks[it->row()] =it->value().rows();
- colBlocks[it->col()] = it->value().cols();
- }
- nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols();
- nzblock_outer(IsColMajor ? it->col() : it->row())++;
- }
- // Allocate member arrays
- if(m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks);
- StorageIndex nzblocks = nzblock_outer.sum();
- reserve(nzblocks);
-
- // Temporary markers
- VectorXi block_id(m_outerBSize); // To be used as a block marker during insertion
-
- // Setup outer index pointers and markers
- m_outerIndex[0] = 0;
- if (m_blockSize == Dynamic) m_blockPtr[0] = 0;
- for(StorageIndex bj = 0; bj < m_outerBSize; ++bj)
- {
- m_outerIndex[bj+1] = m_outerIndex[bj] + nzblock_outer(bj);
- block_id(bj) = m_outerIndex[bj];
- if(m_blockSize==Dynamic)
- {
- m_blockPtr[m_outerIndex[bj+1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj);
- }
- }
-
- // Fill the matrix
- for(InputIterator it(begin); it!=end; ++it)
- {
- StorageIndex outer = IsColMajor ? it->col() : it->row();
- StorageIndex inner = IsColMajor ? it->row() : it->col();
- m_indices[block_id(outer)] = inner;
- StorageIndex block_size = it->value().rows()*it->value().cols();
- StorageIndex nz_marker = blockPtr(block_id[outer]);
- memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar));
- if(m_blockSize == Dynamic)
- {
- m_blockPtr[block_id(outer)+1] = m_blockPtr[block_id(outer)] + block_size;
- }
- block_id(outer)++;
- }
-
- // An alternative when the outer indices are sorted...no need to use an array of markers
-// for(Index bcol = 0; bcol < m_outerBSize; ++bcol)
-// {
-// Index id = 0, id_nz = 0, id_nzblock = 0;
-// for(InputIterator it(begin); it!=end; ++it)
-// {
-// while (id<bcol) // one pass should do the job unless there are empty columns
-// {
-// id++;
-// m_outerIndex[id+1]=m_outerIndex[id];
-// }
-// m_outerIndex[id+1] += 1;
-// m_indices[id_nzblock]=brow;
-// Index block_size = it->value().rows()*it->value().cols();
-// m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size;
-// id_nzblock++;
-// memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar));
-// id_nz += block_size;
-// }
-// while(id < m_outerBSize-1) // Empty columns at the end
-// {
-// id++;
-// m_outerIndex[id+1]=m_outerIndex[id];
-// }
-// }
- }
-
-
- /**
- * \returns the number of rows
- */
- inline Index rows() const
- {
-// return blockRows();
- return (IsColMajor ? innerSize() : outerSize());
- }
-
- /**
- * \returns the number of cols
- */
- inline Index cols() const
- {
-// return blockCols();
- return (IsColMajor ? outerSize() : innerSize());
- }
-
- inline Index innerSize() const
- {
- if(m_blockSize == Dynamic) return m_innerOffset[m_innerBSize];
- else return (m_innerBSize * m_blockSize) ;
- }
-
- inline Index outerSize() const
- {
- if(m_blockSize == Dynamic) return m_outerOffset[m_outerBSize];
- else return (m_outerBSize * m_blockSize) ;
- }
- /** \returns the number of rows grouped by blocks */
- inline Index blockRows() const
- {
- return (IsColMajor ? m_innerBSize : m_outerBSize);
- }
- /** \returns the number of columns grouped by blocks */
- inline Index blockCols() const
- {
- return (IsColMajor ? m_outerBSize : m_innerBSize);
- }
-
- inline Index outerBlocks() const { return m_outerBSize; }
- inline Index innerBlocks() const { return m_innerBSize; }
-
- /** \returns the block index where outer belongs to */
- inline Index outerToBlock(Index outer) const
- {
- eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS");
-
- if(m_blockSize != Dynamic)
- return (outer / m_blockSize); // Integer division
-
- StorageIndex b_outer = 0;
- while(m_outerOffset[b_outer] <= outer) ++b_outer;
- return b_outer - 1;
- }
- /** \returns the block index where inner belongs to */
- inline Index innerToBlock(Index inner) const
- {
- eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS");
-
- if(m_blockSize != Dynamic)
- return (inner / m_blockSize); // Integer division
-
- StorageIndex b_inner = 0;
- while(m_innerOffset[b_inner] <= inner) ++b_inner;
- return b_inner - 1;
- }
-
- /**
- *\returns a reference to the (i,j) block as an Eigen Dense Matrix
- */
- Ref<BlockScalar> coeffRef(Index brow, Index bcol)
- {
- eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
- eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS");
-
- StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
- StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
- StorageIndex inner = IsColMajor ? brow : bcol;
- StorageIndex outer = IsColMajor ? bcol : brow;
- StorageIndex offset = m_outerIndex[outer];
- while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner)
- offset++;
- if(m_indices[offset] == inner)
- {
- return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize);
- }
- else
- {
- //FIXME the block does not exist, Insert it !!!!!!!!!
- eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED");
- }
- }
-
- /**
- * \returns the value of the (i,j) block as an Eigen Dense Matrix
- */
- Map<const BlockScalar> coeff(Index brow, Index bcol) const
- {
- eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS");
- eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS");
-
- StorageIndex rsize = IsColMajor ? blockInnerSize(brow): blockOuterSize(bcol);
- StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow);
- StorageIndex inner = IsColMajor ? brow : bcol;
- StorageIndex outer = IsColMajor ? bcol : brow;
- StorageIndex offset = m_outerIndex[outer];
- while(offset < m_outerIndex[outer+1] && m_indices[offset] != inner) offset++;
- if(m_indices[offset] == inner)
- {
- return Map<const BlockScalar> (&(m_values[blockPtr(offset)]), rsize, csize);
- }
- else
-// return BlockScalar::Zero(rsize, csize);
- eigen_assert("NOT YET SUPPORTED");
- }
-
- // Block Matrix times vector product
- template<typename VecType>
- BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const
- {
- return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs);
- }
-
- /** \returns the number of nonzero blocks */
- inline Index nonZerosBlocks() const { return m_nonzerosblocks; }
- /** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */
- inline Index nonZeros() const { return m_nonzeros; }
-
- inline BlockScalarReturnType *valuePtr() {return static_cast<BlockScalarReturnType *>(m_values);}
-// inline Scalar *valuePtr(){ return m_values; }
- inline StorageIndex *innerIndexPtr() {return m_indices; }
- inline const StorageIndex *innerIndexPtr() const {return m_indices; }
- inline StorageIndex *outerIndexPtr() {return m_outerIndex; }
- inline const StorageIndex* outerIndexPtr() const {return m_outerIndex; }
-
- /** \brief for compatibility purposes with the SparseMatrix class */
- inline bool isCompressed() const {return true;}
- /**
- * \returns the starting index of the bi row block
- */
- inline Index blockRowsIndex(Index bi) const
- {
- return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi);
- }
-
- /**
- * \returns the starting index of the bj col block
- */
- inline Index blockColsIndex(Index bj) const
- {
- return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj);
- }
-
- inline Index blockOuterIndex(Index bj) const
- {
- return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize);
- }
- inline Index blockInnerIndex(Index bi) const
- {
- return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize);
- }
-
- // Not needed ???
- inline Index blockInnerSize(Index bi) const
- {
- return (m_blockSize == Dynamic) ? (m_innerOffset[bi+1] - m_innerOffset[bi]) : m_blockSize;
- }
- inline Index blockOuterSize(Index bj) const
- {
- return (m_blockSize == Dynamic) ? (m_outerOffset[bj+1]- m_outerOffset[bj]) : m_blockSize;
- }
-
- /**
- * \brief Browse the matrix by outer index
- */
- class InnerIterator; // Browse column by column
-
- /**
- * \brief Browse the matrix by block outer index
- */
- class BlockInnerIterator; // Browse block by block
-
- friend std::ostream & operator << (std::ostream & s, const BlockSparseMatrix& m)
- {
- for (StorageIndex j = 0; j < m.outerBlocks(); ++j)
- {
- BlockInnerIterator itb(m, j);
- for(; itb; ++itb)
- {
- s << "("<<itb.row() << ", " << itb.col() << ")\n";
- s << itb.value() <<"\n";
- }
- }
- s << std::endl;
- return s;
- }
-
- /**
- * \returns the starting position of the block \p id in the array of values
- */
- Index blockPtr(Index id) const
- {
- if(m_blockSize == Dynamic) return m_blockPtr[id];
- else return id * m_blockSize * m_blockSize;
- //return blockDynIdx(id, typename internal::conditional<(BlockSize==Dynamic), internal::true_type, internal::false_type>::type());
- }
-
-
- protected:
-// inline Index blockDynIdx(Index id, internal::true_type) const
-// {
-// return m_blockPtr[id];
-// }
-// inline Index blockDynIdx(Index id, internal::false_type) const
-// {
-// return id * BlockSize * BlockSize;
-// }
-
- // To be implemented
- // Insert a block at a particular location... need to make a room for that
- Map<BlockScalar> insert(Index brow, Index bcol);
-
- Index m_innerBSize; // Number of block rows
- Index m_outerBSize; // Number of block columns
- StorageIndex *m_innerOffset; // Starting index of each inner block (size m_innerBSize+1)
- StorageIndex *m_outerOffset; // Starting index of each outer block (size m_outerBSize+1)
- Index m_nonzerosblocks; // Total nonzeros blocks (lower than m_innerBSize x m_outerBSize)
- Index m_nonzeros; // Total nonzeros elements
- Scalar *m_values; //Values stored block column after block column (size m_nonzeros)
- StorageIndex *m_blockPtr; // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for fixed-size blocks
- StorageIndex *m_indices; //Inner block indices, size m_nonzerosblocks ... OK
- StorageIndex *m_outerIndex; // Starting pointer of each block column in m_indices (size m_outerBSize)... OK
- Index m_blockSize; // Size of a block for fixed-size blocks, otherwise -1
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::BlockInnerIterator
-{
- public:
-
- enum{
- Flags = _Options
- };
-
- BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer)
- : m_mat(mat),m_outer(outer),
- m_id(mat.m_outerIndex[outer]),
- m_end(mat.m_outerIndex[outer+1])
- {
- }
-
- inline BlockInnerIterator& operator++() {m_id++; return *this; }
-
- inline const Map<const BlockScalar> value() const
- {
- return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
- rows(),cols());
- }
- inline Map<BlockScalar> valueRef()
- {
- return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]),
- rows(),cols());
- }
- // Block inner index
- inline Index index() const {return m_mat.m_indices[m_id]; }
- inline Index outer() const { return m_outer; }
- // block row index
- inline Index row() const {return index(); }
- // block column index
- inline Index col() const {return outer(); }
- // FIXME Number of rows in the current block
- inline Index rows() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_innerOffset[index()+1] - m_mat.m_innerOffset[index()]) : m_mat.m_blockSize; }
- // Number of columns in the current block ...
- inline Index cols() const { return (m_mat.m_blockSize==Dynamic) ? (m_mat.m_outerOffset[m_outer+1]-m_mat.m_outerOffset[m_outer]) : m_mat.m_blockSize;}
- inline operator bool() const { return (m_id < m_end); }
-
- protected:
- const BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, StorageIndex>& m_mat;
- const Index m_outer;
- Index m_id;
- Index m_end;
-};
-
-template<typename _Scalar, int _BlockAtCompileTime, int _Options, typename _StorageIndex>
-class BlockSparseMatrix<_Scalar, _BlockAtCompileTime, _Options, _StorageIndex>::InnerIterator
-{
- public:
- InnerIterator(const BlockSparseMatrix& mat, Index outer)
- : m_mat(mat),m_outerB(mat.outerToBlock(outer)),m_outer(outer),
- itb(mat, mat.outerToBlock(outer)),
- m_offset(outer - mat.blockOuterIndex(m_outerB))
- {
- if (itb)
- {
- m_id = m_mat.blockInnerIndex(itb.index());
- m_start = m_id;
- m_end = m_mat.blockInnerIndex(itb.index()+1);
- }
- }
- inline InnerIterator& operator++()
- {
- m_id++;
- if (m_id >= m_end)
- {
- ++itb;
- if (itb)
- {
- m_id = m_mat.blockInnerIndex(itb.index());
- m_start = m_id;
- m_end = m_mat.blockInnerIndex(itb.index()+1);
- }
- }
- return *this;
- }
- inline const Scalar& value() const
- {
- return itb.value().coeff(m_id - m_start, m_offset);
- }
- inline Scalar& valueRef()
- {
- return itb.valueRef().coeff(m_id - m_start, m_offset);
- }
- inline Index index() const { return m_id; }
- inline Index outer() const {return m_outer; }
- inline Index col() const {return outer(); }
- inline Index row() const { return index();}
- inline operator bool() const
- {
- return itb;
- }
- protected:
- const BlockSparseMatrix& m_mat;
- const Index m_outer;
- const Index m_outerB;
- BlockInnerIterator itb; // Iterator through the blocks
- const Index m_offset; // Position of this column in the block
- Index m_start; // starting inner index of this block
- Index m_id; // current inner index in the block
- Index m_end; // starting inner index of the next block
-
-};
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEBLOCKMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
deleted file mode 100644
index 0ffbc43..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
+++ /dev/null
@@ -1,404 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
-#define EIGEN_DYNAMIC_SPARSEMATRIX_H
-
-namespace Eigen {
-
-/** \deprecated use a SparseMatrix in an uncompressed mode
- *
- * \class DynamicSparseMatrix
- *
- * \brief A sparse matrix class designed for matrix assembly purpose
- *
- * \param _Scalar the scalar type, i.e. the type of the coefficients
- *
- * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
- * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
- * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
- * otherwise.
