summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2016-09-18 12:42:15 +0200
committerStanislaw Halik <sthalik@misaki.pl>2016-11-02 15:12:04 +0100
commit44861dcbfeee041223c4aac1ee075e92fa4daa01 (patch)
tree6dfdfd9637846a7aedd71ace97d7d2ad366496d7 /eigen/unsupported/Eigen
parentf3fe458b9e0a29a99a39d47d9a76dc18964b6fec (diff)
update
Diffstat (limited to 'eigen/unsupported/Eigen')
-rw-r--r--eigen/unsupported/Eigen/AdolcForward156
-rw-r--r--eigen/unsupported/Eigen/AlignedVector3190
-rw-r--r--eigen/unsupported/Eigen/ArpackSupport31
-rw-r--r--eigen/unsupported/Eigen/AutoDiff40
-rw-r--r--eigen/unsupported/Eigen/BVH95
-rw-r--r--eigen/unsupported/Eigen/CMakeLists.txt11
-rw-r--r--eigen/unsupported/Eigen/FFT418
-rw-r--r--eigen/unsupported/Eigen/IterativeSolvers45
-rw-r--r--eigen/unsupported/Eigen/KroneckerProduct34
-rw-r--r--eigen/unsupported/Eigen/LevenbergMarquardt45
-rw-r--r--eigen/unsupported/Eigen/MPRealSupport203
-rw-r--r--eigen/unsupported/Eigen/MatrixFunctions447
-rw-r--r--eigen/unsupported/Eigen/MoreVectorization24
-rw-r--r--eigen/unsupported/Eigen/NonLinearOptimization134
-rw-r--r--eigen/unsupported/Eigen/NumericalDiff56
-rw-r--r--eigen/unsupported/Eigen/OpenGLSupport322
-rw-r--r--eigen/unsupported/Eigen/Polynomials138
-rw-r--r--eigen/unsupported/Eigen/SVD39
-rw-r--r--eigen/unsupported/Eigen/Skyline39
-rw-r--r--eigen/unsupported/Eigen/SparseExtra56
-rw-r--r--eigen/unsupported/Eigen/Splines31
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h83
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h642
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h220
-rw-r--r--eigen/unsupported/Eigen/src/AutoDiff/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h293
-rw-r--r--eigen/unsupported/Eigen/src/BVH/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/BVH/KdBVH.h222
-rw-r--r--eigen/unsupported/Eigen/src/CMakeLists.txt15
-rw-r--r--eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h805
-rw-r--r--eigen/unsupported/Eigen/src/Eigenvalues/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/FFT/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h261
-rw-r--r--eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h420
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h189
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h542
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h371
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h278
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h113
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h154
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h311
-rw-r--r--eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h185
-rw-r--r--eigen/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h244
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt52
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h85
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h202
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h160
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h189
-rw-r--r--eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h377
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h451
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h591
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h131
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h486
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h508
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h466
-rw-r--r--eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h105
-rw-r--r--eigen/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h95
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h601
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h650
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h66
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h70
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h107
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h79
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h298
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h91
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h30
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h99
-rw-r--r--eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h49
-rw-r--r--eigen/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h130
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/Companion.h276
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h389
-rw-r--r--eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h143
-rw-r--r--eigen/unsupported/Eigen/src/SVD/BDCSVD.h748
-rw-r--r--eigen/unsupported/Eigen/src/SVD/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/SVD/JacobiSVD.h782
-rw-r--r--eigen/unsupported/Eigen/src/SVD/SVDBase.h236
-rw-r--r--eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt29
-rw-r--r--eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt21
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h352
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h862
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h212
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h295
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h259
-rw-r--r--eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h89
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h122
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h357
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h273
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h232
-rw-r--r--eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h327
-rw-r--r--eigen/unsupported/Eigen/src/Splines/CMakeLists.txt6
-rw-r--r--eigen/unsupported/Eigen/src/Splines/Spline.h474
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFitting.h156
-rw-r--r--eigen/unsupported/Eigen/src/Splines/SplineFwd.h90
103 files changed, 20890 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/AdolcForward b/eigen/unsupported/Eigen/AdolcForward
new file mode 100644
index 0000000..2627dec
--- /dev/null
+++ b/eigen/unsupported/Eigen/AdolcForward
@@ -0,0 +1,156 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ADLOC_FORWARD
+#define EIGEN_ADLOC_FORWARD
+
+//--------------------------------------------------------------------------------
+//
+// This file provides support for adolc's adouble type in forward mode.
+// ADOL-C is a C++ automatic differentiation library,
+// see https://projects.coin-or.org/ADOL-C for more information.
+//
+// Note that the maximal number of directions is controlled by
+// the preprocessor token NUMBER_DIRECTIONS. The default is 2.
+//
+//--------------------------------------------------------------------------------
+
+#define ADOLC_TAPELESS
+#ifndef NUMBER_DIRECTIONS
+# define NUMBER_DIRECTIONS 2
+#endif
+#include <adolc/adouble.h>
+
+// adolc defines some very stupid macros:
+#if defined(malloc)
+# undef malloc
+#endif
+
+#if defined(calloc)
+# undef calloc
+#endif
+
+#if defined(realloc)
+# undef realloc
+#endif
+
+#include <Eigen/Core>
+
+namespace Eigen {
+
+/**
+ * \defgroup AdolcForward_Module Adolc forward module
+ * This module provides support for adolc's adouble type in forward mode.
+ * ADOL-C is a C++ automatic differentiation library,
+ * see https://projects.coin-or.org/ADOL-C for more information.
+ * It mainly consists in:
+ * - a struct Eigen::NumTraits<adtl::adouble> specialization
+ * - overloads of internal::* math function for adtl::adouble type.
+ *
+ * Note that the maximal number of directions is controlled by
+ * the preprocessor token NUMBER_DIRECTIONS. The default is 2.
+ *
+ * \code
+ * #include <unsupported/Eigen/AdolcSupport>
+ * \endcode
+ */
+ //@{
+
+} // namespace Eigen
+
+// Eigen's require a few additional functions which must be defined in the same namespace
+// than the custom scalar type own namespace
+namespace adtl {
+
+inline const adouble& conj(const adouble& x) { return x; }
+inline const adouble& real(const adouble& x) { return x; }
+inline adouble imag(const adouble&) { return 0.; }
+inline adouble abs(const adouble& x) { return fabs(x); }
+inline adouble abs2(const adouble& x) { return x*x; }
+
+}
+
+namespace Eigen {
+
+template<> struct NumTraits<adtl::adouble>
+ : NumTraits<double>
+{
+ typedef adtl::adouble Real;
+ typedef adtl::adouble NonInteger;
+ typedef adtl::adouble Nested;
+ enum {
+ IsComplex = 0,
+ IsInteger = 0,
+ IsSigned = 1,
+ RequireInitialization = 1,
+ ReadCost = 1,
+ AddCost = 1,
+ MulCost = 1
+ };
+};
+
+template<typename Functor> class AdolcForwardJacobian : public Functor
+{
+ typedef adtl::adouble ActiveScalar;
+public:
+
+ AdolcForwardJacobian() : Functor() {}
+ AdolcForwardJacobian(const Functor& f) : Functor(f) {}
+
+ // forward constructors
+ template<typename T0>
+ AdolcForwardJacobian(const T0& a0) : Functor(a0) {}
+ template<typename T0, typename T1>
+ AdolcForwardJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
+ template<typename T0, typename T1, typename T2>
+ AdolcForwardJacobian(const T0& a0, const T1& a1, const T1& a2) : Functor(a0, a1, a2) {}
+
+ typedef typename Functor::InputType InputType;
+ typedef typename Functor::ValueType ValueType;
+ typedef typename Functor::JacobianType JacobianType;
+
+ typedef Matrix<ActiveScalar, InputType::SizeAtCompileTime, 1> ActiveInput;
+ typedef Matrix<ActiveScalar, ValueType::SizeAtCompileTime, 1> ActiveValue;
+
+ void operator() (const InputType& x, ValueType* v, JacobianType* _jac) const
+ {
+ eigen_assert(v!=0);
+ if (!_jac)
+ {
+ Functor::operator()(x, v);
+ return;
+ }
+
+ JacobianType& jac = *_jac;
+
+ ActiveInput ax = x.template cast<ActiveScalar>();
+ ActiveValue av(jac.rows());
+
+ for (int j=0; j<jac.cols(); j++)
+ for (int i=0; i<jac.cols(); i++)
+ ax[i].setADValue(j, i==j ? 1 : 0);
+
+ Functor::operator()(ax, &av);
+
+ for (int i=0; i<jac.rows(); i++)
+ {
+ (*v)[i] = av[i].getValue();
+ for (int j=0; j<jac.cols(); j++)
+ jac.coeffRef(i,j) = av[i].getADValue(j);
+ }
+ }
+protected:
+
+};
+
+//@}
+
+}
+
+#endif // EIGEN_ADLOC_FORWARD
diff --git a/eigen/unsupported/Eigen/AlignedVector3 b/eigen/unsupported/Eigen/AlignedVector3
new file mode 100644
index 0000000..29d5c90
--- /dev/null
+++ b/eigen/unsupported/Eigen/AlignedVector3
@@ -0,0 +1,190 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ALIGNED_VECTOR3
+#define EIGEN_ALIGNED_VECTOR3
+
+#include <Eigen/Geometry>
+
+namespace Eigen {
+
+/**
+ * \defgroup AlignedVector3_Module Aligned vector3 module
+ *
+ * \code
+ * #include <unsupported/Eigen/AlignedVector3>
+ * \endcode
+ */
+ //@{
+
+
+/** \class AlignedVector3
+ *
+ * \brief A vectorization friendly 3D vector
+ *
+ * This class represents a 3D vector internally using a 4D vector
+ * such that vectorization can be seamlessly enabled. Of course,
+ * the same result can be achieved by directly using a 4D vector.
+ * This class makes this process simpler.
+ *
+ */
+// TODO specialize Cwise
+template<typename _Scalar> class AlignedVector3;
+
+namespace internal {
+template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
+ : traits<Matrix<_Scalar,3,1,0,4,1> >
+{
+};
+}
+
+template<typename _Scalar> class AlignedVector3
+ : public MatrixBase<AlignedVector3<_Scalar> >
+{
+ typedef Matrix<_Scalar,4,1> CoeffType;
+ CoeffType m_coeffs;
+ public:
+
+ typedef MatrixBase<AlignedVector3<_Scalar> > Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
+ using Base::operator*;
+
+ inline Index rows() const { return 3; }
+ inline Index cols() const { return 1; }
+
+ inline const Scalar& coeff(Index row, Index col) const
+ { return m_coeffs.coeff(row, col); }
+
+ inline Scalar& coeffRef(Index row, Index col)
+ { return m_coeffs.coeffRef(row, col); }
+
+ inline const Scalar& coeff(Index index) const
+ { return m_coeffs.coeff(index); }
+
+ inline Scalar& coeffRef(Index index)
+ { return m_coeffs.coeffRef(index);}
+
+
+ inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
+ : m_coeffs(x, y, z, Scalar(0))
+ {}
+
+ inline AlignedVector3(const AlignedVector3& other)
+ : Base(), m_coeffs(other.m_coeffs)
+ {}
+
+ template<typename XprType, int Size=XprType::SizeAtCompileTime>
+ struct generic_assign_selector {};
+
+ template<typename XprType> struct generic_assign_selector<XprType,4>
+ {
+ inline static void run(AlignedVector3& dest, const XprType& src)
+ {
+ dest.m_coeffs = src;
+ }
+ };
+
+ template<typename XprType> struct generic_assign_selector<XprType,3>
+ {
+ inline static void run(AlignedVector3& dest, const XprType& src)
+ {
+ dest.m_coeffs.template head<3>() = src;
+ dest.m_coeffs.w() = Scalar(0);
+ }
+ };
+
+ template<typename Derived>
+ inline explicit AlignedVector3(const MatrixBase<Derived>& other)
+ {
+ generic_assign_selector<Derived>::run(*this,other.derived());
+ }
+
+ inline AlignedVector3& operator=(const AlignedVector3& other)
+ { m_coeffs = other.m_coeffs; return *this; }
+
+
+ inline AlignedVector3 operator+(const AlignedVector3& other) const
+ { return AlignedVector3(m_coeffs + other.m_coeffs); }
+
+ inline AlignedVector3& operator+=(const AlignedVector3& other)
+ { m_coeffs += other.m_coeffs; return *this; }
+
+ inline AlignedVector3 operator-(const AlignedVector3& other) const
+ { return AlignedVector3(m_coeffs - other.m_coeffs); }
+
+ inline AlignedVector3 operator-=(const AlignedVector3& other)
+ { m_coeffs -= other.m_coeffs; return *this; }
+
+ inline AlignedVector3 operator*(const Scalar& s) const
+ { return AlignedVector3(m_coeffs * s); }
+
+ inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
+ { return AlignedVector3(s * vec.m_coeffs); }
+
+ inline AlignedVector3& operator*=(const Scalar& s)
+ { m_coeffs *= s; return *this; }
+
+ inline AlignedVector3 operator/(const Scalar& s) const
+ { return AlignedVector3(m_coeffs / s); }
+
+ inline AlignedVector3& operator/=(const Scalar& s)
+ { m_coeffs /= s; return *this; }
+
+ inline Scalar dot(const AlignedVector3& other) const
+ {
+ eigen_assert(m_coeffs.w()==Scalar(0));
+ eigen_assert(other.m_coeffs.w()==Scalar(0));
+ return m_coeffs.dot(other.m_coeffs);
+ }
+
+ inline void normalize()
+ {
+ m_coeffs /= norm();
+ }
+
+ inline AlignedVector3 normalized()
+ {
+ return AlignedVector3(m_coeffs / norm());
+ }
+
+ inline Scalar sum() const
+ {
+ eigen_assert(m_coeffs.w()==Scalar(0));
+ return m_coeffs.sum();
+ }
+
+ inline Scalar squaredNorm() const
+ {
+ eigen_assert(m_coeffs.w()==Scalar(0));
+ return m_coeffs.squaredNorm();
+ }
+
+ inline Scalar norm() const
+ {
+ using std::sqrt;
+ return sqrt(squaredNorm());
+ }
+
+ inline AlignedVector3 cross(const AlignedVector3& other) const
+ {
+ return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
+ }
+
+ template<typename Derived>
+ inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
+ {
+ return m_coeffs.template head<3>().isApprox(other,eps);
+ }
+};
+
+//@}
+
+}
+
+#endif // EIGEN_ALIGNED_VECTOR3
diff --git a/eigen/unsupported/Eigen/ArpackSupport b/eigen/unsupported/Eigen/ArpackSupport
new file mode 100644
index 0000000..37a2799
--- /dev/null
+++ b/eigen/unsupported/Eigen/ArpackSupport
@@ -0,0 +1,31 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ARPACKSUPPORT_MODULE_H
+#define EIGEN_ARPACKSUPPORT_MODULE_H
+
+#include <Eigen/Core>
+
+#include <Eigen/src/Core/util/DisableStupidWarnings.h>
+
+/** \defgroup ArpackSupport_Module Arpack support module
+ *
+ * This module provides a wrapper to Arpack, a library for sparse eigenvalue decomposition.
+ *
+ * \code
+ * #include <Eigen/ArpackSupport>
+ * \endcode
+ */
+
+#include <Eigen/SparseCholesky>
+#include "src/Eigenvalues/ArpackSelfAdjointEigenSolver.h"
+
+#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
+
+#endif // EIGEN_ARPACKSUPPORT_MODULE_H
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/AutoDiff b/eigen/unsupported/Eigen/AutoDiff
new file mode 100644
index 0000000..abf5b7d
--- /dev/null
+++ b/eigen/unsupported/Eigen/AutoDiff
@@ -0,0 +1,40 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_MODULE
+#define EIGEN_AUTODIFF_MODULE
+
+namespace Eigen {
+
+/**
+ * \defgroup AutoDiff_Module Auto Diff module
+ *
+ * This module features forward automatic differentation via a simple
+ * templated scalar type wrapper AutoDiffScalar.
+ *
+ * Warning : this should NOT be confused with numerical differentiation, which
+ * is a different method and has its own module in Eigen : \ref NumericalDiff_Module.
+ *
+ * \code
+ * #include <unsupported/Eigen/AutoDiff>
+ * \endcode
+ */
+//@{
+
+}
+
+#include "src/AutoDiff/AutoDiffScalar.h"
+// #include "src/AutoDiff/AutoDiffVector.h"
+#include "src/AutoDiff/AutoDiffJacobian.h"
+
+namespace Eigen {
+//@}
+}
+
+#endif // EIGEN_AUTODIFF_MODULE
diff --git a/eigen/unsupported/Eigen/BVH b/eigen/unsupported/Eigen/BVH
new file mode 100644
index 0000000..0161a54
--- /dev/null
+++ b/eigen/unsupported/Eigen/BVH
@@ -0,0 +1,95 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BVH_MODULE_H
+#define EIGEN_BVH_MODULE_H
+
+#include <Eigen/Core>
+#include <Eigen/Geometry>
+#include <Eigen/StdVector>
+#include <algorithm>
+#include <queue>
+
+namespace Eigen {
+
+/**
+ * \defgroup BVH_Module BVH module
+ * \brief This module provides generic bounding volume hierarchy algorithms
+ * and reference tree implementations.
+ *
+ *
+ * \code
+ * #include <unsupported/Eigen/BVH>
+ * \endcode
+ *
+ * A bounding volume hierarchy (BVH) can accelerate many geometric queries. This module provides a generic implementation
+ * of the two basic algorithms over a BVH: intersection of a query object against all objects in the hierarchy and minimization
+ * of a function over the objects in the hierarchy. It also provides intersection and minimization over a cartesian product of
+ * two BVH's. A BVH accelerates intersection by using the fact that if a query object does not intersect a volume, then it cannot
+ * intersect any object contained in that volume. Similarly, a BVH accelerates minimization because the minimum of a function
+ * over a volume is no greater than the minimum of a function over any object contained in it.
+ *
+ * Some sample queries that can be written in terms of intersection are:
+ * - Determine all points where a ray intersects a triangle mesh
+ * - Given a set of points, determine which are contained in a query sphere
+ * - Given a set of spheres, determine which contain the query point
+ * - Given a set of disks, determine if any is completely contained in a query rectangle (represent each 2D disk as a point \f$(x,y,r)\f$
+ * in 3D and represent the rectangle as a pyramid based on the original rectangle and shrinking in the \f$r\f$ direction)
+ * - Given a set of points, count how many pairs are \f$d\pm\epsilon\f$ apart (done by looking at the cartesian product of the set
+ * of points with itself)
+ *
+ * Some sample queries that can be written in terms of function minimization over a set of objects are:
+ * - Find the intersection between a ray and a triangle mesh closest to the ray origin (function is infinite off the ray)
+ * - Given a polyline and a query point, determine the closest point on the polyline to the query
+ * - Find the diameter of a point cloud (done by looking at the cartesian product and using negative distance as the function)
+ * - Determine how far two meshes are from colliding (this is also a cartesian product query)
+ *
+ * This implementation decouples the basic algorithms both from the type of hierarchy (and the types of the bounding volumes) and
+ * from the particulars of the query. To enable abstraction from the BVH, the BVH is required to implement a generic mechanism
+ * for traversal. To abstract from the query, the query is responsible for keeping track of results.
+ *
+ * To be used in the algorithms, a hierarchy must implement the following traversal mechanism (see KdBVH for a sample implementation): \code
+ typedef Volume //the type of bounding volume
+ typedef Object //the type of object in the hierarchy
+ typedef Index //a reference to a node in the hierarchy--typically an int or a pointer
+ typedef VolumeIterator //an iterator type over node children--returns Index
+ typedef ObjectIterator //an iterator over object (leaf) children--returns const Object &
+ Index getRootIndex() const //returns the index of the hierarchy root
+ const Volume &getVolume(Index index) const //returns the bounding volume of the node at given index
+ void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
+ ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
+ //getChildren takes a node index and makes [outVBegin, outVEnd) range over its node children
+ //and [outOBegin, outOEnd) range over its object children
+ \endcode
+ *
+ * To use the hierarchy, call BVIntersect or BVMinimize, passing it a BVH (or two, for cartesian product) and a minimizer or intersector.
+ * For an intersection query on a single BVH, the intersector encapsulates the query and must provide two functions:
+ * \code
+ bool intersectVolume(const Volume &volume) //returns true if the query intersects the volume
+ bool intersectObject(const Object &object) //returns true if the intersection search should terminate immediately
+ \endcode
+ * The guarantee that BVIntersect provides is that intersectObject will be called on every object whose bounding volume
+ * intersects the query (but possibly on other objects too) unless the search is terminated prematurely. It is the
+ * responsibility of the intersectObject function to keep track of the results in whatever manner is appropriate.
+ * The cartesian product intersection and the BVMinimize queries are similar--see their individual documentation.
+ *
+ * The following is a simple but complete example for how to use the BVH to accelerate the search for a closest red-blue point pair:
+ * \include BVH_Example.cpp
+ * Output: \verbinclude BVH_Example.out
+ */
+}
+
+//@{
+
+#include "src/BVH/BVAlgorithms.h"
+#include "src/BVH/KdBVH.h"
+
+//@}
+
+#endif // EIGEN_BVH_MODULE_H
diff --git a/eigen/unsupported/Eigen/CMakeLists.txt b/eigen/unsupported/Eigen/CMakeLists.txt
new file mode 100644
index 0000000..e1fbf97
--- /dev/null
+++ b/eigen/unsupported/Eigen/CMakeLists.txt
@@ -0,0 +1,11 @@
+set(Eigen_HEADERS AdolcForward AlignedVector3 ArpackSupport AutoDiff BVH FFT IterativeSolvers KroneckerProduct LevenbergMarquardt
+ MatrixFunctions MoreVectorization MPRealSupport NonLinearOptimization NumericalDiff OpenGLSupport Polynomials
+ Skyline SparseExtra Splines
+ )
+
+install(FILES
+ ${Eigen_HEADERS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen COMPONENT Devel
+ )
+
+add_subdirectory(src)
diff --git a/eigen/unsupported/Eigen/FFT b/eigen/unsupported/Eigen/FFT
new file mode 100644
index 0000000..2c45b39
--- /dev/null
+++ b/eigen/unsupported/Eigen/FFT
@@ -0,0 +1,418 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_FFT_H
+#define EIGEN_FFT_H
+
+#include <complex>
+#include <vector>
+#include <map>
+#include <Eigen/Core>
+
+
+/**
+ * \defgroup FFT_Module Fast Fourier Transform module
+ *
+ * \code
+ * #include <unsupported/Eigen/FFT>
+ * \endcode
+ *
+ * This module provides Fast Fourier transformation, with a configurable backend
+ * implementation.
+ *
+ * The default implementation is based on kissfft. It is a small, free, and
+ * reasonably efficient default.
+ *
+ * There are currently two implementation backend:
+ *
+ * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
+ * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
+ *
+ * \section FFTDesign Design
+ *
+ * The following design decisions were made concerning scaling and
+ * half-spectrum for real FFT.
+ *
+ * The intent is to facilitate generic programming and ease migrating code
+ * from Matlab/octave.
+ * We think the default behavior of Eigen/FFT should favor correctness and
+ * generality over speed. Of course, the caller should be able to "opt-out" from this
+ * behavior and get the speed increase if they want it.
+ *
+ * 1) %Scaling:
+ * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there
+ * is a constant gain incurred after the forward&inverse transforms , so
+ * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply.
+ * The downside is that algorithms that worked correctly in Matlab/octave
+ * don't behave the same way once implemented in C++.
+ *
+ * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x.
+ *
+ * 2) Real FFT half-spectrum
+ * Other libraries use only half the frequency spectrum (plus one extra
+ * sample for the Nyquist bin) for a real FFT, the other half is the
+ * conjugate-symmetric of the first half. This saves them a copy and some
+ * memory. The downside is the caller needs to have special logic for the
+ * number of bins in complex vs real.
+ *
+ * How Eigen/FFT differs: The full spectrum is returned from the forward
+ * transform. This facilitates generic template programming by obviating
+ * separate specializations for real vs complex. On the inverse
+ * transform, only half the spectrum is actually used if the output type is real.
+ */
+
+
+#ifdef EIGEN_FFTW_DEFAULT
+// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
+# include <fftw3.h>
+# include "src/FFT/ei_fftw_impl.h"
+ namespace Eigen {
+ //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work
+ template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
+ }
+#elif defined EIGEN_MKL_DEFAULT
+// TODO
+// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
+# include "src/FFT/ei_imklfft_impl.h"
+ namespace Eigen {
+ template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
+ }
+#else
+// internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft
+//
+# include "src/FFT/ei_kissfft_impl.h"
+ namespace Eigen {
+ template <typename T>
+ struct default_fft_impl : public internal::kissfft_impl<T> {};
+ }
+#endif
+
+namespace Eigen {
+
+
+//
+template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
+template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;
+
+namespace internal {
+template<typename T_SrcMat,typename T_FftIfc>
+struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
+{
+ typedef typename T_SrcMat::PlainObject ReturnType;
+};
+template<typename T_SrcMat,typename T_FftIfc>
+struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
+{
+ typedef typename T_SrcMat::PlainObject ReturnType;
+};
+}
+
+template<typename T_SrcMat,typename T_FftIfc>
+struct fft_fwd_proxy
+ : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
+{
+ typedef DenseIndex Index;
+
+ fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
+
+ template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
+
+ Index rows() const { return m_src.rows(); }
+ Index cols() const { return m_src.cols(); }
+protected:
+ const T_SrcMat & m_src;
+ T_FftIfc & m_ifc;
+ Index m_nfft;
+private:
+ fft_fwd_proxy& operator=(const fft_fwd_proxy&);
+};
+
+template<typename T_SrcMat,typename T_FftIfc>
+struct fft_inv_proxy
+ : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
+{
+ typedef DenseIndex Index;
+
+ fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
+
+ template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
+
+ Index rows() const { return m_src.rows(); }
+ Index cols() const { return m_src.cols(); }
+protected:
+ const T_SrcMat & m_src;
+ T_FftIfc & m_ifc;
+ Index m_nfft;
+private:
+ fft_inv_proxy& operator=(const fft_inv_proxy&);
+};
+
+
+template <typename T_Scalar,
+ typename T_Impl=default_fft_impl<T_Scalar> >
+class FFT
+{
+ public:
+ typedef T_Impl impl_type;
+ typedef DenseIndex Index;
+ typedef typename impl_type::Scalar Scalar;
+ typedef typename impl_type::Complex Complex;
+
+ enum Flag {
+ Default=0, // goof proof
+ Unscaled=1,
+ HalfSpectrum=2,
+ // SomeOtherSpeedOptimization=4
+ Speedy=32767
+ };
+
+ FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
+
+ inline
+ bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
+
+ inline
+ void SetFlag(Flag f) { m_flag |= (int)f;}
+
+ inline
+ void ClearFlag(Flag f) { m_flag &= (~(int)f);}
+
+ inline
+ void fwd( Complex * dst, const Scalar * src, Index nfft)
+ {
+ m_impl.fwd(dst,src,static_cast<int>(nfft));
+ if ( HasFlag(HalfSpectrum) == false)
+ ReflectSpectrum(dst,nfft);
+ }
+
+ inline
+ void fwd( Complex * dst, const Complex * src, Index nfft)
+ {
+ m_impl.fwd(dst,src,static_cast<int>(nfft));
+ }
+
+ /*
+ inline
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ m_impl.fwd2(dst,src,n0,n1);
+ }
+ */
+
+ template <typename _Input>
+ inline
+ void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
+ {
+ if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
+ else
+ dst.resize(src.size());
+ fwd(&dst[0],&src[0],src.size());
+ }
+
+ template<typename InputDerived, typename ComplexDerived>
+ inline
+ void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
+ {
+ typedef typename ComplexDerived::Scalar dst_type;
+ typedef typename InputDerived::Scalar src_type;
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
+ EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
+ EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
+ THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
+
+ if (nfft<1)
+ nfft = src.size();
+
+ if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ dst.derived().resize( (nfft>>1)+1);
+ else
+ dst.derived().resize(nfft);
+
+ if ( src.innerStride() != 1 || src.size() < nfft ) {
+ Matrix<src_type,1,Dynamic> tmp;
+ if (src.size()<nfft) {
+ tmp.setZero(nfft);
+ tmp.block(0,0,src.size(),1 ) = src;
+ }else{
+ tmp = src;
+ }
+ fwd( &dst[0],&tmp[0],nfft );
+ }else{
+ fwd( &dst[0],&src[0],nfft );
+ }
+ }
+
+ template<typename InputDerived>
+ inline
+ fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
+ fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
+ {
+ return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
+ }
+
+ template<typename InputDerived>
+ inline
+ fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
+ inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
+ {
+ return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
+ }
+
+ inline
+ void inv( Complex * dst, const Complex * src, Index nfft)
+ {
+ m_impl.inv( dst,src,static_cast<int>(nfft) );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,Scalar(1./nfft),nfft); // scale the time series
+ }
+
+ inline
+ void inv( Scalar * dst, const Complex * src, Index nfft)
+ {
+ m_impl.inv( dst,src,static_cast<int>(nfft) );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,Scalar(1./nfft),nfft); // scale the time series
+ }
+
+ template<typename OutputDerived, typename ComplexDerived>
+ inline
+ void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
+ {
+ typedef typename ComplexDerived::Scalar src_type;
+ typedef typename OutputDerived::Scalar dst_type;
+ const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
+ EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
+ EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
+ THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
+
+ if (nfft<1) { //automatic FFT size determination
+ if ( realfft && HasFlag(HalfSpectrum) )
+ nfft = 2*(src.size()-1); //assume even fft size
+ else
+ nfft = src.size();
+ }
+ dst.derived().resize( nfft );
+
+ // check for nfft that does not fit the input data size
+ Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
+ ? ( (nfft/2+1) - src.size() )
+ : ( nfft - src.size() );
+
+ if ( src.innerStride() != 1 || resize_input ) {
+ // if the vector is strided, then we need to copy it to a packed temporary
+ Matrix<src_type,1,Dynamic> tmp;
+ if ( resize_input ) {
+ size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
+ tmp.setZero(src.size() + resize_input);
+ if ( realfft && HasFlag(HalfSpectrum) ) {
+ // pad at the Nyquist bin
+ tmp.head(ncopy) = src.head(ncopy);
+ tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
+ }else{
+ size_t nhead,ntail;
+ nhead = 1+ncopy/2-1; // range [0:pi)
+ ntail = ncopy/2-1; // range (-pi:0)
+ tmp.head(nhead) = src.head(nhead);
+ tmp.tail(ntail) = src.tail(ntail);
+ if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
+ tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5);
+ }else{ // expanding -- split the old Nyquist bin into two halves
+ tmp(nhead) = src(nhead) * src_type(.5);
+ tmp(tmp.size()-nhead) = tmp(nhead);
+ }
+ }
+ }else{
+ tmp = src;
+ }
+ inv( &dst[0],&tmp[0], nfft);
+ }else{
+ inv( &dst[0],&src[0], nfft);
+ }
+ }
+
+ template <typename _Output>
+ inline
+ void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
+ {
+ if (nfft<1)
+ nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
+ dst.resize( nfft );
+ inv( &dst[0],&src[0],nfft);
+ }
+
+
+ /*
+ // TODO: multi-dimensional FFTs
+ inline
+ void inv2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ m_impl.inv2(dst,src,n0,n1);
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,1./(n0*n1),n0*n1);
+ }
+ */
+
+ inline
+ impl_type & impl() {return m_impl;}
+ private:
+
+ template <typename T_Data>
+ inline
+ void scale(T_Data * x,Scalar s,Index nx)
+ {
+#if 1
+ for (int k=0;k<nx;++k)
+ *x++ *= s;
+#else
+ if ( ((ptrdiff_t)x) & 15 )
+ Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
+ else
+ Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
+ //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
+#endif
+ }
+
+ inline
+ void ReflectSpectrum(Complex * freq, Index nfft)
+ {
+ // create the implicit right-half spectrum (conjugate-mirror of the left-half)
+ Index nhbins=(nfft>>1)+1;
+ for (Index k=nhbins;k < nfft; ++k )
+ freq[k] = conj(freq[nfft-k]);
+ }
+
+ impl_type m_impl;
+ int m_flag;
+};
+
+template<typename T_SrcMat,typename T_FftIfc>
+template<typename T_DestMat> inline
+void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
+{
+ m_ifc.fwd( dst, m_src, m_nfft);
+}
+
+template<typename T_SrcMat,typename T_FftIfc>
+template<typename T_DestMat> inline
+void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
+{
+ m_ifc.inv( dst, m_src, m_nfft);
+}
+
+}
+#endif
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/IterativeSolvers b/eigen/unsupported/Eigen/IterativeSolvers
new file mode 100644
index 0000000..aa15403
--- /dev/null
+++ b/eigen/unsupported/Eigen/IterativeSolvers
@@ -0,0 +1,45 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ITERATIVE_SOLVERS_MODULE_H
+#define EIGEN_ITERATIVE_SOLVERS_MODULE_H
+
+#include <Eigen/Sparse>
+
+/**
+ * \defgroup IterativeSolvers_Module Iterative solvers module
+ * This module aims to provide various iterative linear and non linear solver algorithms.
+ * It currently provides:
+ * - a constrained conjugate gradient
+ * - a Householder GMRES implementation
+ * \code
+ * #include <unsupported/Eigen/IterativeSolvers>
+ * \endcode
+ */
+//@{
+
+#include "../../Eigen/src/misc/Solve.h"
+#include "../../Eigen/src/misc/SparseSolve.h"
+
+#ifndef EIGEN_MPL2_ONLY
+#include "src/IterativeSolvers/IterationController.h"
+#include "src/IterativeSolvers/ConstrainedConjGrad.h"
+#endif
+
+#include "src/IterativeSolvers/IncompleteLU.h"
+#include "../../Eigen/Jacobi"
+#include "../../Eigen/Householder"
+#include "src/IterativeSolvers/GMRES.h"
+#include "src/IterativeSolvers/IncompleteCholesky.h"
+//#include "src/IterativeSolvers/SSORPreconditioner.h"
+#include "src/IterativeSolvers/MINRES.h"
+
+//@}
+
+#endif // EIGEN_ITERATIVE_SOLVERS_MODULE_H
diff --git a/eigen/unsupported/Eigen/KroneckerProduct b/eigen/unsupported/Eigen/KroneckerProduct
new file mode 100644
index 0000000..c932c06
--- /dev/null
+++ b/eigen/unsupported/Eigen/KroneckerProduct
@@ -0,0 +1,34 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_KRONECKER_PRODUCT_MODULE_H
+#define EIGEN_KRONECKER_PRODUCT_MODULE_H
+
+#include "../../Eigen/Core"
+
+#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
+
+namespace Eigen {
+
+/**
+ * \defgroup KroneckerProduct_Module KroneckerProduct module
+ *
+ * This module contains an experimental Kronecker product implementation.
+ *
+ * \code
+ * #include <Eigen/KroneckerProduct>
+ * \endcode
+ */
+
+} // namespace Eigen
+
+#include "src/KroneckerProduct/KroneckerTensorProduct.h"
+
+#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_KRONECKER_PRODUCT_MODULE_H
diff --git a/eigen/unsupported/Eigen/LevenbergMarquardt b/eigen/unsupported/Eigen/LevenbergMarquardt
new file mode 100644
index 0000000..0fe2680
--- /dev/null
+++ b/eigen/unsupported/Eigen/LevenbergMarquardt
@@ -0,0 +1,45 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEVENBERGMARQUARDT_MODULE
+#define EIGEN_LEVENBERGMARQUARDT_MODULE
+
+// #include <vector>
+
+#include <Eigen/Core>
+#include <Eigen/Jacobi>
+#include <Eigen/QR>
+#include <unsupported/Eigen/NumericalDiff>
+
+#include <Eigen/SparseQR>
+
+/**
+ * \defgroup LevenbergMarquardt_Module Levenberg-Marquardt module
+ *
+ * \code
+ * #include </Eigen/LevenbergMarquardt>
+ * \endcode
+ *
+ *
+ */
+
+#include "Eigen/SparseCore"
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+#include "src/LevenbergMarquardt/LMqrsolv.h"
+#include "src/LevenbergMarquardt/LMcovar.h"
+#include "src/LevenbergMarquardt/LMpar.h"
+
+#endif
+
+#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
+#include "src/LevenbergMarquardt/LMonestep.h"
+
+
+#endif // EIGEN_LEVENBERGMARQUARDT_MODULE
diff --git a/eigen/unsupported/Eigen/MPRealSupport b/eigen/unsupported/Eigen/MPRealSupport
new file mode 100644
index 0000000..d4b0364
--- /dev/null
+++ b/eigen/unsupported/Eigen/MPRealSupport
@@ -0,0 +1,203 @@
+// This file is part of a joint effort between Eigen, a lightweight C++ template library
+// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
+//
+// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
+// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MPREALSUPPORT_MODULE_H
+#define EIGEN_MPREALSUPPORT_MODULE_H
+
+#include <Eigen/Core>
+#include <mpreal.h>
+
+namespace Eigen {
+
+/**
+ * \defgroup MPRealSupport_Module MPFRC++ Support module
+ * \code
+ * #include <Eigen/MPRealSupport>
+ * \endcode
+ *
+ * This module provides support for multi precision floating point numbers
+ * via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
+ * library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
+ *
+ * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
+ *
+ * Here is an example:
+ *
+\code
+#include <iostream>
+#include <Eigen/MPRealSupport>
+#include <Eigen/LU>
+using namespace mpfr;
+using namespace Eigen;
+int main()
+{
+ // set precision to 256 bits (double has only 53 bits)
+ mpreal::set_default_prec(256);
+ // Declare matrix and vector types with multi-precision scalar type
+ typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp;
+ typedef Matrix<mpreal,Dynamic,1> VectorXmp;
+
+ MatrixXmp A = MatrixXmp::Random(100,100);
+ VectorXmp b = VectorXmp::Random(100);
+
+ // Solve Ax=b using LU
+ VectorXmp x = A.lu().solve(b);
+ std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
+ return 0;
+}
+\endcode
+ *
+ */
+
+ template<> struct NumTraits<mpfr::mpreal>
+ : GenericNumTraits<mpfr::mpreal>
+ {
+ enum {
+ IsInteger = 0,
+ IsSigned = 1,
+ IsComplex = 0,
+ RequireInitialization = 1,
+ ReadCost = 10,
+ AddCost = 10,
+ MulCost = 40
+ };
+
+ typedef mpfr::mpreal Real;
+ typedef mpfr::mpreal NonInteger;
+
+ inline static Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
+ inline static Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
+
+ // Constants
+ inline static Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
+ inline static Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
+ inline static Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
+ inline static Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
+
+ inline static Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
+ inline static Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
+
+ inline static Real dummy_precision()
+ {
+ unsigned int weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
+ return mpfr::machine_epsilon(weak_prec);
+ }
+ };
+
+ namespace internal {
+
+ template<> inline mpfr::mpreal random<mpfr::mpreal>()
+ {
+ return mpfr::random();
+ }
+
+ template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
+ {
+ return a + (b-a) * random<mpfr::mpreal>();
+ }
+
+ inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
+ {
+ return mpfr::abs(a) <= mpfr::abs(b) * eps;
+ }
+
+ inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
+ {
+ return mpfr::isEqualFuzzy(a,b,eps);
+ }
+
+ inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
+ {
+ return a <= b || mpfr::isEqualFuzzy(a,b,eps);
+ }
+
+ template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
+ { return x.toLDouble(); }
+
+ template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
+ { return x.toDouble(); }
+
+ template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
+ { return x.toLong(); }
+
+ template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
+ { return int(x.toLong()); }
+
+ // Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
+ // This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
+ template<>
+ class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false>
+ {
+ public:
+ typedef mpfr::mpreal ResScalar;
+ enum {
+ nr = 2, // must be 2 for proper packing...
+ mr = 1,
+ WorkSpaceFactor = nr,
+ LhsProgress = 1,
+ RhsProgress = 1
+ };
+ };
+
+ template<typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
+ struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,mr,nr,ConjugateLhs,ConjugateRhs>
+ {
+ typedef mpfr::mpreal mpreal;
+
+ EIGEN_DONT_INLINE
+ void operator()(mpreal* res, Index resStride, const mpreal* blockA, const mpreal* blockB, Index rows, Index depth, Index cols, mpreal alpha,
+ Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, mpreal* /*unpackedB*/ = 0)
+ {
+ mpreal acc1, acc2, tmp;
+
+ if(strideA==-1) strideA = depth;
+ if(strideB==-1) strideB = depth;
+
+ for(Index j=0; j<cols; j+=nr)
+ {
+ Index actual_nr = (std::min<Index>)(nr,cols-j);
+ mpreal *C1 = res + j*resStride;
+ mpreal *C2 = res + (j+1)*resStride;
+ for(Index i=0; i<rows; i++)
+ {
+ mpreal *B = const_cast<mpreal*>(blockB) + j*strideB + offsetB*actual_nr;
+ mpreal *A = const_cast<mpreal*>(blockA) + i*strideA + offsetA;
+ acc1 = 0;
+ acc2 = 0;
+ for(Index k=0; k<depth; k++)
+ {
+ mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_ptr(), B[0].mpfr_ptr(), mpreal::get_default_rnd());
+ mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
+
+ if(actual_nr==2) {
+ mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_ptr(), B[1].mpfr_ptr(), mpreal::get_default_rnd());
+ mpfr_add(acc2.mpfr_ptr(), acc2.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
+ }
+
+ B+=actual_nr;
+ }
+
+ mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_ptr(), alpha.mpfr_ptr(), mpreal::get_default_rnd());
+ mpfr_add(C1[i].mpfr_ptr(), C1[i].mpfr_ptr(), acc1.mpfr_ptr(), mpreal::get_default_rnd());
+
+ if(actual_nr==2) {
+ mpfr_mul(acc2.mpfr_ptr(), acc2.mpfr_ptr(), alpha.mpfr_ptr(), mpreal::get_default_rnd());
+ mpfr_add(C2[i].mpfr_ptr(), C2[i].mpfr_ptr(), acc2.mpfr_ptr(), mpreal::get_default_rnd());
+ }
+ }
+ }
+ }
+ };
+
+ } // end namespace internal
+}
+
+#endif // EIGEN_MPREALSUPPORT_MODULE_H
diff --git a/eigen/unsupported/Eigen/MatrixFunctions b/eigen/unsupported/Eigen/MatrixFunctions
new file mode 100644
index 0000000..0991817
--- /dev/null
+++ b/eigen/unsupported/Eigen/MatrixFunctions
@@ -0,0 +1,447 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_FUNCTIONS
+#define EIGEN_MATRIX_FUNCTIONS
+
+#include <cfloat>
+#include <list>
+#include <functional>
+#include <iterator>
+
+#include <Eigen/Core>
+#include <Eigen/LU>
+#include <Eigen/Eigenvalues>
+
+/**
+ * \defgroup MatrixFunctions_Module Matrix functions module
+ * \brief This module aims to provide various methods for the computation of
+ * matrix functions.