- *
- * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
- * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
- * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
- *
- * \see SparseMatrix
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct traits<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef _Scalar Scalar;
- typedef _StorageIndex StorageIndex;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
- SupportedAccessPatterns = OuterRandomAccessPattern
- };
-};
-}
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
- class DynamicSparseMatrix
- : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef SparseMatrixBase<DynamicSparseMatrix> Base;
- using Base::convert_index;
- public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
- // FIXME: why are these operator already alvailable ???
- // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
- // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
- typedef MappedSparseMatrix<Scalar,Flags> Map;
- using Base::IsRowMajor;
- using Base::operator=;
- enum {
- Options = _Options
- };
-
- protected:
-
- typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0), StorageIndex> TransposedSparseMatrix;
-
- Index m_innerSize;
- std::vector<internal::CompressedStorage<Scalar,StorageIndex> > m_data;
-
- public:
-
- inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
- inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
- inline Index innerSize() const { return m_innerSize; }
- inline Index outerSize() const { return convert_index(m_data.size()); }
- inline Index innerNonZeros(Index j) const { return m_data[j].size(); }
-
- std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() { return m_data; }
- const std::vector<internal::CompressedStorage<Scalar,StorageIndex> >& _data() const { return m_data; }
-
- /** \returns the coefficient value at given position \a row, \a col
- * This operation involes a log(rho*outer_size) binary search.
- */
- inline Scalar coeff(Index row, Index col) const
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return m_data[outer].at(inner);
- }
-
- /** \returns a reference to the coefficient value at given position \a row, \a col
- * This operation involes a log(rho*outer_size) binary search. If the coefficient does not
- * exist yet, then a sorted insertion into a sequential buffer is performed.
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return m_data[outer].atWithInsertion(inner);
- }
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- void setZero()
- {
- for (Index j=0; j<outerSize(); ++j)
- m_data[j].clear();
- }
-
- /** \returns the number of non zero coefficients */
- Index nonZeros() const
- {
- Index res = 0;
- for (Index j=0; j<outerSize(); ++j)
- res += m_data[j].size();
- return res;
- }
-
-
-
- void reserve(Index reserveSize = 1000)
- {
- if (outerSize()>0)
- {
- Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4));
- for (Index j=0; j<outerSize(); ++j)
- {
- m_data[j].reserve(reserveSizePerVector);
- }
- }
- }
-
- /** Does nothing: provided for compatibility with SparseMatrix */
- inline void startVec(Index /*outer*/) {}
-
- /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
- * - the nonzero does not already exist
- * - the new coefficient is the last one of the given inner vector.
- *
- * \sa insert, insertBackByOuterInner */
- inline Scalar& insertBack(Index row, Index col)
- {
- return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
- }
-
- /** \sa insertBack */
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range");
- eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
- && "wrong sorted insertion");
- m_data[outer].append(0, inner);
- return m_data[outer].value(m_data[outer].size()-1);
- }
-
- inline Scalar& insert(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index startId = 0;
- Index id = static_cast<Index>(m_data[outer].size()) - 1;
- m_data[outer].resize(id+2,1);
-
- while ( (id >= startId) && (m_data[outer].index(id) > inner) )
- {
- m_data[outer].index(id+1) = m_data[outer].index(id);
- m_data[outer].value(id+1) = m_data[outer].value(id);
- --id;
- }
- m_data[outer].index(id+1) = inner;
- m_data[outer].value(id+1) = 0;
- return m_data[outer].value(id+1);
- }
-
- /** Does nothing: provided for compatibility with SparseMatrix */
- inline void finalize() {}
-
- /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
- void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- for (Index j=0; j<outerSize(); ++j)
- m_data[j].prune(reference,epsilon);
- }
-
- /** Resize the matrix without preserving the data (the matrix is set to zero)
- */
- void resize(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = convert_index(IsRowMajor ? cols : rows);
- setZero();
- if (Index(m_data.size()) != outerSize)
- {
- m_data.resize(outerSize);
- }
- }
-
- void resizeAndKeepData(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- const Index innerSize = IsRowMajor ? cols : rows;
- if (m_innerSize>innerSize)
- {
- // remove all coefficients with innerCoord>=innerSize
- // TODO
- //std::cerr << "not implemented yet\n";
- exit(2);
- }
- if (m_data.size() != outerSize)
- {
- m_data.resize(outerSize);
- }
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- EIGEN_DEPRECATED inline DynamicSparseMatrix()
- : m_innerSize(0), m_data(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- eigen_assert(innerSize()==0 && outerSize()==0);
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols)
- : m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- resize(rows, cols);
- }
-
- /** The class DynamicSparseMatrix is deprectaed */
- template<typename OtherDerived>
- EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
- : m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- Base::operator=(other.derived());
- }
-
- inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
- : Base(), m_innerSize(0)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- *this = other.derived();
- }
-
- inline void swap(DynamicSparseMatrix& other)
- {
- //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
- std::swap(m_innerSize, other.m_innerSize);
- //std::swap(m_outerSize, other.m_outerSize);
- m_data.swap(other.m_data);
- }
-
- inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
- {
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else
- {
- resize(other.rows(), other.cols());
- m_data = other.m_data;
- }
- return *this;
- }
-
- /** Destructor */
- inline ~DynamicSparseMatrix() {}
-
- public:
-
- /** \deprecated
- * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
- EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
- {
- setZero();
- reserve(reserveSize);
- }
-
- /** \deprecated use insert()
- * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
- * 1 - the coefficient does not exist yet
- * 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
- * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
- * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
- *
- * \see fillrand(), coeffRef()
- */
- EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- return insertBack(outer,inner);
- }
-
- /** \deprecated use insert()
- * Like fill() but with random inner coordinates.
- * Compared to the generic coeffRef(), the unique limitation is that we assume
- * the coefficient does not exist yet.
- */
- EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
- {
- return insert(row,col);
- }
-
- /** \deprecated use finalize()
- * Does nothing. Provided for compatibility with SparseMatrix. */
- EIGEN_DEPRECATED void endFill() {}
-
-# ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
-# include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
-# endif
- };
-
-template<typename Scalar, int _Options, typename _StorageIndex>
-class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::InnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator
-{
- typedef typename SparseVector<Scalar,_Options,_StorageIndex>::InnerIterator Base;
- public:
- InnerIterator(const DynamicSparseMatrix& mat, Index outer)
- : Base(mat.m_data[outer]), m_outer(outer)
- {}
-
- inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
- inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
- inline Index outer() const { return m_outer; }
-
- protected:
- const Index m_outer;
-};
-
-template<typename Scalar, int _Options, typename _StorageIndex>
-class DynamicSparseMatrix<Scalar,_Options,_StorageIndex>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator
-{
- typedef typename SparseVector<Scalar,_Options,_StorageIndex>::ReverseInnerIterator Base;
- public:
- ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer)
- : Base(mat.m_data[outer]), m_outer(outer)
- {}
-
- inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
- inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
- inline Index outer() const { return m_outer; }
-
- protected:
- const Index m_outer;
-};
-
-namespace internal {
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
- : evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> >
-{
- typedef _Scalar Scalar;
- typedef DynamicSparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
- typedef typename SparseMatrixType::InnerIterator InnerIterator;
- typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
-
- enum {
- CoeffReadCost = NumTraits<_Scalar>::ReadCost,
- Flags = SparseMatrixType::Flags
- };
-
- evaluator() : m_matrix(0) {}
- evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
-
- operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
- operator const SparseMatrixType&() const { return *m_matrix; }
-
- Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
-
- Index nonZerosEstimate() const { return m_matrix->nonZeros(); }
-
- const SparseMatrixType *m_matrix;
-};
-
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
deleted file mode 100644
index 04b7d69..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
+++ /dev/null
@@ -1,275 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_MARKET_IO_H
-#define EIGEN_SPARSE_MARKET_IO_H
-
-#include <iostream>
-
-namespace Eigen {
-
-namespace internal
-{
- template <typename Scalar,typename IndexType>
- inline bool GetMarketLine (std::stringstream& line, IndexType& M, IndexType& N, IndexType& i, IndexType& j, Scalar& value)
- {
- line >> i >> j >> value;
- i--;
- j--;
- if(i>=0 && j>=0 && i<M && j<N)
- {
- return true;
- }
- else
- return false;
- }
- template <typename Scalar,typename IndexType>
- inline bool GetMarketLine (std::stringstream& line, IndexType& M, IndexType& N, IndexType& i, IndexType& j, std::complex<Scalar>& value)
- {
- Scalar valR, valI;
- line >> i >> j >> valR >> valI;
- i--;
- j--;
- if(i>=0 && j>=0 && i<M && j<N)
- {
- value = std::complex<Scalar>(valR, valI);
- return true;
- }
- else
- return false;
- }
-
- template <typename RealScalar>
- inline void GetVectorElt (const std::string& line, RealScalar& val)
- {
- std::istringstream newline(line);
- newline >> val;
- }
-
- template <typename RealScalar>
- inline void GetVectorElt (const std::string& line, std::complex<RealScalar>& val)
- {
- RealScalar valR, valI;
- std::istringstream newline(line);
- newline >> valR >> valI;
- val = std::complex<RealScalar>(valR, valI);
- }
-
- template<typename Scalar>
- inline void putMarketHeader(std::string& header,int sym)
- {
- header= "%%MatrixMarket matrix coordinate ";
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- {
- header += " complex";
- if(sym == Symmetric) header += " symmetric";
- else if (sym == SelfAdjoint) header += " Hermitian";
- else header += " general";
- }
- else
- {
- header += " real";
- if(sym == Symmetric) header += " symmetric";
- else header += " general";
- }
- }
-
- template<typename Scalar>
- inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
- {
- out << row << " "<< col << " " << value << "\n";
- }
- template<typename Scalar>
- inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
- {
- out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
- }
-
-
- template<typename Scalar>
- inline void putVectorElt(Scalar value, std::ofstream& out)
- {
- out << value << "\n";
- }
- template<typename Scalar>
- inline void putVectorElt(std::complex<Scalar> value, std::ofstream& out)
- {
- out << value.real << " " << value.imag()<< "\n";
- }
-
-} // end namepsace internal
-
-inline bool getMarketHeader(const std::string& filename, int& sym, bool& iscomplex, bool& isvector)
-{
- sym = 0;
- iscomplex = false;
- isvector = false;
- std::ifstream in(filename.c_str(),std::ios::in);
- if(!in)
- return false;
-
- std::string line;
- // The matrix header is always the first line in the file
- std::getline(in, line); eigen_assert(in.good());
-
- std::stringstream fmtline(line);
- std::string substr[5];
- fmtline>> substr[0] >> substr[1] >> substr[2] >> substr[3] >> substr[4];
- if(substr[2].compare("array") == 0) isvector = true;
- if(substr[3].compare("complex") == 0) iscomplex = true;
- if(substr[4].compare("symmetric") == 0) sym = Symmetric;
- else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
-
- return true;
-}
-
-template<typename SparseMatrixType>
-bool loadMarket(SparseMatrixType& mat, const std::string& filename)
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- std::ifstream input(filename.c_str(),std::ios::in);
- if(!input)
- return false;
-
- const int maxBuffersize = 2048;
- char buffer[maxBuffersize];
-
- bool readsizes = false;
-
- typedef Triplet<Scalar,StorageIndex> T;
- std::vector<T> elements;
-
- StorageIndex M(-1), N(-1), NNZ(-1);
- StorageIndex count = 0;
- while(input.getline(buffer, maxBuffersize))
- {
- // skip comments
- //NOTE An appropriate test should be done on the header to get the symmetry
- if(buffer[0]=='%')
- continue;
-
- std::stringstream line(buffer);
-
- if(!readsizes)
- {
- line >> M >> N >> NNZ;
- if(M > 0 && N > 0 && NNZ > 0)
- {
- readsizes = true;
- //std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
- mat.resize(M,N);
- mat.reserve(NNZ);
- }
- }
- else
- {
- StorageIndex i(-1), j(-1);
- Scalar value;
- if( internal::GetMarketLine(line, M, N, i, j, value) )
- {
- ++ count;
- elements.push_back(T(i,j,value));
- }
- else
- std::cerr << "Invalid read: " << i << "," << j << "\n";
- }
- }
- mat.setFromTriplets(elements.begin(), elements.end());
- if(count!=NNZ)
- std::cerr << count << "!=" << NNZ << "\n";
-
- input.close();
- return true;
-}
-
-template<typename VectorType>
-bool loadMarketVector(VectorType& vec, const std::string& filename)
-{
- typedef typename VectorType::Scalar Scalar;
- std::ifstream in(filename.c_str(), std::ios::in);
- if(!in)
- return false;
-
- std::string line;
- int n(0), col(0);
- do
- { // Skip comments
- std::getline(in, line); eigen_assert(in.good());
- } while (line[0] == '%');
- std::istringstream newline(line);
- newline >> n >> col;
- eigen_assert(n>0 && col>0);
- vec.resize(n);
- int i = 0;
- Scalar value;
- while ( std::getline(in, line) && (i < n) ){
- internal::GetVectorElt(line, value);
- vec(i++) = value;
- }
- in.close();
- if (i!=n){
- std::cerr<< "Unable to read all elements from file " << filename << "\n";
- return false;
- }
- return true;
-}
-
-template<typename SparseMatrixType>
-bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- std::ofstream out(filename.c_str(),std::ios::out);
- if(!out)
- return false;
-
- out.flags(std::ios_base::scientific);
- out.precision(64);
- std::string header;
- internal::putMarketHeader<Scalar>(header, sym);
- out << header << std::endl;
- out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
- int count = 0;
- for(int j=0; j<mat.outerSize(); ++j)
- for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
- {
- ++ count;
- internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
- // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
- }
- out.close();
- return true;
-}
-
-template<typename VectorType>
-bool saveMarketVector (const VectorType& vec, const std::string& filename)
-{
- typedef typename VectorType::Scalar Scalar;
- std::ofstream out(filename.c_str(),std::ios::out);
- if(!out)
- return false;
-
- out.flags(std::ios_base::scientific);
- out.precision(64);
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- out << "%%MatrixMarket matrix array complex general\n";
- else
- out << "%%MatrixMarket matrix array real general\n";
- out << vec.size() << " "<< 1 << "\n";
- for (int i=0; i < vec.size(); i++){
- internal::putVectorElt(vec(i), out);
- }
- out.close();
- return true;
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_MARKET_IO_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h b/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
deleted file mode 100644
index 02916ea..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
+++ /dev/null
@@ -1,247 +0,0 @@
-
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BROWSE_MATRICES_H
-#define EIGEN_BROWSE_MATRICES_H
-
-namespace Eigen {
-
-enum {
- SPD = 0x100,
- NonSymmetric = 0x0
-};
-
-/**
- * @brief Iterator to browse matrices from a specified folder
- *
- * This is used to load all the matrices from a folder.
- * The matrices should be in Matrix Market format
- * It is assumed that the matrices are named as matname.mtx
- * and matname_SPD.mtx if the matrix is Symmetric and positive definite (or Hermitian)
- * The right hand side vectors are loaded as well, if they exist.
- * They should be named as matname_b.mtx.
- * Note that the right hand side for a SPD matrix is named as matname_SPD_b.mtx
- *
- * Sometimes a reference solution is available. In this case, it should be named as matname_x.mtx
- *
- * Sample code
- * \code
- *
- * \endcode
- *
- * \tparam Scalar The scalar type
- */
-template <typename Scalar>
-class MatrixMarketIterator
-{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- public:
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef SparseMatrix<Scalar,ColMajor> MatrixType;
-
- public:
- MatrixMarketIterator(const std::string &folder)
- : m_sym(0), m_isvalid(false), m_matIsLoaded(false), m_hasRhs(false), m_hasrefX(false), m_folder(folder)
- {
- m_folder_id = opendir(folder.c_str());
- if(m_folder_id)
- Getnextvalidmatrix();
- }
-
- ~MatrixMarketIterator()
- {
- if (m_folder_id) closedir(m_folder_id);
- }
-
- inline MatrixMarketIterator& operator++()
- {
- m_matIsLoaded = false;
- m_hasrefX = false;
- m_hasRhs = false;
- Getnextvalidmatrix();
- return *this;
- }
- inline operator bool() const { return m_isvalid;}
-
- /** Return the sparse matrix corresponding to the current file */
- inline MatrixType& matrix()
- {
- // Read the matrix
- if (m_matIsLoaded) return m_mat;
-
- std::string matrix_file = m_folder + "/" + m_matname + ".mtx";
- if ( !loadMarket(m_mat, matrix_file))
- {
- std::cerr << "Warning loadMarket failed when loading \"" << matrix_file << "\"" << std::endl;
- m_matIsLoaded = false;
- return m_mat;
- }
- m_matIsLoaded = true;
-
- if (m_sym != NonSymmetric)
- {
- // Check whether we need to restore a full matrix:
- RealScalar diag_norm = m_mat.diagonal().norm();
- RealScalar lower_norm = m_mat.template triangularView<Lower>().norm();
- RealScalar upper_norm = m_mat.template triangularView<Upper>().norm();
- if(lower_norm>diag_norm && upper_norm==diag_norm)
- {
- // only the lower part is stored
- MatrixType tmp(m_mat);
- m_mat = tmp.template selfadjointView<Lower>();
- }
- else if(upper_norm>diag_norm && lower_norm==diag_norm)
- {
- // only the upper part is stored
- MatrixType tmp(m_mat);
- m_mat = tmp.template selfadjointView<Upper>();
- }
- }
- return m_mat;
- }
-
- /** Return the right hand side corresponding to the current matrix.
- * If the rhs file is not provided, a random rhs is generated
- */
- inline VectorType& rhs()
- {
- // Get the right hand side
- if (m_hasRhs) return m_rhs;
-
- std::string rhs_file;
- rhs_file = m_folder + "/" + m_matname + "_b.mtx"; // The pattern is matname_b.mtx
- m_hasRhs = Fileexists(rhs_file);
- if (m_hasRhs)
- {
- m_rhs.resize(m_mat.cols());
- m_hasRhs = loadMarketVector(m_rhs, rhs_file);
- }
- if (!m_hasRhs)
- {
- // Generate a random right hand side
- if (!m_matIsLoaded) this->matrix();
- m_refX.resize(m_mat.cols());
- m_refX.setRandom();
- m_rhs = m_mat * m_refX;
- m_hasrefX = true;
- m_hasRhs = true;
- }
- return m_rhs;
- }
-
- /** Return a reference solution
- * If it is not provided and if the right hand side is not available
- * then refX is randomly generated such that A*refX = b
- * where A and b are the matrix and the rhs.
- * Note that when a rhs is provided, refX is not available
- */
- inline VectorType& refX()
- {
- // Check if a reference solution is provided
- if (m_hasrefX) return m_refX;
-
- std::string lhs_file;
- lhs_file = m_folder + "/" + m_matname + "_x.mtx";
- m_hasrefX = Fileexists(lhs_file);
- if (m_hasrefX)
- {
- m_refX.resize(m_mat.cols());
- m_hasrefX = loadMarketVector(m_refX, lhs_file);
- }
- else
- m_refX.resize(0);
- return m_refX;
- }
-
- inline std::string& matname() { return m_matname; }
-
- inline int sym() { return m_sym; }
-
- bool hasRhs() {return m_hasRhs; }
- bool hasrefX() {return m_hasrefX; }
- bool isFolderValid() { return bool(m_folder_id); }
-
- protected:
-
- inline bool Fileexists(std::string file)
- {
- std::ifstream file_id(file.c_str());
- if (!file_id.good() )
- {
- return false;
- }
- else
- {
- file_id.close();
- return true;
- }
- }
-
- void Getnextvalidmatrix( )
- {
- m_isvalid = false;
- // Here, we return with the next valid matrix in the folder
- while ( (m_curs_id = readdir(m_folder_id)) != NULL) {
- m_isvalid = false;
- std::string curfile;
- curfile = m_folder + "/" + m_curs_id->d_name;
- // Discard if it is a folder
- if (m_curs_id->d_type == DT_DIR) continue; //FIXME This may not be available on non BSD systems
-// struct stat st_buf;
-// stat (curfile.c_str(), &st_buf);
-// if (S_ISDIR(st_buf.st_mode)) continue;
-
- // Determine from the header if it is a matrix or a right hand side
- bool isvector,iscomplex=false;
- if(!getMarketHeader(curfile,m_sym,iscomplex,isvector)) continue;
- if(isvector) continue;
- if (!iscomplex)
- {
- if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
- continue;
- }
- if (iscomplex)
- {
- if(internal::is_same<Scalar, float>::value || internal::is_same<Scalar, double>::value)
- continue;
- }
-
-
- // Get the matrix name
- std::string filename = m_curs_id->d_name;
- m_matname = filename.substr(0, filename.length()-4);
-
- // Find if the matrix is SPD
- size_t found = m_matname.find("SPD");
- if( (found!=std::string::npos) && (m_sym != NonSymmetric) )
- m_sym = SPD;
-
- m_isvalid = true;
- break;
- }
- }
- int m_sym; // Symmetry of the matrix
- MatrixType m_mat; // Current matrix
- VectorType m_rhs; // Current vector
- VectorType m_refX; // The reference solution, if exists
- std::string m_matname; // Matrix Name
- bool m_isvalid;
- bool m_matIsLoaded; // Determine if the matrix has already been loaded from the file
- bool m_hasRhs; // The right hand side exists
- bool m_hasrefX; // A reference solution is provided
- std::string m_folder;
- DIR * m_folder_id;
- struct dirent *m_curs_id;
-
-};
-
-} // end namespace Eigen
-
-#endif
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h b/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
deleted file mode 100644
index ee97299..0000000
--- a/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
+++ /dev/null
@@ -1,327 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_RANDOMSETTER_H
-#define EIGEN_RANDOMSETTER_H
-
-namespace Eigen {
-
-/** Represents a std::map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdMapTraits
-{
- typedef int KeyType;
- typedef std::map<KeyType,Scalar> Type;
- enum {
- IsSorted = 1
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-
-#ifdef EIGEN_UNORDERED_MAP_SUPPORT
-/** Represents a std::unordered_map
- *
- * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
- * yourself making sure that unordered_map is defined in the std namespace.
- *
- * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
- * \code
- * #include <tr1/unordered_map>
- * #define EIGEN_UNORDERED_MAP_SUPPORT
- * namespace std {
- * using std::tr1::unordered_map;
- * }
- * \endcode
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdUnorderedMapTraits
-{
- typedef int KeyType;
- typedef std::unordered_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif // EIGEN_UNORDERED_MAP_SUPPORT
-
-#ifdef _DENSE_HASH_MAP_H_
-/** Represents a google::dense_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleDenseHashMapTraits
-{
- typedef int KeyType;
- typedef google::dense_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type& map, const KeyType& k)
- { map.set_empty_key(k); }
-};
-#endif
-
-#ifdef _SPARSE_HASH_MAP_H_
-/** Represents a google::sparse_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleSparseHashMapTraits
-{
- typedef int KeyType;
- typedef google::sparse_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif
-
-/** \class RandomSetter
- *
- * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
- *
- * \tparam SparseMatrixType the type of the sparse matrix we are updating
- * \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
- * Its default value depends on the system.
- * \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
- * as a power of two exponent.
- *
- * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
- * efficient random access. The conversion from the compressed representation to a hash_map object is performed
- * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
- * suggest the use of nested blocks as in this example:
- *
- * \code
- * SparseMatrix<double> m(rows,cols);
- * {
- * RandomSetter<SparseMatrix<double> > w(m);
- * // don't use m but w instead with read/write random access to the coefficients:
- * for(;;)
- * w(rand(),rand()) = rand;
- * }
- * // when w is deleted, the data are copied back to m
- * // and m is ready to use.
- * \endcode
- *
- * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
- * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
- * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
- * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
- * per rows/columns.
- *
- * The possible values for the template parameter MapTraits are:
- * - \b StdMapTraits: corresponds to std::map. (does not perform very well)
- * - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
- * - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
- * - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
- *
- * The default map implementation depends on the availability, and the preferred order is:
- * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
- *
- * For performance and memory consumption reasons it is highly recommended to use one of
- * the Google's hash_map implementation. To enable the support for them, you have two options:
- * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
- * - define EIGEN_GOOGLEHASH_SUPPORT
- * In the later case the inclusion of <google/dense_hash_map> is made for you.
- *
- * \see http://code.google.com/p/google-sparsehash/
- */
-template<typename SparseMatrixType,
- template <typename T> class MapTraits =
-#if defined _DENSE_HASH_MAP_H_
- GoogleDenseHashMapTraits
-#elif defined _HASH_MAP
- GnuHashMapTraits
-#else
- StdMapTraits
-#endif
- ,int OuterPacketBits = 6>
-class RandomSetter
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
-
- struct ScalarWrapper
- {
- ScalarWrapper() : value(0) {}
- Scalar value;
- };
- typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
- typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
- static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
- enum {
- SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
- TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
- SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
- };
-
- public:
-
- /** Constructs a random setter object from the sparse matrix \a target
- *
- * Note that the initial value of \a target are imported. If you want to re-set
- * a sparse matrix from scratch, then you must set it to zero first using the
- * setZero() function.