+ *
+ * To use this module, add
+ * \code
+ * #include <unsupported/Eigen/MatrixFunctions>
+ * \endcode
+ * at the start of your source file.
+ *
+ * This module defines the following MatrixBase methods.
+ * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
+ * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
+ * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
+ * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm
+ * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power
+ * - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
+ * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
+ * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
+ * - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
+ *
+ * These methods are the main entry points to this module.
+ *
+ * %Matrix functions are defined as follows. Suppose that \f$ f \f$
+ * is an entire function (that is, a function on the complex plane
+ * that is everywhere complex differentiable). Then its Taylor
+ * series
+ * \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
+ * converges to \f$ f(x) \f$. In this case, we can define the matrix
+ * function by the same series:
+ * \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
+ *
+ */
+
+#include "src/MatrixFunctions/MatrixExponential.h"
+#include "src/MatrixFunctions/MatrixFunction.h"
+#include "src/MatrixFunctions/MatrixSquareRoot.h"
+#include "src/MatrixFunctions/MatrixLogarithm.h"
+#include "src/MatrixFunctions/MatrixPower.h"
+
+
+/**
+\page matrixbaseextra_page
+\ingroup MatrixFunctions_Module
+
+\section matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
+
+The remainder of the page documents the following MatrixBase methods
+which are defined in the MatrixFunctions module.
+
+
+
+\subsection matrixbase_cos MatrixBase::cos()
+
+Compute the matrix cosine.
+
+\code
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
+\endcode
+
+\param[in] M a square matrix.
+\returns expression representing \f$ \cos(M) \f$.
+
+This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
+
+\sa \ref matrixbase_sin "sin()" for an example.
+
+
+
+\subsection matrixbase_cosh MatrixBase::cosh()
+
+Compute the matrix hyberbolic cosine.
+
+\code
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
+\endcode
+
+\param[in] M a square matrix.
+\returns expression representing \f$ \cosh(M) \f$
+
+This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
+
+\sa \ref matrixbase_sinh "sinh()" for an example.
+
+
+
+\subsection matrixbase_exp MatrixBase::exp()
+
+Compute the matrix exponential.
+
+\code
+const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
+\endcode
+
+\param[in] M matrix whose exponential is to be computed.
+\returns expression representing the matrix exponential of \p M.
+
+The matrix exponential of \f$ M \f$ is defined by
+\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
+The matrix exponential can be used to solve linear ordinary
+differential equations: the solution of \f$ y' = My \f$ with the
+initial condition \f$ y(0) = y_0 \f$ is given by
+\f$ y(t) = \exp(M) y_0 \f$.
+
+The cost of the computation is approximately \f$ 20 n^3 \f$ for
+matrices of size \f$ n \f$. The number 20 depends weakly on the
+norm of the matrix.
+
+The matrix exponential is computed using the scaling-and-squaring
+method combined with Pad&eacute; approximation. The matrix is first
+rescaled, then the exponential of the reduced matrix is computed
+approximant, and then the rescaling is undone by repeated
+squaring. The degree of the Pad&eacute; approximant is chosen such
+that the approximation error is less than the round-off
+error. However, errors may accumulate during the squaring phase.
+
+Details of the algorithm can be found in: Nicholas J. Higham, "The
+scaling and squaring method for the matrix exponential revisited,"
+<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
+2005.
+
+Example: The following program checks that
+\f[ \exp \left[ \begin{array}{ccc}
+ 0 & \frac14\pi & 0 \\
+ -\frac14\pi & 0 & 0 \\
+ 0 & 0 & 0
+ \end{array} \right] = \left[ \begin{array}{ccc}
+ \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
+ \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
+ 0 & 0 & 1
+ \end{array} \right]. \f]
+This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
+the z-axis.
+
+\include MatrixExponential.cpp
+Output: \verbinclude MatrixExponential.out
+
+\note \p M has to be a matrix of \c float, \c double, \c long double
+\c complex<float>, \c complex<double>, or \c complex<long double> .
+
+
+\subsection matrixbase_log MatrixBase::log()
+
+Compute the matrix logarithm.
+
+\code
+const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
+\endcode
+
+\param[in] M invertible matrix whose logarithm is to be computed.
+\returns expression representing the matrix logarithm root of \p M.
+
+The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that
+\f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for
+the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
+multiple solutions; this function returns a matrix whose eigenvalues
+have imaginary part in the interval \f$ (-\pi,\pi] \f$.
+
+In the real case, the matrix \f$ M \f$ should be invertible and
+it should have no eigenvalues which are real and negative (pairs of
+complex conjugate eigenvalues are allowed). In the complex case, it
+only needs to be invertible.
+
+This function computes the matrix logarithm using the Schur-Parlett
+algorithm as implemented by MatrixBase::matrixFunction(). The
+logarithm of an atomic block is computed by MatrixLogarithmAtomic,
+which uses direct computation for 1-by-1 and 2-by-2 blocks and an
+inverse scaling-and-squaring algorithm for bigger blocks, with the
+square roots computed by MatrixBase::sqrt().
+
+Details of the algorithm can be found in Section 11.6.2 of:
+Nicholas J. Higham,
+<em>Functions of Matrices: Theory and Computation</em>,
+SIAM 2008. ISBN 978-0-898716-46-7.
+
+Example: The following program checks that
+\f[ \log \left[ \begin{array}{ccc}
+ \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
+ \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
+ 0 & 0 & 1
+ \end{array} \right] = \left[ \begin{array}{ccc}
+ 0 & \frac14\pi & 0 \\
+ -\frac14\pi & 0 & 0 \\
+ 0 & 0 & 0
+ \end{array} \right]. \f]
+This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
+the z-axis. This is the inverse of the example used in the
+documentation of \ref matrixbase_exp "exp()".
+
+\include MatrixLogarithm.cpp
+Output: \verbinclude MatrixLogarithm.out
+
+\note \p M has to be a matrix of \c float, \c double, <tt>long
+double</tt>, \c complex<float>, \c complex<double>, or \c complex<long
+double> .
+
+\sa MatrixBase::exp(), MatrixBase::matrixFunction(),
+ class MatrixLogarithmAtomic, MatrixBase::sqrt().
+
+
+\subsection matrixbase_pow MatrixBase::pow()
+
+Compute the matrix raised to arbitrary real power.
+
+\code
+const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
+\endcode
+
+\param[in] M base of the matrix power, should be a square matrix.
+\param[in] p exponent of the matrix power, should be real.
+
+The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
+where exp denotes the matrix exponential, and log denotes the matrix
+logarithm.
+
+The matrix \f$ M \f$ should meet the conditions to be an argument of
+matrix logarithm. If \p p is not of the real scalar type of \p M, it
+is casted into the real scalar type of \p M.
+
+This function computes the matrix power using the Schur-Pad&eacute;
+algorithm as implemented by class MatrixPower. The exponent is split
+into integral part and fractional part, where the fractional part is
+in the interval \f$ (-1, 1) \f$. The main diagonal and the first
+super-diagonal is directly computed.
+
+Details of the algorithm can be found in: Nicholas J. Higham and
+Lijing Lin, "A Schur-Pad&eacute; algorithm for fractional powers of a
+matrix," <em>SIAM J. %Matrix Anal. Applic.</em>,
+<b>32(3)</b>:1056&ndash;1078, 2011.
+
+Example: The following program checks that
+\f[ \left[ \begin{array}{ccc}
+ \cos1 & -\sin1 & 0 \\
+ \sin1 & \cos1 & 0 \\
+ 0 & 0 & 1
+ \end{array} \right]^{\frac14\pi} = \left[ \begin{array}{ccc}
+ \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
+ \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
+ 0 & 0 & 1
+ \end{array} \right]. \f]
+This corresponds to \f$ \frac14\pi \f$ rotations of 1 radian around
+the z-axis.
+
+\include MatrixPower.cpp
+Output: \verbinclude MatrixPower.out
+
+MatrixBase::pow() is user-friendly. However, there are some
+circumstances under which you should use class MatrixPower directly.
+MatrixPower can save the result of Schur decomposition, so it's
+better for computing various powers for the same matrix.
+
+Example:
+\include MatrixPower_optimal.cpp
+Output: \verbinclude MatrixPower_optimal.out
+
+\note \p M has to be a matrix of \c float, \c double, <tt>long
+double</tt>, \c complex<float>, \c complex<double>, or \c complex<long
+double> .
+
+\sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower.
+
+
+\subsection matrixbase_matrixfunction MatrixBase::matrixFunction()
+
+Compute a matrix function.
+
+\code
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
+\endcode
+
+\param[in] M argument of matrix function, should be a square matrix.
+\param[in] f an entire function; \c f(x,n) should compute the n-th
+derivative of f at x.
+\returns expression representing \p f applied to \p M.
+
+Suppose that \p M is a matrix whose entries have type \c Scalar.
+Then, the second argument, \p f, should be a function with prototype
+\code
+ComplexScalar f(ComplexScalar, int)
+\endcode
+where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
+real (e.g., \c float or \c double) and \c ComplexScalar =
+\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
+should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
+
+This routine uses the algorithm described in:
+Philip Davies and Nicholas J. Higham,
+"A Schur-Parlett algorithm for computing matrix functions",
+<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464&ndash;485, 2003.
+
+The actual work is done by the MatrixFunction class.
+
+Example: The following program checks that
+\f[ \exp \left[ \begin{array}{ccc}
+ 0 & \frac14\pi & 0 \\
+ -\frac14\pi & 0 & 0 \\
+ 0 & 0 & 0
+ \end{array} \right] = \left[ \begin{array}{ccc}
+ \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
+ \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
+ 0 & 0 & 1
+ \end{array} \right]. \f]
+This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
+the z-axis. This is the same example as used in the documentation
+of \ref matrixbase_exp "exp()".
+
+\include MatrixFunction.cpp
+Output: \verbinclude MatrixFunction.out
+
+Note that the function \c expfn is defined for complex numbers
+\c x, even though the matrix \c A is over the reals. Instead of
+\c expfn, we could also have used StdStemFunctions::exp:
+\code
+A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
+\endcode
+
+
+
+\subsection matrixbase_sin MatrixBase::sin()
+
+Compute the matrix sine.
+
+\code
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
+\endcode
+
+\param[in] M a square matrix.
+\returns expression representing \f$ \sin(M) \f$.
+
+This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
+
+Example: \include MatrixSine.cpp
+Output: \verbinclude MatrixSine.out
+
+
+
+\subsection matrixbase_sinh MatrixBase::sinh()
+
+Compute the matrix hyperbolic sine.
+
+\code
+MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
+\endcode
+
+\param[in] M a square matrix.
+\returns expression representing \f$ \sinh(M) \f$
+
+This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
+
+Example: \include MatrixSinh.cpp
+Output: \verbinclude MatrixSinh.out
+
+
+\subsection matrixbase_sqrt MatrixBase::sqrt()
+
+Compute the matrix square root.
+
+\code
+const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
+\endcode
+
+\param[in] M invertible matrix whose square root is to be computed.
+\returns expression representing the matrix square root of \p M.
+
+The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
+whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
+\f$ S^2 = M \f$.
+
+In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
+it should have no eigenvalues which are real and negative (pairs of
+complex conjugate eigenvalues are allowed). In that case, the matrix
+has a square root which is also real, and this is the square root
+computed by this function.
+
+The matrix square root is computed by first reducing the matrix to
+quasi-triangular form with the real Schur decomposition. The square
+root of the quasi-triangular matrix can then be computed directly. The
+cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
+decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
+(though the computation time in practice is likely more than this
+indicates).
+
+Details of the algorithm can be found in: Nicholas J. Highan,
+"Computing real square roots of a real matrix", <em>Linear Algebra
+Appl.</em>, 88/89:405&ndash;430, 1987.
+
+If the matrix is <b>positive-definite symmetric</b>, then the square
+root is also positive-definite symmetric. In this case, it is best to
+use SelfAdjointEigenSolver::operatorSqrt() to compute it.
+
+In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
+this is a restriction of the algorithm. The square root computed by
+this algorithm is the one whose eigenvalues have an argument in the
+interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
+cut.
+
+The computation is the same as in the real case, except that the
+complex Schur decomposition is used to reduce the matrix to a
+triangular matrix. The theoretical cost is the same. Details are in:
+&Aring;ke Bj&ouml;rck and Sven Hammarling, "A Schur method for the
+square root of a matrix", <em>Linear Algebra Appl.</em>,
+52/53:127&ndash;140, 1983.
+
+Example: The following program checks that the square root of
+\f[ \left[ \begin{array}{cc}
+ \cos(\frac13\pi) & -\sin(\frac13\pi) \\
+ \sin(\frac13\pi) & \cos(\frac13\pi)
+ \end{array} \right], \f]
+corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
+\f[ \left[ \begin{array}{cc}
+ \cos(\frac16\pi) & -\sin(\frac16\pi) \\
+ \sin(\frac16\pi) & \cos(\frac16\pi)
+ \end{array} \right]. \f]
+
+\include MatrixSquareRoot.cpp
+Output: \verbinclude MatrixSquareRoot.out
+
+\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
+ SelfAdjointEigenSolver::operatorSqrt().
+
+*/
+
+#endif // EIGEN_MATRIX_FUNCTIONS
+
diff --git a/eigen/unsupported/Eigen/MoreVectorization b/eigen/unsupported/Eigen/MoreVectorization
new file mode 100644
index 0000000..470e724
--- /dev/null
+++ b/eigen/unsupported/Eigen/MoreVectorization
@@ -0,0 +1,24 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MOREVECTORIZATION_MODULE_H
+#define EIGEN_MOREVECTORIZATION_MODULE_H
+
+#include <Eigen/Core>
+
+namespace Eigen {
+
+/**
+ * \defgroup MoreVectorization More vectorization module
+ */
+
+}
+
+#include "src/MoreVectorization/MathFunctions.h"
+
+#endif // EIGEN_MOREVECTORIZATION_MODULE_H
diff --git a/eigen/unsupported/Eigen/NonLinearOptimization b/eigen/unsupported/Eigen/NonLinearOptimization
new file mode 100644
index 0000000..600ab4c
--- /dev/null
+++ b/eigen/unsupported/Eigen/NonLinearOptimization
@@ -0,0 +1,134 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NONLINEAROPTIMIZATION_MODULE
+#define EIGEN_NONLINEAROPTIMIZATION_MODULE
+
+#include <vector>
+
+#include <Eigen/Core>
+#include <Eigen/Jacobi>
+#include <Eigen/QR>
+#include <unsupported/Eigen/NumericalDiff>
+
+/**
+ * \defgroup NonLinearOptimization_Module Non linear optimization module
+ *
+ * \code
+ * #include <unsupported/Eigen/NonLinearOptimization>
+ * \endcode
+ *
+ * This module provides implementation of two important algorithms in non linear
+ * optimization. In both cases, we consider a system of non linear functions. Of
+ * course, this should work, and even work very well if those functions are
+ * actually linear. But if this is so, you should probably better use other
+ * methods more fitted to this special case.
+ *
+ * One algorithm allows to find an extremum of such a system (Levenberg
+ * Marquardt algorithm) and the second one is used to find
+ * a zero for the system (Powell hybrid "dogleg" method).
+ *
+ * This code is a port of minpack (http://en.wikipedia.org/wiki/MINPACK).
+ * Minpack is a very famous, old, robust and well-reknown package, written in
+ * fortran. Those implementations have been carefully tuned, tested, and used
+ * for several decades.
+ *
+ * The original fortran code was automatically translated using f2c (http://en.wikipedia.org/wiki/F2c) in C,
+ * then c++, and then cleaned by several different authors.
+ * The last one of those cleanings being our starting point :
+ * http://devernay.free.fr/hacks/cminpack.html
+ *
+ * Finally, we ported this code to Eigen, creating classes and API
+ * coherent with Eigen. When possible, we switched to Eigen
+ * implementation, such as most linear algebra (vectors, matrices, stable norms).
+ *
+ * Doing so, we were very careful to check the tests we setup at the very
+ * beginning, which ensure that the same results are found.
+ *
+ * \section Tests Tests
+ *
+ * The tests are placed in the file unsupported/test/NonLinear.cpp.
+ *
+ * There are two kinds of tests : those that come from examples bundled with cminpack.
+ * They guaranty we get the same results as the original algorithms (value for 'x',
+ * for the number of evaluations of the function, and for the number of evaluations
+ * of the jacobian if ever).
+ *
+ * Other tests were added by myself at the very beginning of the
+ * process and check the results for levenberg-marquardt using the reference data
+ * on http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml. Since then i've
+ * carefully checked that the same results were obtained when modifiying the
+ * code. Please note that we do not always get the exact same decimals as they do,
+ * but this is ok : they use 128bits float, and we do the tests using the C type 'double',
+ * which is 64 bits on most platforms (x86 and amd64, at least).
+ * I've performed those tests on several other implementations of levenberg-marquardt, and
+ * (c)minpack performs VERY well compared to those, both in accuracy and speed.
+ *
+ * The documentation for running the tests is on the wiki
+ * http://eigen.tuxfamily.org/index.php?title=Tests
+ *
+ * \section API API : overview of methods
+ *
+ * Both algorithms can use either the jacobian (provided by the user) or compute
+ * an approximation by themselves (actually using Eigen \ref NumericalDiff_Module).
+ * The part of API referring to the latter use 'NumericalDiff' in the method names
+ * (exemple: LevenbergMarquardt.minimizeNumericalDiff() )
+ *
+ * The methods LevenbergMarquardt.lmder1()/lmdif1()/lmstr1() and
+ * HybridNonLinearSolver.hybrj1()/hybrd1() are specific methods from the original
+ * minpack package that you probably should NOT use until you are porting a code that
+ * was previously using minpack. They just define a 'simple' API with default values
+ * for some parameters.
+ *
+ * All algorithms are provided using Two APIs :
+ * - one where the user inits the algorithm, and uses '*OneStep()' as much as he wants :
+ * this way the caller have control over the steps
+ * - one where the user just calls a method (optimize() or solve()) which will
+ * handle the loop: init + loop until a stop condition is met. Those are provided for
+ * convenience.
+ *
+ * As an example, the method LevenbergMarquardt::minimize() is
+ * implemented as follow :
+ * \code
+ * Status LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x, const int mode)
+ * {
+ * Status status = minimizeInit(x, mode);
+ * do {
+ * status = minimizeOneStep(x, mode);
+ * } while (status==Running);
+ * return status;
+ * }
+ * \endcode
+ *
+ * \section examples Examples
+ *
+ * The easiest way to understand how to use this module is by looking at the many examples in the file
+ * unsupported/test/NonLinearOptimization.cpp.
+ */
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+#include "src/NonLinearOptimization/qrsolv.h"
+#include "src/NonLinearOptimization/r1updt.h"
+#include "src/NonLinearOptimization/r1mpyq.h"
+#include "src/NonLinearOptimization/rwupdt.h"
+#include "src/NonLinearOptimization/fdjac1.h"
+#include "src/NonLinearOptimization/lmpar.h"
+#include "src/NonLinearOptimization/dogleg.h"
+#include "src/NonLinearOptimization/covar.h"
+
+#include "src/NonLinearOptimization/chkder.h"
+
+#endif
+
+#include "src/NonLinearOptimization/HybridNonLinearSolver.h"
+#include "src/NonLinearOptimization/LevenbergMarquardt.h"
+
+
+#endif // EIGEN_NONLINEAROPTIMIZATION_MODULE
diff --git a/eigen/unsupported/Eigen/NumericalDiff b/eigen/unsupported/Eigen/NumericalDiff
new file mode 100644
index 0000000..433334c
--- /dev/null
+++ b/eigen/unsupported/Eigen/NumericalDiff
@@ -0,0 +1,56 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NUMERICALDIFF_MODULE
+#define EIGEN_NUMERICALDIFF_MODULE
+
+#include <Eigen/Core>
+
+namespace Eigen {
+
+/**
+ * \defgroup NumericalDiff_Module Numerical differentiation module
+ *
+ * \code
+ * #include <unsupported/Eigen/NumericalDiff>
+ * \endcode
+ *
+ * See http://en.wikipedia.org/wiki/Numerical_differentiation
+ *
+ * Warning : this should NOT be confused with automatic differentiation, which
+ * is a different method and has its own module in Eigen : \ref
+ * AutoDiff_Module.
+ *
+ * Currently only "Forward" and "Central" schemes are implemented. Those
+ * are basic methods, and there exist some more elaborated way of
+ * computing such approximates. They are implemented using both
+ * proprietary and free software, and usually requires linking to an
+ * external library. It is very easy for you to write a functor
+ * using such software, and the purpose is quite orthogonal to what we
+ * want to achieve with Eigen.
+ *
+ * This is why we will not provide wrappers for every great numerical
+ * differentiation software that exist, but should rather stick with those
+ * basic ones, that still are useful for testing.
+ *
+ * Also, the \ref NonLinearOptimization_Module needs this in order to
+ * provide full features compatibility with the original (c)minpack
+ * package.
+ *
+ */
+}
+
+//@{
+
+#include "src/NumericalDiff/NumericalDiff.h"
+
+//@}
+
+
+#endif // EIGEN_NUMERICALDIFF_MODULE
diff --git a/eigen/unsupported/Eigen/OpenGLSupport b/eigen/unsupported/Eigen/OpenGLSupport
new file mode 100644
index 0000000..e276944
--- /dev/null
+++ b/eigen/unsupported/Eigen/OpenGLSupport
@@ -0,0 +1,322 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_OPENGL_MODULE
+#define EIGEN_OPENGL_MODULE
+
+#include <Eigen/Geometry>
+
+#if defined(__APPLE_CC__)
+ #include <OpenGL/gl.h>
+#else
+ #include <GL/gl.h>
+#endif
+
+namespace Eigen {
+
+/**
+ * \defgroup OpenGLSUpport_Module OpenGL Support module
+ *
+ * This module provides wrapper functions for a couple of OpenGL functions
+ * which simplify the way to pass Eigen's object to openGL.
+ * Here is an exmaple:
+ *
+ * \code
+ * // You need to add path_to_eigen/unsupported to your include path.
+ * #include <Eigen/OpenGLSupport>
+ * // ...
+ * Vector3f x, y;
+ * Matrix3f rot;
+ *
+ * glVertex(y + x * rot);
+ *
+ * Quaternion q;
+ * glRotate(q);
+ *
+ * // ...
+ * \endcode
+ *
+ */
+//@{
+
+#define EIGEN_GL_FUNC_DECLARATION(FUNC) \
+namespace internal { \
+ template< typename XprType, \
+ typename Scalar = typename XprType::Scalar, \
+ int Rows = XprType::RowsAtCompileTime, \
+ int Cols = XprType::ColsAtCompileTime, \
+ bool IsGLCompatible = bool(XprType::Flags&LinearAccessBit) \
+ && bool(XprType::Flags&DirectAccessBit) \
+ && (XprType::IsVectorAtCompileTime || (XprType::Flags&RowMajorBit)==0)> \
+ struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl); \
+ \
+ template<typename XprType, typename Scalar, int Rows, int Cols> \
+ struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType,Scalar,Rows,Cols,false> { \
+ inline static void run(const XprType& p) { \
+ EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<typename plain_matrix_type_column_major<XprType>::type>::run(p); } \
+ }; \
+} \
+ \
+template<typename Derived> inline void FUNC(const Eigen::DenseBase<Derived>& p) { \
+ EIGEN_CAT(EIGEN_CAT(internal::gl_,FUNC),_impl)<Derived>::run(p.derived()); \
+}
+
+
+#define EIGEN_GL_FUNC_SPECIALIZATION_MAT(FUNC,SCALAR,ROWS,COLS,SUFFIX) \
+namespace internal { \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, ROWS, COLS, true> { \
+ inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
+ }; \
+}
+
+
+#define EIGEN_GL_FUNC_SPECIALIZATION_VEC(FUNC,SCALAR,SIZE,SUFFIX) \
+namespace internal { \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, SIZE, 1, true> { \
+ inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
+ }; \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, 1, SIZE, true> { \
+ inline static void run(const XprType& p) { FUNC##SUFFIX(p.data()); } \
+ }; \
+}
+
+
+EIGEN_GL_FUNC_DECLARATION (glVertex)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 2,2iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 2,2sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 2,2fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 2,2dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 3,3iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 3,3sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 3,3dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,int, 4,4iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,short, 4,4sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,float, 4,4fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glVertex,double, 4,4dv)
+
+EIGEN_GL_FUNC_DECLARATION (glTexCoord)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 2,2iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 2,2sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 2,2fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 2,2dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 3,3iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 3,3sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 3,3dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,int, 4,4iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,short, 4,4sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,float, 4,4fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTexCoord,double, 4,4dv)
+
+EIGEN_GL_FUNC_DECLARATION (glColor)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 2,2iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 2,2sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 2,2fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 2,2dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 3,3iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 3,3sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 3,3dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,int, 4,4iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,short, 4,4sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,float, 4,4fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glColor,double, 4,4dv)
+
+EIGEN_GL_FUNC_DECLARATION (glNormal)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,int, 3,3iv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,short, 3,3sv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glNormal,double, 3,3dv)
+
+inline void glScale2fv(const float* v) { glScalef(v[0], v[1], 1.f); }
+inline void glScale2dv(const double* v) { glScaled(v[0], v[1], 1.0); }
+inline void glScale3fv(const float* v) { glScalef(v[0], v[1], v[2]); }
+inline void glScale3dv(const double* v) { glScaled(v[0], v[1], v[2]); }
+
+EIGEN_GL_FUNC_DECLARATION (glScale)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,float, 2,2fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,double, 2,2dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glScale,double, 3,3dv)
+
+template<typename Scalar> void glScale(const UniformScaling<Scalar>& s) { glScale(Matrix<Scalar,3,1>::Constant(s.factor())); }
+
+inline void glTranslate2fv(const float* v) { glTranslatef(v[0], v[1], 0.f); }
+inline void glTranslate2dv(const double* v) { glTranslated(v[0], v[1], 0.0); }
+inline void glTranslate3fv(const float* v) { glTranslatef(v[0], v[1], v[2]); }
+inline void glTranslate3dv(const double* v) { glTranslated(v[0], v[1], v[2]); }
+
+EIGEN_GL_FUNC_DECLARATION (glTranslate)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,float, 2,2fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,double, 2,2dv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,float, 3,3fv)
+EIGEN_GL_FUNC_SPECIALIZATION_VEC(glTranslate,double, 3,3dv)
+
+template<typename Scalar> void glTranslate(const Translation<Scalar,2>& t) { glTranslate(t.vector()); }
+template<typename Scalar> void glTranslate(const Translation<Scalar,3>& t) { glTranslate(t.vector()); }
+
+EIGEN_GL_FUNC_DECLARATION (glMultMatrix)
+EIGEN_GL_FUNC_SPECIALIZATION_MAT(glMultMatrix,float, 4,4,f)
+EIGEN_GL_FUNC_SPECIALIZATION_MAT(glMultMatrix,double, 4,4,d)
+
+template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,Affine>& t) { glMultMatrix(t.matrix()); }
+template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,Projective>& t) { glMultMatrix(t.matrix()); }
+template<typename Scalar> void glMultMatrix(const Transform<Scalar,3,AffineCompact>& t) { glMultMatrix(Transform<Scalar,3,Affine>(t).matrix()); }
+
+EIGEN_GL_FUNC_DECLARATION (glLoadMatrix)
+EIGEN_GL_FUNC_SPECIALIZATION_MAT(glLoadMatrix,float, 4,4,f)
+EIGEN_GL_FUNC_SPECIALIZATION_MAT(glLoadMatrix,double, 4,4,d)
+
+template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Affine>& t) { glLoadMatrix(t.matrix()); }
+template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,Projective>& t) { glLoadMatrix(t.matrix()); }
+template<typename Scalar> void glLoadMatrix(const Transform<Scalar,3,AffineCompact>& t) { glLoadMatrix(Transform<Scalar,3,Affine>(t).matrix()); }
+
+inline void glRotate(const Rotation2D<float>& rot)
+{
+ glRotatef(rot.angle()*180.f/float(M_PI), 0.f, 0.f, 1.f);
+}
+inline void glRotate(const Rotation2D<double>& rot)
+{
+ glRotated(rot.angle()*180.0/M_PI, 0.0, 0.0, 1.0);
+}
+
+template<typename Derived> void glRotate(const RotationBase<Derived,3>& rot)
+{
+ Transform<typename Derived::Scalar,3,Projective> tr(rot);
+ glMultMatrix(tr.matrix());
+}
+
+#define EIGEN_GL_MAKE_CONST_const const
+#define EIGEN_GL_MAKE_CONST__
+#define EIGEN_GL_EVAL(X) X
+
+#define EIGEN_GL_FUNC1_DECLARATION(FUNC,ARG1,CONST) \
+namespace internal { \
+ template< typename XprType, \
+ typename Scalar = typename XprType::Scalar, \
+ int Rows = XprType::RowsAtCompileTime, \
+ int Cols = XprType::ColsAtCompileTime, \
+ bool IsGLCompatible = bool(XprType::Flags&LinearAccessBit) \
+ && bool(XprType::Flags&DirectAccessBit) \
+ && (XprType::IsVectorAtCompileTime || (XprType::Flags&RowMajorBit)==0)> \
+ struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl); \
+ \
+ template<typename XprType, typename Scalar, int Rows, int Cols> \
+ struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType,Scalar,Rows,Cols,false> { \
+ inline static void run(ARG1 a,EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { \
+ EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<typename plain_matrix_type_column_major<XprType>::type>::run(a,p); } \
+ }; \
+} \
+ \
+template<typename Derived> inline void FUNC(ARG1 a,EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) Eigen::DenseBase<Derived>& p) { \
+ EIGEN_CAT(EIGEN_CAT(internal::gl_,FUNC),_impl)<Derived>::run(a,p.derived()); \
+}
+
+
+#define EIGEN_GL_FUNC1_SPECIALIZATION_MAT(FUNC,ARG1,CONST,SCALAR,ROWS,COLS,SUFFIX) \
+namespace internal { \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, ROWS, COLS, true> { \
+ inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
+ }; \
+}
+
+
+#define EIGEN_GL_FUNC1_SPECIALIZATION_VEC(FUNC,ARG1,CONST,SCALAR,SIZE,SUFFIX) \
+namespace internal { \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, SIZE, 1, true> { \
+ inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
+ }; \
+ template< typename XprType> struct EIGEN_CAT(EIGEN_CAT(gl_,FUNC),_impl)<XprType, SCALAR, 1, SIZE, true> { \
+ inline static void run(ARG1 a, EIGEN_GL_EVAL(EIGEN_GL_MAKE_CONST_##CONST) XprType& p) { FUNC##SUFFIX(a,p.data()); } \
+ }; \
+}
+
+EIGEN_GL_FUNC1_DECLARATION (glGet,GLenum,_)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glGet,GLenum,_,float, 4,4,Floatv)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glGet,GLenum,_,double, 4,4,Doublev)
+
+// glUniform API
+
+#ifdef GL_VERSION_2_0
+
+inline void glUniform2fv_ei (GLint loc, const float* v) { glUniform2fv(loc,1,v); }
+inline void glUniform2iv_ei (GLint loc, const int* v) { glUniform2iv(loc,1,v); }
+
+inline void glUniform3fv_ei (GLint loc, const float* v) { glUniform3fv(loc,1,v); }
+inline void glUniform3iv_ei (GLint loc, const int* v) { glUniform3iv(loc,1,v); }
+
+inline void glUniform4fv_ei (GLint loc, const float* v) { glUniform4fv(loc,1,v); }
+inline void glUniform4iv_ei (GLint loc, const int* v) { glUniform4iv(loc,1,v); }
+
+inline void glUniformMatrix2fv_ei (GLint loc, const float* v) { glUniformMatrix2fv(loc,1,false,v); }
+inline void glUniformMatrix3fv_ei (GLint loc, const float* v) { glUniformMatrix3fv(loc,1,false,v); }
+inline void glUniformMatrix4fv_ei (GLint loc, const float* v) { glUniformMatrix4fv(loc,1,false,v); }
+
+
+EIGEN_GL_FUNC1_DECLARATION (glUniform,GLint,const)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 2,2fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 2,2iv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 3,3fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 3,3iv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,float, 4,4fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,int, 4,4iv_ei)
+
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,2,Matrix2fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,3,Matrix3fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,4,Matrix4fv_ei)
+
+#endif
+
+#ifdef GL_VERSION_2_1
+
+static void glUniformMatrix2x3fv_ei(GLint loc, const float* v) { glUniformMatrix2x3fv(loc,1,false,v); }
+static void glUniformMatrix3x2fv_ei(GLint loc, const float* v) { glUniformMatrix3x2fv(loc,1,false,v); }
+static void glUniformMatrix2x4fv_ei(GLint loc, const float* v) { glUniformMatrix2x4fv(loc,1,false,v); }
+static void glUniformMatrix4x2fv_ei(GLint loc, const float* v) { glUniformMatrix4x2fv(loc,1,false,v); }
+static void glUniformMatrix3x4fv_ei(GLint loc, const float* v) { glUniformMatrix3x4fv(loc,1,false,v); }
+static void glUniformMatrix4x3fv_ei(GLint loc, const float* v) { glUniformMatrix4x3fv(loc,1,false,v); }
+
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,3,Matrix2x3fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,2,Matrix3x2fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 2,4,Matrix2x4fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,2,Matrix4x2fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 3,4,Matrix3x4fv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_MAT(glUniform,GLint,const,float, 4,3,Matrix4x3fv_ei)
+
+#endif
+
+#ifdef GL_VERSION_3_0
+
+inline void glUniform2uiv_ei (GLint loc, const unsigned int* v) { glUniform2uiv(loc,1,v); }
+inline void glUniform3uiv_ei (GLint loc, const unsigned int* v) { glUniform3uiv(loc,1,v); }
+inline void glUniform4uiv_ei (GLint loc, const unsigned int* v) { glUniform4uiv(loc,1,v); }
+
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 2,2uiv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 3,3uiv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,unsigned int, 4,4uiv_ei)
+
+#endif
+
+#ifdef GL_ARB_gpu_shader_fp64
+inline void glUniform2dv_ei (GLint loc, const double* v) { glUniform2dv(loc,1,v); }
+inline void glUniform3dv_ei (GLint loc, const double* v) { glUniform3dv(loc,1,v); }
+inline void glUniform4dv_ei (GLint loc, const double* v) { glUniform4dv(loc,1,v); }
+
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 2,2dv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 3,3dv_ei)
+EIGEN_GL_FUNC1_SPECIALIZATION_VEC(glUniform,GLint,const,double, 4,4dv_ei)
+#endif
+
+
+//@}
+
+}
+
+#endif // EIGEN_OPENGL_MODULE
diff --git a/eigen/unsupported/Eigen/Polynomials b/eigen/unsupported/Eigen/Polynomials
new file mode 100644
index 0000000..cece563
--- /dev/null
+++ b/eigen/unsupported/Eigen/Polynomials
@@ -0,0 +1,138 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_POLYNOMIALS_MODULE_H
+#define EIGEN_POLYNOMIALS_MODULE_H
+
+#include <Eigen/Core>
+
+#include <Eigen/src/Core/util/DisableStupidWarnings.h>
+
+#include <Eigen/Eigenvalues>
+
+// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
+#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
+ #ifndef EIGEN_HIDE_HEAVY_CODE
+ #define EIGEN_HIDE_HEAVY_CODE
+ #endif
+#elif defined EIGEN_HIDE_HEAVY_CODE
+ #undef EIGEN_HIDE_HEAVY_CODE
+#endif
+
+/**
+ * \defgroup Polynomials_Module Polynomials module
+ * \brief This module provides a QR based polynomial solver.
+ *
+ * To use this module, add
+ * \code
+ * #include <unsupported/Eigen/Polynomials>
+ * \endcode
+ * at the start of your source file.
+ */
+
+#include "src/Polynomials/PolynomialUtils.h"
+#include "src/Polynomials/Companion.h"
+#include "src/Polynomials/PolynomialSolver.h"
+
+/**
+ \page polynomials Polynomials defines functions for dealing with polynomials
+ and a QR based polynomial solver.
+ \ingroup Polynomials_Module
+
+ The remainder of the page documents first the functions for evaluating, computing
+ polynomials, computing estimates about polynomials and next the QR based polynomial
+ solver.
+
+ \section polynomialUtils convenient functions to deal with polynomials
+ \subsection roots_to_monicPolynomial
+ The function
+ \code
+ void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
+ \endcode
+ computes the coefficients \f$ a_i \f$ of
+
+ \f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
+
+ where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
+
+ \subsection poly_eval
+ The function
+ \code
+ T poly_eval( const Polynomials& poly, const T& x )
+ \endcode
+ evaluates a polynomial at a given point using stabilized H&ouml;rner method.
+
+ The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
+ then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
+
+ \include PolynomialUtils1.cpp
+ Output: \verbinclude PolynomialUtils1.out
+
+ \subsection Cauchy bounds
+ The function
+ \code
+ Real cauchy_max_bound( const Polynomial& poly )
+ \endcode
+ provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
+ \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
+ \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
+ The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
+
+
+ The function
+ \code
+ Real cauchy_min_bound( const Polynomial& poly )
+ \endcode
+ provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
+ \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
+ \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
+
+
+
+
+ \section QR polynomial solver class
+ Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
+
+ The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
+ \f$
+ \left [
+ \begin{array}{cccc}
+ 0 & 0 & 0 & a_0 \\
+ 1 & 0 & 0 & a_1 \\
+ 0 & 1 & 0 & a_2 \\
+ 0 & 0 & 1 & a_3
+ \end{array} \right ]
+ \f$
+
+ However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
+
+ Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
+
+ \f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
+
+ With 32bit (float) floating types this problem shows up frequently.
+ However, almost always, correct accuracy is reached even in these cases for 64bit
+ (double) floating types and small polynomial degree (<20).
+
+ \include PolynomialSolver1.cpp
+
+ In the above example:
+
+ -# a simple use of the polynomial solver is shown;
+ -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
+ Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
+ of the last root is bad;
+ -# a simple way to circumvent the problem is shown: use doubles instead of floats.
+
+ Output: \verbinclude PolynomialSolver1.out
+*/
+
+#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
+
+#endif // EIGEN_POLYNOMIALS_MODULE_H
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/SVD b/eigen/unsupported/Eigen/SVD
new file mode 100644
index 0000000..7cc0592
--- /dev/null
+++ b/eigen/unsupported/Eigen/SVD
@@ -0,0 +1,39 @@
+#ifndef EIGEN_SVD_MODULE_H
+#define EIGEN_SVD_MODULE_H
+
+#include <Eigen/QR>
+#include <Eigen/Householder>
+#include <Eigen/Jacobi>
+
+#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
+
+/** \defgroup SVD_Module SVD module
+ *
+ *
+ *
+ * This module provides SVD decomposition for matrices (both real and complex).
+ * This decomposition is accessible via the following MatrixBase method:
+ * - MatrixBase::jacobiSvd()
+ *
+ * \code
+ * #include <Eigen/SVD>
+ * \endcode
+ */
+
+#include "../../Eigen/src/misc/Solve.h"
+#include "../../Eigen/src/SVD/UpperBidiagonalization.h"
+#include "src/SVD/SVDBase.h"
+#include "src/SVD/JacobiSVD.h"
+#include "src/SVD/BDCSVD.h"
+#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
+#include "../../Eigen/src/SVD/JacobiSVD_MKL.h"
+#endif
+
+#ifdef EIGEN2_SUPPORT
+#include "../../Eigen/src/Eigen2Support/SVD.h"
+#endif
+
+#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_SVD_MODULE_H
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/Skyline b/eigen/unsupported/Eigen/Skyline
new file mode 100644
index 0000000..71a68cb
--- /dev/null
+++ b/eigen/unsupported/Eigen/Skyline
@@ -0,0 +1,39 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINE_MODULE_H
+#define EIGEN_SKYLINE_MODULE_H
+
+
+#include "Eigen/Core"
+
+#include "Eigen/src/Core/util/DisableStupidWarnings.h"
+
+#include <map>
+#include <cstdlib>
+#include <cstring>
+#include <algorithm>
+
+/**
+ * \defgroup Skyline_Module Skyline module
+ *
+ *
+ *
+ *
+ */
+
+#include "src/Skyline/SkylineUtil.h"
+#include "src/Skyline/SkylineMatrixBase.h"
+#include "src/Skyline/SkylineStorage.h"
+#include "src/Skyline/SkylineMatrix.h"
+#include "src/Skyline/SkylineInplaceLU.h"
+#include "src/Skyline/SkylineProduct.h"
+
+#include "Eigen/src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_SKYLINE_MODULE_H
diff --git a/eigen/unsupported/Eigen/SparseExtra b/eigen/unsupported/Eigen/SparseExtra
new file mode 100644
index 0000000..b559790
--- /dev/null
+++ b/eigen/unsupported/Eigen/SparseExtra
@@ -0,0 +1,56 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_EXTRA_MODULE_H
+#define EIGEN_SPARSE_EXTRA_MODULE_H
+
+#include "../../Eigen/Sparse"
+
+#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
+
+#include <vector>
+#include <map>
+#include <cstdlib>
+#include <cstring>
+#include <algorithm>
+#include <fstream>
+#include <sstream>
+
+#ifdef EIGEN_GOOGLEHASH_SUPPORT
+ #include <google/dense_hash_map>
+#endif
+
+/**
+ * \defgroup SparseExtra_Module SparseExtra module
+ *
+ * This module contains some experimental features extending the sparse module.
+ *
+ * \code
+ * #include <Eigen/SparseExtra>
+ * \endcode
+ */
+
+
+#include "../../Eigen/src/misc/Solve.h"
+#include "../../Eigen/src/misc/SparseSolve.h"
+
+#include "src/SparseExtra/DynamicSparseMatrix.h"
+#include "src/SparseExtra/BlockOfDynamicSparseMatrix.h"
+#include "src/SparseExtra/RandomSetter.h"
+
+#include "src/SparseExtra/MarketIO.h"
+
+#if !defined(_WIN32)
+#include <dirent.h>
+#include "src/SparseExtra/MatrixMarketIterator.h"
+#endif
+
+#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_SPARSE_EXTRA_MODULE_H
diff --git a/eigen/unsupported/Eigen/Splines b/eigen/unsupported/Eigen/Splines
new file mode 100644
index 0000000..322e6b9
--- /dev/null
+++ b/eigen/unsupported/Eigen/Splines
@@ -0,0 +1,31 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPLINES_MODULE_H
+#define EIGEN_SPLINES_MODULE_H
+
+namespace Eigen
+{
+/**
+ * \defgroup Splines_Module Spline and spline fitting module
+ *
+ * This module provides a simple multi-dimensional spline class while
+ * offering most basic functionality to fit a spline to point sets.
+ *
+ * \code
+ * #include <unsupported/Eigen/Splines>
+ * \endcode
+ */
+}
+
+#include "src/Splines/SplineFwd.h"
+#include "src/Splines/Spline.h"
+#include "src/Splines/SplineFitting.h"
+
+#endif // EIGEN_SPLINES_MODULE_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
new file mode 100644
index 0000000..1a61e33
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
@@ -0,0 +1,83 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_JACOBIAN_H
+#define EIGEN_AUTODIFF_JACOBIAN_H
+
+namespace Eigen
+{
+
+template<typename Functor> class AutoDiffJacobian : public Functor
+{
+public:
+ AutoDiffJacobian() : Functor() {}
+ AutoDiffJacobian(const Functor& f) : Functor(f) {}
+
+ // forward constructors
+ template<typename T0>
+ AutoDiffJacobian(const T0& a0) : Functor(a0) {}
+ template<typename T0, typename T1>
+ AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
+ template<typename T0, typename T1, typename T2>
+ AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
+
+ enum {
+ InputsAtCompileTime = Functor::InputsAtCompileTime,
+ ValuesAtCompileTime = Functor::ValuesAtCompileTime
+ };
+
+ typedef typename Functor::InputType InputType;
+ typedef typename Functor::ValueType ValueType;
+ typedef typename Functor::JacobianType JacobianType;
+ typedef typename JacobianType::Scalar Scalar;
+ typedef typename JacobianType::Index Index;
+
+ typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
+ typedef AutoDiffScalar<DerivativeType> ActiveScalar;
+
+
+ typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
+ typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
+
+ void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
+ {
+ eigen_assert(v!=0);
+ if (!_jac)
+ {
+ Functor::operator()(x, v);
+ return;
+ }
+
+ JacobianType& jac = *_jac;
+
+ ActiveInput ax = x.template cast<ActiveScalar>();
+ ActiveValue av(jac.rows());
+
+ if(InputsAtCompileTime==Dynamic)
+ for (Index j=0; j<jac.rows(); j++)
+ av[j].derivatives().resize(this->inputs());
+
+ for (Index i=0; i<jac.cols(); i++)
+ ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i);
+
+ Functor::operator()(ax, &av);
+
+ for (Index i=0; i<jac.rows(); i++)
+ {
+ (*v)[i] = av[i].value();
+ jac.row(i) = av[i].derivatives();
+ }
+ }
+protected:
+
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_JACOBIAN_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
new file mode 100644
index 0000000..fde3ff6
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -0,0 +1,642 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_SCALAR_H
+#define EIGEN_AUTODIFF_SCALAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename A, typename B>
+struct make_coherent_impl {
+ static void run(A&, B&) {}
+};
+
+// resize a to match b is a.size()==0, and conversely.
+template<typename A, typename B>
+void make_coherent(const A& a, const B&b)
+{
+ make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
+}
+
+template<typename _DerType, bool Enable> struct auto_diff_special_op;
+
+} // end namespace internal
+
+/** \class AutoDiffScalar
+ * \brief A scalar type replacement with automatic differentation capability
+ *
+ * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
+ * as well as the number of derivatives to compute are determined from this type.
+ * Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
+ * if the number of derivatives is not known at compile time, and/or, the number
+ * of derivatives is large.
+ * Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
+ * existing vector into an AutoDiffScalar.
+ * Finally, _DerType can also be any Eigen compatible expression.
+ *
+ * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
+ * template mechanism.
+ *
+ * It supports the following list of global math function:
+ * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
+ * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
+ * - internal::conj, internal::real, internal::imag, numext::abs2.
+ *
+ * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
+ * in that case, the expression template mechanism only occurs at the top Matrix level,
+ * while derivatives are computed right away.
+ *
+ */
+
+template<typename _DerType>
+class AutoDiffScalar
+ : public internal::auto_diff_special_op
+ <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
+ typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
+{
+ public:
+ typedef internal::auto_diff_special_op
+ <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
+ typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
+ typedef typename internal::remove_all<_DerType>::type DerType;
+ typedef typename internal::traits<DerType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+ using Base::operator+;
+ using Base::operator*;
+
+ /** Default constructor without any initialization. */
+ AutoDiffScalar() {}
+
+ /** Constructs an active scalar from its \a value,
+ and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
+ AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
+ : m_value(value), m_derivatives(DerType::Zero(nbDer))
+ {
+ m_derivatives.coeffRef(derNumber) = Scalar(1);
+ }
+
+ /** Conversion from a scalar constant to an active scalar.
+ * The derivatives are set to zero. */
+ /*explicit*/ AutoDiffScalar(const Real& value)
+ : m_value(value)
+ {
+ if(m_derivatives.size()>0)
+ m_derivatives.setZero();
+ }
+
+ /** Constructs an active scalar from its \a value and derivatives \a der */
+ AutoDiffScalar(const Scalar& value, const DerType& der)
+ : m_value(value), m_derivatives(der)
+ {}
+
+ template<typename OtherDerType>
+ AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other)
+ : m_value(other.value()), m_derivatives(other.derivatives())
+ {}
+
+ friend std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
+ {
+ return s << a.value();
+ }
+
+ AutoDiffScalar(const AutoDiffScalar& other)
+ : m_value(other.value()), m_derivatives(other.derivatives())
+ {}
+
+ template<typename OtherDerType>
+ inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
+ {
+ m_value = other.value();
+ m_derivatives = other.derivatives();
+ return *this;
+ }
+
+ inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
+ {
+ m_value = other.value();
+ m_derivatives = other.derivatives();
+ return *this;
+ }
+
+// inline operator const Scalar& () const { return m_value; }
+// inline operator Scalar& () { return m_value; }
+
+ inline const Scalar& value() const { return m_value; }
+ inline Scalar& value() { return m_value; }
+
+ inline const DerType& derivatives() const { return m_derivatives; }
+ inline DerType& derivatives() { return m_derivatives; }
+
+ inline bool operator< (const Scalar& other) const { return m_value < other; }
+ inline bool operator<=(const Scalar& other) const { return m_value <= other; }
+ inline bool operator> (const Scalar& other) const { return m_value > other; }
+ inline bool operator>=(const Scalar& other) const { return m_value >= other; }
+ inline bool operator==(const Scalar& other) const { return m_value == other; }
+ inline bool operator!=(const Scalar& other) const { return m_value != other; }
+
+ friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); }
+ friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
+ friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); }
+ friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
+ friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
+ friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
+
+ template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const { return m_value < b.value(); }
+ template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { return m_value <= b.value(); }
+ template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const { return m_value > b.value(); }
+ template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { return m_value >= b.value(); }
+ template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { return m_value == b.value(); }
+ template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { return m_value != b.value(); }
+
+ inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
+ {
+ return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
+ }
+
+ friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
+ {
+ return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+ }
+
+// inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
+// {
+// return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
+// }
+
+// friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
+// {
+// return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+// }
+
+ inline AutoDiffScalar& operator+=(const Scalar& other)
+ {
+ value() += other;
+ return *this;
+ }
+
+ template<typename OtherDerType>
+ inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
+ operator+(const AutoDiffScalar<OtherDerType>& other) const
+ {
+ internal::make_coherent(m_derivatives, other.derivatives());
+ return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
+ m_value + other.value(),
+ m_derivatives + other.derivatives());
+ }
+
+ template<typename OtherDerType>
+ inline AutoDiffScalar&
+ operator+=(const AutoDiffScalar<OtherDerType>& other)
+ {
+ (*this) = (*this) + other;
+ return *this;
+ }
+
+ inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
+ {
+ return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
+ }
+
+ friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+ operator-(const Scalar& a, const AutoDiffScalar& b)
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+ (a - b.value(), -b.derivatives());
+ }
+
+ inline AutoDiffScalar& operator-=(const Scalar& other)
+ {
+ value() -= other;
+ return *this;
+ }
+
+ template<typename OtherDerType>
+ inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
+ operator-(const AutoDiffScalar<OtherDerType>& other) const
+ {
+ internal::make_coherent(m_derivatives, other.derivatives());
+ return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
+ m_value - other.value(),
+ m_derivatives - other.derivatives());
+ }
+
+ template<typename OtherDerType>
+ inline AutoDiffScalar&
+ operator-=(const AutoDiffScalar<OtherDerType>& other)
+ {
+ *this = *this - other;
+ return *this;
+ }
+
+ inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+ operator-() const
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
+ -m_value,
+ -m_derivatives);
+ }
+
+ inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ operator*(const Scalar& other) const
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+ m_value * other,
+ (m_derivatives * other));
+ }
+
+ friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ operator*(const Scalar& other, const AutoDiffScalar& a)
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+ a.value() * other,
+ a.derivatives() * other);
+ }
+
+// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+// operator*(const Real& other) const
+// {
+// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+// m_value * other,
+// (m_derivatives * other));
+// }
+//
+// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+// operator*(const Real& other, const AutoDiffScalar& a)
+// {
+// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+// a.value() * other,
+// a.derivatives() * other);
+// }
+
+ inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ operator/(const Scalar& other) const
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+ m_value / other,
+ (m_derivatives * (Scalar(1)/other)));
+ }
+
+ friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+ operator/(const Scalar& other, const AutoDiffScalar& a)
+ {
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+ other / a.value(),
+ a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
+ }
+
+// inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+// operator/(const Real& other) const
+// {
+// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+// m_value / other,
+// (m_derivatives * (Real(1)/other)));
+// }
+//
+// friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+// operator/(const Real& other, const AutoDiffScalar& a)
+// {
+// return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+// other / a.value(),
+// a.derivatives() * (-Real(1)/other));
+// }
+
+ template<typename OtherDerType>
+ inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
+ const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >
+ operator/(const AutoDiffScalar<OtherDerType>& other) const
+ {
+ internal::make_coherent(m_derivatives, other.derivatives());
+ return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
+ const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >(
+ m_value / other.value(),
+ ((m_derivatives * other.value()) - (m_value * other.derivatives()))
+ * (Scalar(1)/(other.value()*other.value())));
+ }
+
+ template<typename OtherDerType>
+ inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type> > >
+ operator*(const AutoDiffScalar<OtherDerType>& other) const
+ {
+ internal::make_coherent(m_derivatives, other.derivatives());
+ return AutoDiffScalar<const CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+ const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > >(
+ m_value * other.value(),
+ (m_derivatives * other.value()) + (m_value * other.derivatives()));
+ }
+
+ inline AutoDiffScalar& operator*=(const Scalar& other)
+ {
+ *this = *this * other;
+ return *this;
+ }
+
+ template<typename OtherDerType>
+ inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
+ {
+ *this = *this * other;
+ return *this;
+ }
+
+ inline AutoDiffScalar& operator/=(const Scalar& other)
+ {
+ *this = *this / other;
+ return *this;
+ }
+
+ template<typename OtherDerType>
+ inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
+ {
+ *this = *this / other;
+ return *this;
+ }
+
+ protected:
+ Scalar m_value;
+ DerType m_derivatives;
+
+};
+
+namespace internal {
+
+template<typename _DerType>
+struct auto_diff_special_op<_DerType, true>
+// : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
+// is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
+{
+ typedef typename remove_all<_DerType>::type DerType;
+ typedef typename traits<DerType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+// typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
+// is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
+
+// using Base::operator+;
+// using Base::operator+=;
+// using Base::operator-;
+// using Base::operator-=;
+// using Base::operator*;
+// using Base::operator*=;
+
+ const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
+ AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
+
+
+ inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
+ {
+ return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
+ }
+
+ friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
+ {
+ return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+ }
+
+ inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
+ {
+ derived().value() += other;
+ return derived();
+ }
+
+
+ inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+ operator*(const Real& other) const
+ {
+ return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+ derived().value() * other,
+ derived().derivatives() * other);
+ }
+
+ friend inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+ operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
+ {
+ return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+ a.value() * other,
+ a.derivatives() * other);
+ }
+
+ inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
+ {
+ *this = *this * other;
+ return derived();
+ }
+};
+
+template<typename _DerType>
+struct auto_diff_special_op<_DerType, false>
+{
+ void operator*() const;
+ void operator-() const;
+ void operator+() const;
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
+struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
+ typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
+ static void run(A& a, B& b) {
+ if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
+ {
+ a.resize(b.size());
+ a.setZero();
+ }
+ }
+};
+
+template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
+struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
+ typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
+ static void run(A& a, B& b) {
+ if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
+ {
+ b.resize(a.size());
+ b.setZero();
+ }
+ }
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
+ typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
+struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
+ Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
+ typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
+ typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
+ static void run(A& a, B& b) {
+ if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
+ {
+ a.resize(b.size());
+ a.setZero();
+ }
+ else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
+ {
+ b.resize(a.size());
+ b.setZero();
+ }
+ }
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
+struct scalar_product_traits<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,A_Scalar>
+{
+ enum { Defined = 1 };
+ typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
+struct scalar_product_traits<A_Scalar, Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> >
+{
+ enum { Defined = 1 };
+ typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
+};
+
+template<typename DerType>
+struct scalar_product_traits<AutoDiffScalar<DerType>,typename DerType::Scalar>
+{
+ enum { Defined = 1 };
+ typedef AutoDiffScalar<DerType> ReturnType;
+};
+
+template<typename DerType>
+struct scalar_product_traits<typename DerType::Scalar,AutoDiffScalar<DerType> >
+{
+ enum { Defined = 1 };
+ typedef AutoDiffScalar<DerType> ReturnType;
+};
+
+} // end namespace internal
+
+#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
+ template<typename DerType> \
+ inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > \
+ FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
+ using namespace Eigen; \
+ typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
+ typedef AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > ReturnType; \
+ CODE; \
+ }
+
+template<typename DerType>
+inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { return x; }
+template<typename DerType>
+inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { return x; }
+template<typename DerType>
+inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { return 0.; }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (min)(const AutoDiffScalar<DerType>& x, const T& y) { return (x <= y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (max)(const AutoDiffScalar<DerType>& x, const T& y) { return (x >= y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (min)(const T& x, const AutoDiffScalar<DerType>& y) { return (x < y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (max)(const T& x, const AutoDiffScalar<DerType>& y) { return (x > y ? x : y); }
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
+ using std::abs;
+ return ReturnType(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
+ using numext::abs2;
+ return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
+ using std::sqrt;
+ Scalar sqrtx = sqrt(x.value());
+ return ReturnType(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
+ using std::cos;
+ using std::sin;
+ return ReturnType(cos(x.value()), x.derivatives() * (-sin(x.value())));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
+ using std::sin;
+ using std::cos;
+ return ReturnType(sin(x.value()),x.derivatives() * cos(x.value()));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
+ using std::exp;
+ Scalar expx = exp(x.value());
+ return ReturnType(expx,x.derivatives() * expx);)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
+ using std::log;
+ return ReturnType(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
+
+template<typename DerType>
+inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<DerType>::Scalar>, const DerType> >
+pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::internal::traits<DerType>::Scalar y)
+{
+ using namespace Eigen;
+ typedef typename Eigen::internal::traits<DerType>::Scalar Scalar;
+ return AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const DerType> >(
+ std::pow(x.value(),y),
+ x.derivatives() * (y * std::pow(x.value(),y-1)));
+}
+
+
+template<typename DerTypeA,typename DerTypeB>
+inline const AutoDiffScalar<Matrix<typename internal::traits<DerTypeA>::Scalar,Dynamic,1> >
+atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
+{
+ using std::atan2;
+ using std::max;
+ typedef typename internal::traits<DerTypeA>::Scalar Scalar;
+ typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
+ PlainADS ret;
+ ret.value() = atan2(a.value(), b.value());
+
+ Scalar tmp2 = a.value() * a.value();
+ Scalar tmp3 = b.value() * b.value();
+ Scalar tmp4 = tmp3/(tmp2+tmp3);
+
+ if (tmp4!=0)
+ ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) * (tmp2+tmp3);
+
+ return ret;
+}
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
+ using std::tan;
+ using std::cos;
+ return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
+ using std::sqrt;
+ using std::asin;
+ return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
+ using std::sqrt;
+ using std::acos;
+ return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
+
+#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
+
+template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
+ : NumTraits< typename NumTraits<typename DerType::Scalar>::Real >
+{
+ typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerType::Scalar>::Real,DerType::RowsAtCompileTime,DerType::ColsAtCompileTime> > Real;
+ typedef AutoDiffScalar<DerType> NonInteger;
+ typedef AutoDiffScalar<DerType> Nested;
+ enum{
+ RequireInitialization = 1
+ };
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_SCALAR_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
new file mode 100644
index 0000000..8c2d048
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
@@ -0,0 +1,220 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_VECTOR_H
+#define EIGEN_AUTODIFF_VECTOR_H
+
+namespace Eigen {
+
+/* \class AutoDiffScalar
+ * \brief A scalar type replacement with automatic differentation capability
+ *
+ * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
+ *
+ * This class represents a scalar value while tracking its respective derivatives.
+ *
+ * It supports the following list of global math function:
+ * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
+ * - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
+ * - internal::conj, internal::real, internal::imag, numext::abs2.
+ *
+ * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
+ * in that case, the expression template mechanism only occurs at the top Matrix level,
+ * while derivatives are computed right away.
+ *
+ */
+template<typename ValueType, typename JacobianType>
+class AutoDiffVector
+{
+ public:
+ //typedef typename internal::traits<ValueType>::Scalar Scalar;
+ typedef typename internal::traits<ValueType>::Scalar BaseScalar;
+ typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
+ typedef ActiveScalar Scalar;
+ typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
+ typedef typename JacobianType::Index Index;
+
+ inline AutoDiffVector() {}
+
+ inline AutoDiffVector(const ValueType& values)
+ : m_values(values)
+ {
+ m_jacobian.setZero();
+ }
+
+
+ CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ Index size() const { return m_values.size(); }
+
+ // FIXME here we could return an expression of the sum
+ Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
+
+
+ inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
+ : m_values(values), m_jacobian(jac)
+ {}
+
+ template<typename OtherValueType, typename OtherJacobianType>
+ inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
+ : m_values(other.values()), m_jacobian(other.jacobian())
+ {}
+
+ inline AutoDiffVector(const AutoDiffVector& other)
+ : m_values(other.values()), m_jacobian(other.jacobian())
+ {}
+
+ template<typename OtherValueType, typename OtherJacobianType>
+ inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
+ {
+ m_values = other.values();
+ m_jacobian = other.jacobian();
+ return *this;
+ }
+
+ inline AutoDiffVector& operator=(const AutoDiffVector& other)
+ {
+ m_values = other.values();
+ m_jacobian = other.jacobian();
+ return *this;
+ }
+
+ inline const ValueType& values() const { return m_values; }
+ inline ValueType& values() { return m_values; }
+
+ inline const JacobianType& jacobian() const { return m_jacobian; }
+ inline JacobianType& jacobian() { return m_jacobian; }
+
+ template<typename OtherValueType,typename OtherJacobianType>
+ inline const AutoDiffVector<
+ typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
+ operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+ {
+ return AutoDiffVector<
+ typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
+ m_values + other.values(),
+ m_jacobian + other.jacobian());
+ }
+
+ template<typename OtherValueType, typename OtherJacobianType>
+ inline AutoDiffVector&
+ operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+ {
+ m_values += other.values();
+ m_jacobian += other.jacobian();
+ return *this;
+ }
+
+ template<typename OtherValueType,typename OtherJacobianType>
+ inline const AutoDiffVector<
+ typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
+ operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+ {
+ return AutoDiffVector<
+ typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
+ m_values - other.values(),
+ m_jacobian - other.jacobian());
+ }
+
+ template<typename OtherValueType, typename OtherJacobianType>
+ inline AutoDiffVector&
+ operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+ {
+ m_values -= other.values();
+ m_jacobian -= other.jacobian();
+ return *this;
+ }
+
+ inline const AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >
+ operator-() const
+ {
+ return AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >(
+ -m_values,
+ -m_jacobian);
+ }
+
+ inline const AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type>
+ operator*(const BaseScalar& other) const
+ {
+ return AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
+ m_values * other,
+ m_jacobian * other);
+ }
+
+ friend inline const AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >
+ operator*(const Scalar& other, const AutoDiffVector& v)
+ {
+ return AutoDiffVector<
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
+ v.values() * other,
+ v.jacobian() * other);
+ }
+
+// template<typename OtherValueType,typename OtherJacobianType>
+// inline const AutoDiffVector<
+// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
+// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
+// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >
+// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+// {
+// return AutoDiffVector<
+// CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
+// CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
+// CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >(
+// m_values.cwise() * other.values(),
+// (m_jacobian * other.values()) + (m_values * other.jacobian()));
+// }
+
+ inline AutoDiffVector& operator*=(const Scalar& other)
+ {
+ m_values *= other;
+ m_jacobian *= other;
+ return *this;
+ }
+
+ template<typename OtherValueType,typename OtherJacobianType>
+ inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+ {
+ *this = *this * other;
+ return *this;
+ }
+
+ protected:
+ ValueType m_values;
+ JacobianType m_jacobian;
+
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_VECTOR_H
diff --git a/eigen/unsupported/Eigen/src/AutoDiff/CMakeLists.txt b/eigen/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
new file mode 100644
index 0000000..ad91fd9
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_AutoDiff_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_AutoDiff_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/AutoDiff COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h b/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
new file mode 100644
index 0000000..994c8af
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h
@@ -0,0 +1,293 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BVALGORITHMS_H
+#define EIGEN_BVALGORITHMS_H
+
+namespace Eigen {
+
+namespace internal {
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename BVH, typename Intersector>
+bool intersect_helper(const BVH &tree, Intersector &intersector, typename BVH::Index root)
+{
+ typedef typename BVH::Index Index;
+ typedef typename BVH::VolumeIterator VolIter;
+ typedef typename BVH::ObjectIterator ObjIter;
+
+ VolIter vBegin = VolIter(), vEnd = VolIter();
+ ObjIter oBegin = ObjIter(), oEnd = ObjIter();
+
+ std::vector<Index> todo(1, root);
+
+ while(!todo.empty()) {
+ tree.getChildren(todo.back(), vBegin, vEnd, oBegin, oEnd);
+ todo.pop_back();
+
+ for(; vBegin != vEnd; ++vBegin) //go through child volumes
+ if(intersector.intersectVolume(tree.getVolume(*vBegin)))
+ todo.push_back(*vBegin);
+
+ for(; oBegin != oEnd; ++oBegin) //go through child objects
+ if(intersector.intersectObject(*oBegin))
+ return true; //intersector said to stop query
+ }
+ return false;
+}
+#endif //not EIGEN_PARSED_BY_DOXYGEN
+
+template<typename Volume1, typename Object1, typename Object2, typename Intersector>
+struct intersector_helper1
+{
+ intersector_helper1(const Object2 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
+ bool intersectVolume(const Volume1 &vol) { return intersector.intersectVolumeObject(vol, stored); }
+ bool intersectObject(const Object1 &obj) { return intersector.intersectObjectObject(obj, stored); }
+ Object2 stored;
+ Intersector &intersector;
+private:
+ intersector_helper1& operator=(const intersector_helper1&);
+};
+
+template<typename Volume2, typename Object2, typename Object1, typename Intersector>
+struct intersector_helper2
+{
+ intersector_helper2(const Object1 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
+ bool intersectVolume(const Volume2 &vol) { return intersector.intersectObjectVolume(stored, vol); }
+ bool intersectObject(const Object2 &obj) { return intersector.intersectObjectObject(stored, obj); }
+ Object1 stored;
+ Intersector &intersector;
+private:
+ intersector_helper2& operator=(const intersector_helper2&);
+};
+
+} // end namespace internal
+
+/** Given a BVH, runs the query encapsulated by \a intersector.
+ * The Intersector type must provide the following members: \code
+ bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
+ bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately
+ \endcode
+ */
+template<typename BVH, typename Intersector>
+void BVIntersect(const BVH &tree, Intersector &intersector)
+{
+ internal::intersect_helper(tree, intersector, tree.getRootIndex());
+}
+
+/** Given two BVH's, runs the query on their Cartesian product encapsulated by \a intersector.
+ * The Intersector type must provide the following members: \code
+ bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
+ bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
+ bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
+ bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately
+ \endcode
+ */
+template<typename BVH1, typename BVH2, typename Intersector>
+void BVIntersect(const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) //TODO: tandem descent when it makes sense
+{
+ typedef typename BVH1::Index Index1;
+ typedef typename BVH2::Index Index2;
+ typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1;
+ typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2;
+ typedef typename BVH1::VolumeIterator VolIter1;
+ typedef typename BVH1::ObjectIterator ObjIter1;
+ typedef typename BVH2::VolumeIterator VolIter2;
+ typedef typename BVH2::ObjectIterator ObjIter2;
+
+ VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
+ ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
+ VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
+ ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
+
+ std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()));
+
+ while(!todo.empty()) {
+ tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1);
+ tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2);
+ todo.pop_back();
+
+ for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
+ const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
+ for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
+ if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2)))
+ todo.push_back(std::make_pair(*vBegin1, *vCur2));
+ }
+
+ for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
+ Helper1 helper(*oCur2, intersector);
+ if(internal::intersect_helper(tree1, helper, *vBegin1))
+ return; //intersector said to stop query
+ }
+ }
+
+ for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
+ for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
+ Helper2 helper(*oBegin1, intersector);
+ if(internal::intersect_helper(tree2, helper, *vCur2))
+ return; //intersector said to stop query
+ }
+
+ for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
+ if(intersector.intersectObjectObject(*oBegin1, *oCur2))
+ return; //intersector said to stop query
+ }
+ }
+ }
+}
+
+namespace internal {
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename BVH, typename Minimizer>
+typename Minimizer::Scalar minimize_helper(const BVH &tree, Minimizer &minimizer, typename BVH::Index root, typename Minimizer::Scalar minimum)
+{
+ typedef typename Minimizer::Scalar Scalar;
+ typedef typename BVH::Index Index;
+ typedef std::pair<Scalar, Index> QueueElement; //first element is priority
+ typedef typename BVH::VolumeIterator VolIter;
+ typedef typename BVH::ObjectIterator ObjIter;
+
+ VolIter vBegin = VolIter(), vEnd = VolIter();
+ ObjIter oBegin = ObjIter(), oEnd = ObjIter();
+ std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
+
+ todo.push(std::make_pair(Scalar(), root));
+
+ while(!todo.empty()) {
+ tree.getChildren(todo.top().second, vBegin, vEnd, oBegin, oEnd);
+ todo.pop();
+
+ for(; oBegin != oEnd; ++oBegin) //go through child objects
+ minimum = (std::min)(minimum, minimizer.minimumOnObject(*oBegin));
+
+ for(; vBegin != vEnd; ++vBegin) { //go through child volumes
+ Scalar val = minimizer.minimumOnVolume(tree.getVolume(*vBegin));
+ if(val < minimum)
+ todo.push(std::make_pair(val, *vBegin));
+ }
+ }
+
+ return minimum;
+}
+#endif //not EIGEN_PARSED_BY_DOXYGEN
+
+
+template<typename Volume1, typename Object1, typename Object2, typename Minimizer>
+struct minimizer_helper1
+{
+ typedef typename Minimizer::Scalar Scalar;
+ minimizer_helper1(const Object2 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
+ Scalar minimumOnVolume(const Volume1 &vol) { return minimizer.minimumOnVolumeObject(vol, stored); }
+ Scalar minimumOnObject(const Object1 &obj) { return minimizer.minimumOnObjectObject(obj, stored); }
+ Object2 stored;
+ Minimizer &minimizer;
+private:
+ minimizer_helper1& operator=(const minimizer_helper1&);
+};
+
+template<typename Volume2, typename Object2, typename Object1, typename Minimizer>
+struct minimizer_helper2
+{
+ typedef typename Minimizer::Scalar Scalar;
+ minimizer_helper2(const Object1 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
+ Scalar minimumOnVolume(const Volume2 &vol) { return minimizer.minimumOnObjectVolume(stored, vol); }
+ Scalar minimumOnObject(const Object2 &obj) { return minimizer.minimumOnObjectObject(stored, obj); }
+ Object1 stored;
+ Minimizer &minimizer;
+private:
+ minimizer_helper2& operator=(const minimizer_helper2&);
+};
+
+} // end namespace internal
+
+/** Given a BVH, runs the query encapsulated by \a minimizer.
+ * \returns the minimum value.
+ * The Minimizer type must provide the following members: \code
+ typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
+ Scalar minimumOnVolume(const BVH::Volume &volume)
+ Scalar minimumOnObject(const BVH::Object &object)
+ \endcode
+ */
+template<typename BVH, typename Minimizer>
+typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer)
+{
+ return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
+}
+
+/** Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer.
+ * \returns the minimum value.
+ * The Minimizer type must provide the following members: \code
+ typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
+ Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
+ Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
+ Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
+ Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)
+ \endcode
+ */
+template<typename BVH1, typename BVH2, typename Minimizer>
+typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
+{
+ typedef typename Minimizer::Scalar Scalar;
+ typedef typename BVH1::Index Index1;
+ typedef typename BVH2::Index Index2;
+ typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1;
+ typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2;
+ typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority
+ typedef typename BVH1::VolumeIterator VolIter1;
+ typedef typename BVH1::ObjectIterator ObjIter1;
+ typedef typename BVH2::VolumeIterator VolIter2;
+ typedef typename BVH2::ObjectIterator ObjIter2;
+
+ VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
+ ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
+ VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
+ ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
+ std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
+
+ Scalar minimum = (std::numeric_limits<Scalar>::max)();
+ todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));
+
+ while(!todo.empty()) {
+ tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1);
+ tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2);
+ todo.pop();
+
+ for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
+ for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
+ minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2));
+ }
+
+ for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
+ Helper2 helper(*oBegin1, minimizer);
+ minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum));
+ }
+ }
+
+ for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
+ const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
+
+ for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
+ Helper1 helper(*oCur2, minimizer);
+ minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum));
+ }
+
+ for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
+ Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2));
+ if(val < minimum)
+ todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2)));
+ }
+ }
+ }
+ return minimum;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_BVALGORITHMS_H
diff --git a/eigen/unsupported/Eigen/src/BVH/CMakeLists.txt b/eigen/unsupported/Eigen/src/BVH/CMakeLists.txt
new file mode 100644
index 0000000..b377d86
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/BVH/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_BVH_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_BVH_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/BVH COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/BVH/KdBVH.h b/eigen/unsupported/Eigen/src/BVH/KdBVH.h
new file mode 100644
index 0000000..1b8d758
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/BVH/KdBVH.h
@@ -0,0 +1,222 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef KDBVH_H_INCLUDED
+#define KDBVH_H_INCLUDED
+
+namespace Eigen {
+
+namespace internal {
+
+//internal pair class for the BVH--used instead of std::pair because of alignment
+template<typename Scalar, int Dim>
+struct vector_int_pair
+{
+EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
+ typedef Matrix<Scalar, Dim, 1> VectorType;
+
+ vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
+
+ VectorType first;
+ int second;
+};
+
+//these templates help the tree initializer get the bounding boxes either from a provided
+//iterator range or using bounding_box in a unified way
+template<typename ObjectList, typename VolumeList, typename BoxIter>
+struct get_boxes_helper {
+ void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
+ {
+ outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
+ eigen_assert(outBoxes.size() == objects.size());
+ }
+};
+
+template<typename ObjectList, typename VolumeList>
+struct get_boxes_helper<ObjectList, VolumeList, int> {
+ void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
+ {
+ outBoxes.reserve(objects.size());
+ for(int i = 0; i < (int)objects.size(); ++i)
+ outBoxes.push_back(bounding_box(objects[i]));
+ }
+};
+
+} // end namespace internal
+
+
+/** \class KdBVH
+ * \brief A simple bounding volume hierarchy based on AlignedBox
+ *
+ * \param _Scalar The underlying scalar type of the bounding boxes
+ * \param _Dim The dimension of the space in which the hierarchy lives
+ * \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
+ * be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
+ *
+ * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
+ * Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
+ * and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
+ * it is useful for _Object to be a pointer.
+ */
+template<typename _Scalar, int _Dim, typename _Object> class KdBVH
+{
+public:
+ enum { Dim = _Dim };
+ typedef _Object Object;
+ typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
+ typedef _Scalar Scalar;
+ typedef AlignedBox<Scalar, Dim> Volume;
+ typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
+ typedef int Index;
+ typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
+ typedef const Object *ObjectIterator;
+
+ KdBVH() {}
+
+ /** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */
+ template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
+
+ /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
+ template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
+
+ /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
+ * Requires that bounding_box(Object) return a Volume. */
+ template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
+
+ /** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
+ * constructs the BVH, overwriting whatever is in there currently. */
+ template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
+ {
+ objects.clear();
+ boxes.clear();
+ children.clear();
+
+ objects.insert(objects.end(), begin, end);
+ int n = static_cast<int>(objects.size());
+
+ if(n < 2)
+ return; //if we have at most one object, we don't need any internal nodes
+
+ VolumeList objBoxes;
+ VIPairList objCenters;
+
+ //compute the bounding boxes depending on BIter type
+ internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
+
+ objCenters.reserve(n);
+ boxes.reserve(n - 1);
+ children.reserve(2 * n - 2);
+
+ for(int i = 0; i < n; ++i)
+ objCenters.push_back(VIPair(objBoxes[i].center(), i));
+
+ build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
+
+ ObjectList tmp(n);
+ tmp.swap(objects);
+ for(int i = 0; i < n; ++i)
+ objects[i] = tmp[objCenters[i].second];
+ }
+
+ /** \returns the index of the root of the hierarchy */
+ inline Index getRootIndex() const { return (int)boxes.size() - 1; }
+
+ /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
+ * and \a outOBegin and \a outOEnd range over the object children of the node */
+ EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
+ ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
+ { //inlining this function should open lots of optimization opportunities to the compiler
+ if(index < 0) {
+ outVBegin = outVEnd;
+ if(!objects.empty())
+ outOBegin = &(objects[0]);
+ outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
+ return;
+ }
+
+ int numBoxes = static_cast<int>(boxes.size());
+
+ int idx = index * 2;
+ if(children[idx + 1] < numBoxes) { //second index is always bigger
+ outVBegin = &(children[idx]);
+ outVEnd = outVBegin + 2;
+ outOBegin = outOEnd;
+ }
+ else if(children[idx] >= numBoxes) { //if both children are objects
+ outVBegin = outVEnd;
+ outOBegin = &(objects[children[idx] - numBoxes]);
+ outOEnd = outOBegin + 2;
+ } else { //if the first child is a volume and the second is an object
+ outVBegin = &(children[idx]);
+ outVEnd = outVBegin + 1;
+ outOBegin = &(objects[children[idx + 1] - numBoxes]);
+ outOEnd = outOBegin + 1;
+ }
+ }
+
+ /** \returns the bounding box of the node at \a index */
+ inline const Volume &getVolume(Index index) const
+ {
+ return boxes[index];
+ }
+
+private:
+ typedef internal::vector_int_pair<Scalar, Dim> VIPair;
+ typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
+ typedef Matrix<Scalar, Dim, 1> VectorType;
+ struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
+ {
+ VectorComparator(int inDim) : dim(inDim) {}
+ inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
+ int dim;
+ };
+
+ //Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
+ //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
+ //the two halves, and adds their parent node. TODO: a cache-friendlier layout
+ void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
+ {
+ eigen_assert(to - from > 1);
+ if(to - from == 2) {
+ boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
+ children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
+ children.push_back(from + (int)objects.size());
+ }
+ else if(to - from == 3) {
+ int mid = from + 2;
+ std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
+ objCenters.begin() + to, VectorComparator(dim)); //partition
+ build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
+ int idx1 = (int)boxes.size() - 1;
+ boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
+ children.push_back(idx1);
+ children.push_back(mid + (int)objects.size() - 1);
+ }
+ else {
+ int mid = from + (to - from) / 2;
+ nth_element(objCenters.begin() + from, objCenters.begin() + mid,
+ objCenters.begin() + to, VectorComparator(dim)); //partition
+ build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
+ int idx1 = (int)boxes.size() - 1;
+ build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
+ int idx2 = (int)boxes.size() - 1;
+ boxes.push_back(boxes[idx1].merged(boxes[idx2]));
+ children.push_back(idx1);
+ children.push_back(idx2);
+ }
+ }
+
+ std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
+ VolumeList boxes;
+ ObjectList objects;
+};
+
+} // end namespace Eigen
+
+#endif //KDBVH_H_INCLUDED
diff --git a/eigen/unsupported/Eigen/src/CMakeLists.txt b/eigen/unsupported/Eigen/src/CMakeLists.txt
new file mode 100644
index 0000000..d8b9f40
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/CMakeLists.txt
@@ -0,0 +1,15 @@
+ADD_SUBDIRECTORY(AutoDiff)
+ADD_SUBDIRECTORY(BVH)
+ADD_SUBDIRECTORY(Eigenvalues)
+ADD_SUBDIRECTORY(FFT)
+ADD_SUBDIRECTORY(IterativeSolvers)
+ADD_SUBDIRECTORY(KroneckerProduct)
+ADD_SUBDIRECTORY(LevenbergMarquardt)
+ADD_SUBDIRECTORY(MatrixFunctions)
+ADD_SUBDIRECTORY(MoreVectorization)
+ADD_SUBDIRECTORY(NonLinearOptimization)
+ADD_SUBDIRECTORY(NumericalDiff)
+ADD_SUBDIRECTORY(Polynomials)
+ADD_SUBDIRECTORY(Skyline)
+ADD_SUBDIRECTORY(SparseExtra)
+ADD_SUBDIRECTORY(Splines)
diff --git a/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
new file mode 100644
index 0000000..3b6a69a
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
@@ -0,0 +1,805 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 David Harmon <dharmon@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
+#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
+
+#include <Eigen/Dense>
+
+namespace Eigen {
+
+namespace internal {
+ template<typename Scalar, typename RealScalar> struct arpack_wrapper;
+ template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
+}
+
+
+
+template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
+class ArpackGeneralizedSelfAdjointEigenSolver
+{
+public:
+ //typedef typename MatrixSolver::MatrixType MatrixType;
+
+ /** \brief Scalar type for matrices of type \p MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+
+ /** \brief Real scalar type for \p MatrixType.
+ *
+ * This is just \c Scalar if #Scalar is real (e.g., \c float or
+ * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #RealScalar.
+ * The length of the vector is the size of \p nbrEigenvalues.
+ */
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is for cases in which the user intends to
+ * perform decompositions via compute().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver()
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ { }
+
+ /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
+ *
+ * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
+ * computed. By default, the upper triangular part is used, but can be changed
+ * through the template parameter.
+ * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
+ * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0)
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ {
+ compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
+ }
+
+ /** \brief Constructor; computes eigenvalues of given matrix.
+ *
+ * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
+ * computed. By default, the upper triangular part is used, but can be changed
+ * through the template parameter.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
+ * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ */
+
+ ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0)
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ {
+ compute(A, nbrEigenvalues, eigs_sigma, options, tol);
+ }
+
+
+ /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
+ *
+ * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
+ * \param[in] B Selfadjoint matrix for generalized eigenvalues.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * \returns Reference to \c *this
+ *
+ * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0);
+
+ /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
+ *
+ * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0);
+
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
+ *
+ * \pre The eigenvectors have been computed before.
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+ * this object was used to solve the eigenproblem for the selfadjoint
+ * matrix \f$ A \f$, then the matrix returned by this function is the
+ * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
+ * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues()
+ */
+ const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre The eigenvalues have been computed before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are sorted in increasing order.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), MatrixBase::eigenvalues()
+ */
+ const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes the positive-definite square root of the matrix.
+ *
+ * \returns the positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * The square root of a positive-definite matrix \f$ A \f$ is the
+ * positive-definite matrix whose square equals \f$ A \f$. This function
+ * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+ * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+ *
+ * \sa operatorInverseSqrt(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
+ */
+ Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Computes the inverse square root of the matrix.
+ *
+ * \returns the inverse positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+ * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+ * cheaper than first computing the square root with operatorSqrt() and
+ * then its inverse with MatrixBase::inverse().