- */
- inline RandomSetter(SparseMatrixType& target)
- : mp_target(&target)
- {
- const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
- const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
- m_outerPackets = outerSize >> OuterPacketBits;
- if (outerSize&OuterPacketMask)
- m_outerPackets += 1;
- m_hashmaps = new HashMapType[m_outerPackets];
- // compute number of bits needed to store inner indices
- Index aux = innerSize - 1;
- m_keyBitsOffset = 0;
- while (aux)
- {
- ++m_keyBitsOffset;
- aux = aux >> 1;
- }
- KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
- for (Index k=0; k<m_outerPackets; ++k)
- MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
-
- // insert current coeffs
- for (Index j=0; j<mp_target->outerSize(); ++j)
- for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
- (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
- }
-
- /** Destructor updating back the sparse matrix target */
- ~RandomSetter()
- {
- KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
- if (!SwapStorage) // also means the map is sorted
- {
- mp_target->setZero();
- mp_target->makeCompressed();
- mp_target->reserve(nonZeros());
- Index prevOuter = -1;
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index inner = it->first & keyBitsMask;
- if (prevOuter!=outer)
- {
- for (Index j=prevOuter+1;j<=outer;++j)
- mp_target->startVec(j);
- prevOuter = outer;
- }
- mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
- }
- }
- mp_target->finalize();
- }
- else
- {
- VectorXi positions(mp_target->outerSize());
- positions.setZero();
- // pass 1
- for (Index k=0; k<m_outerPackets; ++k)
- {
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = it->first & keyBitsMask;
- ++positions[outer];
- }
- }
- // prefix sum
- Index count = 0;
- for (Index j=0; j<mp_target->outerSize(); ++j)
- {
- Index tmp = positions[j];
- mp_target->outerIndexPtr()[j] = count;
- positions[j] = count;
- count += tmp;
- }
- mp_target->makeCompressed();
- mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
- mp_target->resizeNonZeros(count);
- // pass 2
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index outer = it->first & keyBitsMask;
- // sorted insertion
- // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
- // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
- // small fraction of them have to be sorted, whence the following simple procedure:
- Index posStart = mp_target->outerIndexPtr()[outer];
- Index i = (positions[outer]++) - 1;
- while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
- {
- mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
- mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
- --i;
- }
- mp_target->innerIndexPtr()[i+1] = inner;
- mp_target->valuePtr()[i+1] = it->second.value;
- }
- }
- }
- delete[] m_hashmaps;
- }
-
- /** \returns a reference to the coefficient at given coordinates \a row, \a col */
- Scalar& operator() (Index row, Index col)
- {
- const Index outer = SetterRowMajor ? row : col;
- const Index inner = SetterRowMajor ? col : row;
- const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
- const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
- const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
- return m_hashmaps[outerMajor][key].value;
- }
-
- /** \returns the number of non zero coefficients
- *
- * \note According to the underlying map/hash_map implementation,
- * this function might be quite expensive.
- */
- Index nonZeros() const
- {
- Index nz = 0;
- for (Index k=0; k<m_outerPackets; ++k)
- nz += static_cast<Index>(m_hashmaps[k].size());
- return nz;
- }
-
-
- protected:
-
- HashMapType* m_hashmaps;
- SparseMatrixType* mp_target;
- Index m_outerPackets;
- unsigned char m_keyBitsOffset;
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_RANDOMSETTER_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
deleted file mode 100644
index ed415db..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
+++ /dev/null
@@ -1,124 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-#ifndef EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
-#define EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
-
-namespace Eigen {
-
-/** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
- *
- * This function computes the coefficient-wise incomplete gamma function.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::igammac(), Eigen::lgamma()
- */
-template<typename Derived,typename ExponentDerived>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
-igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
- a.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
- *
- * This function computes the coefficient-wise complementary incomplete gamma function.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::igamma(), Eigen::lgamma()
- */
-template<typename Derived,typename ExponentDerived>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
-igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
- a.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays.
- *
- * It returns the \a n -th derivative of the digamma(psi) evaluated at \c x.
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::digamma()
- */
-// * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x)
-// * \sa ArrayBase::polygamma()
-template<typename DerivedN,typename DerivedX>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>
-polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>(
- n.derived(),
- x.derived()
- );
-}
-
-/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays.
- *
- * This function computes the regularized incomplete beta function (integral).
- *
- * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
- * or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar
- * type T to be supported.
- *
- * \sa Eigen::betainc(), Eigen::lgamma()
- */
-template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived>
-inline const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>
-betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x)
-{
- return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>(
- a.derived(),
- b.derived(),
- x.derived()
- );
-}
-
-
-/** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays.
- *
- * It returns the Riemann zeta function of two arguments \a x and \a q:
- *
- * \param x is the exposent, it must be > 1
- * \param q is the shift, it must be > 0
- *
- * \note This function supports only float and double scalar types. To support other scalar types, the user has
- * to provide implementations of zeta(T,T) for any scalar type T to be supported.
- *
- * \sa ArrayBase::zeta()
- */
-template<typename DerivedX,typename DerivedQ>
-inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>
-zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q)
-{
- return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>(
- x.derived(),
- q.derived()
- );
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
deleted file mode 100644
index d8f2363..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
-#define EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
-
-namespace Eigen {
-
-namespace internal {
-
-
-/** \internal
- * \brief Template functor to compute the incomplete gamma function igamma(a, x)
- *
- * \sa class CwiseBinaryOp, Cwise::igamma
- */
-template<typename Scalar> struct scalar_igamma_op : binary_op_base<Scalar,Scalar>
-{
- EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
- using numext::igamma; return igamma(a, x);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
- return internal::pigamma(a, x);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_igamma_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasIGamma
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
- *
- * \sa class CwiseBinaryOp, Cwise::igammac
- */
-template<typename Scalar> struct scalar_igammac_op : binary_op_base<Scalar,Scalar>
-{
- EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
- using numext::igammac; return igammac(a, x);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
- {
- return internal::pigammac(a, x);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_igammac_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasIGammac
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the incomplete beta integral betainc(a, b, x)
- *
- */
-template<typename Scalar> struct scalar_betainc_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_betainc_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& x, const Scalar& a, const Scalar& b) const {
- using numext::betainc; return betainc(x, a, b);
- }
- template<typename Packet>
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& x, const Packet& a, const Packet& b) const
- {
- return internal::pbetainc(x, a, b);
- }
-};
-template<typename Scalar>
-struct functor_traits<scalar_betainc_op<Scalar> > {
- enum {
- // Guesstimate
- Cost = 400 * NumTraits<Scalar>::MulCost + 400 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasBetaInc
- };
-};
-
-
-/** \internal
- * \brief Template functor to compute the natural log of the absolute
- * value of Gamma of a scalar
- * \sa class CwiseUnaryOp, Cwise::lgamma()
- */
-template<typename Scalar> struct scalar_lgamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_lgamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::lgamma; return lgamma(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plgamma(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_lgamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasLGamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute psi, the derivative of lgamma of a scalar.
- * \sa class CwiseUnaryOp, Cwise::digamma()
- */
-template<typename Scalar> struct scalar_digamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_digamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::digamma; return digamma(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pdigamma(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_digamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasDiGamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Riemann Zeta function of two arguments.
- * \sa class CwiseUnaryOp, Cwise::zeta()
- */
-template<typename Scalar> struct scalar_zeta_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& x, const Scalar& q) const {
- using numext::zeta; return zeta(x, q);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_zeta_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasZeta
- };
-};
-
-/** \internal
- * \brief Template functor to compute the polygamma function.
- * \sa class CwiseUnaryOp, Cwise::polygamma()
- */
-template<typename Scalar> struct scalar_polygamma_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_polygamma_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& n, const Scalar& x) const {
- using numext::polygamma; return polygamma(n, x);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& n, const Packet& x) const { return internal::ppolygamma(n, x); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_polygamma_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasPolygamma
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Gauss error function of a
- * scalar
- * \sa class CwiseUnaryOp, Cwise::erf()
- */
-template<typename Scalar> struct scalar_erf_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_erf_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::erf; return erf(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perf(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_erf_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasErf
- };
-};
-
-/** \internal
- * \brief Template functor to compute the Complementary Error Function
- * of a scalar
- * \sa class CwiseUnaryOp, Cwise::erfc()
- */
-template<typename Scalar> struct scalar_erfc_op {
- EIGEN_EMPTY_STRUCT_CTOR(scalar_erfc_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const {
- using numext::erfc; return erfc(a);
- }
- typedef typename packet_traits<Scalar>::type Packet;
- EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::perfc(a); }
-};
-template<typename Scalar>
-struct functor_traits<scalar_erfc_op<Scalar> >
-{
- enum {
- // Guesstimate
- Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasErfc
- };
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_FUNCTORS_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
deleted file mode 100644
index 553bcda..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
+++ /dev/null
@@ -1,47 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_HALF_H
-#define EIGEN_SPECIALFUNCTIONS_HALF_H
-
-namespace Eigen {
-namespace numext {
-
-#if EIGEN_HAS_C99_MATH
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::lgamma(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::digamma(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) {
- return Eigen::half(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) {
- return Eigen::half(Eigen::numext::erfc(static_cast<float>(a)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x)));
-}
-template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half betainc(const Eigen::half& a, const Eigen::half& b, const Eigen::half& x) {
- return Eigen::half(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x)));
-}
-#endif
-
-} // end namespace numext
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_HALF_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
deleted file mode 100644
index f524d71..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
+++ /dev/null
@@ -1,1565 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIAL_FUNCTIONS_H
-#define EIGEN_SPECIAL_FUNCTIONS_H
-
-namespace Eigen {
-namespace internal {
-
-// Parts of this code are based on the Cephes Math Library.
-//
-// Cephes Math Library Release 2.8: June, 2000
-// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
-//
-// Permission has been kindly provided by the original author
-// to incorporate the Cephes software into the Eigen codebase:
-//
-// From: Stephen Moshier
-// To: Eugene Brevdo
-// Subject: Re: Permission to wrap several cephes functions in Eigen
-//
-// Hello Eugene,
-//
-// Thank you for writing.
-//
-// If your licensing is similar to BSD, the formal way that has been
-// handled is simply to add a statement to the effect that you are incorporating
-// the Cephes software by permission of the author.
-//
-// Good luck with your project,
-// Steve
-
-namespace cephes {
-
-/* polevl (modified for Eigen)
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * Scalar x, y, coef[N+1];
- *
- * y = polevl<decltype(x), N>( x, coef);
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evl() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevl().
- *
- *
- * The Eigen implementation is templatized. For best speed, store
- * coef as a const array (constexpr), e.g.
- *
- * const double coef[] = {1.0, 2.0, 3.0, ...};
- *
- */
-template <typename Scalar, int N>
-struct polevl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
- EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
-
- return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
- }
-};
-
-template <typename Scalar>
-struct polevl<Scalar, 0> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
- return coef[0];
- }
-};
-
-} // end namespace cephes
-
-/****************************************************************************
- * Implementation of lgamma, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct lgamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct lgamma_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct lgamma_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(float x) {
-#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int signgam;
- return ::lgammaf_r(x, &signgam);
-#else
- return ::lgammaf(x);
-#endif
- }
-};
-
-template <>
-struct lgamma_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(double x) {
-#if !defined(__CUDA_ARCH__) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
- int signgam;
- return ::lgamma_r(x, &signgam);
-#else
- return ::lgamma(x);
-#endif
- }
-};
-#endif
-
-/****************************************************************************
- * Implementation of digamma (psi), based on Cephes *
- ****************************************************************************/
-
-template <typename Scalar>
-struct digamma_retval {
- typedef Scalar type;
-};
-
-/*
- *
- * Polynomial evaluation helper for the Psi (digamma) function.
- *
- * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
- * input Scalar s, assuming s is above 10.0.
- *
- * If s is above a certain threshold for the given Scalar type, zero
- * is returned. Otherwise the polynomial is evaluated with enough
- * coefficients for results matching Scalar machine precision.
- *
- *
- */
-template <typename Scalar>
-struct digamma_impl_maybe_poly {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-
-template <>
-struct digamma_impl_maybe_poly<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(const float s) {
- const float A[] = {
- -4.16666666666666666667E-3f,
- 3.96825396825396825397E-3f,
- -8.33333333333333333333E-3f,
- 8.33333333333333333333E-2f
- };
-
- float z;
- if (s < 1.0e8f) {
- z = 1.0f / (s * s);
- return z * cephes::polevl<float, 3>::run(z, A);
- } else return 0.0f;
- }
-};
-
-template <>
-struct digamma_impl_maybe_poly<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(const double s) {
- const double A[] = {
- 8.33333333333333333333E-2,
- -2.10927960927960927961E-2,
- 7.57575757575757575758E-3,
- -4.16666666666666666667E-3,
- 3.96825396825396825397E-3,
- -8.33333333333333333333E-3,
- 8.33333333333333333333E-2
- };
-
- double z;
- if (s < 1.0e17) {
- z = 1.0 / (s * s);
- return z * cephes::polevl<double, 6>::run(z, A);
- }
- else return 0.0;
- }
-};
-
-template <typename Scalar>
-struct digamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar x) {
- /*
- *
- * Psi (digamma) function (modified for Eigen)
- *
- *
- * SYNOPSIS:
- *
- * double x, y, psi();
- *
- * y = psi( x );
- *
- *
- * DESCRIPTION:
- *
- * d -
- * psi(x) = -- ln | (x)
- * dx
- *
- * is the logarithmic derivative of the gamma function.