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+ *
+ * \sa operatorSqrt(), MatrixBase::inverse(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
+ */
+ Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ return m_info;
+ }
+
+ size_t getNbrConvergedEigenValues() const
+ { return m_nbrConverged; }
+
+ size_t getNbrIterations() const
+ { return m_nbrIterations; }
+
+protected:
+ Matrix<Scalar, Dynamic, Dynamic> m_eivec;
+ Matrix<Scalar, Dynamic, 1> m_eivalues;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+
+ size_t m_nbrConverged;
+ size_t m_nbrIterations;
+};
+
+
+
+
+
+template<typename MatrixType, typename MatrixSolver, bool BisSPD>
+ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
+ ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
+::compute(const MatrixType& A, Index nbrEigenvalues,
+ std::string eigs_sigma, int options, RealScalar tol)
+{
+ MatrixType B(0,0);
+ compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
+
+ return *this;
+}
+
+
+template<typename MatrixType, typename MatrixSolver, bool BisSPD>
+ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
+ ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
+::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
+ std::string eigs_sigma, int options, RealScalar tol)
+{
+ eigen_assert(A.cols() == A.rows());
+ eigen_assert(B.cols() == B.rows());
+ eigen_assert(B.rows() == 0 || A.cols() == B.rows());
+ eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
+ && (options & EigVecMask) != EigVecMask
+ && "invalid option parameter");
+
+ bool isBempty = (B.rows() == 0) || (B.cols() == 0);
+
+ // For clarity, all parameters match their ARPACK name
+ //
+ // Always 0 on the first call
+ //
+ int ido = 0;
+
+ int n = (int)A.cols();
+
+ // User options: "LA", "SA", "SM", "LM", "BE"
+ //
+ char whch[3] = "LM";
+
+ // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
+ //
+ RealScalar sigma = 0.0;
+
+ if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
+ {
+ eigs_sigma[0] = toupper(eigs_sigma[0]);
+ eigs_sigma[1] = toupper(eigs_sigma[1]);
+
+ // In the following special case we're going to invert the problem, since solving
+ // for larger magnitude is much much faster
+ // i.e., if 'SM' is specified, we're going to really use 'LM', the default
+ //
+ if (eigs_sigma.substr(0,2) != "SM")
+ {
+ whch[0] = eigs_sigma[0];
+ whch[1] = eigs_sigma[1];
+ }
+ }
+ else
+ {
+ eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
+
+ // If it's not scalar values, then the user may be explicitly
+ // specifying the sigma value to cluster the evs around
+ //
+ sigma = atof(eigs_sigma.c_str());
+
+ // If atof fails, it returns 0.0, which is a fine default
+ //
+ }
+
+ // "I" means normal eigenvalue problem, "G" means generalized
+ //
+ char bmat[2] = "I";
+ if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
+ bmat[0] = 'G';
+
+ // Now we determine the mode to use
+ //
+ int mode = (bmat[0] == 'G') + 1;
+ if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
+ {
+ // We're going to use shift-and-invert mode, and basically find
+ // the largest eigenvalues of the inverse operator
+ //
+ mode = 3;
+ }
+
+ // The user-specified number of eigenvalues/vectors to compute
+ //
+ int nev = (int)nbrEigenvalues;
+
+ // Allocate space for ARPACK to store the residual
+ //
+ Scalar *resid = new Scalar[n];
+
+ // Number of Lanczos vectors, must satisfy nev < ncv <= n
+ // Note that this indicates that nev != n, and we cannot compute
+ // all eigenvalues of a mtrix
+ //
+ int ncv = std::min(std::max(2*nev, 20), n);
+
+ // The working n x ncv matrix, also store the final eigenvectors (if computed)
+ //
+ Scalar *v = new Scalar[n*ncv];
+ int ldv = n;
+
+ // Working space
+ //
+ Scalar *workd = new Scalar[3*n];
+ int lworkl = ncv*ncv+8*ncv; // Must be at least this length
+ Scalar *workl = new Scalar[lworkl];
+
+ int *iparam= new int[11];
+ iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
+ iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
+ iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
+
+ // Used during reverse communicate to notify where arrays start
+ //
+ int *ipntr = new int[11];
+
+ // Error codes are returned in here, initial value of 0 indicates a random initial
+ // residual vector is used, any other values means resid contains the initial residual
+ // vector, possibly from a previous run
+ //
+ int info = 0;
+
+ Scalar scale = 1.0;
+ //if (!isBempty)
+ //{
+ //Scalar scale = B.norm() / std::sqrt(n);
+ //scale = std::pow(2, std::floor(std::log(scale+1)));
+ ////M /= scale;
+ //for (size_t i=0; i<(size_t)B.outerSize(); i++)
+ // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
+ // it.valueRef() /= scale;
+ //}
+
+ MatrixSolver OP;
+ if (mode == 1 || mode == 2)
+ {
+ if (!isBempty)
+ OP.compute(B);
+ }
+ else if (mode == 3)
+ {
+ if (sigma == 0.0)
+ {
+ OP.compute(A);
+ }
+ else
+ {
+ // Note: We will never enter here because sigma must be 0.0
+ //
+ if (isBempty)
+ {
+ MatrixType AminusSigmaB(A);
+ for (Index i=0; i<A.rows(); ++i)
+ AminusSigmaB.coeffRef(i,i) -= sigma;
+
+ OP.compute(AminusSigmaB);
+ }
+ else
+ {
+ MatrixType AminusSigmaB = A - sigma * B;
+ OP.compute(AminusSigmaB);
+ }
+ }
+ }
+
+ if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
+ std::cout << "Error factoring matrix" << std::endl;
+
+ do
+ {
+ internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
+ &ncv, v, &ldv, iparam, ipntr, workd, workl,
+ &lworkl, &info);
+
+ if (ido == -1 || ido == 1)
+ {
+ Scalar *in = workd + ipntr[0] - 1;
+ Scalar *out = workd + ipntr[1] - 1;
+
+ if (ido == 1 && mode != 2)
+ {
+ Scalar *out2 = workd + ipntr[2] - 1;
+ if (isBempty || mode == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+
+ in = workd + ipntr[2] - 1;
+ }
+
+ if (mode == 1)
+ {
+ if (isBempty)
+ {
+ // OP = A
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ }
+ else
+ {
+ // OP = L^{-1}AL^{-T}
+ //
+ internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
+ }
+ }
+ else if (mode == 2)
+ {
+ if (ido == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+
+ // OP = B^{-1} A
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ }
+ else if (mode == 3)
+ {
+ // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
+ // The B * in is already computed and stored at in if ido == 1
+ //
+ if (ido == 1 || isBempty)
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ }
+ }
+ else if (ido == 2)
+ {
+ Scalar *in = workd + ipntr[0] - 1;
+ Scalar *out = workd + ipntr[1] - 1;
+
+ if (isBempty || mode == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ }
+ } while (ido != 99);
+
+ if (info == 1)
+ m_info = NoConvergence;
+ else if (info == 3)
+ m_info = NumericalIssue;
+ else if (info < 0)
+ m_info = InvalidInput;
+ else if (info != 0)
+ eigen_assert(false && "Unknown ARPACK return value!");
+ else
+ {
+ // Do we compute eigenvectors or not?
+ //
+ int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
+
+ // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
+ //
+ char howmny[2] = "A";
+
+ // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
+ //
+ int *select = new int[ncv];
+
+ // Final eigenvalues
+ //
+ m_eivalues.resize(nev, 1);
+
+ internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
+ &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
+ v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
+
+ if (info == -14)
+ m_info = NoConvergence;
+ else if (info != 0)
+ m_info = InvalidInput;
+ else
+ {
+ if (rvec)
+ {
+ m_eivec.resize(A.rows(), nev);
+ for (int i=0; i<nev; i++)
+ for (int j=0; j<n; j++)
+ m_eivec(j,i) = v[i*n+j] / scale;
+
+ if (mode == 1 && !isBempty && BisSPD)
+ internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
+
+ m_eigenvectorsOk = true;
+ }
+
+ m_nbrIterations = iparam[2];
+ m_nbrConverged = iparam[4];
+
+ m_info = Success;
+ }
+
+ delete select;
+ }
+
+ delete v;
+ delete iparam;
+ delete ipntr;
+ delete workd;
+ delete workl;
+ delete resid;
+
+ m_isInitialized = true;
+
+ return *this;
+}
+
+
+// Single precision
+//
+extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
+ int *nev, float *tol, float *resid, int *ncv,
+ float *v, int *ldv, int *iparam, int *ipntr,
+ float *workd, float *workl, int *lworkl,
+ int *info);
+
+extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
+ float *z, int *ldz, float *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ float *tol, float *resid, int *ncv, float *v,
+ int *ldv, int *iparam, int *ipntr, float *workd,
+ float *workl, int *lworkl, int *ierr);
+
+// Double precision
+//
+extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
+ int *nev, double *tol, double *resid, int *ncv,
+ double *v, int *ldv, int *iparam, int *ipntr,
+ double *workd, double *workl, int *lworkl,
+ int *info);
+
+extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
+ double *z, int *ldz, double *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ double *tol, double *resid, int *ncv, double *v,
+ int *ldv, int *iparam, int *ipntr, double *workd,
+ double *workl, int *lworkl, int *ierr);
+
+
+namespace internal {
+
+template<typename Scalar, typename RealScalar> struct arpack_wrapper
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, RealScalar *tol, Scalar *resid, int *ncv,
+ Scalar *v, int *ldv, int *iparam, int *ipntr,
+ Scalar *workd, Scalar *workl, int *lworkl, int *info)
+ {
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
+ }
+
+ static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
+ Scalar *z, int *ldz, RealScalar *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
+ int *ldv, int *iparam, int *ipntr, Scalar *workd,
+ Scalar *workl, int *lworkl, int *ierr)
+ {
+ EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
+ }
+};
+
+template <> struct arpack_wrapper<float, float>
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, float *tol, float *resid, int *ncv,
+ float *v, int *ldv, int *iparam, int *ipntr,
+ float *workd, float *workl, int *lworkl, int *info)
+ {
+ ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
+ }
+
+ static inline void seupd(int *rvec, char *All, int *select, float *d,
+ float *z, int *ldz, float *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ float *tol, float *resid, int *ncv, float *v,
+ int *ldv, int *iparam, int *ipntr, float *workd,
+ float *workl, int *lworkl, int *ierr)
+ {
+ sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
+ workd, workl, lworkl, ierr);
+ }
+};
+
+template <> struct arpack_wrapper<double, double>
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, double *tol, double *resid, int *ncv,
+ double *v, int *ldv, int *iparam, int *ipntr,
+ double *workd, double *workl, int *lworkl, int *info)
+ {
+ dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
+ }
+
+ static inline void seupd(int *rvec, char *All, int *select, double *d,
+ double *z, int *ldz, double *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ double *tol, double *resid, int *ncv, double *v,
+ int *ldv, int *iparam, int *ipntr, double *workd,
+ double *workl, int *lworkl, int *ierr)
+ {
+ dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
+ workd, workl, lworkl, ierr);
+ }
+};
+
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
+struct OP
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
+};
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar>
+struct OP<MatrixSolver, MatrixType, Scalar, true>
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
+{
+ // OP = L^{-1} A L^{-T} (B = LL^T)
+ //
+ // First solve L^T out = in
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+
+ // Then compute out = A out
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+
+ // Then solve L out = out
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
+}
+
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
+{
+ // Solve L^T out = in
+ //
+ Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
+ Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
+}
+
+};
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar>
+struct OP<MatrixSolver, MatrixType, Scalar, false>
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
+{
+ eigen_assert(false && "Should never be in here...");
+}
+
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
+{
+ eigen_assert(false && "Should never be in here...");
+}
+
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
+
diff --git a/eigen/unsupported/Eigen/src/Eigenvalues/CMakeLists.txt b/eigen/unsupported/Eigen/src/Eigenvalues/CMakeLists.txt
new file mode 100644
index 0000000..1d4387c
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Eigenvalues/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_Eigenvalues_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_Eigenvalues_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Eigenvalues COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/FFT/CMakeLists.txt b/eigen/unsupported/Eigen/src/FFT/CMakeLists.txt
new file mode 100644
index 0000000..edcffcb
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/FFT/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_FFT_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_FFT_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/FFT COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
new file mode 100644
index 0000000..d49aa17
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -0,0 +1,261 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+namespace Eigen {
+
+namespace internal {
+
+ // FFTW uses non-const arguments
+ // so we must use ugly const_cast calls for all the args it uses
+ //
+ // This should be safe as long as
+ // 1. we use FFTW_ESTIMATE for all our planning
+ // see the FFTW docs section 4.3.2 "Planner Flags"
+ // 2. fftw_complex is compatible with std::complex
+ // This assumes std::complex<T> layout is array of size 2 with real,imag
+ template <typename T>
+ inline
+ T * fftw_cast(const T* p)
+ {
+ return const_cast<T*>( p);
+ }
+
+ inline
+ fftw_complex * fftw_cast( const std::complex<double> * p)
+ {
+ return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
+ }
+
+ inline
+ fftwf_complex * fftw_cast( const std::complex<float> * p)
+ {
+ return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
+ }
+
+ inline
+ fftwl_complex * fftw_cast( const std::complex<long double> * p)
+ {
+ return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
+ }
+
+ template <typename T>
+ struct fftw_plan {};
+
+ template <>
+ struct fftw_plan<float>
+ {
+ typedef float scalar_type;
+ typedef fftwf_complex complex_type;
+ fftwf_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft_c2r( m_plan, src,dst);
+ }
+
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+
+ };
+ template <>
+ struct fftw_plan<double>
+ {
+ typedef double scalar_type;
+ typedef fftw_complex complex_type;
+ ::fftw_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft_c2r( m_plan, src,dst);
+ }
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct fftw_plan<long double>
+ {
+ typedef long double scalar_type;
+ typedef fftwl_complex complex_type;
+ fftwl_plan m_plan;
+ fftw_plan() :m_plan(NULL) {}
+ ~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft_c2r( m_plan, src,dst);
+ }
+ inline
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ };
+
+ template <typename _Scalar>
+ struct fftw_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ inline
+ void clear()
+ {
+ m_plans.clear();
+ }
+
+ // complex-to-complex forward FFT
+ inline
+ void fwd( Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // real-to-complex forward FFT
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
+ }
+
+ // 2-d complex-to-complex
+ inline
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ }
+
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ }
+
+ // 2-d complex-to-complex
+ inline
+ void inv2(Complex * dst, const Complex * src, int n0,int n1)
+ {
+ get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ }
+
+
+ protected:
+ typedef fftw_plan<Scalar> PlanData;
+
+ typedef std::map<int64_t,PlanData> PlanMap;
+
+ PlanMap m_plans;
+
+ inline
+ PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
+ return m_plans[key];
+ }
+
+ inline
+ PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
+ return m_plans[key];
+ }
+ };
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
new file mode 100644
index 0000000..be51b4e
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
@@ -0,0 +1,420 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+namespace Eigen {
+
+namespace internal {
+
+ // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
+ // Copyright 2003-2009 Mark Borgerding
+
+template <typename _Scalar>
+struct kiss_cpx_fft
+{
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+ std::vector<Complex> m_twiddles;
+ std::vector<int> m_stageRadix;
+ std::vector<int> m_stageRemainder;
+ std::vector<Complex> m_scratchBuf;
+ bool m_inverse;
+
+ inline
+ void make_twiddles(int nfft,bool inverse)
+ {
+ using std::acos;
+ m_inverse = inverse;
+ m_twiddles.resize(nfft);
+ Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
+ for (int i=0;i<nfft;++i)
+ m_twiddles[i] = exp( Complex(0,i*phinc) );
+ }
+
+ void factorize(int nfft)
+ {
+ //start factoring out 4's, then 2's, then 3,5,7,9,...
+ int n= nfft;
+ int p=4;
+ do {
+ while (n % p) {
+ switch (p) {
+ case 4: p = 2; break;
+ case 2: p = 3; break;
+ default: p += 2; break;
+ }
+ if (p*p>n)
+ p=n;// impossible to have a factor > sqrt(n)
+ }
+ n /= p;
+ m_stageRadix.push_back(p);
+ m_stageRemainder.push_back(n);
+ if ( p > 5 )
+ m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
+ }while(n>1);
+ }
+
+ template <typename _Src>
+ inline
+ void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
+ {
+ int p = m_stageRadix[stage];
+ int m = m_stageRemainder[stage];
+ Complex * Fout_beg = xout;
+ Complex * Fout_end = xout + p*m;
+
+ if (m>1) {
+ do{
+ // recursive call:
+ // DFT of size m*p performed by doing
+ // p instances of smaller DFTs of size m,
+ // each one takes a decimated version of the input
+ work(stage+1, xout , xin, fstride*p,in_stride);
+ xin += fstride*in_stride;
+ }while( (xout += m) != Fout_end );
+ }else{
+ do{
+ *xout = *xin;
+ xin += fstride*in_stride;
+ }while(++xout != Fout_end );
+ }
+ xout=Fout_beg;
+
+ // recombine the p smaller DFTs
+ switch (p) {
+ case 2: bfly2(xout,fstride,m); break;
+ case 3: bfly3(xout,fstride,m); break;
+ case 4: bfly4(xout,fstride,m); break;
+ case 5: bfly5(xout,fstride,m); break;
+ default: bfly_generic(xout,fstride,m,p); break;
+ }
+ }
+
+ inline
+ void bfly2( Complex * Fout, const size_t fstride, int m)
+ {
+ for (int k=0;k<m;++k) {
+ Complex t = Fout[m+k] * m_twiddles[k*fstride];
+ Fout[m+k] = Fout[k] - t;
+ Fout[k] += t;
+ }
+ }
+
+ inline
+ void bfly4( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex scratch[6];
+ int negative_if_inverse = m_inverse * -2 +1;
+ for (size_t k=0;k<m;++k) {
+ scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
+ scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
+ scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
+ scratch[5] = Fout[k] - scratch[1];
+
+ Fout[k] += scratch[1];
+ scratch[3] = scratch[0] + scratch[2];
+ scratch[4] = scratch[0] - scratch[2];
+ scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
+
+ Fout[k+2*m] = Fout[k] - scratch[3];
+ Fout[k] += scratch[3];
+ Fout[k+m] = scratch[5] + scratch[4];
+ Fout[k+3*m] = scratch[5] - scratch[4];
+ }
+ }
+
+ inline
+ void bfly3( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ size_t k=m;
+ const size_t m2 = 2*m;
+ Complex *tw1,*tw2;
+ Complex scratch[5];
+ Complex epi3;
+ epi3 = m_twiddles[fstride*m];
+
+ tw1=tw2=&m_twiddles[0];
+
+ do{
+ scratch[1]=Fout[m] * *tw1;
+ scratch[2]=Fout[m2] * *tw2;
+
+ scratch[3]=scratch[1]+scratch[2];
+ scratch[0]=scratch[1]-scratch[2];
+ tw1 += fstride;
+ tw2 += fstride*2;
+ Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
+ scratch[0] *= epi3.imag();
+ *Fout += scratch[3];
+ Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
+ Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
+ ++Fout;
+ }while(--k);
+ }
+
+ inline
+ void bfly5( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
+ size_t u;
+ Complex scratch[13];
+ Complex * twiddles = &m_twiddles[0];
+ Complex *tw;
+ Complex ya,yb;
+ ya = twiddles[fstride*m];
+ yb = twiddles[fstride*2*m];
+
+ Fout0=Fout;
+ Fout1=Fout0+m;
+ Fout2=Fout0+2*m;
+ Fout3=Fout0+3*m;
+ Fout4=Fout0+4*m;
+
+ tw=twiddles;
+ for ( u=0; u<m; ++u ) {
+ scratch[0] = *Fout0;
+
+ scratch[1] = *Fout1 * tw[u*fstride];
+ scratch[2] = *Fout2 * tw[2*u*fstride];
+ scratch[3] = *Fout3 * tw[3*u*fstride];
+ scratch[4] = *Fout4 * tw[4*u*fstride];
+
+ scratch[7] = scratch[1] + scratch[4];
+ scratch[10] = scratch[1] - scratch[4];
+ scratch[8] = scratch[2] + scratch[3];
+ scratch[9] = scratch[2] - scratch[3];
+
+ *Fout0 += scratch[7];
+ *Fout0 += scratch[8];
+
+ scratch[5] = scratch[0] + Complex(
+ (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
+ (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
+ );
+
+ scratch[6] = Complex(
+ (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
+ -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
+ );
+
+ *Fout1 = scratch[5] - scratch[6];
+ *Fout4 = scratch[5] + scratch[6];
+
+ scratch[11] = scratch[0] +
+ Complex(
+ (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
+ (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
+ );
+
+ scratch[12] = Complex(
+ -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
+ (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
+ );
+
+ *Fout2=scratch[11]+scratch[12];
+ *Fout3=scratch[11]-scratch[12];
+
+ ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
+ }
+ }
+
+ /* perform the butterfly for one stage of a mixed radix FFT */
+ inline
+ void bfly_generic(
+ Complex * Fout,
+ const size_t fstride,
+ int m,
+ int p
+ )
+ {
+ int u,k,q1,q;
+ Complex * twiddles = &m_twiddles[0];
+ Complex t;
+ int Norig = static_cast<int>(m_twiddles.size());
+ Complex * scratchbuf = &m_scratchBuf[0];
+
+ for ( u=0; u<m; ++u ) {
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ scratchbuf[q1] = Fout[ k ];
+ k += m;
+ }
+
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ int twidx=0;
+ Fout[ k ] = scratchbuf[0];
+ for (q=1;q<p;++q ) {
+ twidx += static_cast<int>(fstride) * k;
+ if (twidx>=Norig) twidx-=Norig;
+ t=scratchbuf[q] * twiddles[twidx];
+ Fout[ k ] += t;
+ }
+ k += m;
+ }
+ }
+ }
+};
+
+template <typename _Scalar>
+struct kissfft_impl
+{
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ void clear()
+ {
+ m_plans.clear();
+ m_realTwiddles.clear();
+ }
+
+ inline
+ void fwd( Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }
+
+ inline
+ void fwd2( Complex * dst,const Complex *src,int n0,int n1)
+ {
+ EIGEN_UNUSED_VARIABLE(dst);
+ EIGEN_UNUSED_VARIABLE(src);
+ EIGEN_UNUSED_VARIABLE(n0);
+ EIGEN_UNUSED_VARIABLE(n1);
+ }
+
+ inline
+ void inv2( Complex * dst,const Complex *src,int n0,int n1)
+ {
+ EIGEN_UNUSED_VARIABLE(dst);
+ EIGEN_UNUSED_VARIABLE(src);
+ EIGEN_UNUSED_VARIABLE(n0);
+ EIGEN_UNUSED_VARIABLE(n1);
+ }
+
+ // real-to-complex forward FFT
+ // perform two FFTs of src even and src odd
+ // then twiddle to recombine them into the half-spectrum format
+ // then fill in the conjugate symmetric half
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ if ( nfft&3 ) {
+ // use generic mode for odd
+ m_tmpBuf1.resize(nfft);
+ get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
+ std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
+ }else{
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+
+ // use optimized mode for even real
+ fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
+ Complex dc = dst[0].real() + dst[0].imag();
+ Complex nyquist = dst[0].real() - dst[0].imag();
+ int k;
+ for ( k=1;k <= ncfft2 ; ++k ) {
+ Complex fpk = dst[k];
+ Complex fpnk = conj(dst[ncfft-k]);
+ Complex f1k = fpk + fpnk;
+ Complex f2k = fpk - fpnk;
+ Complex tw= f2k * rtw[k-1];
+ dst[k] = (f1k + tw) * Scalar(.5);
+ dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
+ }
+ dst[0] = dc;
+ dst[ncfft] = nyquist;
+ }
+ }
+
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true).work(0, dst, src, 1,1);
+ }
+
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ if (nfft&3) {
+ m_tmpBuf1.resize(nfft);
+ m_tmpBuf2.resize(nfft);
+ std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
+ for (int k=1;k<(nfft>>1)+1;++k)
+ m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
+ inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
+ for (int k=0;k<nfft;++k)
+ dst[k] = m_tmpBuf2[k].real();
+ }else{
+ // optimized version for multiple of 4
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+ m_tmpBuf1.resize(ncfft);
+ m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
+ for (int k = 1; k <= ncfft / 2; ++k) {
+ Complex fk = src[k];
+ Complex fnkc = conj(src[ncfft-k]);
+ Complex fek = fk + fnkc;
+ Complex tmp = fk - fnkc;
+ Complex fok = tmp * conj(rtw[k-1]);
+ m_tmpBuf1[k] = fek + fok;
+ m_tmpBuf1[ncfft-k] = conj(fek - fok);
+ }
+ get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
+ }
+ }
+
+ protected:
+ typedef kiss_cpx_fft<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
+
+ PlanMap m_plans;
+ std::map<int, std::vector<Complex> > m_realTwiddles;
+ std::vector<Complex> m_tmpBuf1;
+ std::vector<Complex> m_tmpBuf2;
+
+ inline
+ int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
+
+ inline
+ PlanData & get_plan(int nfft, bool inverse)
+ {
+ // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
+ PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
+ if ( pd.m_twiddles.size() == 0 ) {
+ pd.make_twiddles(nfft,inverse);
+ pd.factorize(nfft);
+ }
+ return pd;
+ }
+
+ inline
+ Complex * real_twiddles(int ncfft2)
+ {
+ using std::acos;
+ std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
+ if ( (int)twidref.size() != ncfft2 ) {
+ twidref.resize(ncfft2);
+ int ncfft= ncfft2<<1;
+ Scalar pi = acos( Scalar(-1) );
+ for (int k=1;k<=ncfft2;++k)
+ twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
+ }
+ return &twidref[0];
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt b/eigen/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt
new file mode 100644
index 0000000..7986afc
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_IterativeSolvers_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_IterativeSolvers_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/IterativeSolvers COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
new file mode 100644
index 0000000..dc0093e
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
@@ -0,0 +1,189 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+
+/* NOTE The functions of this file have been adapted from the GMM++ library */
+
+//========================================================================
+//
+// Copyright (C) 2002-2007 Yves Renard
+//
+// This file is a part of GETFEM++
+//
+// Getfem++ is free software; you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as
+// published by the Free Software Foundation; version 2.1 of the License.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+// You should have received a copy of the GNU Lesser General Public
+// License along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
+// USA.
+//
+//========================================================================
+
+#include "../../../../Eigen/src/Core/util/NonMPL2.h"
+
+#ifndef EIGEN_CONSTRAINEDCG_H
+#define EIGEN_CONSTRAINEDCG_H
+
+#include <Eigen/Core>
+
+namespace Eigen {
+
+namespace internal {
+
+/** \ingroup IterativeSolvers_Module
+ * Compute the pseudo inverse of the non-square matrix C such that
+ * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method.
+ *
+ * This function is internally used by constrained_cg.
+ */
+template <typename CMatrix, typename CINVMatrix>
+void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV)
+{
+ // optimisable : copie de la ligne, precalcul de C * trans(C).
+ typedef typename CMatrix::Scalar Scalar;
+ typedef typename CMatrix::Index Index;
+ // FIXME use sparse vectors ?
+ typedef Matrix<Scalar,Dynamic,1> TmpVec;
+
+ Index rows = C.rows(), cols = C.cols();
+
+ TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows);
+ Scalar rho, rho_1, alpha;
+ d.setZero();
+
+ typedef Triplet<double> T;
+ std::vector<T> tripletList;
+
+ for (Index i = 0; i < rows; ++i)
+ {
+ d[i] = 1.0;
+ rho = 1.0;
+ e.setZero();
+ r = d;
+ p = d;
+
+ while (rho >= 1e-38)
+ { /* conjugate gradient to compute e */
+ /* which is the i-th row of inv(C * trans(C)) */
+ l = C.transpose() * p;
+ q = C * l;
+ alpha = rho / p.dot(q);
+ e += alpha * p;
+ r += -alpha * q;
+ rho_1 = rho;
+ rho = r.dot(r);
+ p = (rho/rho_1) * p + r;
+ }
+
+ l = C.transpose() * e; // l is the i-th row of CINV
+ // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse
+ for (Index j=0; j<l.size(); ++j)
+ if (l[j]<1e-15)
+ tripletList.push_back(T(i,j,l(j)));
+
+
+ d[i] = 0.0;
+ }
+ CINV.setFromTriplets(tripletList.begin(), tripletList.end());
+}
+
+
+
+/** \ingroup IterativeSolvers_Module
+ * Constrained conjugate gradient
+ *
+ * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$
+ */
+template<typename TMatrix, typename CMatrix,
+ typename VectorX, typename VectorB, typename VectorF>
+void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x,
+ const VectorB& b, const VectorF& f, IterationController &iter)
+{
+ using std::sqrt;
+ typedef typename TMatrix::Scalar Scalar;
+ typedef typename TMatrix::Index Index;
+ typedef Matrix<Scalar,Dynamic,1> TmpVec;
+
+ Scalar rho = 1.0, rho_1, lambda, gamma;
+ Index xSize = x.size();
+ TmpVec p(xSize), q(xSize), q2(xSize),
+ r(xSize), old_z(xSize), z(xSize),
+ memox(xSize);
+ std::vector<bool> satured(C.rows());
+ p.setZero();
+ iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b)
+ if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0);
+
+ SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols());
+ pseudo_inverse(C, CINV);
+
+ while(true)
+ {
+ // computation of residual
+ old_z = z;
+ memox = x;
+ r = b;
+ r += A * -x;
+ z = r;
+ bool transition = false;
+ for (Index i = 0; i < C.rows(); ++i)
+ {
+ Scalar al = C.row(i).dot(x) - f.coeff(i);
+ if (al >= -1.0E-15)
+ {
+ if (!satured[i])
+ {
+ satured[i] = true;
+ transition = true;
+ }
+ Scalar bb = CINV.row(i).dot(z);
+ if (bb > 0.0)
+ // FIXME: we should allow that: z += -bb * C.row(i);
+ for (typename CMatrix::InnerIterator it(C,i); it; ++it)
+ z.coeffRef(it.index()) -= bb*it.value();
+ }
+ else
+ satured[i] = false;
+ }
+
+ // descent direction
+ rho_1 = rho;
+ rho = r.dot(z);
+
+ if (iter.finished(rho)) break;
+
+ if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n";
+ if (transition || iter.first()) gamma = 0.0;
+ else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1);
+ p = z + gamma*p;
+
+ ++iter;
+ // one dimensionnal optimization
+ q = A * p;
+ lambda = rho / q.dot(p);
+ for (Index i = 0; i < C.rows(); ++i)
+ {
+ if (!satured[i])
+ {
+ Scalar bb = C.row(i).dot(p) - f[i];
+ if (bb > 0.0)
+ lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb);
+ }
+ }
+ x += lambda * p;
+ memox -= x;
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CONSTRAINEDCG_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
new file mode 100644
index 0000000..68fc997
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
@@ -0,0 +1,542 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_DGMRES_H
+#define EIGEN_DGMRES_H
+
+#include <Eigen/Eigenvalues>
+
+namespace Eigen {
+
+template< typename _MatrixType,
+ typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class DGMRES;
+
+namespace internal {
+
+template< typename _MatrixType, typename _Preconditioner>
+struct traits<DGMRES<_MatrixType,_Preconditioner> >
+{
+ typedef _MatrixType MatrixType;
+ typedef _Preconditioner Preconditioner;
+};
+
+/** \brief Computes a permutation vector to have a sorted sequence
+ * \param vec The vector to reorder.
+ * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
+ * \param ncut Put the ncut smallest elements at the end of the vector
+ * WARNING This is an expensive sort, so should be used only
+ * for small size vectors
+ * TODO Use modified QuickSplit or std::nth_element to get the smallest values
+ */
+template <typename VectorType, typename IndexType>
+void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
+{
+ eigen_assert(vec.size() == perm.size());
+ typedef typename IndexType::Scalar Index;
+ typedef typename VectorType::Scalar Scalar;
+ bool flag;
+ for (Index k = 0; k < ncut; k++)
+ {
+ flag = false;
+ for (Index j = 0; j < vec.size()-1; j++)
+ {
+ if ( vec(perm(j)) < vec(perm(j+1)) )
+ {
+ std::swap(perm(j),perm(j+1));
+ flag = true;
+ }
+ if (!flag) break; // The vector is in sorted order
+ }
+ }
+}
+
+}
+/**
+ * \ingroup IterativeLInearSolvers_Module
+ * \brief A Restarted GMRES with deflation.
+ * This class implements a modification of the GMRES solver for
+ * sparse linear systems. The basis is built with modified
+ * Gram-Schmidt. At each restart, a few approximated eigenvectors
+ * corresponding to the smallest eigenvalues are used to build a
+ * preconditioner for the next cycle. This preconditioner
+ * for deflation can be combined with any other preconditioner,
+ * the IncompleteLUT for instance. The preconditioner is applied
+ * at right of the matrix and the combination is multiplicative.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ * Typical usage :
+ * \code
+ * SparseMatrix<double> A;
+ * VectorXd x, b;
+ * //Fill A and b ...
+ * DGMRES<SparseMatrix<double> > solver;
+ * solver.set_restart(30); // Set restarting value
+ * solver.setEigenv(1); // Set the number of eigenvalues to deflate
+ * solver.compute(A);
+ * x = solver.solve(b);
+ * \endcode
+ *
+ * References :
+ * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
+ * Algebraic Solvers for Linear Systems Arising from Compressible
+ * Flows, Computers and Fluids, In Press,
+ * http://dx.doi.org/10.1016/j.compfluid.2012.03.023
+ * [2] K. Burrage and J. Erhel, On the performance of various
+ * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
+ * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
+ * preconditioned by deflation,J. Computational and Applied
+ * Mathematics, 69(1996), 303-318.
+
+ *
+ */
+template< typename _MatrixType, typename _Preconditioner>
+class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
+{
+ typedef IterativeSolverBase<DGMRES> Base;
+ using Base::mp_matrix;
+ using Base::m_error;
+ using Base::m_iterations;
+ using Base::m_info;
+ using Base::m_isInitialized;
+ using Base::m_tolerance;
+ public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+ typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
+ typedef Matrix<Scalar,Dynamic,1> DenseVector;
+ typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
+ typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
+
+
+ /** Default constructor. */
+ DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * This constructor is a shortcut for the default constructor followed
+ * by a call to compute().
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ template<typename MatrixDerived>
+ explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
+
+ ~DGMRES() {}
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * \a x0 as an initial solution.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs,typename Guess>
+ inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+ {
+ eigen_assert(m_isInitialized && "DGMRES is not initialized.");
+ eigen_assert(Base::rows()==b.rows()
+ && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval_with_guess
+ <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solveWithGuess(const Rhs& b, Dest& x) const
+ {
+ bool failed = false;
+ for(int j=0; j<b.cols(); ++j)
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ typename Dest::ColXpr xj(x,j);
+ dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
+ }
+ m_info = failed ? NumericalIssue
+ : m_error <= Base::m_tolerance ? Success
+ : NoConvergence;
+ m_isInitialized = true;
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x = b;
+ _solveWithGuess(b,x);
+ }
+ /**
+ * Get the restart value
+ */
+ int restart() { return m_restart; }
+
+ /**
+ * Set the restart value (default is 30)
+ */
+ void set_restart(const int restart) { m_restart=restart; }
+
+ /**
+ * Set the number of eigenvalues to deflate at each restart
+ */
+ void setEigenv(const int neig)
+ {
+ m_neig = neig;
+ if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
+ }
+
+ /**
+ * Get the size of the deflation subspace size
+ */
+ int deflSize() {return m_r; }
+
+ /**
+ * Set the maximum size of the deflation subspace
+ */
+ void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
+
+ protected:
+ // DGMRES algorithm
+ template<typename Rhs, typename Dest>
+ void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
+ // Perform one cycle of GMRES
+ template<typename Dest>
+ int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
+ // Compute data to use for deflation
+ int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
+ // Apply deflation to a vector
+ template<typename RhsType, typename DestType>
+ int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
+ ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
+ ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
+ // Init data for deflation
+ void dgmresInitDeflation(Index& rows) const;
+ mutable DenseMatrix m_V; // Krylov basis vectors
+ mutable DenseMatrix m_H; // Hessenberg matrix
+ mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
+ mutable Index m_restart; // Maximum size of the Krylov subspace
+ mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
+ mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
+ mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
+ mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
+ mutable int m_neig; //Number of eigenvalues to extract at each restart
+ mutable int m_r; // Current number of deflated eigenvalues, size of m_U
+ mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
+ mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
+ mutable bool m_isDeflAllocated;
+ mutable bool m_isDeflInitialized;
+
+ //Adaptive strategy
+ mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
+ mutable bool m_force; // Force the use of deflation at each restart
+
+};
+/**
+ * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
+ *
+ * A right preconditioner is used combined with deflation.
+ *
+ */
+template< typename _MatrixType, typename _Preconditioner>
+template<typename Rhs, typename Dest>
+void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
+ const Preconditioner& precond) const
+{
+ //Initialization
+ int n = mat.rows();
+ DenseVector r0(n);
+ int nbIts = 0;
+ m_H.resize(m_restart+1, m_restart);
+ m_Hes.resize(m_restart, m_restart);
+ m_V.resize(n,m_restart+1);
+ //Initial residual vector and intial norm
+ x = precond.solve(x);
+ r0 = rhs - mat * x;
+ RealScalar beta = r0.norm();
+ RealScalar normRhs = rhs.norm();
+ m_error = beta/normRhs;
+ if(m_error < m_tolerance)
+ m_info = Success;
+ else
+ m_info = NoConvergence;
+
+ // Iterative process
+ while (nbIts < m_iterations && m_info == NoConvergence)
+ {
+ dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
+
+ // Compute the new residual vector for the restart
+ if (nbIts < m_iterations && m_info == NoConvergence)
+ r0 = rhs - mat * x;
+ }
+}
+
+/**
+ * \brief Perform one restart cycle of DGMRES
+ * \param mat The coefficient matrix
+ * \param precond The preconditioner
+ * \param x the new approximated solution
+ * \param r0 The initial residual vector
+ * \param beta The norm of the residual computed so far
+ * \param normRhs The norm of the right hand side vector
+ * \param nbIts The number of iterations
+ */
+template< typename _MatrixType, typename _Preconditioner>
+template<typename Dest>
+int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
+{
+ //Initialization
+ DenseVector g(m_restart+1); // Right hand side of the least square problem
+ g.setZero();
+ g(0) = Scalar(beta);
+ m_V.col(0) = r0/beta;
+ m_info = NoConvergence;
+ std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
+ int it = 0; // Number of inner iterations
+ int n = mat.rows();
+ DenseVector tv1(n), tv2(n); //Temporary vectors
+ while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
+ {
+ // Apply preconditioner(s) at right
+ if (m_isDeflInitialized )
+ {
+ dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
+ tv2 = precond.solve(tv1);
+ }
+ else
+ {
+ tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
+ }
+ tv1 = mat * tv2;
+
+ // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
+ Scalar coef;
+ for (int i = 0; i <= it; ++i)
+ {
+ coef = tv1.dot(m_V.col(i));
+ tv1 = tv1 - coef * m_V.col(i);
+ m_H(i,it) = coef;
+ m_Hes(i,it) = coef;
+ }
+ // Normalize the vector
+ coef = tv1.norm();
+ m_V.col(it+1) = tv1/coef;
+ m_H(it+1, it) = coef;
+// m_Hes(it+1,it) = coef;
+
+ // FIXME Check for happy breakdown
+
+ // Update Hessenberg matrix with Givens rotations
+ for (int i = 1; i <= it; ++i)
+ {
+ m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
+ }
+ // Compute the new plane rotation
+ gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
+ // Apply the new rotation
+ m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
+ g.applyOnTheLeft(it,it+1, gr[it].adjoint());
+
+ beta = std::abs(g(it+1));
+ m_error = beta/normRhs;
+ std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
+ it++; nbIts++;
+
+ if (m_error < m_tolerance)
+ {
+ // The method has converged
+ m_info = Success;
+ break;
+ }
+ }
+
+ // Compute the new coefficients by solving the least square problem
+// it++;
+ //FIXME Check first if the matrix is singular ... zero diagonal
+ DenseVector nrs(m_restart);
+ nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
+
+ // Form the new solution
+ if (m_isDeflInitialized)
+ {
+ tv1 = m_V.leftCols(it) * nrs;
+ dgmresApplyDeflation(tv1, tv2);
+ x = x + precond.solve(tv2);
+ }
+ else
+ x = x + precond.solve(m_V.leftCols(it) * nrs);
+
+ // Go for a new cycle and compute data for deflation
+ if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
+ dgmresComputeDeflationData(mat, precond, it, m_neig);
+ return 0;
+
+}
+
+
+template< typename _MatrixType, typename _Preconditioner>
+void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
+{
+ m_U.resize(rows, m_maxNeig);
+ m_MU.resize(rows, m_maxNeig);
+ m_T.resize(m_maxNeig, m_maxNeig);
+ m_lambdaN = 0.0;
+ m_isDeflAllocated = true;
+}
+
+template< typename _MatrixType, typename _Preconditioner>
+inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
+{
+ return schurofH.matrixT().diagonal();
+}
+
+template< typename _MatrixType, typename _Preconditioner>
+inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
+{
+ typedef typename MatrixType::Index Index;
+ const DenseMatrix& T = schurofH.matrixT();
+ Index it = T.rows();
+ ComplexVector eig(it);
+ Index j = 0;
+ while (j < it-1)
+ {
+ if (T(j+1,j) ==Scalar(0))
+ {
+ eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
+ j++;
+ }
+ else
+ {
+ eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
+ eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
+ j++;
+ }
+ }
+ if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
+ return eig;
+}
+
+template< typename _MatrixType, typename _Preconditioner>
+int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
+{
+ // First, find the Schur form of the Hessenberg matrix H
+ typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
+ bool computeU = true;
+ DenseMatrix matrixQ(it,it);
+ matrixQ.setIdentity();
+ schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
+
+ ComplexVector eig(it);
+ Matrix<Index,Dynamic,1>perm(it);
+ eig = this->schurValues(schurofH);
+
+ // Reorder the absolute values of Schur values
+ DenseRealVector modulEig(it);
+ for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
+ perm.setLinSpaced(it,0,it-1);
+ internal::sortWithPermutation(modulEig, perm, neig);
+
+ if (!m_lambdaN)
+ {
+ m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
+ }
+ //Count the real number of extracted eigenvalues (with complex conjugates)
+ int nbrEig = 0;
+ while (nbrEig < neig)
+ {
+ if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
+ else nbrEig += 2;
+ }
+ // Extract the Schur vectors corresponding to the smallest Ritz values
+ DenseMatrix Sr(it, nbrEig);
+ Sr.setZero();
+ for (int j = 0; j < nbrEig; j++)
+ {
+ Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
+ }
+
+ // Form the Schur vectors of the initial matrix using the Krylov basis
+ DenseMatrix X;
+ X = m_V.leftCols(it) * Sr;
+ if (m_r)
+ {
+ // Orthogonalize X against m_U using modified Gram-Schmidt
+ for (int j = 0; j < nbrEig; j++)
+ for (int k =0; k < m_r; k++)
+ X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
+ }
+
+ // Compute m_MX = A * M^-1 * X
+ Index m = m_V.rows();
+ if (!m_isDeflAllocated)
+ dgmresInitDeflation(m);
+ DenseMatrix MX(m, nbrEig);
+ DenseVector tv1(m);
+ for (int j = 0; j < nbrEig; j++)
+ {
+ tv1 = mat * X.col(j);
+ MX.col(j) = precond.solve(tv1);
+ }
+
+ //Update m_T = [U'MU U'MX; X'MU X'MX]
+ m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
+ if(m_r)
+ {
+ m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
+ m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
+ }
+
+ // Save X into m_U and m_MX in m_MU
+ for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
+ for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
+ // Increase the size of the invariant subspace
+ m_r += nbrEig;
+
+ // Factorize m_T into m_luT
+ m_luT.compute(m_T.topLeftCorner(m_r, m_r));
+
+ //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
+ m_isDeflInitialized = true;
+ return 0;
+}
+template<typename _MatrixType, typename _Preconditioner>
+template<typename RhsType, typename DestType>
+int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
+{
+ DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
+ y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
+ return 0;
+}
+
+namespace internal {
+
+ template<typename _MatrixType, typename _Preconditioner, typename Rhs>
+struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
+ : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
+{
+ typedef DGMRES<_MatrixType, _Preconditioner> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+} // end namespace internal
+
+} // end namespace Eigen
+#endif
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
new file mode 100644
index 0000000..ea5deb2
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h
@@ -0,0 +1,371 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GMRES_H
+#define EIGEN_GMRES_H
+
+namespace Eigen {
+
+namespace internal {
+
+/**
+ * Generalized Minimal Residual Algorithm based on the
+ * Arnoldi algorithm implemented with Householder reflections.