- * For integer x,
- * n-1
- * -
- * psi(n) = -EUL + > 1/k.
- * -
- * k=1
- *
- * If x is negative, it is transformed to a positive argument by the
- * reflection formula psi(1-x) = psi(x) + pi cot(pi x).
- * For general positive x, the argument is made greater than 10
- * using the recurrence psi(x+1) = psi(x) + 1/x.
- * Then the following asymptotic expansion is applied:
- *
- * inf. B
- * - 2k
- * psi(x) = log(x) - 1/2x - > -------
- * - 2k
- * k=1 2k x
- *
- * where the B2k are Bernoulli numbers.
- *
- * ACCURACY (float):
- * Relative error (except absolute when |psi| < 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 1.3e-15 1.4e-16
- * IEEE -30,0 40000 1.5e-15 2.2e-16
- *
- * ACCURACY (double):
- * Absolute error, relative when |psi| > 1 :
- * arithmetic domain # trials peak rms
- * IEEE -33,0 30000 8.2e-7 1.2e-7
- * IEEE 0,33 100000 7.3e-7 7.7e-8
- *
- * ERROR MESSAGES:
- * message condition value returned
- * psi singularity x integer <=0 INFINITY
- */
-
- Scalar p, q, nz, s, w, y;
- bool negative = false;
-
- const Scalar maxnum = NumTraits<Scalar>::infinity();
- const Scalar m_pi = Scalar(EIGEN_PI);
-
- const Scalar zero = Scalar(0);
- const Scalar one = Scalar(1);
- const Scalar half = Scalar(0.5);
- nz = zero;
-
- if (x <= zero) {
- negative = true;
- q = x;
- p = numext::floor(q);
- if (p == q) {
- return maxnum;
- }
- /* Remove the zeros of tan(m_pi x)
- * by subtracting the nearest integer from x
- */
- nz = q - p;
- if (nz != half) {
- if (nz > half) {
- p += one;
- nz = q - p;
- }
- nz = m_pi / numext::tan(m_pi * nz);
- }
- else {
- nz = zero;
- }
- x = one - x;
- }
-
- /* use the recurrence psi(x+1) = psi(x) + 1/x. */
- s = x;
- w = zero;
- while (s < Scalar(10)) {
- w += one / s;
- s += one;
- }
-
- y = digamma_impl_maybe_poly<Scalar>::run(s);
-
- y = numext::log(s) - (half / s) - y - w;
-
- return (negative) ? y - nz : y;
- }
-};
-
-/****************************************************************************
- * Implementation of erf, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct erf_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct erf_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct erf_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
-};
-
-template <>
-struct erf_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
-};
-#endif // EIGEN_HAS_C99_MATH
-
-/***************************************************************************
-* Implementation of erfc, requires C++11/C99 *
-****************************************************************************/
-
-template <typename Scalar>
-struct erfc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <typename Scalar>
-struct erfc_retval {
- typedef Scalar type;
-};
-
-#if EIGEN_HAS_C99_MATH
-template <>
-struct erfc_impl<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
-};
-
-template <>
-struct erfc_impl<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
-};
-#endif // EIGEN_HAS_C99_MATH
-
-/**************************************************************************************************************
- * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
- **************************************************************************************************************/
-
-template <typename Scalar>
-struct igammac_retval {
- typedef Scalar type;
-};
-
-// NOTE: cephes_helper is also used to implement zeta
-template <typename Scalar>
-struct cephes_helper {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
-};
-
-template <>
-struct cephes_helper<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float machep() {
- return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float big() {
- // use epsneg (1.0 - epsneg == 1.0)
- return 1.0f / (NumTraits<float>::epsilon() / 2);
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float biginv() {
- // epsneg
- return machep();
- }
-};
-
-template <>
-struct cephes_helper<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double machep() {
- return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double big() {
- return 1.0 / NumTraits<double>::epsilon();
- }
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double biginv() {
- // inverse of eps
- return NumTraits<double>::epsilon();
- }
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct igammac_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
-
-template <typename Scalar>
-struct igammac_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- /* igamc()
- *
- * Incomplete gamma integral (modified for Eigen)
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igamc();
- *
- * y = igamc( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 7.8e-6 5.9e-7
- *
- *
- * ACCURACY (double):
- *
- * Tested at random a, x.
- * a x Relative error:
- * arithmetic domain domain # trials peak rms
- * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
- * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if ((x < zero) || (a <= zero)) {
- // domain error
- return nan;
- }
-
- if ((x < one) || (x < a)) {
- /* The checks above ensure that we meet the preconditions for
- * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igamma_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igamma_impl calls igammac_impl::Impl. */
- friend struct igamma_impl<Scalar>;
-
- /* Actually computes igamc(a, x).
- *
- * Preconditions:
- * a > 0
- * x >= 1
- * x >= a
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
- const Scalar inf = NumTraits<Scalar>::infinity();
-
- Scalar ans, ax, c, yc, r, t, y, z;
- Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
-
- if (x == inf) return zero; // std::isinf crashes on CUDA
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) { // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- // continued fraction
- y = one - a;
- z = x + y + one;
- c = zero;
- pkm2 = one;
- qkm2 = x;
- pkm1 = x + one;
- qkm1 = z * x;
- ans = pkm1 / qkm1;
-
- while (true) {
- c += one;
- y += one;
- z += two;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if (qk != zero) {
- r = pk / qk;
- t = numext::abs((ans - r) / r);
- ans = r;
- } else {
- t = one;
- }
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if (numext::abs(pk) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if (t <= machep) {
- break;
- }
- }
-
- return (ans * ax);
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/************************************************************************************************
- * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
- ************************************************************************************************/
-
-template <typename Scalar>
-struct igamma_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct igamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct igamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar a, Scalar x) {
- /* igam()
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (double):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 200000 3.6e-14 2.9e-15
- * IEEE 0,100 300000 9.9e-14 1.5e-14
- *
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if (x == zero) return zero;
-
- if ((x < zero) || (a <= zero)) { // domain error
- return nan;
- }
-
- if ((x > one) && (x > a)) {
- /* The checks above ensure that we meet the preconditions for
- * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igammac_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igammac_impl calls igamma_impl::Impl. */
- friend struct igammac_impl<Scalar>;
-
- /* Actually computes igam(a, x).
- *
- * Preconditions:
- * x > 0
- * a > 0
- * !(x > 1 && x > a)
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
-
- Scalar ans, ax, c, r;
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) {
- // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- /* power series */
- r = a;
- c = one;
- ans = one;
-
- while (true) {
- r += one;
- c *= x/r;
- ans += c;
- if (c/ans <= machep) {
- break;
- }
- }
-
- return (ans * ax / a);
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/*****************************************************************************
- * Implementation of Riemann zeta function of two arguments, based on Cephes *
- *****************************************************************************/
-
-template <typename Scalar>
-struct zeta_retval {
- typedef Scalar type;
-};
-
-template <typename Scalar>
-struct zeta_impl_series {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-template <>
-struct zeta_impl_series<float> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
- int i = 0;
- while(i < 9)
- {
- i += 1;
- a += 1.0f;
- b = numext::pow( a, -x );
- s += b;
- if( numext::abs(b/s) < machep )
- return true;
- }
-
- //Return whether we are done
- return false;
- }
-};
-
-template <>
-struct zeta_impl_series<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
- int i = 0;
- while( (i < 9) || (a <= 9.0) )
- {
- i += 1;
- a += 1.0;
- b = numext::pow( a, -x );
- s += b;
- if( numext::abs(b/s) < machep )
- return true;
- }
-
- //Return whether we are done
- return false;
- }
-};
-
-template <typename Scalar>
-struct zeta_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar x, Scalar q) {
- /* zeta.c
- *
- * Riemann zeta function of two arguments
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, q, y, zeta();
- *
- * y = zeta( x, q );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=0
- *
- * where x > 1 and q is not a negative integer or zero.
- * The Euler-Maclaurin summation formula is used to obtain
- * the expansion
- *
- * n
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=1
- *
- * 1-x inf. B x(x+1)...(x+2j)
- * (n+q) 1 - 2j
- * + --------- - ------- + > --------------------
- * x-1 x - x+2j+1
- * 2(n+q) j=1 (2j)! (n+q)
- *
- * where the B2j are Bernoulli numbers. Note that (see zetac.c)
- * zeta(x,1) = zetac(x) + 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error for single precision:
- * arithmetic domain # trials peak rms
- * IEEE 0,25 10000 6.9e-7 1.0e-7
- *
- * Large arguments may produce underflow in powf(), in which
- * case the results are inaccurate.
- *
- * REFERENCE:
- *
- * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
- * Series, and Products, p. 1073; Academic Press, 1980.
- *
- */
-
- int i;
- Scalar p, r, a, b, k, s, t, w;
-
- const Scalar A[] = {
- Scalar(12.0),
- Scalar(-720.0),
- Scalar(30240.0),
- Scalar(-1209600.0),
- Scalar(47900160.0),
- Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
- Scalar(7.47242496e10),
- Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
- Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
- Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
- Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
- Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
- };
-
- const Scalar maxnum = NumTraits<Scalar>::infinity();
- const Scalar zero = 0.0, half = 0.5, one = 1.0;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- if( x == one )
- return maxnum;
-
- if( x < one )
- {
- return nan;
- }
-
- if( q <= zero )
- {
- if(q == numext::floor(q))
- {
- return maxnum;
- }
- p = x;
- r = numext::floor(p);
- if (p != r)
- return nan;
- }
-
- /* Permit negative q but continue sum until n+q > +9 .
- * This case should be handled by a reflection formula.
- * If q<0 and x is an integer, there is a relation to
- * the polygamma function.
- */
- s = numext::pow( q, -x );
- a = q;
- b = zero;
- // Run the summation in a helper function that is specific to the floating precision
- if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
- return s;
- }
-
- w = a;
- s += b*w/(x-one);
- s -= half * b;
- a = one;
- k = zero;
- for( i=0; i<12; i++ )
- {
- a *= x + k;
- b /= w;
- t = a*b/A[i];
- s = s + t;
- t = numext::abs(t/s);
- if( t < machep ) {
- break;
- }
- k += one;
- a *= x + k;
- b /= w;
- k += one;
- }
- return s;
- }
-};
-
-/****************************************************************************
- * Implementation of polygamma function, requires C++11/C99 *
- ****************************************************************************/
-
-template <typename Scalar>
-struct polygamma_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct polygamma_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct polygamma_impl {
- EIGEN_DEVICE_FUNC
- static Scalar run(Scalar n, Scalar x) {
- Scalar zero = 0.0, one = 1.0;
- Scalar nplus = n + one;
- const Scalar nan = NumTraits<Scalar>::quiet_NaN();
-
- // Check that n is an integer
- if (numext::floor(n) != n) {
- return nan;
- }
- // Just return the digamma function for n = 1
- else if (n == zero) {
- return digamma_impl<Scalar>::run(x);
- }
- // Use the same implementation as scipy
- else {
- Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
- return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
- }
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-/************************************************************************************************
- * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
- ************************************************************************************************/
-
-template <typename Scalar>
-struct betainc_retval {
- typedef Scalar type;
-};
-
-#if !EIGEN_HAS_C99_MATH
-
-template <typename Scalar>
-struct betainc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-#else
-
-template <typename Scalar>
-struct betainc_impl {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
- /* betaincf.c
- *
- * Incomplete beta integral
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, betaincf();
- *
- * y = betaincf( a, b, x );
- *
- *
- * DESCRIPTION:
- *
- * Returns incomplete beta integral of the arguments, evaluated
- * from zero to x. The function is defined as
- *
- * x
- * - -
- * | (a+b) | | a-1 b-1
- * ----------- | t (1-t) dt.
- * - - | |
- * | (a) | (b) -
- * 0
- *
- * The domain of definition is 0 <= x <= 1. In this
- * implementation a and b are restricted to positive values.
- * The integral from x to 1 may be obtained by the symmetry
- * relation
- *
- * 1 - betainc( a, b, x ) = betainc( b, a, 1-x ).
- *
- * The integral is evaluated by a continued fraction expansion.
- * If a < 1, the function calls itself recursively after a
- * transformation to increase a to a+1.
- *
- * ACCURACY (float):
- *
- * Tested at random points (a,b,x) with a and b in the indicated
- * interval and x between 0 and 1.
- *
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,30 10000 3.7e-5 5.1e-6
- * IEEE 0,100 10000 1.7e-4 2.5e-5
- * The useful domain for relative error is limited by underflow
- * of the single precision exponential function.
- * Absolute error:
- * IEEE 0,30 100000 2.2e-5 9.6e-7
- * IEEE 0,100 10000 6.5e-5 3.7e-6
- *
- * Larger errors may occur for extreme ratios of a and b.