+ *
+ * Parameters:
+ * \param mat matrix of linear system of equations
+ * \param Rhs right hand side vector of linear system of equations
+ * \param x on input: initial guess, on output: solution
+ * \param precond preconditioner used
+ * \param iters on input: maximum number of iterations to perform
+ * on output: number of iterations performed
+ * \param restart number of iterations for a restart
+ * \param tol_error on input: residual tolerance
+ * on output: residuum achieved
+ *
+ * \sa IterativeMethods::bicgstab()
+ *
+ *
+ * For references, please see:
+ *
+ * Saad, Y. and Schultz, M. H.
+ * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
+ * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
+ *
+ * Saad, Y.
+ * Iterative Methods for Sparse Linear Systems.
+ * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
+ *
+ * Walker, H. F.
+ * Implementations of the GMRES method.
+ * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
+ *
+ * Walker, H. F.
+ * Implementation of the GMRES Method using Householder Transformations.
+ * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
+ *
+ */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
+ int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
+
+ using std::sqrt;
+ using std::abs;
+
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix < Scalar, Dynamic, 1 > VectorType;
+ typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
+
+ RealScalar tol = tol_error;
+ const int maxIters = iters;
+ iters = 0;
+
+ const int m = mat.rows();
+
+ VectorType p0 = rhs - mat*x;
+ VectorType r0 = precond.solve(p0);
+
+ // is initial guess already good enough?
+ if(abs(r0.norm()) < tol) {
+ return true;
+ }
+
+ VectorType w = VectorType::Zero(restart + 1);
+
+ FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
+ VectorType tau = VectorType::Zero(restart + 1);
+ std::vector < JacobiRotation < Scalar > > G(restart);
+
+ // generate first Householder vector
+ VectorType e(m-1);
+ RealScalar beta;
+ r0.makeHouseholder(e, tau.coeffRef(0), beta);
+ w(0)=(Scalar) beta;
+ H.bottomLeftCorner(m - 1, 1) = e;
+
+ for (int k = 1; k <= restart; ++k) {
+
+ ++iters;
+
+ VectorType v = VectorType::Unit(m, k - 1), workspace(m);
+
+ // apply Householder reflections H_{1} ... H_{k-1} to v
+ for (int i = k - 1; i >= 0; --i) {
+ v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
+
+ // apply matrix M to v: v = mat * v;
+ VectorType t=mat*v;
+ v=precond.solve(t);
+
+ // apply Householder reflections H_{k-1} ... H_{1} to v
+ for (int i = 0; i < k; ++i) {
+ v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
+
+ if (v.tail(m - k).norm() != 0.0) {
+
+ if (k <= restart) {
+
+ // generate new Householder vector
+ VectorType e(m - k - 1);
+ RealScalar beta;
+ v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
+ H.col(k).tail(m - k - 1) = e;
+
+ // apply Householder reflection H_{k} to v
+ v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
+
+ }
+ }
+
+ if (k > 1) {
+ for (int i = 0; i < k - 1; ++i) {
+ // apply old Givens rotations to v
+ v.applyOnTheLeft(i, i + 1, G[i].adjoint());
+ }
+ }
+
+ if (k<m && v(k) != (Scalar) 0) {
+ // determine next Givens rotation
+ G[k - 1].makeGivens(v(k - 1), v(k));
+
+ // apply Givens rotation to v and w
+ v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
+ w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
+
+ }
+
+ // insert coefficients into upper matrix triangle
+ H.col(k - 1).head(k) = v.head(k);
+
+ bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
+
+ if (stop || k == restart) {
+
+ // solve upper triangular system
+ VectorType y = w.head(k);
+ H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
+
+ // use Horner-like scheme to calculate solution vector
+ VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
+
+ // apply Householder reflection H_{k} to x_new
+ x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
+
+ for (int i = k - 2; i >= 0; --i) {
+ x_new += y(i) * VectorType::Unit(m, i);
+ // apply Householder reflection H_{i} to x_new
+ x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
+ }
+
+ x += x_new;
+
+ if (stop) {
+ return true;
+ } else {
+ k=0;
+
+ // reset data for a restart r0 = rhs - mat * x;
+ VectorType p0=mat*x;
+ VectorType p1=precond.solve(p0);
+ r0 = rhs - p1;
+// r0_sqnorm = r0.squaredNorm();
+ w = VectorType::Zero(restart + 1);
+ H = FMatrixType::Zero(m, restart + 1);
+ tau = VectorType::Zero(restart + 1);
+
+ // generate first Householder vector
+ RealScalar beta;
+ r0.makeHouseholder(e, tau.coeffRef(0), beta);
+ w(0)=(Scalar) beta;
+ H.bottomLeftCorner(m - 1, 1) = e;
+
+ }
+
+ }
+
+
+
+ }
+
+ return false;
+
+}
+
+}
+
+template< typename _MatrixType,
+ typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class GMRES;
+
+namespace internal {
+
+template< typename _MatrixType, typename _Preconditioner>
+struct traits<GMRES<_MatrixType,_Preconditioner> >
+{
+ typedef _MatrixType MatrixType;
+ typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \brief A GMRES solver for sparse square problems
+ *
+ * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
+ * residual method. The vectors x and b can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
+ *
+ * This class can be used as the direct solver classes. Here is a typical usage example:
+ * \code
+ * int n = 10000;
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double> A(n,n);
+ * // fill A and b
+ * GMRES<SparseMatrix<double> > solver(A);
+ * x = solver.solve(b);
+ * std::cout << "#iterations: " << solver.iterations() << std::endl;
+ * std::cout << "estimated error: " << solver.error() << std::endl;
+ * // update b, and solve again
+ * x = solver.solve(b);
+ * \endcode
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method.
+ *
+ * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+ */
+template< typename _MatrixType, typename _Preconditioner>
+class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
+{
+ typedef IterativeSolverBase<GMRES> Base;
+ using Base::mp_matrix;
+ using Base::m_error;
+ using Base::m_iterations;
+ using Base::m_info;
+ using Base::m_isInitialized;
+
+private:
+ int m_restart;
+
+public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+
+public:
+
+ /** Default constructor. */
+ GMRES() : Base(), m_restart(30) {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * This constructor is a shortcut for the default constructor followed
+ * by a call to compute().
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ template<typename MatrixDerived>
+ explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
+
+ ~GMRES() {}
+
+ /** Get the number of iterations after that a restart is performed.
+ */
+ int get_restart() { return m_restart; }
+
+ /** Set the number of iterations after that a restart is performed.
+ * \param restart number of iterations for a restarti, default is 30.
+ */
+ void set_restart(const int restart) { m_restart=restart; }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * \a x0 as an initial solution.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs,typename Guess>
+ inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+ {
+ eigen_assert(m_isInitialized && "GMRES is not initialized.");
+ eigen_assert(Base::rows()==b.rows()
+ && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval_with_guess
+ <GMRES, Rhs, Guess>(*this, b.derived(), x0);
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solveWithGuess(const Rhs& b, Dest& x) const
+ {
+ bool failed = false;
+ for(int j=0; j<b.cols(); ++j)
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ typename Dest::ColXpr xj(x,j);
+ if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
+ failed = true;
+ }
+ m_info = failed ? NumericalIssue
+ : m_error <= Base::m_tolerance ? Success
+ : NoConvergence;
+ m_isInitialized = true;
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x = b;
+ if(x.squaredNorm() == 0) return; // Check Zero right hand side
+ _solveWithGuess(b,x);
+ }
+
+protected:
+
+};
+
+
+namespace internal {
+
+ template<typename _MatrixType, typename _Preconditioner, typename Rhs>
+struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
+ : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
+{
+ typedef GMRES<_MatrixType, _Preconditioner> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_GMRES_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
new file mode 100644
index 0000000..661c1f2
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -0,0 +1,278 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
+#include <Eigen/OrderingMethods>
+#include <list>
+
+namespace Eigen {
+/**
+ * \brief Modified Incomplete Cholesky with dual threshold
+ *
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+ *
+ * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
+ * matrix. It is advised to give a row-oriented sparse matrix
+ * \tparam _UpLo The triangular part of the matrix to reference.
+ * \tparam _OrderingType
+ */
+
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
+class IncompleteCholesky : internal::noncopyable
+{
+ public:
+ typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+ typedef _OrderingType OrderingType;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
+ typedef Matrix<Scalar,Dynamic,1> ScalarType;
+ typedef Matrix<Index,Dynamic, 1> IndexType;
+ typedef std::vector<std::list<Index> > VectorList;
+ enum { UpLo = _UpLo };
+ public:
+ IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
+ IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
+ {
+ compute(matrix);
+ }
+
+ Index rows() const { return m_L.rows(); }
+
+ Index cols() const { return m_L.cols(); }
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the matrix appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ return m_info;
+ }
+
+ /**
+ * \brief Set the initial shift parameter
+ */
+ void setShift( Scalar shift) { m_shift = shift; }
+
+ /**
+ * \brief Computes the fill reducing permutation vector.
+ */
+ template<typename MatrixType>
+ void analyzePattern(const MatrixType& mat)
+ {
+ OrderingType ord;
+ ord(mat.template selfadjointView<UpLo>(), m_perm);
+ m_analysisIsOk = true;
+ }
+
+ template<typename MatrixType>
+ void factorize(const MatrixType& amat);
+
+ template<typename MatrixType>
+ void compute (const MatrixType& matrix)
+ {
+ analyzePattern(matrix);
+ factorize(matrix);
+ }
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+ if (m_perm.rows() == b.rows())
+ x = m_perm.inverse() * b;
+ else
+ x = b;
+ x = m_scal.asDiagonal() * x;
+ x = m_L.template triangularView<UnitLower>().solve(x);
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
+ if (m_perm.rows() == b.rows())
+ x = m_perm * x;
+ x = m_scal.asDiagonal() * x;
+ }
+ template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ eigen_assert(cols()==b.rows()
+ && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
+ }
+ protected:
+ SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
+ ScalarType m_scal; // The vector for scaling the matrix
+ Scalar m_shift; //The initial shift parameter
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ bool m_isInitialized;
+ ComputationInfo m_info;
+ PermutationType m_perm;
+
+ private:
+ template <typename IdxType, typename SclType>
+ inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
+};
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+ using std::sqrt;
+ using std::min;
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+
+ // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+
+ // Apply the fill-reducing permutation computed in analyzePattern()
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+ else
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+
+ Index n = m_L.cols();
+ Index nnz = m_L.nonZeros();
+ Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
+ Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
+ Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
+ IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+ VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
+ ScalarType curCol(n); // Store a nonzero values in each column
+ IndexType irow(n); // Row indices of nonzero elements in each column
+
+
+ // Computes the scaling factors
+ m_scal.resize(n);
+ for (int j = 0; j < n; j++)
+ {
+ m_scal(j) = m_L.col(j).norm();
+ m_scal(j) = sqrt(m_scal(j));
+ }
+ // Scale and compute the shift for the matrix
+ Scalar mindiag = vals[0];
+ for (int j = 0; j < n; j++){
+ for (int k = colPtr[j]; k < colPtr[j+1]; k++)
+ vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
+ mindiag = (min)(vals[colPtr[j]], mindiag);
+ }
+
+ if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
+ // Apply the shift to the diagonal elements of the matrix
+ for (int j = 0; j < n; j++)
+ vals[colPtr[j]] += m_shift;
+ // jki version of the Cholesky factorization
+ for (int j=0; j < n; ++j)
+ {
+ //Left-looking factorize the column j
+ // First, load the jth column into curCol
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
+ curCol.setZero();
+ irow.setLinSpaced(n,0,n-1);
+ for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ curCol(rowIdx[i]) = vals[i];
+ irow(rowIdx[i]) = rowIdx[i];
+ }
+ std::list<int>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ int jk = firstElt(*k); // First element to use in the column
+ jk += 1;
+ for (int i = jk; i < colPtr[*k+1]; i++)
+ {
+ curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
+ }
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+ }
+
+ // Scale the current column
+ if(RealScalar(diag) <= 0)
+ {
+ std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
+ m_info = NumericalIssue;
+ return;
+ }
+ RealScalar rdiag = sqrt(RealScalar(diag));
+ vals[colPtr[j]] = rdiag;
+ for (int i = j+1; i < n; i++)
+ {
+ //Scale
+ curCol(i) /= rdiag;
+ //Update the remaining diagonals with curCol
+ vals[colPtr[i]] -= curCol(i) * curCol(i);
+ }
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ int p = colPtr[j+1] - colPtr[j] - 1 ;
+ internal::QuickSplit(curCol, irow, p);
+ // Insert the largest p elements in the matrix
+ int cpt = 0;
+ for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = curCol(cpt);
+ rowIdx[i] = irow(cpt);
+ cpt ++;
+ }
+ // Get the first smallest row index and put it after the diagonal element
+ Index jk = colPtr(j)+1;
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
+ }
+ m_factorizationIsOk = true;
+ m_isInitialized = true;
+ m_info = Success;
+}
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template <typename IdxType, typename SclType>
+inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
+{
+ if (jk < colPtr(col+1) )
+ {
+ Index p = colPtr(col+1) - jk;
+ Index minpos;
+ rowIdx.segment(jk,p).minCoeff(&minpos);
+ minpos += jk;
+ if (rowIdx(minpos) != rowIdx(jk))
+ {
+ //Swap
+ std::swap(rowIdx(jk),rowIdx(minpos));
+ std::swap(vals(jk),vals(minpos));
+ }
+ firstElt(col) = jk;
+ listCol[rowIdx(jk)].push_back(col);
+ }
+}
+namespace internal {
+
+template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
+struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+ : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+{
+ typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
new file mode 100644
index 0000000..67e7801
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
@@ -0,0 +1,113 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_LU_H
+#define EIGEN_INCOMPLETE_LU_H
+
+namespace Eigen {
+
+template <typename _Scalar>
+class IncompleteLU
+{
+ typedef _Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,1> Vector;
+ typedef typename Vector::Index Index;
+ typedef SparseMatrix<Scalar,RowMajor> FactorType;
+
+ public:
+ typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+ IncompleteLU() : m_isInitialized(false) {}
+
+ template<typename MatrixType>
+ IncompleteLU(const MatrixType& mat) : m_isInitialized(false)
+ {
+ compute(mat);
+ }
+
+ Index rows() const { return m_lu.rows(); }
+ Index cols() const { return m_lu.cols(); }
+
+ template<typename MatrixType>
+ IncompleteLU& compute(const MatrixType& mat)
+ {
+ m_lu = mat;
+ int size = mat.cols();
+ Vector diag(size);
+ for(int i=0; i<size; ++i)
+ {
+ typename FactorType::InnerIterator k_it(m_lu,i);
+ for(; k_it && k_it.index()<i; ++k_it)
+ {
+ int k = k_it.index();
+ k_it.valueRef() /= diag(k);
+
+ typename FactorType::InnerIterator j_it(k_it);
+ typename FactorType::InnerIterator kj_it(m_lu, k);
+ while(kj_it && kj_it.index()<=k) ++kj_it;
+ for(++j_it; j_it; )
+ {
+ if(kj_it.index()==j_it.index())
+ {
+ j_it.valueRef() -= k_it.value() * kj_it.value();
+ ++j_it;
+ ++kj_it;
+ }
+ else if(kj_it.index()<j_it.index()) ++kj_it;
+ else ++j_it;
+ }
+ }
+ if(k_it && k_it.index()==i) diag(i) = k_it.value();
+ else diag(i) = 1;
+ }
+ m_isInitialized = true;
+ return *this;
+ }
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x = m_lu.template triangularView<UnitLower>().solve(b);
+ x = m_lu.template triangularView<Upper>().solve(x);
+ }
+
+ template<typename Rhs> inline const internal::solve_retval<IncompleteLU, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLU is not initialized.");
+ eigen_assert(cols()==b.rows()
+ && "IncompleteLU::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<IncompleteLU, Rhs>(*this, b.derived());
+ }
+
+ protected:
+ FactorType m_lu;
+ bool m_isInitialized;
+};
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<IncompleteLU<_MatrixType>, Rhs>
+ : solve_retval_base<IncompleteLU<_MatrixType>, Rhs>
+{
+ typedef IncompleteLU<_MatrixType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_INCOMPLETE_LU_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h b/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
new file mode 100644
index 0000000..c9c1a4b
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h
@@ -0,0 +1,154 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+
+/* NOTE The class IterationController has been adapted from the iteration
+ * class of the GMM++ and ITL libraries.
+ */
+
+//=======================================================================
+// Copyright (C) 1997-2001
+// Authors: Andrew Lumsdaine <lums@osl.iu.edu>
+// Lie-Quan Lee <llee@osl.iu.edu>
+//
+// This file is part of the Iterative Template Library
+//
+// You should have received a copy of the License Agreement for the
+// Iterative Template Library along with the software; see the
+// file LICENSE.
+//
+// Permission to modify the code and to distribute modified code is
+// granted, provided the text of this NOTICE is retained, a notice that
+// the code was modified is included with the above COPYRIGHT NOTICE and
+// with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE
+// file is distributed with the modified code.
+//
+// LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
+// By way of example, but not limitation, Licensor MAKES NO
+// REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
+// PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS
+// OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS
+// OR OTHER RIGHTS.
+//=======================================================================
+
+//========================================================================
+//
+// Copyright (C) 2002-2007 Yves Renard
+//
+// This file is a part of GETFEM++
+//
+// Getfem++ is free software; you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as
+// published by the Free Software Foundation; version 2.1 of the License.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+// You should have received a copy of the GNU Lesser General Public
+// License along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
+// USA.
+//
+//========================================================================
+
+#include "../../../../Eigen/src/Core/util/NonMPL2.h"
+
+#ifndef EIGEN_ITERATION_CONTROLLER_H
+#define EIGEN_ITERATION_CONTROLLER_H
+
+namespace Eigen {
+
+/** \ingroup IterativeSolvers_Module
+ * \class IterationController
+ *
+ * \brief Controls the iterations of the iterative solvers
+ *
+ * This class has been adapted from the iteration class of GMM++ and ITL libraries.
+ *
+ */
+class IterationController
+{
+ protected :
+ double m_rhsn; ///< Right hand side norm
+ size_t m_maxiter; ///< Max. number of iterations
+ int m_noise; ///< if noise > 0 iterations are printed
+ double m_resmax; ///< maximum residual
+ double m_resminreach, m_resadd;
+ size_t m_nit; ///< iteration number
+ double m_res; ///< last computed residual
+ bool m_written;
+ void (*m_callback)(const IterationController&);
+ public :
+
+ void init()
+ {
+ m_nit = 0; m_res = 0.0; m_written = false;
+ m_resminreach = 1E50; m_resadd = 0.0;
+ m_callback = 0;
+ }
+
+ IterationController(double r = 1.0E-8, int noi = 0, size_t mit = size_t(-1))
+ : m_rhsn(1.0), m_maxiter(mit), m_noise(noi), m_resmax(r) { init(); }
+
+ void operator ++(int) { m_nit++; m_written = false; m_resadd += m_res; }
+ void operator ++() { (*this)++; }
+
+ bool first() { return m_nit == 0; }
+
+ /* get/set the "noisyness" (verbosity) of the solvers */
+ int noiseLevel() const { return m_noise; }
+ void setNoiseLevel(int n) { m_noise = n; }
+ void reduceNoiseLevel() { if (m_noise > 0) m_noise--; }
+
+ double maxResidual() const { return m_resmax; }
+ void setMaxResidual(double r) { m_resmax = r; }
+
+ double residual() const { return m_res; }
+
+ /* change the user-definable callback, called after each iteration */
+ void setCallback(void (*t)(const IterationController&))
+ {
+ m_callback = t;
+ }
+
+ size_t iteration() const { return m_nit; }
+ void setIteration(size_t i) { m_nit = i; }
+
+ size_t maxIterarions() const { return m_maxiter; }
+ void setMaxIterations(size_t i) { m_maxiter = i; }
+
+ double rhsNorm() const { return m_rhsn; }
+ void setRhsNorm(double r) { m_rhsn = r; }
+
+ bool converged() const { return m_res <= m_rhsn * m_resmax; }
+ bool converged(double nr)
+ {
+ using std::abs;
+ m_res = abs(nr);
+ m_resminreach = (std::min)(m_resminreach, m_res);
+ return converged();
+ }
+ template<typename VectorType> bool converged(const VectorType &v)
+ { return converged(v.squaredNorm()); }
+
+ bool finished(double nr)
+ {
+ if (m_callback) m_callback(*this);
+ if (m_noise > 0 && !m_written)
+ {
+ converged(nr);
+ m_written = true;
+ }
+ return (m_nit >= m_maxiter || converged(nr));
+ }
+ template <typename VectorType>
+ bool finished(const MatrixBase<VectorType> &v)
+ { return finished(double(v.squaredNorm())); }
+
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_ITERATION_CONTROLLER_H
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
new file mode 100644
index 0000000..670f274
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h
@@ -0,0 +1,311 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#ifndef EIGEN_MINRES_H_
+#define EIGEN_MINRES_H_
+
+
+namespace Eigen {
+
+ namespace internal {
+
+ /** \internal Low-level MINRES algorithm
+ * \param mat The matrix A
+ * \param rhs The right hand side vector b
+ * \param x On input and initial solution, on output the computed solution.
+ * \param precond A right preconditioner being able to efficiently solve for an
+ * approximation of Ax=b (regardless of b)
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+ */
+ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+ EIGEN_DONT_INLINE
+ void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
+ const Preconditioner& precond, int& iters,
+ typename Dest::RealScalar& tol_error)
+ {
+ using std::sqrt;
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+
+ // Check for zero rhs
+ const RealScalar rhsNorm2(rhs.squaredNorm());
+ if(rhsNorm2 == 0)
+ {
+ x.setZero();
+ iters = 0;
+ tol_error = 0;
+ return;
+ }
+
+ // initialize
+ const int maxIters(iters); // initialize maxIters to iters
+ const int N(mat.cols()); // the size of the matrix
+ const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
+
+ // Initialize preconditioned Lanczos
+ VectorType v_old(N); // will be initialized inside loop
+ VectorType v( VectorType::Zero(N) ); //initialize v
+ VectorType v_new(rhs-mat*x); //initialize v_new
+ RealScalar residualNorm2(v_new.squaredNorm());
+ VectorType w(N); // will be initialized inside loop
+ VectorType w_new(precond.solve(v_new)); // initialize w_new
+// RealScalar beta; // will be initialized inside loop
+ RealScalar beta_new2(v_new.dot(w_new));
+ eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
+ RealScalar beta_new(sqrt(beta_new2));
+ const RealScalar beta_one(beta_new);
+ v_new /= beta_new;
+ w_new /= beta_new;
+ // Initialize other variables
+ RealScalar c(1.0); // the cosine of the Givens rotation
+ RealScalar c_old(1.0);
+ RealScalar s(0.0); // the sine of the Givens rotation
+ RealScalar s_old(0.0); // the sine of the Givens rotation
+ VectorType p_oold(N); // will be initialized in loop
+ VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
+ VectorType p(p_old); // initialize p=0
+ RealScalar eta(1.0);
+
+ iters = 0; // reset iters
+ while ( iters < maxIters )
+ {
+ // Preconditioned Lanczos
+ /* Note that there are 4 variants on the Lanczos algorithm. These are
+ * described in Paige, C. C. (1972). Computational variants of
+ * the Lanczos method for the eigenproblem. IMA Journal of Applied
+ * Mathematics, 10(3), 373–381. The current implementation corresponds
+ * to the case A(2,7) in the paper. It also corresponds to
+ * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
+ * Systems, 2003 p.173. For the preconditioned version see
+ * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
+ */
+ const RealScalar beta(beta_new);
+ v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
+// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
+ v = v_new; // update
+ w = w_new; // update
+// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
+ v_new.noalias() = mat*w - beta*v_old; // compute v_new
+ const RealScalar alpha = v_new.dot(w);
+ v_new -= alpha*v; // overwrite v_new
+ w_new = precond.solve(v_new); // overwrite w_new
+ beta_new2 = v_new.dot(w_new); // compute beta_new
+ eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
+ beta_new = sqrt(beta_new2); // compute beta_new
+ v_new /= beta_new; // overwrite v_new for next iteration
+ w_new /= beta_new; // overwrite w_new for next iteration
+
+ // Givens rotation
+ const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
+ const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
+ const RealScalar r1_hat=c*alpha-c_old*s*beta;
+ const RealScalar r1 =sqrt( std::pow(r1_hat,2) + std::pow(beta_new,2) );
+ c_old = c; // store for next iteration
+ s_old = s; // store for next iteration
+ c=r1_hat/r1; // new cosine
+ s=beta_new/r1; // new sine
+
+ // Update solution
+ p_oold = p_old;
+// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
+ p_old = p;
+ p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
+ x += beta_one*c*eta*p;
+
+ /* Update the squared residual. Note that this is the estimated residual.
+ The real residual |Ax-b|^2 may be slightly larger */
+ residualNorm2 *= s*s;
+
+ if ( residualNorm2 < threshold2)
+ {
+ break;
+ }
+
+ eta=-s*eta; // update eta
+ iters++; // increment iteration number (for output purposes)
+ }
+
+ /* Compute error. Note that this is the estimated error. The real
+ error |Ax-b|/|b| may be slightly larger */
+ tol_error = std::sqrt(residualNorm2 / rhsNorm2);
+ }
+
+ }
+
+ template< typename _MatrixType, int _UpLo=Lower,
+ typename _Preconditioner = IdentityPreconditioner>
+// typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
+ class MINRES;
+
+ namespace internal {
+
+ template< typename _MatrixType, int _UpLo, typename _Preconditioner>
+ struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
+ {
+ typedef _MatrixType MatrixType;
+ typedef _Preconditioner Preconditioner;
+ };
+
+ }
+
+ /** \ingroup IterativeLinearSolvers_Module
+ * \brief A minimal residual solver for sparse symmetric problems
+ *
+ * This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
+ * of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
+ * The vectors x and b can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
+ *
+ * This class can be used as the direct solver classes. Here is a typical usage example:
+ * \code
+ * int n = 10000;
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double> A(n,n);
+ * // fill A and b
+ * MINRES<SparseMatrix<double> > mr;
+ * mr.compute(A);
+ * x = mr.solve(b);
+ * std::cout << "#iterations: " << mr.iterations() << std::endl;
+ * std::cout << "estimated error: " << mr.error() << std::endl;
+ * // update b, and solve again
+ * x = mr.solve(b);
+ * \endcode
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method.
+ *
+ * \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+ */
+ template< typename _MatrixType, int _UpLo, typename _Preconditioner>
+ class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
+ {
+
+ typedef IterativeSolverBase<MINRES> Base;
+ using Base::mp_matrix;
+ using Base::m_error;
+ using Base::m_iterations;
+ using Base::m_info;
+ using Base::m_isInitialized;
+ public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+
+ enum {UpLo = _UpLo};
+
+ public:
+
+ /** Default constructor. */
+ MINRES() : Base() {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * This constructor is a shortcut for the default constructor followed
+ * by a call to compute().
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ template<typename MatrixDerived>
+ explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
+
+ /** Destructor. */
+ ~MINRES(){}
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * \a x0 as an initial solution.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs,typename Guess>
+ inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+ {
+ eigen_assert(m_isInitialized && "MINRES is not initialized.");
+ eigen_assert(Base::rows()==b.rows()
+ && "MINRES::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval_with_guess
+ <MINRES, Rhs, Guess>(*this, b.derived(), x0);
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solveWithGuess(const Rhs& b, Dest& x) const
+ {
+ typedef typename internal::conditional<UpLo==(Lower|Upper),
+ const MatrixType&,
+ SparseSelfAdjointView<const MatrixType, UpLo>
+ >::type MatrixWrapperType;
+
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ for(int j=0; j<b.cols(); ++j)
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ typename Dest::ColXpr xj(x,j);
+ internal::minres(MatrixWrapperType(*mp_matrix), b.col(j), xj,
+ Base::m_preconditioner, m_iterations, m_error);
+ }
+
+ m_isInitialized = true;
+ m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x.setZero();
+ _solveWithGuess(b,x);
+ }
+
+ protected:
+
+ };
+
+ namespace internal {
+
+ template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
+ struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+ : solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+ {
+ typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+ };
+
+ } // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MINRES_H
+
diff --git a/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h b/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
new file mode 100644
index 0000000..4fd4392
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h
@@ -0,0 +1,185 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ITERSCALING_H
+#define EIGEN_ITERSCALING_H
+/**
+ * \ingroup IterativeSolvers_Module
+ * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices
+ *
+ * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods
+ *
+ * This feature is useful to limit the pivoting amount during LU/ILU factorization
+ * The scaling strategy as presented here preserves the symmetry of the problem
+ * NOTE It is assumed that the matrix does not have empty row or column,
+ *
+ * Example with key steps
+ * \code
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double> A;
+ * // fill A and b;
+ * IterScaling<SparseMatrix<double> > scal;
+ * // Compute the left and right scaling vectors. The matrix is equilibrated at output
+ * scal.computeRef(A);
+ * // Scale the right hand side
+ * b = scal.LeftScaling().cwiseProduct(b);
+ * // Now, solve the equilibrated linear system with any available solver
+ *
+ * // Scale back the computed solution
+ * x = scal.RightScaling().cwiseProduct(x);
+ * \endcode
+ *
+ * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix
+ *
+ * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552
+ *
+ * \sa \ref IncompleteLUT
+ */
+namespace Eigen {
+using std::abs;
+template<typename _MatrixType>
+class IterScaling
+{
+ public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+
+ public:
+ IterScaling() { init(); }
+
+ IterScaling(const MatrixType& matrix)
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~IterScaling() { }
+
+ /**
+ * Compute the left and right diagonal matrices to scale the input matrix @p mat
+ *
+ * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
+ *
+ * \sa LeftScaling() RightScaling()
+ */
+ void compute (const MatrixType& mat)
+ {
+ int m = mat.rows();
+ int n = mat.cols();
+ eigen_assert((m>0 && m == n) && "Please give a non - empty matrix");
+ m_left.resize(m);
+ m_right.resize(n);
+ m_left.setOnes();
+ m_right.setOnes();
+ m_matrix = mat;
+ VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors
+ Dr.resize(m); Dc.resize(n);
+ DrRes.resize(m); DcRes.resize(n);
+ double EpsRow = 1.0, EpsCol = 1.0;
+ int its = 0;
+ do
+ { // Iterate until the infinite norm of each row and column is approximately 1
+ // Get the maximum value in each row and column
+ Dr.setZero(); Dc.setZero();
+ for (int k=0; k<m_matrix.outerSize(); ++k)
+ {
+ for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
+ {
+ if ( Dr(it.row()) < abs(it.value()) )
+ Dr(it.row()) = abs(it.value());
+
+ if ( Dc(it.col()) < abs(it.value()) )
+ Dc(it.col()) = abs(it.value());
+ }
+ }
+ for (int i = 0; i < m; ++i)
+ {
+ Dr(i) = std::sqrt(Dr(i));
+ Dc(i) = std::sqrt(Dc(i));
+ }
+ // Save the scaling factors
+ for (int i = 0; i < m; ++i)
+ {
+ m_left(i) /= Dr(i);
+ m_right(i) /= Dc(i);
+ }
+ // Scale the rows and the columns of the matrix
+ DrRes.setZero(); DcRes.setZero();
+ for (int k=0; k<m_matrix.outerSize(); ++k)
+ {
+ for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it)
+ {
+ it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) );
+ // Accumulate the norms of the row and column vectors
+ if ( DrRes(it.row()) < abs(it.value()) )
+ DrRes(it.row()) = abs(it.value());
+
+ if ( DcRes(it.col()) < abs(it.value()) )
+ DcRes(it.col()) = abs(it.value());
+ }
+ }
+ DrRes.array() = (1-DrRes.array()).abs();
+ EpsRow = DrRes.maxCoeff();
+ DcRes.array() = (1-DcRes.array()).abs();
+ EpsCol = DcRes.maxCoeff();
+ its++;
+ }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) );
+ m_isInitialized = true;
+ }
+ /** Compute the left and right vectors to scale the vectors
+ * the input matrix is scaled with the computed vectors at output
+ *
+ * \sa compute()
+ */
+ void computeRef (MatrixType& mat)
+ {
+ compute (mat);
+ mat = m_matrix;
+ }
+ /** Get the vector to scale the rows of the matrix
+ */
+ VectorXd& LeftScaling()
+ {
+ return m_left;
+ }
+
+ /** Get the vector to scale the columns of the matrix
+ */
+ VectorXd& RightScaling()
+ {
+ return m_right;
+ }
+
+ /** Set the tolerance for the convergence of the iterative scaling algorithm
+ */
+ void setTolerance(double tol)
+ {
+ m_tol = tol;
+ }
+
+ protected:
+
+ void init()
+ {
+ m_tol = 1e-10;
+ m_maxits = 5;
+ m_isInitialized = false;
+ }
+
+ MatrixType m_matrix;
+ mutable ComputationInfo m_info;
+ bool m_isInitialized;
+ VectorXd m_left; // Left scaling vector
+ VectorXd m_right; // m_right scaling vector
+ double m_tol;
+ int m_maxits; // Maximum number of iterations allowed
+};
+}
+#endif
diff --git a/eigen/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt b/eigen/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt
new file mode 100644
index 0000000..4daefeb
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/KroneckerProduct/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_KroneckerProduct_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_KroneckerProduct_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/KroneckerProduct COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
new file mode 100644
index 0000000..532896c
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
@@ -0,0 +1,244 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
+// Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
+// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef KRONECKER_TENSOR_PRODUCT_H
+#define KRONECKER_TENSOR_PRODUCT_H
+
+namespace Eigen {
+
+template<typename Scalar, int Options, typename Index> class SparseMatrix;
+
+/*!
+ * \brief Kronecker tensor product helper class for dense matrices
+ *
+ * This class is the return value of kroneckerProduct(MatrixBase,
+ * MatrixBase). Use the function rather than construct this class
+ * directly to avoid specifying template prarameters.
+ *
+ * \tparam Lhs Type of the left-hand side, a matrix expression.
+ * \tparam Rhs Type of the rignt-hand side, a matrix expression.
+ */
+template<typename Lhs, typename Rhs>
+class KroneckerProduct : public ReturnByValue<KroneckerProduct<Lhs,Rhs> >
+{
+ private:
+ typedef ReturnByValue<KroneckerProduct> Base;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+
+ public:
+ /*! \brief Constructor. */
+ KroneckerProduct(const Lhs& A, const Rhs& B)
+ : m_A(A), m_B(B)
+ {}
+
+ /*! \brief Evaluate the Kronecker tensor product. */
+ template<typename Dest> void evalTo(Dest& dst) const;
+
+ inline Index rows() const { return m_A.rows() * m_B.rows(); }
+ inline Index cols() const { return m_A.cols() * m_B.cols(); }
+
+ Scalar coeff(Index row, Index col) const
+ {
+ return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
+ m_B.coeff(row % m_B.rows(), col % m_B.cols());
+ }
+
+ Scalar coeff(Index i) const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct);
+ return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
+ }
+
+ private:
+ typename Lhs::Nested m_A;
+ typename Rhs::Nested m_B;
+};
+
+/*!
+ * \brief Kronecker tensor product helper class for sparse matrices
+ *
+ * If at least one of the operands is a sparse matrix expression,
+ * then this class is returned and evaluates into a sparse matrix.
+ *
+ * This class is the return value of kroneckerProduct(EigenBase,
+ * EigenBase). Use the function rather than construct this class
+ * directly to avoid specifying template prarameters.
+ *
+ * \tparam Lhs Type of the left-hand side, a matrix expression.
+ * \tparam Rhs Type of the rignt-hand side, a matrix expression.
+ */
+template<typename Lhs, typename Rhs>
+class KroneckerProductSparse : public EigenBase<KroneckerProductSparse<Lhs,Rhs> >
+{
+ private:
+ typedef typename internal::traits<KroneckerProductSparse>::Index Index;
+
+ public:
+ /*! \brief Constructor. */
+ KroneckerProductSparse(const Lhs& A, const Rhs& B)
+ : m_A(A), m_B(B)
+ {}
+
+ /*! \brief Evaluate the Kronecker tensor product. */
+ template<typename Dest> void evalTo(Dest& dst) const;
+
+ inline Index rows() const { return m_A.rows() * m_B.rows(); }
+ inline Index cols() const { return m_A.cols() * m_B.cols(); }
+
+ template<typename Scalar, int Options, typename Index>
+ operator SparseMatrix<Scalar, Options, Index>()
+ {
+ SparseMatrix<Scalar, Options, Index> result;
+ evalTo(result.derived());
+ return result;
+ }
+
+ private:
+ typename Lhs::Nested m_A;
+ typename Rhs::Nested m_B;
+};
+
+template<typename Lhs, typename Rhs>
+template<typename Dest>
+void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const
+{
+ const int BlockRows = Rhs::RowsAtCompileTime,
+ BlockCols = Rhs::ColsAtCompileTime;
+ const Index Br = m_B.rows(),
+ Bc = m_B.cols();
+ for (Index i=0; i < m_A.rows(); ++i)
+ for (Index j=0; j < m_A.cols(); ++j)
+ Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B;
+}
+
+template<typename Lhs, typename Rhs>
+template<typename Dest>
+void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
+{
+ const Index Br = m_B.rows(),
+ Bc = m_B.cols();
+ dst.resize(rows(),cols());
+ dst.resizeNonZeros(0);
+ dst.reserve(m_A.nonZeros() * m_B.nonZeros());
+
+ for (Index kA=0; kA < m_A.outerSize(); ++kA)
+ {
+ for (Index kB=0; kB < m_B.outerSize(); ++kB)
+ {
+ for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
+ {
+ for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
+ {
+ const Index i = itA.row() * Br + itB.row(),
+ j = itA.col() * Bc + itB.col();
+ dst.insert(i,j) = itA.value() * itB.value();
+ }
+ }
+ }
+ }
+}
+
+namespace internal {
+
+template<typename _Lhs, typename _Rhs>
+struct traits<KroneckerProduct<_Lhs,_Rhs> >
+{
+ typedef typename remove_all<_Lhs>::type Lhs;
+ typedef typename remove_all<_Rhs>::type Rhs;
+ typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+
+ enum {
+ Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
+ Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
+ MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
+ MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
+ CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost
+ };
+
+ typedef Matrix<Scalar,Rows,Cols> ReturnType;
+};
+
+template<typename _Lhs, typename _Rhs>
+struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
+{
+ typedef MatrixXpr XprKind;
+ typedef typename remove_all<_Lhs>::type Lhs;
+ typedef typename remove_all<_Rhs>::type Rhs;
+ typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+ typedef typename promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind>::ret StorageKind;
+ typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
+
+ enum {
+ LhsFlags = Lhs::Flags,
+ RhsFlags = Rhs::Flags,
+
+ RowsAtCompileTime = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
+ ColsAtCompileTime = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
+ MaxRowsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
+ MaxColsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
+
+ EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit),
+ RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
+
+ Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
+ | EvalBeforeNestingBit | EvalBeforeAssigningBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+} // end namespace internal
+
+/*!
+ * \ingroup KroneckerProduct_Module
+ *
+ * Computes Kronecker tensor product of two dense matrices
+ *
+ * \warning If you want to replace a matrix by its Kronecker product
+ * with some matrix, do \b NOT do this:
+ * \code
+ * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
+ * \endcode
+ * instead, use eval() to work around this:
+ * \code
+ * A = kroneckerProduct(A,B).eval();
+ * \endcode
+ *
+ * \param a Dense matrix a
+ * \param b Dense matrix b
+ * \return Kronecker tensor product of a and b
+ */
+template<typename A, typename B>
+KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b)
+{
+ return KroneckerProduct<A, B>(a.derived(), b.derived());
+}
+
+/*!
+ * \ingroup KroneckerProduct_Module
+ *
+ * Computes Kronecker tensor product of two matrices, at least one of
+ * which is sparse
+ *
+ * \param a Dense/sparse matrix a
+ * \param b Dense/sparse matrix b
+ * \return Kronecker tensor product of a and b, stored in a sparse
+ * matrix
+ */
+template<typename A, typename B>
+KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b)
+{
+ return KroneckerProductSparse<A,B>(a.derived(), b.derived());
+}
+
+} // end namespace Eigen
+
+#endif // KRONECKER_TENSOR_PRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
new file mode 100644
index 0000000..d969085
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_LevenbergMarquardt_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/LevenbergMarquardt COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
new file mode 100644
index 0000000..ae7984d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
@@ -0,0 +1,52 @@
+Minpack Copyright Notice (1999) University of Chicago. All rights reserved
+
+Redistribution and use in source and binary forms, with or
+without modification, are permitted provided that the
+following conditions are met:
+
+1. Redistributions of source code must retain the above
+copyright notice, this list of conditions and the following
+disclaimer.
+
+2. Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following
+disclaimer in the documentation and/or other materials
+provided with the distribution.
+
+3. The end-user documentation included with the
+redistribution, if any, must include the following
+acknowledgment:
+
+ "This product includes software developed by the
+ University of Chicago, as Operator of Argonne National
+ Laboratory.
+
+Alternately, this acknowledgment may appear in the software
+itself, if and wherever such third-party acknowledgments
+normally appear.
+
+4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+BE CORRECTED.
+
+5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+POSSIBILITY OF SUCH LOSS OR DAMAGES.
+
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
new file mode 100644
index 0000000..32d3ad5
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
@@ -0,0 +1,85 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMCOVAR_H
+#define EIGEN_LMCOVAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void covar(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const VectorXi& ipvt,
+ Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
+{
+ using std::abs;
+ typedef DenseIndex Index;
+ /* Local variables */
+ Index i, j, k, l, ii, jj;
+ bool sing;
+ Scalar temp;
+
+ /* Function Body */
+ const Index n = r.cols();
+ const Scalar tolr = tol * abs(r(0,0));
+ Matrix< Scalar, Dynamic, 1 > wa(n);
+ eigen_assert(ipvt.size()==n);
+
+ /* form the inverse of r in the full upper triangle of r. */
+ l = -1;
+ for (k = 0; k < n; ++k)
+ if (abs(r(k,k)) > tolr) {
+ r(k,k) = 1. / r(k,k);
+ for (j = 0; j <= k-1; ++j) {
+ temp = r(k,k) * r(j,k);
+ r(j,k) = 0.;
+ r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
+ }
+ l = k;
+ }
+
+ /* form the full upper triangle of the inverse of (r transpose)*r */
+ /* in the full upper triangle of r. */
+ for (k = 0; k <= l; ++k) {
+ for (j = 0; j <= k-1; ++j)
+ r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
+ r.col(k).head(k+1) *= r(k,k);
+ }
+
+ /* form the full lower triangle of the covariance matrix */
+ /* in the strict lower triangle of r and in wa. */
+ for (j = 0; j < n; ++j) {
+ jj = ipvt[j];
+ sing = j > l;
+ for (i = 0; i <= j; ++i) {
+ if (sing)
+ r(i,j) = 0.;
+ ii = ipvt[i];
+ if (ii > jj)
+ r(ii,jj) = r(i,j);
+ if (ii < jj)
+ r(jj,ii) = r(i,j);
+ }
+ wa[jj] = r(j,j);
+ }
+
+ /* symmetrize the covariance matrix in r. */
+ r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
+ r.diagonal() = wa;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMCOVAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
new file mode 100644
index 0000000..25b32ec
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
@@ -0,0 +1,202 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMONESTEP_H
+#define EIGEN_LMONESTEP_H
+
+namespace Eigen {
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
+{
+ using std::abs;
+ using std::sqrt;
+ RealScalar temp, temp1,temp2;
+ RealScalar ratio;
+ RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ temp = 0.0; xnorm = 0.0;
+ /* calculate the jacobian matrix. */
+ Index df_ret = m_functor.df(x, m_fjac);
+ if (df_ret<0)
+ return LevenbergMarquardtSpace::UserAsked;
+ if (df_ret>0)
+ // numerical diff, we evaluated the function df_ret times
+ m_nfev += df_ret;
+ else m_njev++;
+
+ /* compute the qr factorization of the jacobian. */
+ for (int j = 0; j < x.size(); ++j)
+ m_wa2(j) = m_fjac.col(j).blueNorm();
+ QRSolver qrfac(m_fjac);
+ if(qrfac.info() != Success) {
+ m_info = NumericalIssue;
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+ }
+ // Make a copy of the first factor with the associated permutation
+ m_rfactor = qrfac.matrixR();
+ m_permutation = (qrfac.colsPermutation());
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (m_iter == 1) {
+ if (!m_useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound m_delta. */
+ xnorm = m_diag.cwiseProduct(x).stableNorm();
+ m_delta = m_factor * xnorm;
+ if (m_delta == 0.)
+ m_delta = m_factor;
+ }
+
+ /* form (q transpose)*m_fvec and store the first n components in */
+ /* m_qtf. */
+ m_wa4 = m_fvec;
+ m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
+ m_qtf = m_wa4.head(n);
+
+ /* compute the norm of the scaled gradient. */
+ m_gnorm = 0.;
+ if (m_fnorm != 0.)
+ for (Index j = 0; j < n; ++j)
+ if (m_wa2[m_permutation.indices()[j]] != 0.)
+ m_gnorm = (std::max)(m_gnorm, abs( m_rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
+
+ /* test for convergence of the gradient norm. */
+ if (m_gnorm <= m_gtol) {
+ m_info = Success;
+ return LevenbergMarquardtSpace::CosinusTooSmall;
+ }
+
+ /* rescale if necessary. */
+ if (!m_useExternalScaling)
+ m_diag = m_diag.cwiseMax(m_wa2);
+
+ do {
+ /* determine the levenberg-marquardt parameter. */
+ internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ m_wa1 = -m_wa1;
+ m_wa2 = x + m_wa1;
+ pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (m_iter == 1)
+ m_delta = (std::min)(m_delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( m_functor(m_wa2, m_wa4) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ ++m_nfev;
+ fnorm1 = m_wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (Scalar(.1) * fnorm1 < m_fnorm)
+ actred = 1. - numext::abs2(fnorm1 / m_fnorm);
+
+ /* compute the scaled predicted reduction and */
+ /* the scaled directional derivative. */
+ m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
+ temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
+ temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
+ prered = temp1 + temp2 / Scalar(.5);
+ dirder = -(temp1 + temp2);
+
+ /* compute the ratio of the actual to the predicted */
+ /* reduction. */
+ ratio = 0.;
+ if (prered != 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio <= Scalar(.25)) {
+ if (actred >= 0.)
+ temp = RealScalar(.5);
+ if (actred < 0.)
+ temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
+ if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
+ temp = Scalar(.1);
+ /* Computing MIN */
+ m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
+ m_par /= temp;
+ } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
+ m_delta = pnorm / RealScalar(.5);
+ m_par = RealScalar(.5) * m_par;
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= RealScalar(1e-4)) {
+ /* successful iteration. update x, m_fvec, and their norms. */
+ x = m_wa2;
+ m_wa2 = m_diag.cwiseProduct(x);
+ m_fvec = m_wa4;
+ xnorm = m_wa2.stableNorm();
+ m_fnorm = fnorm1;
+ ++m_iter;
+ }
+
+ /* tests for convergence. */
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
+ }
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeReductionTooSmall;
+ }
+ if (m_delta <= m_xtol * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::RelativeErrorTooSmall;
+ }
+
+ /* tests for termination and stringent tolerances. */
+ if (m_nfev >= m_maxfev)
+ {
+ m_info = NoConvergence;
+ return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
+ }
+ if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::FtolTooSmall;
+ }
+ if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::XtolTooSmall;
+ }
+ if (m_gnorm <= NumTraits<Scalar>::epsilon())
+ {
+ m_info = Success;
+ return LevenbergMarquardtSpace::GtolTooSmall;
+ }
+
+ } while (ratio < Scalar(1e-4));
+
+ return LevenbergMarquardtSpace::Running;
+}
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMONESTEP_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
new file mode 100644
index 0000000..9532042
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
@@ -0,0 +1,160 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMPAR_H
+#define EIGEN_LMPAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+ template <typename QRSolver, typename VectorType>
+ void lmpar2(
+ const QRSolver &qr,
+ const VectorType &diag,
+ const VectorType &qtb,
+ typename VectorType::Scalar m_delta,
+ typename VectorType::Scalar &par,
+ VectorType &x)
+
+ {
+ using std::sqrt;
+ using std::abs;
+ typedef typename QRSolver::MatrixType MatrixType;
+ typedef typename QRSolver::Scalar Scalar;
+ typedef typename QRSolver::Index Index;
+
+ /* Local variables */
+ Index j;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+ // Make a copy of the triangular factor.
+ // This copy is modified during call the qrsolv
+ MatrixType s;
+ s = qr.matrixR();
+
+ /* Function Body */
+ const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+ const Index n = qr.matrixR().cols();
+ eigen_assert(n==diag.size());
+ eigen_assert(n==qtb.size());
+
+ VectorType wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+
+ // const Index rank = qr.nonzeroPivots(); // exactly double(0.)
+ const Index rank = qr.rank(); // use a threshold
+ wa1 = qtb;
+ wa1.tail(n-rank).setZero();
+ //FIXME There is no solve in place for sparse triangularView
+ wa1.head(rank) = s.topLeftCorner(rank,rank).template triangularView<Upper>().solve(qtb.head(rank));
+
+ x = qr.colsPermutation()*wa1;
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - m_delta;
+ if (fp <= Scalar(0.1) * m_delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (rank==n) {
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
+ s.topLeftCorner(n,n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ temp = wa1.blueNorm();
+ parl = fp / m_delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = s.col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / m_delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(m_delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ VectorType sdiag(n);
+ lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - m_delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
+ // we could almost use this here, but the diagonal is outside qr, in sdiag[]
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (Index i = j+1; i < n; ++i)
+ wa1[i] -= s.coeff(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / m_delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ par = (std::max)(parl,par+parc);
+ }
+ if (iter == 0)
+ par = 0.;
+ return;
+ }
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMPAR_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
new file mode 100644
index 0000000..f5290de
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
@@ -0,0 +1,189 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMQRSOLV_H
+#define EIGEN_LMQRSOLV_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar,int Rows, int Cols, typename Index>
+void lmqrsolv(
+ Matrix<Scalar,Rows,Cols> &s,
+ const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
+ const Matrix<Scalar,Dynamic,1> &diag,
+ const Matrix<Scalar,Dynamic,1> &qtb,
+ Matrix<Scalar,Dynamic,1> &x,
+ Matrix<Scalar,Dynamic,1> &sdiag)
+{
+
+ /* Local variables */
+ Index i, j, k, l;
+ Scalar temp;
+ Index n = s.cols();
+ Matrix<Scalar,Dynamic,1> wa(n);
+ JacobiRotation<Scalar> givens;
+
+ /* Function Body */
+ // the following will only change the lower triangular part of s, including
+ // the diagonal, though the diagonal is restored afterward
+
+ /* copy r and (q transpose)*b to preserve input and initialize s. */
+ /* in particular, save the diagonal elements of r in x. */
+ x = s.diagonal();
+ wa = qtb;
+
+
+ s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
+ /* eliminate the diagonal matrix d using a givens rotation. */
+ for (j = 0; j < n; ++j) {
+
+ /* prepare the row of d to be eliminated, locating the */
+ /* diagonal element using p from the qr factorization. */
+ l = iPerm.indices()(j);
+ if (diag[l] == 0.)
+ break;
+ sdiag.tail(n-j).setZero();
+ sdiag[j] = diag[l];
+
+ /* the transformations to eliminate the row of d */
+ /* modify only a single element of (q transpose)*b */
+ /* beyond the first n, which is initially zero. */
+ Scalar qtbpj = 0.;
+ for (k = j; k < n; ++k) {
+ /* determine a givens rotation which eliminates the */
+ /* appropriate element in the current row of d. */
+ givens.makeGivens(-s(k,k), sdiag[k]);
+
+ /* compute the modified diagonal element of r and */
+ /* the modified element of ((q transpose)*b,0). */
+ s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
+ temp = givens.c() * wa[k] + givens.s() * qtbpj;
+ qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
+ wa[k] = temp;
+
+ /* accumulate the tranformation in the row of s. */
+ for (i = k+1; i<n; ++i) {
+ temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
+ sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
+ s(i,k) = temp;
+ }
+ }
+ }
+
+ /* solve the triangular system for z. if the system is */
+ /* singular, then obtain a least squares solution. */
+ Index nsing;
+ for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
+
+ wa.tail(n-nsing).setZero();
+ s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
+
+ // restore
+ sdiag = s.diagonal();
+ s.diagonal() = x;
+
+ /* permute the components of z back to components of x. */
+ x = iPerm * wa;
+}
+
+template <typename Scalar, int _Options, typename Index>
+void lmqrsolv(
+ SparseMatrix<Scalar,_Options,Index> &s,
+ const PermutationMatrix<Dynamic,Dynamic> &iPerm,
+ const Matrix<Scalar,Dynamic,1> &diag,
+ const Matrix<Scalar,Dynamic,1> &qtb,
+ Matrix<Scalar,Dynamic,1> &x,
+ Matrix<Scalar,Dynamic,1> &sdiag)
+{
+ /* Local variables */
+ typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
+ Index i, j, k, l;
+ Scalar temp;
+ Index n = s.cols();
+ Matrix<Scalar,Dynamic,1> wa(n);
+ JacobiRotation<Scalar> givens;
+
+ /* Function Body */
+ // the following will only change the lower triangular part of s, including
+ // the diagonal, though the diagonal is restored afterward
+
+ /* copy r and (q transpose)*b to preserve input and initialize R. */
+ wa = qtb;
+ FactorType R(s);
+ // Eliminate the diagonal matrix d using a givens rotation
+ for (j = 0; j < n; ++j)
+ {
+ // Prepare the row of d to be eliminated, locating the
+ // diagonal element using p from the qr factorization
+ l = iPerm.indices()(j);
+ if (diag(l) == Scalar(0))
+ break;
+ sdiag.tail(n-j).setZero();
+ sdiag[j] = diag[l];
+ // the transformations to eliminate the row of d
+ // modify only a single element of (q transpose)*b
+ // beyond the first n, which is initially zero.
+
+ Scalar qtbpj = 0;
+ // Browse the nonzero elements of row j of the upper triangular s
+ for (k = j; k < n; ++k)
+ {
+ typename FactorType::InnerIterator itk(R,k);
+ for (; itk; ++itk){
+ if (itk.index() < k) continue;
+ else break;
+ }
+ //At this point, we have the diagonal element R(k,k)
+ // Determine a givens rotation which eliminates
+ // the appropriate element in the current row of d
+ givens.makeGivens(-itk.value(), sdiag(k));
+
+ // Compute the modified diagonal element of r and
+ // the modified element of ((q transpose)*b,0).
+ itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
+ temp = givens.c() * wa(k) + givens.s() * qtbpj;
+ qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
+ wa(k) = temp;
+
+ // Accumulate the transformation in the remaining k row/column of R
+ for (++itk; itk; ++itk)
+ {
+ i = itk.index();
+ temp = givens.c() * itk.value() + givens.s() * sdiag(i);
+ sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
+ itk.valueRef() = temp;
+ }
+ }
+ }
+
+ // Solve the triangular system for z. If the system is
+ // singular, then obtain a least squares solution
+ Index nsing;
+ for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
+
+ wa.tail(n-nsing).setZero();
+// x = wa;
+ wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
+
+ sdiag = R.diagonal();
+ // Permute the components of z back to components of x
+ x = iPerm * wa;
+}
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMQRSOLV_H
diff --git a/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
new file mode 100644
index 0000000..51dd1d3
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
@@ -0,0 +1,377 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+//
+// The algorithm of this class initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEVENBERGMARQUARDT_H
+#define EIGEN_LEVENBERGMARQUARDT_H
+
+
+namespace Eigen {
+namespace LevenbergMarquardtSpace {
+ enum Status {
+ NotStarted = -2,
+ Running = -1,
+ ImproperInputParameters = 0,
+ RelativeReductionTooSmall = 1,
+ RelativeErrorTooSmall = 2,
+ RelativeErrorAndReductionTooSmall = 3,
+ CosinusTooSmall = 4,
+ TooManyFunctionEvaluation = 5,
+ FtolTooSmall = 6,
+ XtolTooSmall = 7,
+ GtolTooSmall = 8,
+ UserAsked = 9
+ };
+}
+
+template <typename _Scalar, int NX=Dynamic, int NY=Dynamic>
+struct DenseFunctor
+{
+ typedef _Scalar Scalar;
+ enum {
+ InputsAtCompileTime = NX,
+ ValuesAtCompileTime = NY
+ };
+ typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
+ typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
+ typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
+ typedef ColPivHouseholderQR<JacobianType> QRSolver;
+ const int m_inputs, m_values;
+
+ DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
+ DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
+
+ int inputs() const { return m_inputs; }
+ int values() const { return m_values; }
+
+ //int operator()(const InputType &x, ValueType& fvec) { }
+ // should be defined in derived classes
+
+ //int df(const InputType &x, JacobianType& fjac) { }
+ // should be defined in derived classes
+};
+
+template <typename _Scalar, typename _Index>
+struct SparseFunctor
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Matrix<Scalar,Dynamic,1> InputType;
+ typedef Matrix<Scalar,Dynamic,1> ValueType;
+ typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType;
+ typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver;
+ enum {
+ InputsAtCompileTime = Dynamic,
+ ValuesAtCompileTime = Dynamic
+ };
+
+ SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
+
+ int inputs() const { return m_inputs; }
+ int values() const { return m_values; }
+
+ const int m_inputs, m_values;
+ //int operator()(const InputType &x, ValueType& fvec) { }
+ // to be defined in the functor
+
+ //int df(const InputType &x, JacobianType& fjac) { }
+ // to be defined in the functor if no automatic differentiation
+
+};
+namespace internal {
+template <typename QRSolver, typename VectorType>
+void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
+ typename VectorType::Scalar m_delta, typename VectorType::Scalar &par,
+ VectorType &x);
+ }
+/**
+ * \ingroup NonLinearOptimization_Module
+ * \brief Performs non linear optimization over a non-linear function,
+ * using a variant of the Levenberg Marquardt algorithm.
+ *
+ * Check wikipedia for more information.
+ * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
+ */
+template<typename _FunctorType>
+class LevenbergMarquardt : internal::no_assignment_operator
+{
+ public:
+ typedef _FunctorType FunctorType;
+ typedef typename FunctorType::QRSolver QRSolver;
+ typedef typename FunctorType::JacobianType JacobianType;
+ typedef typename JacobianType::Scalar Scalar;
+ typedef typename JacobianType::RealScalar RealScalar;
+ typedef typename JacobianType::Index Index;
+ typedef typename QRSolver::Index PermIndex;
+ typedef Matrix<Scalar,Dynamic,1> FVectorType;
+ typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
+ public:
+ LevenbergMarquardt(FunctorType& functor)
+ : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0),
+ m_isInitialized(false),m_info(InvalidInput)
+ {
+ resetParameters();
+ m_useExternalScaling=false;
+ }
+
+ LevenbergMarquardtSpace::Status minimize(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
+ LevenbergMarquardtSpace::Status lmder1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+ static LevenbergMarquardtSpace::Status lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ /** Sets the default parameters */
+ void resetParameters()
+ {
+ m_factor = 100.;
+ m_maxfev = 400;
+ m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon());
+ m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon());
+ m_gtol = 0. ;
+ m_epsfcn = 0. ;
+ }
+
+ /** Sets the tolerance for the norm of the solution vector*/
+ void setXtol(RealScalar xtol) { m_xtol = xtol; }
+
+ /** Sets the tolerance for the norm of the vector function*/
+ void setFtol(RealScalar ftol) { m_ftol = ftol; }
+
+ /** Sets the tolerance for the norm of the gradient of the error vector*/
+ void setGtol(RealScalar gtol) { m_gtol = gtol; }
+
+ /** Sets the step bound for the diagonal shift */
+ void setFactor(RealScalar factor) { m_factor = factor; }
+
+ /** Sets the error precision */
+ void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; }
+
+ /** Sets the maximum number of function evaluation */
+ void setMaxfev(Index maxfev) {m_maxfev = maxfev; }
+
+ /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
+ void setExternalScaling(bool value) {m_useExternalScaling = value; }
+
+ /** \returns a reference to the diagonal of the jacobian */
+ FVectorType& diag() {return m_diag; }
+
+ /** \returns the number of iterations performed */
+ Index iterations() { return m_iter; }
+
+ /** \returns the number of functions evaluation */
+ Index nfev() { return m_nfev; }
+
+ /** \returns the number of jacobian evaluation */
+ Index njev() { return m_njev; }
+
+ /** \returns the norm of current vector function */
+ RealScalar fnorm() {return m_fnorm; }
+
+ /** \returns the norm of the gradient of the error */
+ RealScalar gnorm() {return m_gnorm; }
+
+ /** \returns the LevenbergMarquardt parameter */
+ RealScalar lm_param(void) { return m_par; }
+
+ /** \returns a reference to the current vector function
+ */
+ FVectorType& fvec() {return m_fvec; }
+
+ /** \returns a reference to the matrix where the current Jacobian matrix is stored
+ */
+ JacobianType& jacobian() {return m_fjac; }
+
+ /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix.
+ * \sa jacobian()
+ */
+ JacobianType& matrixR() {return m_rfactor; }
+
+ /** the permutation used in the QR factorization
+ */
+ PermutationType permutation() {return m_permutation; }
+
+ /**
+ * \brief Reports whether the minimization was successful
+ * \returns \c Success if the minimization was succesful,
+ * \c NumericalIssue if a numerical problem arises during the
+ * minimization process, for exemple during the QR factorization
+ * \c NoConvergence if the minimization did not converge after
+ * the maximum number of function evaluation allowed
+ * \c InvalidInput if the input matrix is invalid
+ */
+ ComputationInfo info() const
+ {
+
+ return m_info;
+ }
+ private:
+ JacobianType m_fjac;
+ JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac
+ FunctorType &m_functor;
+ FVectorType m_fvec, m_qtf, m_diag;
+ Index n;
+ Index m;
+ Index m_nfev;
+ Index m_njev;
+ RealScalar m_fnorm; // Norm of the current vector function
+ RealScalar m_gnorm; //Norm of the gradient of the error
+ RealScalar m_factor; //
+ Index m_maxfev; // Maximum number of function evaluation
+ RealScalar m_ftol; //Tolerance in the norm of the vector function
+ RealScalar m_xtol; //
+ RealScalar m_gtol; //tolerance of the norm of the error gradient
+ RealScalar m_epsfcn; //
+ Index m_iter; // Number of iterations performed
+ RealScalar m_delta;
+ bool m_useExternalScaling;
+ PermutationType m_permutation;
+ FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors
+ RealScalar m_par;
+ bool m_isInitialized; // Check whether the minimization step has been called
+ ComputationInfo m_info;
+};
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimize(FVectorType &x)
+{
+ LevenbergMarquardtSpace::Status status = minimizeInit(x);
+ if (status==LevenbergMarquardtSpace::ImproperInputParameters) {
+ m_isInitialized = true;
+ return status;
+ }
+ do {
+// std::cout << " uv " << x.transpose() << "\n";
+ status = minimizeOneStep(x);
+ } while (status==LevenbergMarquardtSpace::Running);
+ m_isInitialized = true;
+ return status;
+}
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
+{
+ n = x.size();
+ m = m_functor.values();
+
+ m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n);
+ m_wa4.resize(m);
+ m_fvec.resize(m);
+ //FIXME Sparse Case : Allocate space for the jacobian
+ m_fjac.resize(m, n);
+// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
+ if (!m_useExternalScaling)
+ m_diag.resize(n);
+ eigen_assert( (!m_useExternalScaling || m_diag.size()==n) || "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
+ m_qtf.resize(n);
+
+ /* Function Body */
+ m_nfev = 0;
+ m_njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.){
+ m_info = InvalidInput;
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+ }
+
+ if (m_useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (m_diag[j] <= 0.)
+ {
+ m_info = InvalidInput;
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+ }
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ m_nfev = 1;
+ if ( m_functor(x, m_fvec) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ m_fnorm = m_fvec.stableNorm();
+
+ /* initialize levenberg-marquardt parameter and iteration counter. */
+ m_par = 0.;
+ m_iter = 1;
+
+ return LevenbergMarquardtSpace::NotStarted;
+}
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::lmder1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+ m = m_functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ resetParameters();
+ m_ftol = tol;
+ m_xtol = tol;
+ m_maxfev = 100*(n+1);
+
+ return minimize(x);
+}
+
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol
+ )
+{
+ Index n = x.size();
+ Index m = functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ NumericalDiff<FunctorType> numDiff(functor);
+ // embedded LevenbergMarquardt
+ LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
+ lm.setFtol(tol);
+ lm.setXtol(tol);
+ lm.setMaxfev(200*(n+1));
+
+ LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
+ if (nfev)
+ * nfev = lm.nfev();
+ return info;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_LEVENBERGMARQUARDT_H
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt b/eigen/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
new file mode 100644
index 0000000..cdde64d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_MatrixFunctions_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_MatrixFunctions_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/MatrixFunctions COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
new file mode 100644
index 0000000..88dba54
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -0,0 +1,451 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_EXPONENTIAL
+#define EIGEN_MATRIX_EXPONENTIAL
+
+#include "StemFunction.h"
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing the matrix exponential.
+ * \tparam MatrixType type of the argument of the exponential,
+ * expected to be an instantiation of the Matrix class template.
+ */
+template <typename MatrixType>
+class MatrixExponential {
+
+ public:
+
+ /** \brief Constructor.
+ *
+ * The class stores a reference to \p M, so it should not be
+ * changed (or destroyed) before compute() is called.
+ *
+ * \param[in] M matrix whose exponential is to be computed.
+ */
+ MatrixExponential(const MatrixType &M);
+
+ /** \brief Computes the matrix exponential.
+ *
+ * \param[out] result the matrix exponential of \p M in the constructor.
+ */
+ template <typename ResultType>
+ void compute(ResultType &result);
+
+ private:
+
+ // Prevent copying
+ MatrixExponential(const MatrixExponential&);
+ MatrixExponential& operator=(const MatrixExponential&);
+
+ /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade3(const MatrixType &A);
+
+ /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade5(const MatrixType &A);
+
+ /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade7(const MatrixType &A);
+
+ /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade9(const MatrixType &A);
+
+ /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade13(const MatrixType &A);
+
+ /** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * This function activates only if your long double is double-double or quadruple.
+ *
+ * \param[in] A Argument of matrix exponential
+ */
+ void pade17(const MatrixType &A);
+
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * Computes \c m_U, \c m_V and \c m_squarings such that
+ * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
+ * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
+ * degree of the Pad&eacute; approximant and the value of
+ * squarings are chosen such that the approximation error is no
+ * more than the round-off error.
+ *
+ * The argument of this function should correspond with the (real
+ * part of) the entries of \c m_M. It is used to select the
+ * correct implementation using overloading.
+ */
+ void computeUV(double);
+
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * \sa computeUV(double);
+ */
+ void computeUV(float);
+
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * \sa computeUV(double);
+ */
+ void computeUV(long double);
+
+ typedef typename internal::traits<MatrixType>::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Reference to matrix whose exponential is to be computed. */
+ typename internal::nested<MatrixType>::type m_M;
+
+ /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
+ MatrixType m_U;
+
+ /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
+ MatrixType m_V;
+
+ /** \brief Used for temporary storage. */
+ MatrixType m_tmp1;
+
+ /** \brief Used for temporary storage. */
+ MatrixType m_tmp2;
+
+ /** \brief Identity matrix of the same size as \c m_M. */
+ MatrixType m_Id;
+
+ /** \brief Number of squarings required in the last step. */
+ int m_squarings;
+
+ /** \brief L1 norm of m_M. */
+ RealScalar m_l1norm;
+};
+
+template <typename MatrixType>
+MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
+ m_M(M),
+ m_U(M.rows(),M.cols()),
+ m_V(M.rows(),M.cols()),
+ m_tmp1(M.rows(),M.cols()),
+ m_tmp2(M.rows(),M.cols()),
+ m_Id(MatrixType::Identity(M.rows(), M.cols())),
+ m_squarings(0),
+ m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
+{
+ /* empty body */
+}
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixExponential<MatrixType>::compute(ResultType &result)
+{
+#if LDBL_MANT_DIG > 112 // rarely happens
+ if(sizeof(RealScalar) > 14) {
+ result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
+ return;
+ }
+#endif
+ computeUV(RealScalar());
+ m_tmp1 = m_U + m_V; // numerator of Pade approximant
+ m_tmp2 = -m_U + m_V; // denominator of Pade approximant
+ result = m_tmp2.partialPivLu().solve(m_tmp1);
+ for (int i=0; i<m_squarings; i++)
+ result *= result; // undo scaling by repeated squaring
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
+{
+ const RealScalar b[] = {120., 60., 12., 1.};
+ m_tmp1.noalias() = A * A;
+ m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[2]*m_tmp1 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
+{
+ const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
+ MatrixType A2 = A * A;
+ m_tmp1.noalias() = A2 * A2;
+ m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
+{
+ const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ m_tmp1.noalias() = A4 * A2;
+ m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
+{
+ const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
+ 2162160., 110880., 3960., 90., 1.};
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ MatrixType A6 = A4 * A2;
+ m_tmp1.noalias() = A6 * A2;
+ m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
+{
+ const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
+ 1187353796428800., 129060195264000., 10559470521600., 670442572800.,
+ 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ m_tmp1.noalias() = A4 * A2;
+ m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
+ m_tmp2.noalias() = m_tmp1 * m_V;
+ m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
+ m_V.noalias() = m_tmp1 * m_tmp2;
+ m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+#if LDBL_MANT_DIG > 64
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
+{
+ const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
+ 100610229646136770560000.L, 15720348382208870400000.L,
+ 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
+ 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
+ 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
+ 46512.L, 306.L, 1.L};
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ MatrixType A6 = A4 * A2;
+ m_tmp1.noalias() = A4 * A4;
+ m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
+ m_tmp2.noalias() = m_tmp1 * m_V;
+ m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
+ m_V.noalias() = m_tmp1 * m_tmp2;
+ m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+#endif
+
+template <typename MatrixType>
+void MatrixExponential<MatrixType>::computeUV(float)
+{
+ using std::frexp;
+ using std::pow;
+ if (m_l1norm < 4.258730016922831e-001) {
+ pade3(m_M);
+ } else if (m_l1norm < 1.880152677804762e+000) {
+ pade5(m_M);
+ } else {
+ const float maxnorm = 3.925724783138660f;
+ frexp(m_l1norm / maxnorm, &m_squarings);
+ if (m_squarings < 0) m_squarings = 0;
+ MatrixType A = m_M / Scalar(pow(2, m_squarings));
+ pade7(A);
+ }
+}
+
+template <typename MatrixType>
+void MatrixExponential<MatrixType>::computeUV(double)
+{
+ using std::frexp;
+ using std::pow;
+ if (m_l1norm < 1.495585217958292e-002) {
+ pade3(m_M);
+ } else if (m_l1norm < 2.539398330063230e-001) {
+ pade5(m_M);
+ } else if (m_l1norm < 9.504178996162932e-001) {
+ pade7(m_M);
+ } else if (m_l1norm < 2.097847961257068e+000) {
+ pade9(m_M);
+ } else {
+ const double maxnorm = 5.371920351148152;
+ frexp(m_l1norm / maxnorm, &m_squarings);
+ if (m_squarings < 0) m_squarings = 0;
+ MatrixType A = m_M / Scalar(pow(2, m_squarings));
+ pade13(A);
+ }
+}
+
+template <typename MatrixType>
+void MatrixExponential<MatrixType>::computeUV(long double)
+{
+ using std::frexp;
+ using std::pow;
+#if LDBL_MANT_DIG == 53 // double precision
+ computeUV(double());
+#elif LDBL_MANT_DIG <= 64 // extended precision
+ if (m_l1norm < 4.1968497232266989671e-003L) {
+ pade3(m_M);
+ } else if (m_l1norm < 1.1848116734693823091e-001L) {
+ pade5(m_M);
+ } else if (m_l1norm < 5.5170388480686700274e-001L) {
+ pade7(m_M);
+ } else if (m_l1norm < 1.3759868875587845383e+000L) {
+ pade9(m_M);
+ } else {
+ const long double maxnorm = 4.0246098906697353063L;
+ frexp(m_l1norm / maxnorm, &m_squarings);
+ if (m_squarings < 0) m_squarings = 0;
+ MatrixType A = m_M / Scalar(pow(2, m_squarings));
+ pade13(A);
+ }
+#elif LDBL_MANT_DIG <= 106 // double-double
+ if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
+ pade3(m_M);
+ } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
+ pade5(m_M);
+ } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
+ pade7(m_M);
+ } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
+ pade9(m_M);
+ } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
+ pade13(m_M);
+ } else {
+ const long double maxnorm = 3.2579440895405400856599663723517L;
+ frexp(m_l1norm / maxnorm, &m_squarings);
+ if (m_squarings < 0) m_squarings = 0;
+ MatrixType A = m_M / pow(Scalar(2), m_squarings);
+ pade17(A);
+ }
+#elif LDBL_MANT_DIG <= 112 // quadruple precison
+ if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
+ pade3(m_M);
+ } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
+ pade5(m_M);
+ } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
+ pade7(m_M);
+ } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
+ pade9(m_M);
+ } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
+ pade13(m_M);
+ } else {
+ const long double maxnorm = 2.884233277829519311757165057717815L;
+ frexp(m_l1norm / maxnorm, &m_squarings);
+ if (m_squarings < 0) m_squarings = 0;
+ MatrixType A = m_M / Scalar(pow(2, m_squarings));
+ pade17(A);
+ }
+#else
+ // this case should be handled in compute()
+ eigen_assert(false && "Bug in MatrixExponential");
+#endif // LDBL_MANT_DIG
+}
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix exponential of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix exponential.
+ *
+ * This class holds the argument to the matrix exponential until it
+ * is assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::exp() and most of the time this is the only way it is
+ * used.
+ */
+template<typename Derived> struct MatrixExponentialReturnValue
+: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
+{
+ typedef typename Derived::Index Index;
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] src %Matrix (expression) forming the argument of the
+ * matrix exponential.
+ */
+ MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
+
+ /** \brief Compute the matrix exponential.
+ *
+ * \param[out] result the matrix exponential of \p src in the
+ * constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ const typename Derived::PlainObject srcEvaluated = m_src.eval();
+ MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
+ me.compute(result);
+ }
+
+ Index rows() const { return m_src.rows(); }
+ Index cols() const { return m_src.cols(); }
+
+ protected:
+ const Derived& m_src;
+ private:
+ MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixExponentialReturnValue<Derived> >
+{
+ typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+template <typename Derived>
+const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
+{
+ eigen_assert(rows() == cols());
+ return MatrixExponentialReturnValue<Derived>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_EXPONENTIAL
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
new file mode 100644
index 0000000..7d42664
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -0,0 +1,591 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_FUNCTION
+#define EIGEN_MATRIX_FUNCTION
+
+#include "StemFunction.h"
+#include "MatrixFunctionAtomic.h"
+
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix functions.
+ * \tparam MatrixType type of the argument of the matrix function,
+ * expected to be an instantiation of the Matrix class template.
+ * \tparam AtomicType type for computing matrix function of atomic blocks.
+ * \tparam IsComplex used internally to select correct specialization.
+ *
+ * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
+ * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
+ * computation of the matrix function on every block corresponding to these clusters to an object of type
+ * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
+ * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
+ *
+ * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
+ */
+template <typename MatrixType,
+ typename AtomicType,
+ int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+class MatrixFunction
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ *
+ * The class stores references to \p A and \p atomic, so they should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixFunction(const MatrixType& A, AtomicType& atomic);
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ *
+ * See MatrixBase::matrixFunction() for details on how this computation
+ * is implemented.
+ */
+ template <typename ResultType>
+ void compute(ResultType &result);
+};
+
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for real matrices
+ */
+template <typename MatrixType, typename AtomicType>
+class MatrixFunction<MatrixType, AtomicType, 0>
+{
+ private:
+
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename Traits::Scalar Scalar;
+ static const int Rows = Traits::RowsAtCompileTime;
+ static const int Cols = Traits::ColsAtCompileTime;
+ static const int Options = MatrixType::Options;
+ static const int MaxRows = Traits::MaxRowsAtCompileTime;
+ static const int MaxCols = Traits::MaxColsAtCompileTime;
+
+ typedef std::complex<Scalar> ComplexScalar;
+ typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
+
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ */
+ MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ *
+ * This function converts the real matrix \c A to a complex matrix,
+ * uses MatrixFunction<MatrixType,1> and then converts the result back to
+ * a real matrix.
+ */
+ template <typename ResultType>
+ void compute(ResultType& result)
+ {
+ ComplexMatrix CA = m_A.template cast<ComplexScalar>();
+ ComplexMatrix Cresult;
+ MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
+ mf.compute(Cresult);
+ result = Cresult.real();
+ }
+
+ private:
+ typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
+ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
+
+ MatrixFunction& operator=(const MatrixFunction&);
+};
+
+
+/** \internal \ingroup MatrixFunctions_Module
+ * \brief Partial specialization of MatrixFunction for complex matrices
+ */
+template <typename MatrixType, typename AtomicType>
+class MatrixFunction<MatrixType, AtomicType, 1>
+{
+ private:
+
+ typedef internal::traits<MatrixType> Traits;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = MatrixType::Options;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
+ typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
+ typedef std::list<Scalar> Cluster;
+ typedef std::list<Cluster> ListOfClusters;
+ typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+
+ public:
+
+ MatrixFunction(const MatrixType& A, AtomicType& atomic);
+ template <typename ResultType> void compute(ResultType& result);
+
+ private:
+
+ void computeSchurDecomposition();
+ void partitionEigenvalues();
+ typename ListOfClusters::iterator findCluster(Scalar key);
+ void computeClusterSize();
+ void computeBlockStart();
+ void constructPermutation();
+ void permuteSchur();
+ void swapEntriesInSchur(Index index);
+ void computeBlockAtomic();
+ Block<MatrixType> block(MatrixType& A, Index i, Index j);
+ void computeOffDiagonal();
+ DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
+
+ typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
+ AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
+ MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
+ MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
+ MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
+ ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
+ DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
+ DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters */
+ DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
+ IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
+
+ /** \brief Maximum distance allowed between eigenvalues to be considered "close".
+ *
+ * This is morally a \c static \c const \c Scalar, but only
+ * integers can be static constant class members in C++. The
+ * separation constant is set to 0.1, a value taken from the
+ * paper by Davies and Higham. */
+ static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
+
+ MatrixFunction& operator=(const MatrixFunction&);
+};
+
+/** \brief Constructor.
+ *
+ * \param[in] A argument of matrix function, should be a square matrix.
+ * \param[in] atomic class for computing matrix function of atomic blocks.
+ */
+template <typename MatrixType, typename AtomicType>
+MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic)
+ : m_A(A), m_atomic(atomic)
+{
+ /* empty body */
+}
+
+/** \brief Compute the matrix function.
+ *
+ * \param[out] result the function \p f applied to \p A, as
+ * specified in the constructor.
+ */
+template <typename MatrixType, typename AtomicType>
+template <typename ResultType>
+void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result)
+{
+ computeSchurDecomposition();
+ partitionEigenvalues();
+ computeClusterSize();
+ computeBlockStart();
+ constructPermutation();
+ permuteSchur();
+ computeBlockAtomic();
+ computeOffDiagonal();
+ result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint());
+}
+
+/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
+{
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+}
+
+/** \brief Partition eigenvalues in clusters of ei'vals close to each other
+ *
+ * This function computes #m_clusters. This is a partition of the
+ * eigenvalues of #m_T in clusters, such that
+ * # Any eigenvalue in a certain cluster is at most separation() away
+ * from another eigenvalue in the same cluster.
+ * # The distance between two eigenvalues in different clusters is
+ * more than separation().
+ * The implementation follows Algorithm 4.1 in the paper of Davies
+ * and Higham.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
+{
+ using std::abs;
+ const Index rows = m_T.rows();
+ VectorType diag = m_T.diagonal(); // contains eigenvalues of A
+
+ for (Index i=0; i<rows; ++i) {
+ // Find set containing diag(i), adding a new set if necessary
+ typename ListOfClusters::iterator qi = findCluster(diag(i));
+ if (qi == m_clusters.end()) {
+ Cluster l;
+ l.push_back(diag(i));
+ m_clusters.push_back(l);
+ qi = m_clusters.end();
+ --qi;
+ }
+
+ // Look for other element to add to the set
+ for (Index j=i+1; j<rows; ++j) {
+ if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
+ typename ListOfClusters::iterator qj = findCluster(diag(j));
+ if (qj == m_clusters.end()) {
+ qi->push_back(diag(j));
+ } else {
+ qi->insert(qi->end(), qj->begin(), qj->end());
+ m_clusters.erase(qj);
+ }
+ }
+ }
+ }
+}
+
+/** \brief Find cluster in #m_clusters containing some value
+ * \param[in] key Value to find
+ * \returns Iterator to cluster containing \c key, or
+ * \c m_clusters.end() if no cluster in m_clusters contains \c key.
+ */
+template <typename MatrixType, typename AtomicType>
+typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
+{
+ typename Cluster::iterator j;
+ for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
+ j = std::find(i->begin(), i->end(), key);
+ if (j != i->end())
+ return i;
+ }
+ return m_clusters.end();
+}
+
+/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
+{
+ const Index rows = m_T.rows();
+ VectorType diag = m_T.diagonal();
+ const Index numClusters = static_cast<Index>(m_clusters.size());
+
+ m_clusterSize.setZero(numClusters);
+ m_eivalToCluster.resize(rows);
+ Index clusterIndex = 0;
+ for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
+ for (Index i = 0; i < diag.rows(); ++i) {
+ if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
+ ++m_clusterSize[clusterIndex];
+ m_eivalToCluster[i] = clusterIndex;
+ }
+ }
+ ++clusterIndex;
+ }
+}
+
+/** \brief Compute #m_blockStart using #m_clusterSize */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
+{
+ m_blockStart.resize(m_clusterSize.rows());
+ m_blockStart(0) = 0;
+ for (Index i = 1; i < m_clusterSize.rows(); i++) {
+ m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
+ }
+}
+
+/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
+{
+ DynamicIntVectorType indexNextEntry = m_blockStart;
+ m_permutation.resize(m_T.rows());
+ for (Index i = 0; i < m_T.rows(); i++) {
+ Index cluster = m_eivalToCluster[i];
+ m_permutation[i] = indexNextEntry[cluster];
+ ++indexNextEntry[cluster];
+ }
+}
+
+/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
+{
+ IntVectorType p = m_permutation;
+ for (Index i = 0; i < p.rows() - 1; i++) {
+ Index j;
+ for (j = i; j < p.rows(); j++) {
+ if (p(j) == i) break;
+ }
+ eigen_assert(p(j) == i);
+ for (Index k = j-1; k >= i; k--) {
+ swapEntriesInSchur(k);
+ std::swap(p.coeffRef(k), p.coeffRef(k+1));
+ }
+ }
+}
+
+/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
+{
+ JacobiRotation<Scalar> rotation;
+ rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
+ m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
+ m_T.applyOnTheRight(index, index+1, rotation);
+ m_U.applyOnTheRight(index, index+1, rotation);
+}
+
+/** \brief Compute block diagonal part of #m_fT.
+ *
+ * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking
+ * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The
+ * off-diagonal parts of #m_fT are set to zero.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
+{
+ m_fT.resize(m_T.rows(), m_T.cols());
+ m_fT.setZero();
+ for (Index i = 0; i < m_clusterSize.rows(); ++i) {
+ block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
+ }
+}
+
+/** \brief Return block of matrix according to blocking given by #m_blockStart */
+template <typename MatrixType, typename AtomicType>
+Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
+{
+ return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
+}
+
+/** \brief Compute part of #m_fT above block diagonal.
+ *
+ * This routine assumes that the block diagonal part of #m_fT (which
+ * equals the matrix function applied to #m_T) has already been computed and computes
+ * the part above the block diagonal. The part below the diagonal is
+ * zero, because #m_T is upper triangular.