- *
- * ACCURACY (double):
- * arithmetic domain # trials peak rms
- * IEEE 0,5 10000 6.9e-15 4.5e-16
- * IEEE 0,85 250000 2.2e-13 1.7e-14
- * IEEE 0,1000 30000 5.3e-12 6.3e-13
- * IEEE 0,10000 250000 9.3e-11 7.1e-12
- * IEEE 0,100000 10000 8.7e-10 4.8e-11
- * Outputs smaller than the IEEE gradual underflow threshold
- * were excluded from these statistics.
- *
- * ERROR MESSAGES:
- * message condition value returned
- * incbet domain x<0, x>1 nan
- * incbet underflow nan
- */
-
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
- THIS_TYPE_IS_NOT_SUPPORTED);
- return Scalar(0);
- }
-};
-
-/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
- * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
- */
-template <typename Scalar>
-struct incbeta_cfe {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
- internal::is_same<Scalar, double>::value),
- THIS_TYPE_IS_NOT_SUPPORTED);
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
-
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
-
- Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
- Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
- Scalar ans;
- int n;
-
- const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
- const Scalar thresh =
- (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
- Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
-
- if (small_branch) {
- k1 = a;
- k2 = a + b;
- k3 = a;
- k4 = a + one;
- k5 = one;
- k6 = b - one;
- k7 = k4;
- k8 = a + two;
- k26update = one;
- } else {
- k1 = a;
- k2 = b - one;
- k3 = a;
- k4 = a + one;
- k5 = one;
- k6 = a + b;
- k7 = a + one;
- k8 = a + two;
- k26update = -one;
- x = x / (one - x);
- }
-
- pkm2 = zero;
- qkm2 = one;
- pkm1 = one;
- qkm1 = one;
- ans = one;
- n = 0;
-
- do {
- xk = -(x * k1 * k2) / (k3 * k4);
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- xk = (x * k5 * k6) / (k7 * k8);
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- if (qk != zero) {
- r = pk / qk;
- if (numext::abs(ans - r) < numext::abs(r) * thresh) {
- return r;
- }
- ans = r;
- }
-
- k1 += one;
- k2 += k26update;
- k3 += two;
- k4 += two;
- k5 += one;
- k6 -= k26update;
- k7 += two;
- k8 += two;
-
- if ((numext::abs(qk) + numext::abs(pk)) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- } while (++n < num_iters);
-
- return ans;
- }
-};
-
-/* Helper functions depending on the Scalar type */
-template <typename Scalar>
-struct betainc_helper {};
-
-template <>
-struct betainc_helper<float> {
- /* Core implementation, assumes a large (> 1.0) */
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
- float xx) {
- float ans, a, b, t, x, onemx;
- bool reversed_a_b = false;
-
- onemx = 1.0f - xx;
-
- /* see if x is greater than the mean */
- if (xx > (aa / (aa + bb))) {
- reversed_a_b = true;
- a = bb;
- b = aa;
- t = xx;
- x = onemx;
- } else {
- a = aa;
- b = bb;
- t = onemx;
- x = xx;
- }
-
- /* Choose expansion for optimal convergence */
- if (b > 10.0f) {
- if (numext::abs(b * x / a) < 0.3f) {
- t = betainc_helper<float>::incbps(a, b, x);
- if (reversed_a_b) t = 1.0f - t;
- return t;
- }
- }
-
- ans = x * (a + b - 2.0f) / (a - 1.0f);
- if (ans < 1.0f) {
- ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
- t = b * numext::log(t);
- } else {
- ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
- t = (b - 1.0f) * numext::log(t);
- }
-
- t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
- lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
- t += numext::log(ans / a);
- t = numext::exp(t);
-
- if (reversed_a_b) t = 1.0f - t;
- return t;
- }
-
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
- float t, u, y, s;
- const float machep = cephes_helper<float>::machep();
-
- y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
- y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
- y += lgamma_impl<float>::run(a + b);
-
- t = x / (1.0f - x);
- s = 0.0f;
- u = 1.0f;
- do {
- b -= 1.0f;
- if (b == 0.0f) {
- break;
- }
- a += 1.0f;
- u *= t * b / a;
- s += u;
- } while (numext::abs(u) > machep);
-
- return numext::exp(y) * (1.0f + s);
- }
-};
-
-template <>
-struct betainc_impl<float> {
- EIGEN_DEVICE_FUNC
- static float run(float a, float b, float x) {
- const float nan = NumTraits<float>::quiet_NaN();
- float ans, t;
-
- if (a <= 0.0f) return nan;
- if (b <= 0.0f) return nan;
- if ((x <= 0.0f) || (x >= 1.0f)) {
- if (x == 0.0f) return 0.0f;
- if (x == 1.0f) return 1.0f;
- // mtherr("betaincf", DOMAIN);
- return nan;
- }
-
- /* transformation for small aa */
- if (a <= 1.0f) {
- ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
- t = a * numext::log(x) + b * numext::log1p(-x) +
- lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
- lgamma_impl<float>::run(b);
- return (ans + numext::exp(t));
- } else {
- return betainc_helper<float>::incbsa(a, b, x);
- }
- }
-};
-
-template <>
-struct betainc_helper<double> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
- const double machep = cephes_helper<double>::machep();
-
- double s, t, u, v, n, t1, z, ai;
-
- ai = 1.0 / a;
- u = (1.0 - b) * x;
- v = u / (a + 1.0);
- t1 = v;
- t = u;
- n = 2.0;
- s = 0.0;
- z = machep * ai;
- while (numext::abs(v) > z) {
- u = (n - b) * x / n;
- t *= u;
- v = t / (a + n);
- s += v;
- n += 1.0;
- }
- s += t1;
- s += ai;
-
- u = a * numext::log(x);
- // TODO: gamma() is not directly implemented in Eigen.
- /*
- if ((a + b) < maxgam && numext::abs(u) < maxlog) {
- t = gamma(a + b) / (gamma(a) * gamma(b));
- s = s * t * pow(x, a);
- } else {
- */
- t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
- lgamma_impl<double>::run(b) + u + numext::log(s);
- return s = numext::exp(t);
- }
-};
-
-template <>
-struct betainc_impl<double> {
- EIGEN_DEVICE_FUNC
- static double run(double aa, double bb, double xx) {
- const double nan = NumTraits<double>::quiet_NaN();
- const double machep = cephes_helper<double>::machep();
- // const double maxgam = 171.624376956302725;
-
- double a, b, t, x, xc, w, y;
- bool reversed_a_b = false;
-
- if (aa <= 0.0 || bb <= 0.0) {
- return nan; // goto domerr;
- }
-
- if ((xx <= 0.0) || (xx >= 1.0)) {
- if (xx == 0.0) return (0.0);
- if (xx == 1.0) return (1.0);
- // mtherr("incbet", DOMAIN);
- return nan;
- }
-
- if ((bb * xx) <= 1.0 && xx <= 0.95) {
- return betainc_helper<double>::incbps(aa, bb, xx);
- }
-
- w = 1.0 - xx;
-
- /* Reverse a and b if x is greater than the mean. */
- if (xx > (aa / (aa + bb))) {
- reversed_a_b = true;
- a = bb;
- b = aa;
- xc = xx;
- x = w;
- } else {
- a = aa;
- b = bb;
- xc = w;
- x = xx;
- }
-
- if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
- t = betainc_helper<double>::incbps(a, b, x);
- if (t <= machep) {
- t = 1.0 - machep;
- } else {
- t = 1.0 - t;
- }
- return t;
- }
-
- /* Choose expansion for better convergence. */
- y = x * (a + b - 2.0) - (a - 1.0);
- if (y < 0.0) {
- w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
- } else {
- w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
- }
-
- /* Multiply w by the factor
- a b _ _ _
- x (1-x) | (a+b) / ( a | (a) | (b) ) . */
-
- y = a * numext::log(x);
- t = b * numext::log(xc);
- // TODO: gamma is not directly implemented in Eigen.
- /*
- if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
- {
- t = pow(xc, b);
- t *= pow(x, a);
- t /= a;
- t *= w;
- t *= gamma(a + b) / (gamma(a) * gamma(b));
- } else {
- */
- /* Resort to logarithms. */
- y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
- lgamma_impl<double>::run(b);
- y += numext::log(w / a);
- t = numext::exp(y);
-
- /* } */
- // done:
-
- if (reversed_a_b) {
- if (t <= machep) {
- t = 1.0 - machep;
- } else {
- t = 1.0 - t;
- }
- }
- return t;
- }
-};
-
-#endif // EIGEN_HAS_C99_MATH
-
-} // end namespace internal
-
-namespace numext {
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
- lgamma(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
- digamma(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
-zeta(const Scalar& x, const Scalar& q) {
- return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
-polygamma(const Scalar& n, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
- erf(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
- erfc(const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
- igamma(const Scalar& a, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
- igammac(const Scalar& a, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
-}
-
-template <typename Scalar>
-EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
- betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
- return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
-}
-
-} // end namespace numext
-
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIAL_FUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h b/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
deleted file mode 100644
index 46d60d3..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
+++ /dev/null
@@ -1,58 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-#define EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal \returns the ln(|gamma(\a a)|) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); }
-
-/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
-
-/** \internal \returns the zeta function of two arguments (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); }
-
-/** \internal \returns the polygamma function (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet ppolygamma(const Packet& n, const Packet& x) { using numext::polygamma; return polygamma(n, x); }
-
-/** \internal \returns the erf(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet perf(const Packet& a) { using numext::erf; return erf(a); }
-
-/** \internal \returns the erfc(\a a) (coeff-wise) */
-template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
-Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
-
-/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
-
-/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
-
-/** \internal \returns the complementary incomplete gamma function betainc(\a a, \a b, \a x) */
-template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Packet pbetainc(const Packet& a, const Packet& b,const Packet& x) { using numext::betainc; return betainc(a, b, x); }
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPECIALFUNCTIONS_PACKETMATH_H
-
diff --git a/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h b/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
deleted file mode 100644
index ec4fa84..0000000
--- a/eigen/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
+++ /dev/null
@@ -1,165 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CUDA_SPECIALFUNCTIONS_H
-#define EIGEN_CUDA_SPECIALFUNCTIONS_H
-
-namespace Eigen {
-
-namespace internal {
-
-// Make sure this is only available when targeting a GPU: we don't want to
-// introduce conflicts between these packet_traits definitions and the ones
-// we'll use on the host side (SSE, AVX, ...)
-#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 plgamma<float4>(const float4& a)
-{
- return make_float4(lgammaf(a.x), lgammaf(a.y), lgammaf(a.z), lgammaf(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 plgamma<double2>(const double2& a)
-{
- using numext::lgamma;
- return make_double2(lgamma(a.x), lgamma(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pdigamma<float4>(const float4& a)
-{
- using numext::digamma;
- return make_float4(digamma(a.x), digamma(a.y), digamma(a.z), digamma(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pdigamma<double2>(const double2& a)
-{
- using numext::digamma;
- return make_double2(digamma(a.x), digamma(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pzeta<float4>(const float4& x, const float4& q)
-{
- using numext::zeta;
- return make_float4(zeta(x.x, q.x), zeta(x.y, q.y), zeta(x.z, q.z), zeta(x.w, q.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pzeta<double2>(const double2& x, const double2& q)
-{
- using numext::zeta;
- return make_double2(zeta(x.x, q.x), zeta(x.y, q.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 ppolygamma<float4>(const float4& n, const float4& x)
-{
- using numext::polygamma;
- return make_float4(polygamma(n.x, x.x), polygamma(n.y, x.y), polygamma(n.z, x.z), polygamma(n.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 ppolygamma<double2>(const double2& n, const double2& x)
-{
- using numext::polygamma;
- return make_double2(polygamma(n.x, x.x), polygamma(n.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 perf<float4>(const float4& a)
-{
- return make_float4(erff(a.x), erff(a.y), erff(a.z), erff(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 perf<double2>(const double2& a)
-{
- using numext::erf;
- return make_double2(erf(a.x), erf(a.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 perfc<float4>(const float4& a)
-{
- using numext::erfc;
- return make_float4(erfc(a.x), erfc(a.y), erfc(a.z), erfc(a.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 perfc<double2>(const double2& a)
-{
- using numext::erfc;
- return make_double2(erfc(a.x), erfc(a.y));
-}
-
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pigamma<float4>(const float4& a, const float4& x)
-{
- using numext::igamma;
- return make_float4(
- igamma(a.x, x.x),
- igamma(a.y, x.y),
- igamma(a.z, x.z),
- igamma(a.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pigamma<double2>(const double2& a, const double2& x)
-{
- using numext::igamma;
- return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pigammac<float4>(const float4& a, const float4& x)
-{
- using numext::igammac;
- return make_float4(
- igammac(a.x, x.x),
- igammac(a.y, x.y),
- igammac(a.z, x.z),
- igammac(a.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pigammac<double2>(const double2& a, const double2& x)
-{
- using numext::igammac;
- return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float4 pbetainc<float4>(const float4& a, const float4& b, const float4& x)
-{
- using numext::betainc;
- return make_float4(
- betainc(a.x, b.x, x.x),
- betainc(a.y, b.y, x.y),
- betainc(a.z, b.z, x.z),
- betainc(a.w, b.w, x.w));
-}
-
-template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double2 pbetainc<double2>(const double2& a, const double2& b, const double2& x)
-{
- using numext::betainc;
- return make_double2(betainc(a.x, b.x, x.x), betainc(a.y, b.y, x.y));
-}
-
-#endif
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_CUDA_SPECIALFUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/Splines/Spline.h b/eigen/unsupported/Eigen/src/Splines/Spline.h
deleted file mode 100644
index 57788c8..0000000
--- a/eigen/unsupported/Eigen/src/Splines/Spline.h
+++ /dev/null
@@ -1,507 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINE_H
-#define EIGEN_SPLINE_H
-
-#include "SplineFwd.h"
-
-namespace Eigen
-{
- /**
- * \ingroup Splines_Module
- * \class Spline
- * \brief A class representing multi-dimensional spline curves.