+ */
+template <typename MatrixType, typename AtomicType>
+void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
+{
+ for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
+ for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
+ // compute (blockIndex, blockIndex+diagIndex) block
+ DynMatrixType A = block(m_T, blockIndex, blockIndex);
+ DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
+ DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
+ for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
+ C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
+ }
+ block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
+ }
+ }
+}
+
+/** \brief Solve a triangular Sylvester equation AX + XB = C
+ *
+ * \param[in] A the matrix A; should be square and upper triangular
+ * \param[in] B the matrix B; should be square and upper triangular
+ * \param[in] C the matrix C; should have correct size.
+ *
+ * \returns the solution X.
+ *
+ * If A is m-by-m and B is n-by-n, then both C and X are m-by-n.
+ * The (i,j)-th component of the Sylvester equation is
+ * \f[
+ * \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
+ * \f]
+ * This can be re-arranged to yield:
+ * \f[
+ * X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
+ * - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
+ * \f]
+ * It is assumed that A and B are such that the numerator is never
+ * zero (otherwise the Sylvester equation does not have a unique
+ * solution). In that case, these equations can be evaluated in the
+ * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
+ */
+template <typename MatrixType, typename AtomicType>
+typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
+ const DynMatrixType& A,
+ const DynMatrixType& B,
+ const DynMatrixType& C)
+{
+ eigen_assert(A.rows() == A.cols());
+ eigen_assert(A.isUpperTriangular());
+ eigen_assert(B.rows() == B.cols());
+ eigen_assert(B.isUpperTriangular());
+ eigen_assert(C.rows() == A.rows());
+ eigen_assert(C.cols() == B.rows());
+
+ Index m = A.rows();
+ Index n = B.rows();
+ DynMatrixType X(m, n);
+
+ for (Index i = m - 1; i >= 0; --i) {
+ for (Index j = 0; j < n; ++j) {
+
+ // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
+ Scalar AX;
+ if (i == m - 1) {
+ AX = 0;
+ } else {
+ Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
+ AX = AXmatrix(0,0);
+ }
+
+ // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
+ Scalar XB;
+ if (j == 0) {
+ XB = 0;
+ } else {
+ Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
+ XB = XBmatrix(0,0);
+ }
+
+ X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
+ }
+ }
+ return X;
+}
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix function of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix function.
+ *
+ * This class holds the argument to the matrix function until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * matrixBase::matrixFunction() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived> class MatrixFunctionReturnValue
+: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
+{
+ public:
+
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Index Index;
+ typedef typename internal::stem_function<Scalar>::type StemFunction;
+
+ /** \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression) forming the argument of the
+ * matrix function.
+ * \param[in] f Stem function for matrix function under consideration.
+ */
+ MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
+
+ /** \brief Compute the matrix function.
+ *
+ * \param[out] result \p f applied to \p A, where \p f and \p A
+ * are as in the constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ typedef typename Derived::PlainObject PlainObject;
+ typedef internal::traits<PlainObject> Traits;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = PlainObject::Options;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef MatrixFunctionAtomic<DynMatrixType> AtomicType;
+ AtomicType atomic(m_f);
+
+ const PlainObject Aevaluated = m_A.eval();
+ MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
+ mf.compute(result);
+ }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ typename internal::nested<Derived>::type m_A;
+ StemFunction *m_f;
+
+ MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixFunctionReturnValue<Derived> >
+{
+ typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+
+/********** MatrixBase methods **********/
+
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
+{
+ eigen_assert(rows() == cols());
+ return MatrixFunctionReturnValue<Derived>(derived(), f);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
+}
+
+template <typename Derived>
+const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
+{
+ eigen_assert(rows() == cols());
+ typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
+ return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
new file mode 100644
index 0000000..efe332c
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunctionAtomic.h
@@ -0,0 +1,131 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_FUNCTION_ATOMIC
+#define EIGEN_MATRIX_FUNCTION_ATOMIC
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \class MatrixFunctionAtomic
+ * \brief Helper class for computing matrix functions of atomic matrices.
+ *
+ * \internal
+ * Here, an atomic matrix is a triangular matrix whose diagonal
+ * entries are close to each other.
+ */
+template <typename MatrixType>
+class MatrixFunctionAtomic
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename internal::stem_function<Scalar>::type StemFunction;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ /** \brief Constructor
+ * \param[in] f matrix function to compute.
+ */
+ MatrixFunctionAtomic(StemFunction f) : m_f(f) { }
+
+ /** \brief Compute matrix function of atomic matrix
+ * \param[in] A argument of matrix function, should be upper triangular and atomic
+ * \returns f(A), the matrix function evaluated at the given matrix
+ */
+ MatrixType compute(const MatrixType& A);
+
+ private:
+
+ // Prevent copying
+ MatrixFunctionAtomic(const MatrixFunctionAtomic&);
+ MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&);
+
+ void computeMu();
+ bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
+
+ /** \brief Pointer to scalar function */
+ StemFunction* m_f;
+
+ /** \brief Size of matrix function */
+ Index m_Arows;
+
+ /** \brief Mean of eigenvalues */
+ Scalar m_avgEival;
+
+ /** \brief Argument shifted by mean of eigenvalues */
+ MatrixType m_Ashifted;
+
+ /** \brief Constant used to determine whether Taylor series has converged */
+ RealScalar m_mu;
+};
+
+template <typename MatrixType>
+MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A)
+{
+ // TODO: Use that A is upper triangular
+ m_Arows = A.rows();
+ m_avgEival = A.trace() / Scalar(RealScalar(m_Arows));
+ m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows);
+ computeMu();
+ MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows);
+ MatrixType P = m_Ashifted;
+ MatrixType Fincr;
+ for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary
+ Fincr = m_f(m_avgEival, static_cast<int>(s)) * P;
+ F += Fincr;
+ P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted;
+ if (taylorConverged(s, F, Fincr, P)) {
+ return F;
+ }
+ }
+ eigen_assert("Taylor series does not converge" && 0);
+ return F;
+}
+
+/** \brief Compute \c m_mu. */
+template <typename MatrixType>
+void MatrixFunctionAtomic<MatrixType>::computeMu()
+{
+ const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted;
+ VectorType e = VectorType::Ones(m_Arows);
+ N.template triangularView<Upper>().solveInPlace(e);
+ m_mu = e.cwiseAbs().maxCoeff();
+}
+
+/** \brief Determine whether Taylor series has converged */
+template <typename MatrixType>
+bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F,
+ const MatrixType& Fincr, const MatrixType& P)
+{
+ const Index n = F.rows();
+ const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff();
+ const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff();
+ if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) {
+ RealScalar delta = 0;
+ RealScalar rfactorial = 1;
+ for (Index r = 0; r < n; r++) {
+ RealScalar mx = 0;
+ for (Index i = 0; i < n; i++)
+ mx = (std::max)(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r))));
+ if (r != 0)
+ rfactorial *= RealScalar(r);
+ delta = (std::max)(delta, mx / rfactorial);
+ }
+ const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff();
+ if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm)
+ return true;
+ }
+ return false;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION_ATOMIC
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
new file mode 100644
index 0000000..c744fc0
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -0,0 +1,486 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_LOGARITHM
+#define EIGEN_MATRIX_LOGARITHM
+
+#ifndef M_PI
+#define M_PI 3.141592653589793238462643383279503L
+#endif
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \class MatrixLogarithmAtomic
+ * \brief Helper class for computing matrix logarithm of atomic matrices.
+ *
+ * \internal
+ * Here, an atomic matrix is a triangular matrix whose diagonal
+ * entries are close to each other.
+ *
+ * \sa class MatrixFunctionAtomic, MatrixBase::log()
+ */
+template <typename MatrixType>
+class MatrixLogarithmAtomic
+{
+public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ // typedef typename MatrixType::Index Index;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ // typedef typename internal::stem_function<Scalar>::type StemFunction;
+ // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ /** \brief Constructor. */
+ MatrixLogarithmAtomic() { }
+
+ /** \brief Compute matrix logarithm of atomic matrix
+ * \param[in] A argument of matrix logarithm, should be upper triangular and atomic
+ * \returns The logarithm of \p A.
+ */
+ MatrixType compute(const MatrixType& A);
+
+private:
+
+ void compute2x2(const MatrixType& A, MatrixType& result);
+ void computeBig(const MatrixType& A, MatrixType& result);
+ int getPadeDegree(float normTminusI);
+ int getPadeDegree(double normTminusI);
+ int getPadeDegree(long double normTminusI);
+ void computePade(MatrixType& result, const MatrixType& T, int degree);
+ void computePade3(MatrixType& result, const MatrixType& T);
+ void computePade4(MatrixType& result, const MatrixType& T);
+ void computePade5(MatrixType& result, const MatrixType& T);
+ void computePade6(MatrixType& result, const MatrixType& T);
+ void computePade7(MatrixType& result, const MatrixType& T);
+ void computePade8(MatrixType& result, const MatrixType& T);
+ void computePade9(MatrixType& result, const MatrixType& T);
+ void computePade10(MatrixType& result, const MatrixType& T);
+ void computePade11(MatrixType& result, const MatrixType& T);
+
+ static const int minPadeDegree = 3;
+ static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision
+ std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision
+ std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision
+ std::numeric_limits<RealScalar>::digits<=106? 10: // double-double
+ 11; // quadruple precision
+
+ // Prevent copying
+ MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
+ MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
+};
+
+/** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
+template <typename MatrixType>
+MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
+{
+ using std::log;
+ MatrixType result(A.rows(), A.rows());
+ if (A.rows() == 1)
+ result(0,0) = log(A(0,0));
+ else if (A.rows() == 2)
+ compute2x2(A, result);
+ else
+ computeBig(A, result);
+ return result;
+}
+
+/** \brief Compute logarithm of 2x2 triangular matrix. */
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
+{
+ using std::abs;
+ using std::ceil;
+ using std::imag;
+ using std::log;
+
+ Scalar logA00 = log(A(0,0));
+ Scalar logA11 = log(A(1,1));
+
+ result(0,0) = logA00;
+ result(1,0) = Scalar(0);
+ result(1,1) = logA11;
+
+ if (A(0,0) == A(1,1)) {
+ result(0,1) = A(0,1) / A(0,0);
+ } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
+ result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
+ } else {
+ // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
+ int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
+ Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
+ result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
+ }
+}
+
+/** \brief Compute logarithm of triangular matrices with size > 2.
+ * \details This uses a inverse scale-and-square algorithm. */
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
+{
+ using std::pow;
+ int numberOfSquareRoots = 0;
+ int numberOfExtraSquareRoots = 0;
+ int degree;
+ MatrixType T = A, sqrtT;
+ const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1: // single precision
+ maxPadeDegree<= 7? 2.6429608311114350e-1: // double precision
+ maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision
+ maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double
+ 1.1880960220216759245467951592883642e-1L; // quadruple precision
+
+ while (true) {
+ RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
+ if (normTminusI < maxNormForPade) {
+ degree = getPadeDegree(normTminusI);
+ int degree2 = getPadeDegree(normTminusI / RealScalar(2));
+ if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
+ break;
+ ++numberOfExtraSquareRoots;
+ }
+ MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ T = sqrtT.template triangularView<Upper>();
+ ++numberOfSquareRoots;
+ }
+
+ computePade(result, T, degree);
+ result *= pow(RealScalar(2), numberOfSquareRoots);
+}
+
+/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
+template <typename MatrixType>
+int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
+{
+ const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
+ 5.3149729967117310e-1 };
+ int degree = 3;
+ for (; degree <= maxPadeDegree; ++degree)
+ if (normTminusI <= maxNormForPade[degree - minPadeDegree])
+ break;
+ return degree;
+}
+
+/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
+template <typename MatrixType>
+int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
+{
+ const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
+ 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
+ int degree = 3;
+ for (; degree <= maxPadeDegree; ++degree)
+ if (normTminusI <= maxNormForPade[degree - minPadeDegree])
+ break;
+ return degree;
+}
+
+/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
+template <typename MatrixType>
+int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
+{
+#if LDBL_MANT_DIG == 53 // double precision
+ const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
+ 1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
+#elif LDBL_MANT_DIG <= 64 // extended precision
+ const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
+ 5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
+ 2.32777776523703892094e-1L };
+#elif LDBL_MANT_DIG <= 106 // double-double
+ const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
+ 9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
+ 1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
+ 4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
+ 1.05026503471351080481093652651105e-1L };
+#else // quadruple precision
+ const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
+ 5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
+ 8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
+ 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
+ 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
+#endif
+ int degree = 3;
+ for (; degree <= maxPadeDegree; ++degree)
+ if (normTminusI <= maxNormForPade[degree - minPadeDegree])
+ break;
+ return degree;
+}
+
+/* \brief Compute Pade approximation to matrix logarithm */
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
+{
+ switch (degree) {
+ case 3: computePade3(result, T); break;
+ case 4: computePade4(result, T); break;
+ case 5: computePade5(result, T); break;
+ case 6: computePade6(result, T); break;
+ case 7: computePade7(result, T); break;
+ case 8: computePade8(result, T); break;
+ case 9: computePade9(result, T); break;
+ case 10: computePade10(result, T); break;
+ case 11: computePade11(result, T); break;
+ default: assert(false); // should never happen
+ }
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 3;
+ const RealScalar nodes[] = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
+ 0.8872983346207416885179265399782400L };
+ const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
+ 0.2777777777777777777777777777777778L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 4;
+ const RealScalar nodes[] = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
+ 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
+ const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
+ 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 5;
+ const RealScalar nodes[] = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
+ 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
+ 0.9530899229693319963988134391496965L };
+ const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
+ 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
+ 0.1184634425280945437571320203599587L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 6;
+ const RealScalar nodes[] = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
+ 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
+ 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
+ const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
+ 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
+ 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 7;
+ const RealScalar nodes[] = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
+ 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
+ 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
+ 0.9745539561713792622630948420239256L };
+ const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
+ 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
+ 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
+ 0.0647424830844348466353057163395410L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 8;
+ const RealScalar nodes[] = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
+ 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
+ 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
+ 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
+ const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
+ 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
+ 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
+ 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 9;
+ const RealScalar nodes[] = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
+ 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
+ 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
+ 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
+ 0.9840801197538130449177881014518364L };
+ const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
+ 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
+ 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
+ 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
+ 0.0406371941807872059859460790552618L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 10;
+ const RealScalar nodes[] = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
+ 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
+ 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
+ 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
+ 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
+ const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
+ 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
+ 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
+ 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
+ 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+template <typename MatrixType>
+void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
+{
+ const int degree = 11;
+ const RealScalar nodes[] = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
+ 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
+ 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
+ 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
+ 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
+ 0.9891143290730284964019690005614287L };
+ const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
+ 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
+ 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
+ 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
+ 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
+ 0.0278342835580868332413768602212743L };
+ eigen_assert(degree <= maxPadeDegree);
+ MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
+ result.setZero(T.rows(), T.rows());
+ for (int k = 0; k < degree; ++k)
+ result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
+ .template triangularView<Upper>().solve(TminusI);
+}
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix logarithm of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix function.
+ *
+ * This class holds the argument to the matrix function until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::log() and most of the time this is the only way it
+ * is used.
+ */
+template<typename Derived> class MatrixLogarithmReturnValue
+: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
+{
+public:
+
+ typedef typename Derived::Scalar Scalar;
+ typedef typename Derived::Index Index;
+
+ /** \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm.
+ */
+ MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
+
+ /** \brief Compute the matrix logarithm.
+ *
+ * \param[out] result Logarithm of \p A, where \A is as specified in the constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ typedef typename Derived::PlainObject PlainObject;
+ typedef internal::traits<PlainObject> Traits;
+ static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
+ static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
+ static const int Options = PlainObject::Options;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
+ typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
+ AtomicType atomic;
+
+ const PlainObject Aevaluated = m_A.eval();
+ MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
+ mf.compute(result);
+ }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+private:
+ typename internal::nested<Derived>::type m_A;
+
+ MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
+};
+
+namespace internal {
+ template<typename Derived>
+ struct traits<MatrixLogarithmReturnValue<Derived> >
+ {
+ typedef typename Derived::PlainObject ReturnType;
+ };
+}
+
+
+/********** MatrixBase method **********/
+
+
+template <typename Derived>
+const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
+{
+ eigen_assert(rows() == cols());
+ return MatrixLogarithmReturnValue<Derived>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_LOGARITHM
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
new file mode 100644
index 0000000..78a307e
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -0,0 +1,508 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_POWER
+#define EIGEN_MATRIX_POWER
+
+namespace Eigen {
+
+template<typename MatrixType> class MatrixPower;
+
+template<typename MatrixType>
+class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
+{
+ public:
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+
+ MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
+ { }
+
+ template<typename ResultType>
+ inline void evalTo(ResultType& res) const
+ { m_pow.compute(res, m_p); }
+
+ Index rows() const { return m_pow.rows(); }
+ Index cols() const { return m_pow.cols(); }
+
+ private:
+ MatrixPower<MatrixType>& m_pow;
+ const RealScalar m_p;
+ MatrixPowerRetval& operator=(const MatrixPowerRetval&);
+};
+
+template<typename MatrixType>
+class MatrixPowerAtomic
+{
+ private:
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef std::complex<RealScalar> ComplexScalar;
+ typedef typename MatrixType::Index Index;
+ typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;
+
+ const MatrixType& m_A;
+ RealScalar m_p;
+
+ void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
+ void compute2x2(MatrixType& res, RealScalar p) const;
+ void computeBig(MatrixType& res) const;
+ static int getPadeDegree(float normIminusT);
+ static int getPadeDegree(double normIminusT);
+ static int getPadeDegree(long double normIminusT);
+ static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
+ static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
+
+ public:
+ MatrixPowerAtomic(const MatrixType& T, RealScalar p);
+ void compute(MatrixType& res) const;
+};
+
+template<typename MatrixType>
+MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
+ m_A(T), m_p(p)
+{ eigen_assert(T.rows() == T.cols()); }
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
+{
+ res.resizeLike(m_A);
+ switch (m_A.rows()) {
+ case 0:
+ break;
+ case 1:
+ res(0,0) = std::pow(m_A(0,0), m_p);
+ break;
+ case 2:
+ compute2x2(res, m_p);
+ break;
+ default:
+ computeBig(res);
+ }
+}
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
+{
+ int i = degree<<1;
+ res = (m_p-degree) / ((i-1)<<1) * IminusT;
+ for (--i; i; --i) {
+ res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
+ .solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
+ }
+ res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
+}
+
+// This function assumes that res has the correct size (see bug 614)
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
+{
+ using std::abs;
+ using std::pow;
+
+ res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
+
+ for (Index i=1; i < m_A.cols(); ++i) {
+ res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
+ if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
+ res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
+ else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
+ res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
+ else
+ res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
+ res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
+ }
+}
+
+template<typename MatrixType>
+void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
+{
+ const int digits = std::numeric_limits<RealScalar>::digits;
+ const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
+ digits <= 53? 2.789358995219730e-1: // double precision
+ digits <= 64? 2.4471944416607995472e-1L: // extended precision
+ digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
+ 9.134603732914548552537150753385375e-2L; // quadruple precision
+ MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
+ RealScalar normIminusT;
+ int degree, degree2, numberOfSquareRoots = 0;
+ bool hasExtraSquareRoot = false;
+
+ /* FIXME
+ * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
+ * loop. We should move 0 eigenvalues to bottom right corner. We need not
+ * worry about tiny values (e.g. 1e-300) because they will reach 1 if
+ * repetitively sqrt'ed.
+ *
+ * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
+ * bottom right corner.
+ *
+ * [ T A ]^p [ T^p (T^-1 T^p A) ]
+ * [ ] = [ ]
+ * [ 0 0 ] [ 0 0 ]
+ */
+ for (Index i=0; i < m_A.cols(); ++i)
+ eigen_assert(m_A(i,i) != RealScalar(0));
+
+ while (true) {
+ IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
+ normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
+ if (normIminusT < maxNormForPade) {
+ degree = getPadeDegree(normIminusT);
+ degree2 = getPadeDegree(normIminusT/2);
+ if (degree - degree2 <= 1 || hasExtraSquareRoot)
+ break;
+ hasExtraSquareRoot = true;
+ }
+ MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ T = sqrtT.template triangularView<Upper>();
+ ++numberOfSquareRoots;
+ }
+ computePade(degree, IminusT, res);
+
+ for (; numberOfSquareRoots; --numberOfSquareRoots) {
+ compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
+ res = res.template triangularView<Upper>() * res;
+ }
+ compute2x2(res, m_p);
+}
+
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
+{
+ const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
+ int degree = 3;
+ for (; degree <= 4; ++degree)
+ if (normIminusT <= maxNormForPade[degree - 3])
+ break;
+ return degree;
+}
+
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
+{
+ const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
+ 1.999045567181744e-1, 2.789358995219730e-1 };
+ int degree = 3;
+ for (; degree <= 7; ++degree)
+ if (normIminusT <= maxNormForPade[degree - 3])
+ break;
+ return degree;
+}
+
+template<typename MatrixType>
+inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
+{
+#if LDBL_MANT_DIG == 53
+ const int maxPadeDegree = 7;
+ const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
+ 1.999045567181744e-1L, 2.789358995219730e-1L };
+#elif LDBL_MANT_DIG <= 64
+ const int maxPadeDegree = 8;
+ const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
+ 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
+#elif LDBL_MANT_DIG <= 106
+ const int maxPadeDegree = 10;
+ const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
+ 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
+ 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
+ 1.1016843812851143391275867258512e-1L };
+#else
+ const int maxPadeDegree = 10;
+ const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
+ 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
+ 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
+ 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
+ 9.134603732914548552537150753385375e-2L };
+#endif
+ int degree = 3;
+ for (; degree <= maxPadeDegree; ++degree)
+ if (normIminusT <= maxNormForPade[degree - 3])
+ break;
+ return degree;
+}
+
+template<typename MatrixType>
+inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
+MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
+{
+ ComplexScalar logCurr = std::log(curr);
+ ComplexScalar logPrev = std::log(prev);
+ int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
+ ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
+ return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
+}
+
+template<typename MatrixType>
+inline typename MatrixPowerAtomic<MatrixType>::RealScalar
+MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
+{
+ RealScalar w = numext::atanh2(curr - prev, curr + prev);
+ return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
+}
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Class for computing matrix powers.
+ *
+ * \tparam MatrixType type of the base, expected to be an instantiation
+ * of the Matrix class template.
+ *
+ * This class is capable of computing real/complex matrices raised to
+ * an arbitrary real power. Meanwhile, it saves the result of Schur
+ * decomposition if an non-integral power has even been calculated.
+ * Therefore, if you want to compute multiple (>= 2) matrix powers
+ * for the same matrix, using the class directly is more efficient than
+ * calling MatrixBase::pow().
+ *
+ * Example:
+ * \include MatrixPower_optimal.cpp
+ * Output: \verbinclude MatrixPower_optimal.out
+ */
+template<typename MatrixType>
+class MatrixPower
+{
+ private:
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+
+ public:
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] A the base of the matrix power.
+ *
+ * The class stores a reference to A, so it should not be changed
+ * (or destroyed) before evaluation.
+ */
+ explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
+ { eigen_assert(A.rows() == A.cols()); }
+
+ /**
+ * \brief Returns the matrix power.
+ *
+ * \param[in] p exponent, a real scalar.
+ * \return The expression \f$ A^p \f$, where A is specified in the
+ * constructor.
+ */
+ const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
+ { return MatrixPowerRetval<MatrixType>(*this, p); }
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[in] p exponent, a real scalar.
+ * \param[out] res \f$ A^p \f$ where A is specified in the
+ * constructor.
+ */
+ template<typename ResultType>
+ void compute(ResultType& res, RealScalar p);
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ typedef std::complex<RealScalar> ComplexScalar;
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
+ MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
+
+ typename MatrixType::Nested m_A;
+ MatrixType m_tmp;
+ ComplexMatrix m_T, m_U, m_fT;
+ RealScalar m_conditionNumber;
+
+ RealScalar modfAndInit(RealScalar, RealScalar*);
+
+ template<typename ResultType>
+ void computeIntPower(ResultType&, RealScalar);
+
+ template<typename ResultType>
+ void computeFracPower(ResultType&, RealScalar);
+
+ template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+ static void revertSchur(
+ Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+ const ComplexMatrix& T,
+ const ComplexMatrix& U);
+
+ template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+ static void revertSchur(
+ Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+ const ComplexMatrix& T,
+ const ComplexMatrix& U);
+};
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
+{
+ switch (cols()) {
+ case 0:
+ break;
+ case 1:
+ res(0,0) = std::pow(m_A.coeff(0,0), p);
+ break;
+ default:
+ RealScalar intpart, x = modfAndInit(p, &intpart);
+ computeIntPower(res, intpart);
+ computeFracPower(res, x);
+ }
+}
+
+template<typename MatrixType>
+typename MatrixPower<MatrixType>::RealScalar
+MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
+{
+ typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;
+
+ *intpart = std::floor(x);
+ RealScalar res = x - *intpart;
+
+ if (!m_conditionNumber && res) {
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+
+ const RealArray absTdiag = m_T.diagonal().array().abs();
+ m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
+ }
+
+ if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
+ --res;
+ ++*intpart;
+ }
+ return res;
+}
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
+{
+ RealScalar pp = std::abs(p);
+
+ if (p<0) m_tmp = m_A.inverse();
+ else m_tmp = m_A;
+
+ res = MatrixType::Identity(rows(), cols());
+ while (pp >= 1) {
+ if (std::fmod(pp, 2) >= 1)
+ res = m_tmp * res;
+ m_tmp *= m_tmp;
+ pp /= 2;
+ }
+}
+
+template<typename MatrixType>
+template<typename ResultType>
+void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
+{
+ if (p) {
+ eigen_assert(m_conditionNumber);
+ MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
+ revertSchur(m_tmp, m_fT, m_U);
+ res = m_tmp * res;
+ }
+}
+
+template<typename MatrixType>
+template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+inline void MatrixPower<MatrixType>::revertSchur(
+ Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+ const ComplexMatrix& T,
+ const ComplexMatrix& U)
+{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
+
+template<typename MatrixType>
+template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+inline void MatrixPower<MatrixType>::revertSchur(
+ Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
+ const ComplexMatrix& T,
+ const ComplexMatrix& U)
+{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
+
+/**
+ * \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix power of some matrix (expression).
+ *
+ * \tparam Derived type of the base, a matrix (expression).
+ *
+ * This class holds the arguments to the matrix power until it is
+ * assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::pow() and related functions and most of the
+ * time this is the only way it is used.
+ */
+template<typename Derived>
+class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
+{
+ public:
+ typedef typename Derived::PlainObject PlainObject;
+ typedef typename Derived::RealScalar RealScalar;
+ typedef typename Derived::Index Index;
+
+ /**
+ * \brief Constructor.
+ *
+ * \param[in] A %Matrix (expression), the base of the matrix power.
+ * \param[in] p scalar, the exponent of the matrix power.
+ */
+ MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
+ { }
+
+ /**
+ * \brief Compute the matrix power.
+ *
+ * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
+ * constructor.
+ */
+ template<typename ResultType>
+ inline void evalTo(ResultType& res) const
+ { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
+
+ Index rows() const { return m_A.rows(); }
+ Index cols() const { return m_A.cols(); }
+
+ private:
+ const Derived& m_A;
+ const RealScalar m_p;
+ MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
+};
+
+namespace internal {
+
+template<typename MatrixPowerType>
+struct traits< MatrixPowerRetval<MatrixPowerType> >
+{ typedef typename MatrixPowerType::PlainObject ReturnType; };
+
+template<typename Derived>
+struct traits< MatrixPowerReturnValue<Derived> >
+{ typedef typename Derived::PlainObject ReturnType; };
+
+}
+
+template<typename Derived>
+const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
+{ return MatrixPowerReturnValue<Derived>(derived(), p); }
+
+} // namespace Eigen
+
+#endif // EIGEN_MATRIX_POWER
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
new file mode 100644
index 0000000..b48ea9d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -0,0 +1,466 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_SQUARE_ROOT
+#define EIGEN_MATRIX_SQUARE_ROOT
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * This class computes the square root of the upper quasi-triangular
+ * matrix stored in the upper Hessenberg part of the matrix passed to
+ * the constructor.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootTriangular
+ */
+template <typename MatrixType>
+class MatrixSquareRootQuasiTriangular
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A upper quasi-triangular matrix whose square root
+ * is to be computed.
+ *
+ * The class stores a reference to \p A, so it should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixSquareRootQuasiTriangular(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * Only the upper Hessenberg part of \p result is updated, the
+ * rest is not touched. See MatrixBase::sqrt() for details on
+ * how this computation is implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+
+ private:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+
+ void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+ void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+ void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
+ void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+ void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j);
+
+ template <typename SmallMatrixType>
+ static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
+ const SmallMatrixType& B, const SmallMatrixType& C);
+
+ const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
+{
+ result.resize(m_A.rows(), m_A.cols());
+ computeDiagonalPartOfSqrt(result, m_A);
+ computeOffDiagonalPartOfSqrt(result, m_A);
+}
+
+// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
+// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
+ const MatrixType& T)
+{
+ using std::sqrt;
+ const Index size = m_A.rows();
+ for (Index i = 0; i < size; i++) {
+ if (i == size - 1 || T.coeff(i+1, i) == 0) {
+ eigen_assert(T(i,i) >= 0);
+ sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
+ }
+ else {
+ compute2x2diagonalBlock(sqrtT, T, i);
+ ++i;
+ }
+ }
+}
+
+// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
+// post: sqrtT is the square root of T.
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
+ const MatrixType& T)
+{
+ const Index size = m_A.rows();
+ for (Index j = 1; j < size; j++) {
+ if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
+ continue;
+ for (Index i = j-1; i >= 0; i--) {
+ if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
+ continue;
+ bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
+ bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
+ if (iBlockIs2x2 && jBlockIs2x2)
+ compute2x2offDiagonalBlock(sqrtT, T, i, j);
+ else if (iBlockIs2x2 && !jBlockIs2x2)
+ compute2x1offDiagonalBlock(sqrtT, T, i, j);
+ else if (!iBlockIs2x2 && jBlockIs2x2)
+ compute1x2offDiagonalBlock(sqrtT, T, i, j);
+ else if (!iBlockIs2x2 && !jBlockIs2x2)
+ compute1x1offDiagonalBlock(sqrtT, T, i, j);
+ }
+ }
+}
+
+// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
+// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
+{
+ // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
+ // in EigenSolver. If we expose it, we could call it directly from here.
+ Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
+ EigenSolver<Matrix<Scalar,2,2> > es(block);
+ sqrtT.template block<2,2>(i,i)
+ = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
+}
+
+// pre: block structure of T is such that (i,j) is a 1x1 block,
+// all blocks of sqrtT to left of and below (i,j) are correct
+// post: sqrtT(i,j) has the correct value
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
+ sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
+ if (j-i > 1)
+ rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
+ Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
+ A += sqrtT.template block<2,2>(j,j).transpose();
+ sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
+ if (j-i > 2)
+ rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
+ Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
+ A += sqrtT.template block<2,2>(i,i);
+ sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
+ typename MatrixType::Index i, typename MatrixType::Index j)
+{
+ Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
+ Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
+ Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
+ if (j-i > 2)
+ C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
+ Matrix<Scalar,2,2> X;
+ solveAuxiliaryEquation(X, A, B, C);
+ sqrtT.template block<2,2>(i,j) = X;
+}
+
+// solves the equation A X + X B = C where all matrices are 2-by-2
+template <typename MatrixType>
+template <typename SmallMatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+ ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
+ const SmallMatrixType& B, const SmallMatrixType& C)
+{
+ EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
+ EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
+
+ Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
+ coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
+ coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
+ coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
+ coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
+ coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
+ coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
+ coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
+ coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
+ coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
+ coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
+ coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
+ coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
+
+ Matrix<Scalar,4,1> rhs;
+ rhs.coeffRef(0) = C.coeff(0,0);
+ rhs.coeffRef(1) = C.coeff(0,1);
+ rhs.coeffRef(2) = C.coeff(1,0);
+ rhs.coeffRef(3) = C.coeff(1,1);
+
+ Matrix<Scalar,4,1> result;
+ result = coeffMatrix.fullPivLu().solve(rhs);
+
+ X.coeffRef(0,0) = result.coeff(0);
+ X.coeffRef(0,1) = result.coeff(1);
+ X.coeffRef(1,0) = result.coeff(2);
+ X.coeffRef(1,1) = result.coeff(3);
+}
+
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of upper triangular matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * This class computes the square root of the upper triangular matrix
+ * stored in the upper triangular part (including the diagonal) of
+ * the matrix passed to the constructor.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
+ */
+template <typename MatrixType>
+class MatrixSquareRootTriangular
+{
+ public:
+ MatrixSquareRootTriangular(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * Only the upper triangular part (including the diagonal) of
+ * \p result is updated, the rest is not touched. See
+ * MatrixBase::sqrt() for details on how this computation is
+ * implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+
+ private:
+ const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
+{
+ using std::sqrt;
+
+ // Compute square root of m_A and store it in upper triangular part of result
+ // This uses that the square root of triangular matrices can be computed directly.
+ result.resize(m_A.rows(), m_A.cols());
+ typedef typename MatrixType::Index Index;
+ for (Index i = 0; i < m_A.rows(); i++) {
+ result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
+ }
+ for (Index j = 1; j < m_A.cols(); j++) {
+ for (Index i = j-1; i >= 0; i--) {
+ typedef typename MatrixType::Scalar Scalar;
+ // if i = j-1, then segment has length 0 so tmp = 0
+ Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
+ // denominator may be zero if original matrix is singular
+ result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
+ }
+ }
+}
+
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Class for computing matrix square roots of general matrices.
+ * \tparam MatrixType type of the argument of the matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ *
+ * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
+ */
+template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+class MatrixSquareRoot
+{
+ public:
+
+ /** \brief Constructor.
+ *
+ * \param[in] A matrix whose square root is to be computed.
+ *
+ * The class stores a reference to \p A, so it should not be
+ * changed (or destroyed) before compute() is called.
+ */
+ MatrixSquareRoot(const MatrixType& A);
+
+ /** \brief Compute the matrix square root
+ *
+ * \param[out] result square root of \p A, as specified in the constructor.
+ *
+ * See MatrixBase::sqrt() for details on how this computation is
+ * implemented.
+ */
+ template <typename ResultType> void compute(ResultType &result);
+};
+
+
+// ********** Partial specialization for real matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 0>
+{
+ public:
+
+ MatrixSquareRoot(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ template <typename ResultType> void compute(ResultType &result)
+ {
+ // Compute Schur decomposition of m_A
+ const RealSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T
+ MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
+ MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
+
+ // Compute square root of m_A
+ result = U * sqrtT * U.adjoint();
+ }
+
+ private:
+ const MatrixType& m_A;
+};
+
+
+// ********** Partial specialization for complex matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 1>
+{
+ public:
+
+ MatrixSquareRoot(const MatrixType& A)
+ : m_A(A)
+ {
+ eigen_assert(A.rows() == A.cols());
+ }
+
+ template <typename ResultType> void compute(ResultType &result)
+ {
+ // Compute Schur decomposition of m_A
+ const ComplexSchur<MatrixType> schurOfA(m_A);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
+
+ // Compute square root of T
+ MatrixType sqrtT;
+ MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+
+ // Compute square root of m_A
+ result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
+ }
+
+ private:
+ const MatrixType& m_A;
+};
+
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix square root of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix square root.
+ *
+ * This class holds the argument to the matrix square root until it
+ * is assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * MatrixBase::sqrt() and most of the time this is the only way it is
+ * used.
+ */
+template<typename Derived> class MatrixSquareRootReturnValue
+: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
+{
+ typedef typename Derived::Index Index;
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] src %Matrix (expression) forming the argument of the
+ * matrix square root.
+ */
+ MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
+
+ /** \brief Compute the matrix square root.
+ *
+ * \param[out] result the matrix square root of \p src in the
+ * constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ const typename Derived::PlainObject srcEvaluated = m_src.eval();
+ MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
+ me.compute(result);
+ }
+
+ Index rows() const { return m_src.rows(); }
+ Index cols() const { return m_src.cols(); }
+
+ protected:
+ const Derived& m_src;
+ private:
+ MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixSquareRootReturnValue<Derived> >
+{
+ typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+template <typename Derived>
+const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
+{
+ eigen_assert(rows() == cols());
+ return MatrixSquareRootReturnValue<Derived>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
new file mode 100644
index 0000000..724e55c
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h
@@ -0,0 +1,105 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_STEM_FUNCTION
+#define EIGEN_STEM_FUNCTION
+
+namespace Eigen {
+
+/** \ingroup MatrixFunctions_Module
+ * \brief Stem functions corresponding to standard mathematical functions.
+ */
+template <typename Scalar>
+class StdStemFunctions
+{
+ public:
+
+ /** \brief The exponential function (and its derivatives). */
+ static Scalar exp(Scalar x, int)
+ {
+ return std::exp(x);
+ }
+
+ /** \brief Cosine (and its derivatives). */
+ static Scalar cos(Scalar x, int n)
+ {
+ Scalar res;
+ switch (n % 4) {
+ case 0:
+ res = std::cos(x);
+ break;
+ case 1:
+ res = -std::sin(x);
+ break;
+ case 2:
+ res = -std::cos(x);
+ break;
+ case 3:
+ res = std::sin(x);
+ break;
+ }
+ return res;
+ }
+
+ /** \brief Sine (and its derivatives). */
+ static Scalar sin(Scalar x, int n)
+ {
+ Scalar res;
+ switch (n % 4) {
+ case 0:
+ res = std::sin(x);
+ break;
+ case 1:
+ res = std::cos(x);
+ break;
+ case 2:
+ res = -std::sin(x);
+ break;
+ case 3:
+ res = -std::cos(x);
+ break;
+ }
+ return res;
+ }
+
+ /** \brief Hyperbolic cosine (and its derivatives). */
+ static Scalar cosh(Scalar x, int n)
+ {
+ Scalar res;
+ switch (n % 2) {
+ case 0:
+ res = std::cosh(x);
+ break;
+ case 1:
+ res = std::sinh(x);
+ break;
+ }
+ return res;
+ }
+
+ /** \brief Hyperbolic sine (and its derivatives). */
+ static Scalar sinh(Scalar x, int n)
+ {
+ Scalar res;
+ switch (n % 2) {
+ case 0:
+ res = std::sinh(x);
+ break;
+ case 1:
+ res = std::cosh(x);
+ break;
+ }
+ return res;
+ }
+
+}; // end of class StdStemFunctions
+
+} // end namespace Eigen
+
+#endif // EIGEN_STEM_FUNCTION
diff --git a/eigen/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt b/eigen/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt
new file mode 100644
index 0000000..1b887cc
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MoreVectorization/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_MoreVectorization_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_MoreVectorization_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/MoreVectorization COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h b/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
new file mode 100644
index 0000000..63cb28d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h
@@ -0,0 +1,95 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
+#define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal \returns the arcsin of \a a (coeff-wise) */
+template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); }
+
+#ifdef EIGEN_VECTORIZE_SSE
+
+template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x)
+{
+ _EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
+ _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
+
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
+
+ _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
+ _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5);
+
+ _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
+ _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
+ _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
+ _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
+ _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
+
+ Packet4f a = pabs(x);//got the absolute value
+
+ Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit
+
+ Packet4f z1,z2;//will need them during computation
+
+
+//will compute the two branches for asin
+//so first compare with half
+
+ Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take
+//both will be taken, and finally results will be merged
+//the branch for values >0.5
+
+ {
+//the core series expansion
+ z1=pmadd(p4f_minus_half,a,p4f_half);
+ Packet4f x1=psqrt(z1);
+ Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2);
+ Packet4f s2=pmadd(s1, z1, p4f_asin3);
+ Packet4f s3=pmadd(s2,z1, p4f_asin4);
+ Packet4f s4=pmadd(s3,z1, p4f_asin5);
+ Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd
+ z1=pmadd(temp,x1,x1);
+ z1=padd(z1,z1);
+ z1=psub(p4f_pi_over_2,z1);
+ }
+
+ {
+//the core series expansion
+ Packet4f x2=a;
+ z2=pmul(x2,x2);
+ Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2);
+ Packet4f s2=pmadd(s1, z2, p4f_asin3);
+ Packet4f s3=pmadd(s2,z2, p4f_asin4);
+ Packet4f s4=pmadd(s3,z2, p4f_asin5);
+ Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd
+ z2=pmadd(temp,x2,x2);
+ }
+
+/* select the correct result from the two branch evaluations */
+ z1 = _mm_and_ps(branch_mask, z1);
+ z2 = _mm_andnot_ps(branch_mask, z2);
+ Packet4f z = _mm_or_ps(z1,z2);
+
+/* update the sign */
+ return _mm_xor_ps(z, sign_bit);
+}
+
+#endif // EIGEN_VECTORIZE_SSE
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt b/eigen/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt
new file mode 100644
index 0000000..9322dda
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_NonLinearOptimization_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_NonLinearOptimization_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/NonLinearOptimization COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
new file mode 100644
index 0000000..b8ba6dd
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
@@ -0,0 +1,601 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
+#define EIGEN_HYBRIDNONLINEARSOLVER_H
+
+namespace Eigen {
+
+namespace HybridNonLinearSolverSpace {
+ enum Status {
+ Running = -1,
+ ImproperInputParameters = 0,
+ RelativeErrorTooSmall = 1,
+ TooManyFunctionEvaluation = 2,
+ TolTooSmall = 3,
+ NotMakingProgressJacobian = 4,
+ NotMakingProgressIterations = 5,
+ UserAsked = 6
+ };
+}
+
+/**
+ * \ingroup NonLinearOptimization_Module
+ * \brief Finds a zero of a system of n
+ * nonlinear functions in n variables by a modification of the Powell
+ * hybrid method ("dogleg").
+ *
+ * The user must provide a subroutine which calculates the
+ * functions. The Jacobian is either provided by the user, or approximated
+ * using a forward-difference method.
+ *
+ */
+template<typename FunctorType, typename Scalar=double>
+class HybridNonLinearSolver
+{
+public:
+ typedef DenseIndex Index;
+
+ HybridNonLinearSolver(FunctorType &_functor)
+ : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
+
+ struct Parameters {
+ Parameters()
+ : factor(Scalar(100.))