- *
- * The class represents B-splines with non-uniform knot vectors. Each control
- * point of the B-spline is associated with a basis function
- * \f{align*}
- * C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
- * \f}
- *
- * \tparam _Scalar The underlying data type (typically float or double)
- * \tparam _Dim The curve dimension (e.g. 2 or 3)
- * \tparam _Degree Per default set to Dynamic; could be set to the actual desired
- * degree for optimization purposes (would result in stack allocation
- * of several temporary variables).
- **/
- template <typename _Scalar, int _Dim, int _Degree>
- class Spline
- {
- public:
- typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
- enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
- enum { Degree = _Degree /*!< The spline curve's degree. */ };
-
- /** \brief The point type the spline is representing. */
- typedef typename SplineTraits<Spline>::PointType PointType;
-
- /** \brief The data type used to store knot vectors. */
- typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
-
- /** \brief The data type used to store parameter vectors. */
- typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
-
- /** \brief The data type used to store non-zero basis functions. */
- typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
-
- /** \brief The data type representing the spline's control points. */
- typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
-
- /**
- * \brief Creates a (constant) zero spline.
- * For Splines with dynamic degree, the resulting degree will be 0.
- **/
- Spline()
- : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
- , m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
- {
- // in theory this code can go to the initializer list but it will get pretty
- // much unreadable ...
- enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
- m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
- m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
- }
-
- /**
- * \brief Creates a spline from a knot vector and control points.
- * \param knots The spline's knot vector.
- * \param ctrls The spline's control point vector.
- **/
- template <typename OtherVectorType, typename OtherArrayType>
- Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
-
- /**
- * \brief Copy constructor for splines.
- * \param spline The input spline.
- **/
- template <int OtherDegree>
- Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
- m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
-
- /**
- * \brief Returns the knots of the underlying spline.
- **/
- const KnotVectorType& knots() const { return m_knots; }
-
- /**
- * \brief Returns the ctrls of the underlying spline.
- **/
- const ControlPointVectorType& ctrls() const { return m_ctrls; }
-
- /**
- * \brief Returns the spline value at a given site \f$u\f$.
- *
- * The function returns
- * \f{align*}
- * C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
- * \f}
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
- * \return The spline value at the given location \f$u\f$.
- **/
- PointType operator()(Scalar u) const;
-
- /**
- * \brief Evaluation of spline derivatives of up-to given order.
- *
- * The function returns
- * \f{align*}
- * \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
- * \f}
- * for i ranging between 0 and order.
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
- * \param order The order up to which the derivatives are computed.
- **/
- typename SplineTraits<Spline>::DerivativeType
- derivatives(Scalar u, DenseIndex order) const;
-
- /**
- * \copydoc Spline::derivatives
- * Using the template version of this function is more efficieent since
- * temporary objects are allocated on the stack whenever this is possible.
- **/
- template <int DerivativeOrder>
- typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
- derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
-
- /**
- * \brief Computes the non-zero basis functions at the given site.
- *
- * Splines have local support and a point from their image is defined
- * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
- * spline degree.
- *
- * This function computes the \f$p+1\f$ non-zero basis function values
- * for a given parameter value \f$u\f$. It returns
- * \f{align*}{
- * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
- * \f}
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
- * are computed.
- **/
- typename SplineTraits<Spline>::BasisVectorType
- basisFunctions(Scalar u) const;
-
- /**
- * \brief Computes the non-zero spline basis function derivatives up to given order.
- *
- * The function computes
- * \f{align*}{
- * \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
- * \f}
- * with i ranging from 0 up to the specified order.
- *
- * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
- * derivatives are computed.
- * \param order The order up to which the basis function derivatives are computes.
- **/
- typename SplineTraits<Spline>::BasisDerivativeType
- basisFunctionDerivatives(Scalar u, DenseIndex order) const;
-
- /**
- * \copydoc Spline::basisFunctionDerivatives
- * Using the template version of this function is more efficieent since
- * temporary objects are allocated on the stack whenever this is possible.
- **/
- template <int DerivativeOrder>
- typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
- basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
-
- /**
- * \brief Returns the spline degree.
- **/
- DenseIndex degree() const;
-
- /**
- * \brief Returns the span within the knot vector in which u is falling.
- * \param u The site for which the span is determined.
- **/
- DenseIndex span(Scalar u) const;
-
- /**
- * \brief Computes the spang within the provided knot vector in which u is falling.
- **/
- static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
-
- /**
- * \brief Returns the spline's non-zero basis functions.
- *
- * The function computes and returns
- * \f{align*}{
- * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
- * \f}
- *
- * \param u The site at which the basis functions are computed.
- * \param degree The degree of the underlying spline.
- * \param knots The underlying spline's knot vector.
- **/
- static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
-
- /**
- * \copydoc Spline::basisFunctionDerivatives
- * \param degree The degree of the underlying spline
- * \param knots The underlying spline's knot vector.
- **/
- static BasisDerivativeType BasisFunctionDerivatives(
- const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
-
- private:
- KnotVectorType m_knots; /*!< Knot vector. */
- ControlPointVectorType m_ctrls; /*!< Control points. */
-
- template <typename DerivativeType>
- static void BasisFunctionDerivativesImpl(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex p,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
- DerivativeType& N_);
- };
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
- DenseIndex degree,
- const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
- {
- // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
- if (u <= knots(0)) return degree;
- const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
- return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
- Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
- typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- DenseIndex degree,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
- {
- const DenseIndex p = degree;
- const DenseIndex i = Spline::Span(u, degree, knots);
-
- const KnotVectorType& U = knots;
-
- BasisVectorType left(p+1); left(0) = Scalar(0);
- BasisVectorType right(p+1); right(0) = Scalar(0);
-
- VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
- VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
-
- BasisVectorType N(1,p+1);
- N(0) = Scalar(1);
- for (DenseIndex j=1; j<=p; ++j)
- {
- Scalar saved = Scalar(0);
- for (DenseIndex r=0; r<j; r++)
- {
- const Scalar tmp = N(r)/(right(r+1)+left(j-r));
- N[r] = saved + right(r+1)*tmp;
- saved = left(j-r)*tmp;
- }
- N(j) = saved;
- }
- return N;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
- {
- if (_Degree == Dynamic)
- return m_knots.size() - m_ctrls.cols() - 1;
- else
- return _Degree;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
- {
- return Spline::Span(u, degree(), knots());
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
- {
- enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
-
- const DenseIndex span = this->span(u);
- const DenseIndex p = degree();
- const BasisVectorType basis_funcs = basisFunctions(u);
-
- const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
- const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
- return (ctrl_weights * ctrl_pts).rowwise().sum();
- }
-
- /* --------------------------------------------------------------------------------------------- */
-
- template <typename SplineType, typename DerivativeType>
- void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
- {
- enum { Dimension = SplineTraits<SplineType>::Dimension };
- enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
- enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
-
- typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
- typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
- typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
-
- const DenseIndex p = spline.degree();
- const DenseIndex span = spline.span(u);
-
- const DenseIndex n = (std::min)(p, order);
-
- der.resize(Dimension,n+1);
-
- // Retrieve the basis function derivatives up to the desired order...
- const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
-
- // ... and perform the linear combinations of the control points.
- for (DenseIndex der_order=0; der_order<n+1; ++der_order)
- {
- const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
- const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
- der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
- }
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
- Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline >::DerivativeType res;
- derivativesImpl(*this, u, order, res);
- return res;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <int DerivativeOrder>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
- Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
- derivativesImpl(*this, u, order, res);
- return res;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
- Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
- {
- return Spline::BasisFunctions(u, degree(), knots());
- }
-
- /* --------------------------------------------------------------------------------------------- */
-
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <typename DerivativeType>
- void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex p,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
- DerivativeType& N_)
- {
- typedef Spline<_Scalar, _Dim, _Degree> SplineType;
- enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
-
- const DenseIndex span = SplineType::Span(u, p, U);
-
- const DenseIndex n = (std::min)(p, order);
-
- N_.resize(n+1, p+1);
-
- BasisVectorType left = BasisVectorType::Zero(p+1);
- BasisVectorType right = BasisVectorType::Zero(p+1);
-
- Matrix<Scalar,Order,Order> ndu(p+1,p+1);
-
- Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
-
- ndu(0,0) = 1.0;
-
- DenseIndex j;
- for (j=1; j<=p; ++j)
- {
- left[j] = u-U[span+1-j];
- right[j] = U[span+j]-u;
- saved = 0.0;
-
- for (DenseIndex r=0; r<j; ++r)
- {
- /* Lower triangle */
- ndu(j,r) = right[r+1]+left[j-r];
- temp = ndu(r,j-1)/ndu(j,r);
- /* Upper triangle */
- ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
- saved = left[j-r] * temp;
- }
-
- ndu(j,j) = static_cast<Scalar>(saved);
- }
-
- for (j = p; j>=0; --j)
- N_(0,j) = ndu(j,p);
-
- // Compute the derivatives
- DerivativeType a(n+1,p+1);
- DenseIndex r=0;
- for (; r<=p; ++r)
- {
- DenseIndex s1,s2;
- s1 = 0; s2 = 1; // alternate rows in array a
- a(0,0) = 1.0;
-
- // Compute the k-th derivative
- for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
- {
- Scalar d = 0.0;
- DenseIndex rk,pk,j1,j2;
- rk = r-k; pk = p-k;
-
- if (r>=k)
- {
- a(s2,0) = a(s1,0)/ndu(pk+1,rk);
- d = a(s2,0)*ndu(rk,pk);
- }
-
- if (rk>=-1) j1 = 1;
- else j1 = -rk;
-
- if (r-1 <= pk) j2 = k-1;
- else j2 = p-r;
-
- for (j=j1; j<=j2; ++j)
- {
- a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
- d += a(s2,j)*ndu(rk+j,pk);
- }
-
- if (r<=pk)
- {
- a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
- d += a(s2,k)*ndu(r,pk);
- }
-
- N_(k,r) = static_cast<Scalar>(d);
- j = s1; s1 = s2; s2 = j; // Switch rows
- }
- }
-
- /* Multiply through by the correct factors */
- /* (Eq. [2.9]) */
- r = p;
- for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
- {
- for (j=p; j>=0; --j) N_(k,j) *= r;
- r *= p-k;
- }
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
- return der;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- template <int DerivativeOrder>
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
- {
- typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
- return der;
- }
-
- template <typename _Scalar, int _Dim, int _Degree>
- typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
- Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
- const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
- const DenseIndex order,
- const DenseIndex degree,
- const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
- {
- typename SplineTraits<Spline>::BasisDerivativeType der;
- BasisFunctionDerivativesImpl(u, order, degree, knots, der);
- return der;
- }
-}
-
-#endif // EIGEN_SPLINE_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFitting.h b/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
deleted file mode 100644
index c761a9b..0000000
--- a/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
+++ /dev/null
@@ -1,430 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINE_FITTING_H
-#define EIGEN_SPLINE_FITTING_H
-
-#include <algorithm>
-#include <functional>
-#include <numeric>
-#include <vector>
-
-#include "SplineFwd.h"
-
-#include <Eigen/LU>
-#include <Eigen/QR>
-
-namespace Eigen
-{
- /**
- * \brief Computes knot averages.
- * \ingroup Splines_Module
- *
- * The knots are computed as
- * \f{align*}
- * u_0 & = \hdots = u_p = 0 \\
- * u_{m-p} & = \hdots = u_{m} = 1 \\
- * u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
- * \f}
- * where \f$p\f$ is the degree and \f$m+1\f$ the number knots
- * of the desired interpolating spline.
- *
- * \param[in] parameters The input parameters. During interpolation one for each data point.
- * \param[in] degree The spline degree which is used during the interpolation.
- * \param[out] knots The output knot vector.
- *
- * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
- **/
- template <typename KnotVectorType>
- void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
- {
- knots.resize(parameters.size()+degree+1);
-
- for (DenseIndex j=1; j<parameters.size()-degree; ++j)
- knots(j+degree) = parameters.segment(j,degree).mean();
-
- knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
- knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
- }
-
- /**
- * \brief Computes knot averages when derivative constraints are present.
- * Note that this is a technical interpretation of the referenced article
- * since the algorithm contained therein is incorrect as written.
- * \ingroup Splines_Module
- *
- * \param[in] parameters The parameters at which the interpolation B-Spline
- * will intersect the given interpolation points. The parameters
- * are assumed to be a non-decreasing sequence.
- * \param[in] degree The degree of the interpolating B-Spline. This must be
- * greater than zero.
- * \param[in] derivativeIndices The indices corresponding to parameters at
- * which there are derivative constraints. The indices are assumed
- * to be a non-decreasing sequence.
- * \param[out] knots The calculated knot vector. These will be returned as a
- * non-decreasing sequence
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- **/
- template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray>
- void KnotAveragingWithDerivatives(const ParameterVectorType& parameters,
- const unsigned int degree,
- const IndexArray& derivativeIndices,
- KnotVectorType& knots)
- {
- typedef typename ParameterVectorType::Scalar Scalar;
-
- DenseIndex numParameters = parameters.size();
- DenseIndex numDerivatives = derivativeIndices.size();
-
- if (numDerivatives < 1)
- {
- KnotAveraging(parameters, degree, knots);
- return;
- }
-
- DenseIndex startIndex;
- DenseIndex endIndex;
-
- DenseIndex numInternalDerivatives = numDerivatives;
-
- if (derivativeIndices[0] == 0)
- {
- startIndex = 0;
- --numInternalDerivatives;
- }
- else
- {
- startIndex = 1;
- }
- if (derivativeIndices[numDerivatives - 1] == numParameters - 1)
- {
- endIndex = numParameters - degree;
- --numInternalDerivatives;
- }
- else
- {
- endIndex = numParameters - degree - 1;
- }
-
- // There are (endIndex - startIndex + 1) knots obtained from the averaging
- // and 2 for the first and last parameters.
- DenseIndex numAverageKnots = endIndex - startIndex + 3;
- KnotVectorType averageKnots(numAverageKnots);
- averageKnots[0] = parameters[0];
-
- int newKnotIndex = 0;
- for (DenseIndex i = startIndex; i <= endIndex; ++i)
- averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean();
- averageKnots[++newKnotIndex] = parameters[numParameters - 1];
-
- newKnotIndex = -1;
-
- ParameterVectorType temporaryParameters(numParameters + 1);
- KnotVectorType derivativeKnots(numInternalDerivatives);
- for (DenseIndex i = 0; i < numAverageKnots - 1; ++i)
- {
- temporaryParameters[0] = averageKnots[i];
- ParameterVectorType parameterIndices(numParameters);
- int temporaryParameterIndex = 1;
- for (DenseIndex j = 0; j < numParameters; ++j)
- {
- Scalar parameter = parameters[j];
- if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1])
- {
- parameterIndices[temporaryParameterIndex] = j;
- temporaryParameters[temporaryParameterIndex++] = parameter;
- }
- }
- temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1];
-
- for (int j = 0; j <= temporaryParameterIndex - 2; ++j)
- {
- for (DenseIndex k = 0; k < derivativeIndices.size(); ++k)
- {
- if (parameterIndices[j + 1] == derivativeIndices[k]
- && parameterIndices[j + 1] != 0
- && parameterIndices[j + 1] != numParameters - 1)
- {
- derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean();
- break;
- }
- }
- }
- }
-
- KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size());
-
- std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(),
- derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(),
- temporaryKnots.data());
-
- // Number of knots (one for each point and derivative) plus spline order.
- DenseIndex numKnots = numParameters + numDerivatives + degree + 1;
- knots.resize(numKnots);
-
- knots.head(degree).fill(temporaryKnots[0]);
- knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]);
- knots.segment(degree, temporaryKnots.size()) = temporaryKnots;
- }
-
- /**
- * \brief Computes chord length parameters which are required for spline interpolation.
- * \ingroup Splines_Module
- *
- * \param[in] pts The data points to which a spline should be fit.
- * \param[out] chord_lengths The resulting chord lenggth vector.
- *
- * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
- **/
- template <typename PointArrayType, typename KnotVectorType>
- void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
- {
- typedef typename KnotVectorType::Scalar Scalar;
-
- const DenseIndex n = pts.cols();
-
- // 1. compute the column-wise norms
- chord_lengths.resize(pts.cols());
- chord_lengths[0] = 0;
- chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
-
- // 2. compute the partial sums
- std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());
-
- // 3. normalize the data
- chord_lengths /= chord_lengths(n-1);
- chord_lengths(n-1) = Scalar(1);
- }
-
- /**
- * \brief Spline fitting methods.
- * \ingroup Splines_Module
- **/
- template <typename SplineType>
- struct SplineFitting
- {
- typedef typename SplineType::KnotVectorType KnotVectorType;
- typedef typename SplineType::ParameterVectorType ParameterVectorType;
-
- /**
- * \brief Fits an interpolating Spline to the given data points.
- *
- * \param pts The points for which an interpolating spline will be computed.
- * \param degree The degree of the interpolating spline.
- *
- * \returns A spline interpolating the initially provided points.
- **/
- template <typename PointArrayType>
- static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
-
- /**
- * \brief Fits an interpolating Spline to the given data points.
- *
- * \param pts The points for which an interpolating spline will be computed.
- * \param degree The degree of the interpolating spline.
- * \param knot_parameters The knot parameters for the interpolation.
- *
- * \returns A spline interpolating the initially provided points.
- **/
- template <typename PointArrayType>
- static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
-
- /**
- * \brief Fits an interpolating spline to the given data points and
- * derivatives.
- *
- * \param points The points for which an interpolating spline will be computed.
- * \param derivatives The desired derivatives of the interpolating spline at interpolation
- * points.
- * \param derivativeIndices An array indicating which point each derivative belongs to. This
- * must be the same size as @a derivatives.
- * \param degree The degree of the interpolating spline.
- *
- * \returns A spline interpolating @a points with @a derivatives at those points.
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- **/
- template <typename PointArrayType, typename IndexArray>
- static SplineType InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree);
-
- /**
- * \brief Fits an interpolating spline to the given data points and derivatives.
- *
- * \param points The points for which an interpolating spline will be computed.
- * \param derivatives The desired derivatives of the interpolating spline at interpolation points.
- * \param derivativeIndices An array indicating which point each derivative belongs to. This
- * must be the same size as @a derivatives.
- * \param degree The degree of the interpolating spline.
- * \param parameters The parameters corresponding to the interpolation points.
- *
- * \returns A spline interpolating @a points with @a derivatives at those points.
- *
- * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008.
- * Curve interpolation with directional constraints for engineering design.
- * Engineering with Computers
- */
- template <typename PointArrayType, typename IndexArray>
- static SplineType InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree,
- const ParameterVectorType& parameters);
- };
-
- template <typename SplineType>
- template <typename PointArrayType>
- SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters)
- {
- typedef typename SplineType::KnotVectorType::Scalar Scalar;
- typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
-
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
-
- KnotVectorType knots;
- KnotAveraging(knot_parameters, degree, knots);
-
- DenseIndex n = pts.cols();
- MatrixType A = MatrixType::Zero(n,n);
- for (DenseIndex i=1; i<n-1; ++i)
- {
- const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots);
-
- // The segment call should somehow be told the spline order at compile time.
- A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots);
- }
- A(0,0) = 1.0;
- A(n-1,n-1) = 1.0;
-
- HouseholderQR<MatrixType> qr(A);
-
- // Here, we are creating a temporary due to an Eigen issue.
- ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();
-
- return SplineType(knots, ctrls);
- }
-
- template <typename SplineType>
- template <typename PointArrayType>
- SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
- {
- KnotVectorType chord_lengths; // knot parameters
- ChordLengths(pts, chord_lengths);
- return Interpolate(pts, degree, chord_lengths);
- }
-
- template <typename SplineType>
- template <typename PointArrayType, typename IndexArray>
- SplineType
- SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree,
- const ParameterVectorType& parameters)
- {
- typedef typename SplineType::KnotVectorType::Scalar Scalar;
- typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
-
- typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType;
-
- const DenseIndex n = points.cols() + derivatives.cols();
-
- KnotVectorType knots;
-
- KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots);
-
- // fill matrix
- MatrixType A = MatrixType::Zero(n, n);
-
- // Use these dimensions for quicker populating, then transpose for solving.
- MatrixType b(points.rows(), n);
-
- DenseIndex startRow;
- DenseIndex derivativeStart;
-
- // End derivatives.
- if (derivativeIndices[0] == 0)
- {
- A.template block<1, 2>(1, 0) << -1, 1;
-
- Scalar y = (knots(degree + 1) - knots(0)) / degree;
- b.col(1) = y*derivatives.col(0);
-
- startRow = 2;
- derivativeStart = 1;
- }
- else
- {
- startRow = 1;
- derivativeStart = 0;
- }
- if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1)
- {
- A.template block<1, 2>(n - 2, n - 2) << -1, 1;
-
- Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree;
- b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1);
- }
-
- DenseIndex row = startRow;
- DenseIndex derivativeIndex = derivativeStart;
- for (DenseIndex i = 1; i < parameters.size() - 1; ++i)
- {
- const DenseIndex span = SplineType::Span(parameters[i], degree, knots);
-
- if (derivativeIndices[derivativeIndex] == i)
- {
- A.block(row, span - degree, 2, degree + 1)
- = SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots);
-
- b.col(row++) = points.col(i);
- b.col(row++) = derivatives.col(derivativeIndex++);
- }
- else
- {
- A.row(row++).segment(span - degree, degree + 1)
- = SplineType::BasisFunctions(parameters[i], degree, knots);
- }
- }
- b.col(0) = points.col(0);
- b.col(b.cols() - 1) = points.col(points.cols() - 1);
- A(0,0) = 1;
- A(n - 1, n - 1) = 1;
-
- // Solve
- FullPivLU<MatrixType> lu(A);
- ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose();
-
- SplineType spline(knots, controlPoints);
-
- return spline;
- }
-
- template <typename SplineType>
- template <typename PointArrayType, typename IndexArray>
- SplineType
- SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points,
- const PointArrayType& derivatives,
- const IndexArray& derivativeIndices,
- const unsigned int degree)
- {
- ParameterVectorType parameters;
- ChordLengths(points, parameters);
- return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters);
- }
-}
-
-#endif // EIGEN_SPLINE_FITTING_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFwd.h b/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
deleted file mode 100644
index 0a95fbf..0000000
--- a/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
+++ /dev/null
@@ -1,93 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPLINES_FWD_H
-#define EIGEN_SPLINES_FWD_H
-
-#include <Eigen/Core>
-
-namespace Eigen
-{
- template <typename Scalar, int Dim, int Degree = Dynamic> class Spline;
-
- template < typename SplineType, int DerivativeOrder = Dynamic > struct SplineTraits {};
-
- /**
- * \ingroup Splines_Module
- * \brief Compile-time attributes of the Spline class for Dynamic degree.
- **/
- template <typename _Scalar, int _Dim, int _Degree>
- struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, Dynamic >
- {
- typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
- enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
- enum { Degree = _Degree /*!< The spline curve's degree. */ };
-
- enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
- enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
-
- enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
-
- /** \brief The data type used to store non-zero basis functions. */
- typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
-
- /** \brief The data type used to store the spline's derivative values. */
- typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
-
- /** \brief The point type the spline is representing. */
- typedef Array<Scalar,Dimension,1> PointType;
-
- /** \brief The data type used to store knot vectors. */
- typedef Array<Scalar,1,Dynamic> KnotVectorType;
-
- /** \brief The data type used to store parameter vectors. */
- typedef Array<Scalar,1,Dynamic> ParameterVectorType;
-
- /** \brief The data type representing the spline's control points. */
- typedef Array<Scalar,Dimension,Dynamic> ControlPointVectorType;
- };
-
- /**
- * \ingroup Splines_Module
- * \brief Compile-time attributes of the Spline class for fixed degree.
- *
- * The traits class inherits all attributes from the SplineTraits of Dynamic degree.
- **/
- template < typename _Scalar, int _Dim, int _Degree, int _DerivativeOrder >
- struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, _DerivativeOrder > : public SplineTraits< Spline<_Scalar, _Dim, _Degree> >
- {
- enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
- enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
-
- enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
-
- /** \brief The data type used to store the values of the basis function derivatives. */
- typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
-
- /** \brief The data type used to store the spline's derivative values. */
- typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
- };
-
- /** \brief 2D float B-spline with dynamic degree. */
- typedef Spline<float,2> Spline2f;
-
- /** \brief 3D float B-spline with dynamic degree. */
- typedef Spline<float,3> Spline3f;
-
- /** \brief 2D double B-spline with dynamic degree. */
- typedef Spline<double,2> Spline2d;
-
- /** \brief 3D double B-spline with dynamic degree. */
- typedef Spline<double,3> Spline3d;
-}
-
-#endif // EIGEN_SPLINES_FWD_H