+ , maxfev(1000)
+ , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
+ , nb_of_subdiagonals(-1)
+ , nb_of_superdiagonals(-1)
+ , epsfcn(Scalar(0.)) {}
+ Scalar factor;
+ Index maxfev; // maximum number of function evaluation
+ Scalar xtol;
+ Index nb_of_subdiagonals;
+ Index nb_of_superdiagonals;
+ Scalar epsfcn;
+ };
+ typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
+ typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
+ /* TODO: if eigen provides a triangular storage, use it here */
+ typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
+
+ HybridNonLinearSolverSpace::Status hybrj1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solve(FVectorType &x);
+
+ HybridNonLinearSolverSpace::Status hybrd1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
+
+ void resetParameters(void) { parameters = Parameters(); }
+ Parameters parameters;
+ FVectorType fvec, qtf, diag;
+ JacobianType fjac;
+ UpperTriangularType R;
+ Index nfev;
+ Index njev;
+ Index iter;
+ Scalar fnorm;
+ bool useExternalScaling;
+private:
+ FunctorType &functor;
+ Index n;
+ Scalar sum;
+ bool sing;
+ Scalar temp;
+ Scalar delta;
+ bool jeval;
+ Index ncsuc;
+ Scalar ratio;
+ Scalar pnorm, xnorm, fnorm1;
+ Index nslow1, nslow2;
+ Index ncfail;
+ Scalar actred, prered;
+ FVectorType wa1, wa2, wa3, wa4;
+
+ HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
+};
+
+
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || tol < 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.maxfev = 100*(n+1);
+ parameters.xtol = tol;
+ diag.setConstant(n, 1.);
+ useExternalScaling = true;
+ return solve(x);
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
+{
+ n = x.size();
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
+ fvec.resize(n);
+ qtf.resize(n);
+ fjac.resize(n, n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize iteration counter and monitors. */
+ iter = 1;
+ ncsuc = 0;
+ ncfail = 0;
+ nslow1 = 0;
+ nslow2 = 0;
+
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
+{
+ using std::abs;
+
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ Index j;
+ std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
+
+ jeval = true;
+
+ /* calculate the jacobian matrix. */
+ if ( functor.df(x, fjac) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++njev;
+
+ wa2 = fjac.colwise().blueNorm();
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* compute the qr factorization of the jacobian. */
+ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
+
+ /* copy the triangular factor of the qr factorization into r. */
+ R = qrfac.matrixQR();
+
+ /* accumulate the orthogonal factor in fjac. */
+ fjac = qrfac.householderQ();
+
+ /* form (q transpose)*fvec and store in qtf. */
+ qtf = fjac.transpose() * fvec;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ while (true) {
+ /* determine the direction p. */
+ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (fnorm1 < fnorm) /* Computing 2nd power */
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction. */
+ wa3 = R.template triangularView<Upper>()*wa1 + qtf;
+ temp = wa3.stableNorm();
+ prered = 0.;
+ if (temp < fnorm) /* Computing 2nd power */
+ prered = 1. - numext::abs2(temp / fnorm);
+
+ /* compute the ratio of the actual to the predicted reduction. */
+ ratio = 0.;
+ if (prered > 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio < Scalar(.1)) {
+ ncsuc = 0;
+ ++ncfail;
+ delta = Scalar(.5) * delta;
+ } else {
+ ncfail = 0;
+ ++ncsuc;
+ if (ratio >= Scalar(.5) || ncsuc > 1)
+ delta = (std::max)(delta, pnorm / Scalar(.5));
+ if (abs(ratio - 1.) <= Scalar(.1)) {
+ delta = pnorm / Scalar(.5);
+ }
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* determine the progress of the iteration. */
+ ++nslow1;
+ if (actred >= Scalar(.001))
+ nslow1 = 0;
+ if (jeval)
+ ++nslow2;
+ if (actred >= Scalar(.1))
+ nslow2 = 0;
+
+ /* test for convergence. */
+ if (delta <= parameters.xtol * xnorm || fnorm == 0.)
+ return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
+ if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
+ return HybridNonLinearSolverSpace::TolTooSmall;
+ if (nslow2 == 5)
+ return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
+ if (nslow1 == 10)
+ return HybridNonLinearSolverSpace::NotMakingProgressIterations;
+
+ /* criterion for recalculating jacobian. */
+ if (ncfail == 2)
+ break; // leave inner loop and go for the next outer loop iteration
+
+ /* calculate the rank one modification to the jacobian */
+ /* and update qtf if necessary. */
+ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
+ wa2 = fjac.transpose() * wa4;
+ if (ratio >= Scalar(1e-4))
+ qtf = wa2;
+ wa2 = (wa2-wa3)/pnorm;
+
+ /* compute the qr factorization of the updated jacobian. */
+ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
+ internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
+ internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
+
+ jeval = false;
+ }
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
+{
+ HybridNonLinearSolverSpace::Status status = solveInit(x);
+ if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
+ return status;
+ while (status==HybridNonLinearSolverSpace::Running)
+ status = solveOneStep(x);
+ return status;
+}
+
+
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || tol < 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.maxfev = 200*(n+1);
+ parameters.xtol = tol;
+
+ diag.setConstant(n, 1.);
+ useExternalScaling = true;
+ return solveNumericalDiff(x);
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
+{
+ n = x.size();
+
+ if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
+ if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
+ qtf.resize(n);
+ fjac.resize(n, n);
+ fvec.resize(n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return HybridNonLinearSolverSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize iteration counter and monitors. */
+ iter = 1;
+ ncsuc = 0;
+ ncfail = 0;
+ nslow1 = 0;
+ nslow2 = 0;
+
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
+{
+ using std::sqrt;
+ using std::abs;
+
+ assert(x.size()==n); // check the caller is not cheating us
+
+ Index j;
+ std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
+
+ jeval = true;
+ if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
+ if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
+
+ /* calculate the jacobian matrix. */
+ if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
+
+ wa2 = fjac.colwise().blueNorm();
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* compute the qr factorization of the jacobian. */
+ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
+
+ /* copy the triangular factor of the qr factorization into r. */
+ R = qrfac.matrixQR();
+
+ /* accumulate the orthogonal factor in fjac. */
+ fjac = qrfac.householderQ();
+
+ /* form (q transpose)*fvec and store in qtf. */
+ qtf = fjac.transpose() * fvec;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ while (true) {
+ /* determine the direction p. */
+ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return HybridNonLinearSolverSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (fnorm1 < fnorm) /* Computing 2nd power */
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction. */
+ wa3 = R.template triangularView<Upper>()*wa1 + qtf;
+ temp = wa3.stableNorm();
+ prered = 0.;
+ if (temp < fnorm) /* Computing 2nd power */
+ prered = 1. - numext::abs2(temp / fnorm);
+
+ /* compute the ratio of the actual to the predicted reduction. */
+ ratio = 0.;
+ if (prered > 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio < Scalar(.1)) {
+ ncsuc = 0;
+ ++ncfail;
+ delta = Scalar(.5) * delta;
+ } else {
+ ncfail = 0;
+ ++ncsuc;
+ if (ratio >= Scalar(.5) || ncsuc > 1)
+ delta = (std::max)(delta, pnorm / Scalar(.5));
+ if (abs(ratio - 1.) <= Scalar(.1)) {
+ delta = pnorm / Scalar(.5);
+ }
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* determine the progress of the iteration. */
+ ++nslow1;
+ if (actred >= Scalar(.001))
+ nslow1 = 0;
+ if (jeval)
+ ++nslow2;
+ if (actred >= Scalar(.1))
+ nslow2 = 0;
+
+ /* test for convergence. */
+ if (delta <= parameters.xtol * xnorm || fnorm == 0.)
+ return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
+ if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
+ return HybridNonLinearSolverSpace::TolTooSmall;
+ if (nslow2 == 5)
+ return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
+ if (nslow1 == 10)
+ return HybridNonLinearSolverSpace::NotMakingProgressIterations;
+
+ /* criterion for recalculating jacobian. */
+ if (ncfail == 2)
+ break; // leave inner loop and go for the next outer loop iteration
+
+ /* calculate the rank one modification to the jacobian */
+ /* and update qtf if necessary. */
+ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
+ wa2 = fjac.transpose() * wa4;
+ if (ratio >= Scalar(1e-4))
+ qtf = wa2;
+ wa2 = (wa2-wa3)/pnorm;
+
+ /* compute the qr factorization of the updated jacobian. */
+ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
+ internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
+ internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
+
+ jeval = false;
+ }
+ return HybridNonLinearSolverSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+HybridNonLinearSolverSpace::Status
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
+{
+ HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
+ if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
+ return status;
+ while (status==HybridNonLinearSolverSpace::Running)
+ status = solveNumericalDiffOneStep(x);
+ return status;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
+
+//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
new file mode 100644
index 0000000..bfeb26f
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
@@ -0,0 +1,650 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEVENBERGMARQUARDT__H
+#define EIGEN_LEVENBERGMARQUARDT__H
+
+namespace Eigen {
+
+namespace LevenbergMarquardtSpace {
+ enum Status {
+ NotStarted = -2,
+ Running = -1,
+ ImproperInputParameters = 0,
+ RelativeReductionTooSmall = 1,
+ RelativeErrorTooSmall = 2,
+ RelativeErrorAndReductionTooSmall = 3,
+ CosinusTooSmall = 4,
+ TooManyFunctionEvaluation = 5,
+ FtolTooSmall = 6,
+ XtolTooSmall = 7,
+ GtolTooSmall = 8,
+ UserAsked = 9
+ };
+}
+
+
+
+/**
+ * \ingroup NonLinearOptimization_Module
+ * \brief Performs non linear optimization over a non-linear function,
+ * using a variant of the Levenberg Marquardt algorithm.
+ *
+ * Check wikipedia for more information.
+ * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
+ */
+template<typename FunctorType, typename Scalar=double>
+class LevenbergMarquardt
+{
+public:
+ LevenbergMarquardt(FunctorType &_functor)
+ : functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
+
+ typedef DenseIndex Index;
+
+ struct Parameters {
+ Parameters()
+ : factor(Scalar(100.))
+ , maxfev(400)
+ , ftol(std::sqrt(NumTraits<Scalar>::epsilon()))
+ , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
+ , gtol(Scalar(0.))
+ , epsfcn(Scalar(0.)) {}
+ Scalar factor;
+ Index maxfev; // maximum number of function evaluation
+ Scalar ftol;
+ Scalar xtol;
+ Scalar gtol;
+ Scalar epsfcn;
+ };
+
+ typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
+ typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
+
+ LevenbergMarquardtSpace::Status lmder1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ LevenbergMarquardtSpace::Status minimize(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
+
+ static LevenbergMarquardtSpace::Status lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ LevenbergMarquardtSpace::Status lmstr1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x);
+
+ void resetParameters(void) { parameters = Parameters(); }
+
+ Parameters parameters;
+ FVectorType fvec, qtf, diag;
+ JacobianType fjac;
+ PermutationMatrix<Dynamic,Dynamic> permutation;
+ Index nfev;
+ Index njev;
+ Index iter;
+ Scalar fnorm, gnorm;
+ bool useExternalScaling;
+
+ Scalar lm_param(void) { return par; }
+private:
+ FunctorType &functor;
+ Index n;
+ Index m;
+ FVectorType wa1, wa2, wa3, wa4;
+
+ Scalar par, sum;
+ Scalar temp, temp1, temp2;
+ Scalar delta;
+ Scalar ratio;
+ Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
+
+ LevenbergMarquardt& operator=(const LevenbergMarquardt&);
+};
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::lmder1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+ m = functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.ftol = tol;
+ parameters.xtol = tol;
+ parameters.maxfev = 100*(n+1);
+
+ return minimize(x);
+}
+
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x)
+{
+ LevenbergMarquardtSpace::Status status = minimizeInit(x);
+ if (status==LevenbergMarquardtSpace::ImproperInputParameters)
+ return status;
+ do {
+ status = minimizeOneStep(x);
+ } while (status==LevenbergMarquardtSpace::Running);
+ return status;
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
+{
+ n = x.size();
+ m = functor.values();
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n);
+ wa4.resize(m);
+ fvec.resize(m);
+ fjac.resize(m, n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ qtf.resize(n);
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize levenberg-marquardt parameter and iteration counter. */
+ par = 0.;
+ iter = 1;
+
+ return LevenbergMarquardtSpace::NotStarted;
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
+{
+ using std::abs;
+ using std::sqrt;
+
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ /* calculate the jacobian matrix. */
+ Index df_ret = functor.df(x, fjac);
+ if (df_ret<0)
+ return LevenbergMarquardtSpace::UserAsked;
+ if (df_ret>0)
+ // numerical diff, we evaluated the function df_ret times
+ nfev += df_ret;
+ else njev++;
+
+ /* compute the qr factorization of the jacobian. */
+ wa2 = fjac.colwise().blueNorm();
+ ColPivHouseholderQR<JacobianType> qrfac(fjac);
+ fjac = qrfac.matrixQR();
+ permutation = qrfac.colsPermutation();
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.)? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* form (q transpose)*fvec and store the first n components in */
+ /* qtf. */
+ wa4 = fvec;
+ wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
+ qtf = wa4.head(n);
+
+ /* compute the norm of the scaled gradient. */
+ gnorm = 0.;
+ if (fnorm != 0.)
+ for (Index j = 0; j < n; ++j)
+ if (wa2[permutation.indices()[j]] != 0.)
+ gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
+
+ /* test for convergence of the gradient norm. */
+ if (gnorm <= parameters.gtol)
+ return LevenbergMarquardtSpace::CosinusTooSmall;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ do {
+
+ /* determine the levenberg-marquardt parameter. */
+ internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (Scalar(.1) * fnorm1 < fnorm)
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction and */
+ /* the scaled directional derivative. */
+ wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
+ temp1 = numext::abs2(wa3.stableNorm() / fnorm);
+ temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
+ prered = temp1 + temp2 / Scalar(.5);
+ dirder = -(temp1 + temp2);
+
+ /* compute the ratio of the actual to the predicted */
+ /* reduction. */
+ ratio = 0.;
+ if (prered != 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio <= Scalar(.25)) {
+ if (actred >= 0.)
+ temp = Scalar(.5);
+ if (actred < 0.)
+ temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
+ if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
+ temp = Scalar(.1);
+ /* Computing MIN */
+ delta = temp * (std::min)(delta, pnorm / Scalar(.1));
+ par /= temp;
+ } else if (!(par != 0. && ratio < Scalar(.75))) {
+ delta = pnorm / Scalar(.5);
+ par = Scalar(.5) * par;
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* tests for convergence. */
+ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
+ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::RelativeReductionTooSmall;
+ if (delta <= parameters.xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
+ if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::FtolTooSmall;
+ if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
+ return LevenbergMarquardtSpace::XtolTooSmall;
+ if (gnorm <= NumTraits<Scalar>::epsilon())
+ return LevenbergMarquardtSpace::GtolTooSmall;
+
+ } while (ratio < Scalar(1e-4));
+
+ return LevenbergMarquardtSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+ m = functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ resetParameters();
+ parameters.ftol = tol;
+ parameters.xtol = tol;
+ parameters.maxfev = 100*(n+1);
+
+ return minimizeOptimumStorage(x);
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x)
+{
+ n = x.size();
+ m = functor.values();
+
+ wa1.resize(n); wa2.resize(n); wa3.resize(n);
+ wa4.resize(m);
+ fvec.resize(m);
+ // Only R is stored in fjac. Q is only used to compute 'qtf', which is
+ // Q.transpose()*rhs. qtf will be updated using givens rotation,
+ // instead of storing them in Q.
+ // The purpose it to only use a nxn matrix, instead of mxn here, so
+ // that we can handle cases where m>>n :
+ fjac.resize(n, n);
+ if (!useExternalScaling)
+ diag.resize(n);
+ eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
+ qtf.resize(n);
+
+ /* Function Body */
+ nfev = 0;
+ njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ if (useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (diag[j] <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ nfev = 1;
+ if ( functor(x, fvec) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ fnorm = fvec.stableNorm();
+
+ /* initialize levenberg-marquardt parameter and iteration counter. */
+ par = 0.;
+ iter = 1;
+
+ return LevenbergMarquardtSpace::NotStarted;
+}
+
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x)
+{
+ using std::abs;
+ using std::sqrt;
+
+ eigen_assert(x.size()==n); // check the caller is not cheating us
+
+ Index i, j;
+ bool sing;
+
+ /* compute the qr factorization of the jacobian matrix */
+ /* calculated one row at a time, while simultaneously */
+ /* forming (q transpose)*fvec and storing the first */
+ /* n components in qtf. */
+ qtf.fill(0.);
+ fjac.fill(0.);
+ Index rownb = 2;
+ for (i = 0; i < m; ++i) {
+ if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
+ internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
+ ++rownb;
+ }
+ ++njev;
+
+ /* if the jacobian is rank deficient, call qrfac to */
+ /* reorder its columns and update the components of qtf. */
+ sing = false;
+ for (j = 0; j < n; ++j) {
+ if (fjac(j,j) == 0.)
+ sing = true;
+ wa2[j] = fjac.col(j).head(j).stableNorm();
+ }
+ permutation.setIdentity(n);
+ if (sing) {
+ wa2 = fjac.colwise().blueNorm();
+ // TODO We have no unit test covering this code path, do not modify
+ // until it is carefully tested
+ ColPivHouseholderQR<JacobianType> qrfac(fjac);
+ fjac = qrfac.matrixQR();
+ wa1 = fjac.diagonal();
+ fjac.diagonal() = qrfac.hCoeffs();
+ permutation = qrfac.colsPermutation();
+ // TODO : avoid this:
+ for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors
+
+ for (j = 0; j < n; ++j) {
+ if (fjac(j,j) != 0.) {
+ sum = 0.;
+ for (i = j; i < n; ++i)
+ sum += fjac(i,j) * qtf[i];
+ temp = -sum / fjac(j,j);
+ for (i = j; i < n; ++i)
+ qtf[i] += fjac(i,j) * temp;
+ }
+ fjac(j,j) = wa1[j];
+ }
+ }
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (iter == 1) {
+ if (!useExternalScaling)
+ for (j = 0; j < n; ++j)
+ diag[j] = (wa2[j]==0.)? 1. : wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound delta. */
+ xnorm = diag.cwiseProduct(x).stableNorm();
+ delta = parameters.factor * xnorm;
+ if (delta == 0.)
+ delta = parameters.factor;
+ }
+
+ /* compute the norm of the scaled gradient. */
+ gnorm = 0.;
+ if (fnorm != 0.)
+ for (j = 0; j < n; ++j)
+ if (wa2[permutation.indices()[j]] != 0.)
+ gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));
+
+ /* test for convergence of the gradient norm. */
+ if (gnorm <= parameters.gtol)
+ return LevenbergMarquardtSpace::CosinusTooSmall;
+
+ /* rescale if necessary. */
+ if (!useExternalScaling)
+ diag = diag.cwiseMax(wa2);
+
+ do {
+
+ /* determine the levenberg-marquardt parameter. */
+ internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ wa1 = -wa1;
+ wa2 = x + wa1;
+ pnorm = diag.cwiseProduct(wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (iter == 1)
+ delta = (std::min)(delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( functor(wa2, wa4) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ ++nfev;
+ fnorm1 = wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (Scalar(.1) * fnorm1 < fnorm)
+ actred = 1. - numext::abs2(fnorm1 / fnorm);
+
+ /* compute the scaled predicted reduction and */
+ /* the scaled directional derivative. */
+ wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
+ temp1 = numext::abs2(wa3.stableNorm() / fnorm);
+ temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
+ prered = temp1 + temp2 / Scalar(.5);
+ dirder = -(temp1 + temp2);
+
+ /* compute the ratio of the actual to the predicted */
+ /* reduction. */
+ ratio = 0.;
+ if (prered != 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio <= Scalar(.25)) {
+ if (actred >= 0.)
+ temp = Scalar(.5);
+ if (actred < 0.)
+ temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
+ if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
+ temp = Scalar(.1);
+ /* Computing MIN */
+ delta = temp * (std::min)(delta, pnorm / Scalar(.1));
+ par /= temp;
+ } else if (!(par != 0. && ratio < Scalar(.75))) {
+ delta = pnorm / Scalar(.5);
+ par = Scalar(.5) * par;
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= Scalar(1e-4)) {
+ /* successful iteration. update x, fvec, and their norms. */
+ x = wa2;
+ wa2 = diag.cwiseProduct(x);
+ fvec = wa4;
+ xnorm = wa2.stableNorm();
+ fnorm = fnorm1;
+ ++iter;
+ }
+
+ /* tests for convergence. */
+ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
+ if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::RelativeReductionTooSmall;
+ if (delta <= parameters.xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (nfev >= parameters.maxfev)
+ return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
+ if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::FtolTooSmall;
+ if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
+ return LevenbergMarquardtSpace::XtolTooSmall;
+ if (gnorm <= NumTraits<Scalar>::epsilon())
+ return LevenbergMarquardtSpace::GtolTooSmall;
+
+ } while (ratio < Scalar(1e-4));
+
+ return LevenbergMarquardtSpace::Running;
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x)
+{
+ LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
+ if (status==LevenbergMarquardtSpace::ImproperInputParameters)
+ return status;
+ do {
+ status = minimizeOptimumStorageOneStep(x);
+ } while (status==LevenbergMarquardtSpace::Running);
+ return status;
+}
+
+template<typename FunctorType, typename Scalar>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol
+ )
+{
+ Index n = x.size();
+ Index m = functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ NumericalDiff<FunctorType> numDiff(functor);
+ // embedded LevenbergMarquardt
+ LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff);
+ lm.parameters.ftol = tol;
+ lm.parameters.xtol = tol;
+ lm.parameters.maxfev = 200*(n+1);
+
+ LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
+ if (nfev)
+ * nfev = lm.nfev;
+ return info;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_LEVENBERGMARQUARDT__H
+
+//vim: ai ts=4 sts=4 et sw=4
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
new file mode 100644
index 0000000..db8ff7d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h
@@ -0,0 +1,66 @@
+#define chkder_log10e 0.43429448190325182765
+#define chkder_factor 100.
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Scalar>
+void chkder(
+ const Matrix< Scalar, Dynamic, 1 > &x,
+ const Matrix< Scalar, Dynamic, 1 > &fvec,
+ const Matrix< Scalar, Dynamic, Dynamic > &fjac,
+ Matrix< Scalar, Dynamic, 1 > &xp,
+ const Matrix< Scalar, Dynamic, 1 > &fvecp,
+ int mode,
+ Matrix< Scalar, Dynamic, 1 > &err
+ )
+{
+ using std::sqrt;
+ using std::abs;
+ using std::log;
+
+ typedef DenseIndex Index;
+
+ const Scalar eps = sqrt(NumTraits<Scalar>::epsilon());
+ const Scalar epsf = chkder_factor * NumTraits<Scalar>::epsilon();
+ const Scalar epslog = chkder_log10e * log(eps);
+ Scalar temp;
+
+ const Index m = fvec.size(), n = x.size();
+
+ if (mode != 2) {
+ /* mode = 1. */
+ xp.resize(n);
+ for (Index j = 0; j < n; ++j) {
+ temp = eps * abs(x[j]);
+ if (temp == 0.)
+ temp = eps;
+ xp[j] = x[j] + temp;
+ }
+ }
+ else {
+ /* mode = 2. */
+ err.setZero(m);
+ for (Index j = 0; j < n; ++j) {
+ temp = abs(x[j]);
+ if (temp == 0.)
+ temp = 1.;
+ err += temp * fjac.col(j);
+ }
+ for (Index i = 0; i < m; ++i) {
+ temp = 1.;
+ if (fvec[i] != 0. && fvecp[i] != 0. && abs(fvecp[i] - fvec[i]) >= epsf * abs(fvec[i]))
+ temp = eps * abs((fvecp[i] - fvec[i]) / eps - err[i]) / (abs(fvec[i]) + abs(fvecp[i]));
+ err[i] = 1.;
+ if (temp > NumTraits<Scalar>::epsilon() && temp < eps)
+ err[i] = (chkder_log10e * log(temp) - epslog) / epslog;
+ if (temp >= eps)
+ err[i] = 0.;
+ }
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
new file mode 100644
index 0000000..68260d1
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h
@@ -0,0 +1,70 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void covar(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const VectorXi &ipvt,
+ Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
+{
+ using std::abs;
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j, k, l, ii, jj;
+ bool sing;
+ Scalar temp;
+
+ /* Function Body */
+ const Index n = r.cols();
+ const Scalar tolr = tol * abs(r(0,0));
+ Matrix< Scalar, Dynamic, 1 > wa(n);
+ eigen_assert(ipvt.size()==n);
+
+ /* form the inverse of r in the full upper triangle of r. */
+ l = -1;
+ for (k = 0; k < n; ++k)
+ if (abs(r(k,k)) > tolr) {
+ r(k,k) = 1. / r(k,k);
+ for (j = 0; j <= k-1; ++j) {
+ temp = r(k,k) * r(j,k);
+ r(j,k) = 0.;
+ r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
+ }
+ l = k;
+ }
+
+ /* form the full upper triangle of the inverse of (r transpose)*r */
+ /* in the full upper triangle of r. */
+ for (k = 0; k <= l; ++k) {
+ for (j = 0; j <= k-1; ++j)
+ r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
+ r.col(k).head(k+1) *= r(k,k);
+ }
+
+ /* form the full lower triangle of the covariance matrix */
+ /* in the strict lower triangle of r and in wa. */
+ for (j = 0; j < n; ++j) {
+ jj = ipvt[j];
+ sing = j > l;
+ for (i = 0; i <= j; ++i) {
+ if (sing)
+ r(i,j) = 0.;
+ ii = ipvt[i];
+ if (ii > jj)
+ r(ii,jj) = r(i,j);
+ if (ii < jj)
+ r(jj,ii) = r(i,j);
+ }
+ wa[jj] = r(j,j);
+ }
+
+ /* symmetrize the covariance matrix in r. */
+ r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
+ r.diagonal() = wa;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
new file mode 100644
index 0000000..80c5d27
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h
@@ -0,0 +1,107 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void dogleg(
+ const Matrix< Scalar, Dynamic, Dynamic > &qrfac,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Matrix< Scalar, Dynamic, 1 > &x)
+{
+ using std::abs;
+ using std::sqrt;
+
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j;
+ Scalar sum, temp, alpha, bnorm;
+ Scalar gnorm, qnorm;
+ Scalar sgnorm;
+
+ /* Function Body */
+ const Scalar epsmch = NumTraits<Scalar>::epsilon();
+ const Index n = qrfac.cols();
+ eigen_assert(n==qtb.size());
+ eigen_assert(n==x.size());
+ eigen_assert(n==diag.size());
+ Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
+
+ /* first, calculate the gauss-newton direction. */
+ for (j = n-1; j >=0; --j) {
+ temp = qrfac(j,j);
+ if (temp == 0.) {
+ temp = epsmch * qrfac.col(j).head(j+1).maxCoeff();
+ if (temp == 0.)
+ temp = epsmch;
+ }
+ if (j==n-1)
+ x[j] = qtb[j] / temp;
+ else
+ x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp;
+ }
+
+ /* test whether the gauss-newton direction is acceptable. */
+ qnorm = diag.cwiseProduct(x).stableNorm();
+ if (qnorm <= delta)
+ return;
+
+ // TODO : this path is not tested by Eigen unit tests
+
+ /* the gauss-newton direction is not acceptable. */
+ /* next, calculate the scaled gradient direction. */
+
+ wa1.fill(0.);
+ for (j = 0; j < n; ++j) {
+ wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j];
+ wa1[j] /= diag[j];
+ }
+
+ /* calculate the norm of the scaled gradient and test for */
+ /* the special case in which the scaled gradient is zero. */
+ gnorm = wa1.stableNorm();
+ sgnorm = 0.;
+ alpha = delta / qnorm;
+ if (gnorm == 0.)
+ goto algo_end;
+
+ /* calculate the point along the scaled gradient */
+ /* at which the quadratic is minimized. */
+ wa1.array() /= (diag*gnorm).array();
+ // TODO : once unit tests cover this part,:
+ // wa2 = qrfac.template triangularView<Upper>() * wa1;
+ for (j = 0; j < n; ++j) {
+ sum = 0.;
+ for (i = j; i < n; ++i) {
+ sum += qrfac(j,i) * wa1[i];
+ }
+ wa2[j] = sum;
+ }
+ temp = wa2.stableNorm();
+ sgnorm = gnorm / temp / temp;
+
+ /* test whether the scaled gradient direction is acceptable. */
+ alpha = 0.;
+ if (sgnorm >= delta)
+ goto algo_end;
+
+ /* the scaled gradient direction is not acceptable. */
+ /* finally, calculate the point along the dogleg */
+ /* at which the quadratic is minimized. */
+ bnorm = qtb.stableNorm();
+ temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
+ temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta)));
+ alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp;
+algo_end:
+
+ /* form appropriate convex combination of the gauss-newton */
+ /* direction and the scaled gradient direction. */
+ temp = (1.-alpha) * (std::min)(sgnorm,delta);
+ x = temp * wa1 + alpha * x;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
new file mode 100644
index 0000000..bb7cf26
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h
@@ -0,0 +1,79 @@
+namespace Eigen {
+
+namespace internal {
+
+template<typename FunctorType, typename Scalar>
+DenseIndex fdjac1(
+ const FunctorType &Functor,
+ Matrix< Scalar, Dynamic, 1 > &x,
+ Matrix< Scalar, Dynamic, 1 > &fvec,
+ Matrix< Scalar, Dynamic, Dynamic > &fjac,
+ DenseIndex ml, DenseIndex mu,
+ Scalar epsfcn)
+{
+ using std::sqrt;
+ using std::abs;
+
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Scalar h;
+ Index j, k;
+ Scalar eps, temp;
+ Index msum;
+ int iflag;
+ Index start, length;
+
+ /* Function Body */
+ const Scalar epsmch = NumTraits<Scalar>::epsilon();
+ const Index n = x.size();
+ eigen_assert(fvec.size()==n);
+ Matrix< Scalar, Dynamic, 1 > wa1(n);
+ Matrix< Scalar, Dynamic, 1 > wa2(n);
+
+ eps = sqrt((std::max)(epsfcn,epsmch));
+ msum = ml + mu + 1;
+ if (msum >= n) {
+ /* computation of dense approximate jacobian. */
+ for (j = 0; j < n; ++j) {
+ temp = x[j];
+ h = eps * abs(temp);
+ if (h == 0.)
+ h = eps;
+ x[j] = temp + h;
+ iflag = Functor(x, wa1);
+ if (iflag < 0)
+ return iflag;
+ x[j] = temp;
+ fjac.col(j) = (wa1-fvec)/h;
+ }
+
+ }else {
+ /* computation of banded approximate jacobian. */
+ for (k = 0; k < msum; ++k) {
+ for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
+ wa2[j] = x[j];
+ h = eps * abs(wa2[j]);
+ if (h == 0.) h = eps;
+ x[j] = wa2[j] + h;
+ }
+ iflag = Functor(x, wa1);
+ if (iflag < 0)
+ return iflag;
+ for (j = k; (msum<0) ? (j>n): (j<n); j += msum) {
+ x[j] = wa2[j];
+ h = eps * abs(wa2[j]);
+ if (h == 0.) h = eps;
+ fjac.col(j).setZero();
+ start = std::max<Index>(0,j-mu);
+ length = (std::min)(n-1, j+ml) - start + 1;
+ fjac.col(j).segment(start, length) = ( wa1.segment(start, length)-fvec.segment(start, length))/h;
+ }
+ }
+ }
+ return 0;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
new file mode 100644
index 0000000..4c17d4c
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
@@ -0,0 +1,298 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void lmpar(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const VectorXi &ipvt,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Scalar &par,
+ Matrix< Scalar, Dynamic, 1 > &x)
+{
+ using std::abs;
+ using std::sqrt;
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j, l;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+
+ /* Function Body */
+ const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+ const Index n = r.cols();
+ eigen_assert(n==diag.size());
+ eigen_assert(n==qtb.size());
+ eigen_assert(n==x.size());
+
+ Matrix< Scalar, Dynamic, 1 > wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+ Index nsing = n-1;
+ wa1 = qtb;
+ for (j = 0; j < n; ++j) {
+ if (r(j,j) == 0. && nsing == n-1)
+ nsing = j - 1;
+ if (nsing < n-1)
+ wa1[j] = 0.;
+ }
+ for (j = nsing; j>=0; --j) {
+ wa1[j] /= r(j,j);
+ temp = wa1[j];
+ for (i = 0; i < j ; ++i)
+ wa1[i] -= r(i,j) * temp;
+ }
+
+ for (j = 0; j < n; ++j)
+ x[ipvt[j]] = wa1[j];
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - delta;
+ if (fp <= Scalar(0.1) * delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (nsing >= n-1) {
+ for (j = 0; j < n; ++j) {
+ l = ipvt[j];
+ wa1[j] = diag[l] * (wa2[l] / dxnorm);
+ }
+ // it's actually a triangularView.solveInplace(), though in a weird
+ // way:
+ for (j = 0; j < n; ++j) {
+ Scalar sum = 0.;
+ for (i = 0; i < j; ++i)
+ sum += r(i,j) * wa1[i];
+ wa1[j] = (wa1[j] - sum) / r(j,j);
+ }
+ temp = wa1.blueNorm();
+ parl = fp / delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ Matrix< Scalar, Dynamic, 1 > sdiag(n);
+ qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ for (j = 0; j < n; ++j) {
+ l = ipvt[j];
+ wa1[j] = diag[l] * (wa2[l] / dxnorm);
+ }
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (i = j+1; i < n; ++i)
+ wa1[i] -= r(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ /* Computing MAX */
+ par = (std::max)(parl,par+parc);
+
+ /* end of an iteration. */
+ }
+
+ /* termination. */
+ if (iter == 0)
+ par = 0.;
+ return;
+}
+
+template <typename Scalar>
+void lmpar2(
+ const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Scalar delta,
+ Scalar &par,
+ Matrix< Scalar, Dynamic, 1 > &x)
+
+{
+ using std::sqrt;
+ using std::abs;
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index j;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+
+ /* Function Body */
+ const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+ const Index n = qr.matrixQR().cols();
+ eigen_assert(n==diag.size());
+ eigen_assert(n==qtb.size());
+
+ Matrix< Scalar, Dynamic, 1 > wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+
+// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
+ const Index rank = qr.rank(); // use a threshold
+ wa1 = qtb;
+ wa1.tail(n-rank).setZero();
+ qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
+
+ x = qr.colsPermutation()*wa1;
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - delta;
+ if (fp <= Scalar(0.1) * delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (rank==n) {
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
+ qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ temp = wa1.blueNorm();
+ parl = fp / delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ Matrix< Scalar, Dynamic, 1 > sdiag(n);
+ qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
+ // we could almost use this here, but the diagonal is outside qr, in sdiag[]
+ // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (Index i = j+1; i < n; ++i)
+ wa1[i] -= s(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ par = (std::max)(parl,par+parc);
+ }
+ if (iter == 0)
+ par = 0.;
+ return;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
new file mode 100644
index 0000000..feafd62
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
@@ -0,0 +1,91 @@
+namespace Eigen {
+
+namespace internal {
+
+// TODO : once qrsolv2 is removed, use ColPivHouseholderQR or PermutationMatrix instead of ipvt
+template <typename Scalar>
+void qrsolv(
+ Matrix< Scalar, Dynamic, Dynamic > &s,
+ // TODO : use a PermutationMatrix once lmpar is no more:
+ const VectorXi &ipvt,
+ const Matrix< Scalar, Dynamic, 1 > &diag,
+ const Matrix< Scalar, Dynamic, 1 > &qtb,
+ Matrix< Scalar, Dynamic, 1 > &x,
+ Matrix< Scalar, Dynamic, 1 > &sdiag)
+
+{
+ typedef DenseIndex Index;
+
+ /* Local variables */
+ Index i, j, k, l;
+ Scalar temp;
+ Index n = s.cols();
+ Matrix< Scalar, Dynamic, 1 > wa(n);
+ JacobiRotation<Scalar> givens;
+
+ /* Function Body */
+ // the following will only change the lower triangular part of s, including
+ // the diagonal, though the diagonal is restored afterward
+
+ /* copy r and (q transpose)*b to preserve input and initialize s. */
+ /* in particular, save the diagonal elements of r in x. */
+ x = s.diagonal();
+ wa = qtb;
+
+ s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
+
+ /* eliminate the diagonal matrix d using a givens rotation. */
+ for (j = 0; j < n; ++j) {
+
+ /* prepare the row of d to be eliminated, locating the */
+ /* diagonal element using p from the qr factorization. */
+ l = ipvt[j];
+ if (diag[l] == 0.)
+ break;
+ sdiag.tail(n-j).setZero();
+ sdiag[j] = diag[l];
+
+ /* the transformations to eliminate the row of d */
+ /* modify only a single element of (q transpose)*b */
+ /* beyond the first n, which is initially zero. */
+ Scalar qtbpj = 0.;
+ for (k = j; k < n; ++k) {
+ /* determine a givens rotation which eliminates the */
+ /* appropriate element in the current row of d. */
+ givens.makeGivens(-s(k,k), sdiag[k]);
+
+ /* compute the modified diagonal element of r and */
+ /* the modified element of ((q transpose)*b,0). */
+ s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
+ temp = givens.c() * wa[k] + givens.s() * qtbpj;
+ qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
+ wa[k] = temp;
+
+ /* accumulate the tranformation in the row of s. */
+ for (i = k+1; i<n; ++i) {
+ temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
+ sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
+ s(i,k) = temp;
+ }
+ }
+ }
+
+ /* solve the triangular system for z. if the system is */
+ /* singular, then obtain a least squares solution. */
+ Index nsing;
+ for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
+
+ wa.tail(n-nsing).setZero();
+ s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
+
+ // restore
+ sdiag = s.diagonal();
+ s.diagonal() = x;
+
+ /* permute the components of z back to components of x. */
+ for (j = 0; j < n; ++j) x[ipvt[j]] = wa[j];
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
new file mode 100644
index 0000000..36ff700
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h
@@ -0,0 +1,30 @@
+namespace Eigen {
+
+namespace internal {
+
+// TODO : move this to GivensQR once there's such a thing in Eigen
+
+template <typename Scalar>
+void r1mpyq(DenseIndex m, DenseIndex n, Scalar *a, const std::vector<JacobiRotation<Scalar> > &v_givens, const std::vector<JacobiRotation<Scalar> > &w_givens)
+{
+ typedef DenseIndex Index;
+
+ /* apply the first set of givens rotations to a. */
+ for (Index j = n-2; j>=0; --j)
+ for (Index i = 0; i<m; ++i) {
+ Scalar temp = v_givens[j].c() * a[i+m*j] - v_givens[j].s() * a[i+m*(n-1)];
+ a[i+m*(n-1)] = v_givens[j].s() * a[i+m*j] + v_givens[j].c() * a[i+m*(n-1)];
+ a[i+m*j] = temp;
+ }
+ /* apply the second set of givens rotations to a. */
+ for (Index j = 0; j<n-1; ++j)
+ for (Index i = 0; i<m; ++i) {
+ Scalar temp = w_givens[j].c() * a[i+m*j] + w_givens[j].s() * a[i+m*(n-1)];
+ a[i+m*(n-1)] = -w_givens[j].s() * a[i+m*j] + w_givens[j].c() * a[i+m*(n-1)];
+ a[i+m*j] = temp;
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
new file mode 100644
index 0000000..f287660
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h
@@ -0,0 +1,99 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void r1updt(
+ Matrix< Scalar, Dynamic, Dynamic > &s,
+ const Matrix< Scalar, Dynamic, 1> &u,
+ std::vector<JacobiRotation<Scalar> > &v_givens,
+ std::vector<JacobiRotation<Scalar> > &w_givens,
+ Matrix< Scalar, Dynamic, 1> &v,
+ Matrix< Scalar, Dynamic, 1> &w,
+ bool *sing)
+{
+ typedef DenseIndex Index;
+ const JacobiRotation<Scalar> IdentityRotation = JacobiRotation<Scalar>(1,0);
+
+ /* Local variables */
+ const Index m = s.rows();
+ const Index n = s.cols();
+ Index i, j=1;
+ Scalar temp;
+ JacobiRotation<Scalar> givens;
+
+ // r1updt had a broader usecase, but we dont use it here. And, more
+ // importantly, we can not test it.
+ eigen_assert(m==n);
+ eigen_assert(u.size()==m);
+ eigen_assert(v.size()==n);
+ eigen_assert(w.size()==n);
+
+ /* move the nontrivial part of the last column of s into w. */
+ w[n-1] = s(n-1,n-1);
+
+ /* rotate the vector v into a multiple of the n-th unit vector */
+ /* in such a way that a spike is introduced into w. */
+ for (j=n-2; j>=0; --j) {
+ w[j] = 0.;
+ if (v[j] != 0.) {
+ /* determine a givens rotation which eliminates the */
+ /* j-th element of v. */
+ givens.makeGivens(-v[n-1], v[j]);
+
+ /* apply the transformation to v and store the information */
+ /* necessary to recover the givens rotation. */
+ v[n-1] = givens.s() * v[j] + givens.c() * v[n-1];
+ v_givens[j] = givens;
+
+ /* apply the transformation to s and extend the spike in w. */
+ for (i = j; i < m; ++i) {
+ temp = givens.c() * s(j,i) - givens.s() * w[i];
+ w[i] = givens.s() * s(j,i) + givens.c() * w[i];
+ s(j,i) = temp;
+ }
+ } else
+ v_givens[j] = IdentityRotation;
+ }
+
+ /* add the spike from the rank 1 update to w. */
+ w += v[n-1] * u;
+
+ /* eliminate the spike. */
+ *sing = false;
+ for (j = 0; j < n-1; ++j) {
+ if (w[j] != 0.) {
+ /* determine a givens rotation which eliminates the */
+ /* j-th element of the spike. */
+ givens.makeGivens(-s(j,j), w[j]);
+
+ /* apply the transformation to s and reduce the spike in w. */
+ for (i = j; i < m; ++i) {
+ temp = givens.c() * s(j,i) + givens.s() * w[i];
+ w[i] = -givens.s() * s(j,i) + givens.c() * w[i];
+ s(j,i) = temp;
+ }
+
+ /* store the information necessary to recover the */
+ /* givens rotation. */
+ w_givens[j] = givens;
+ } else
+ v_givens[j] = IdentityRotation;
+
+ /* test for zero diagonal elements in the output s. */
+ if (s(j,j) == 0.) {
+ *sing = true;
+ }
+ }
+ /* move w back into the last column of the output s. */
+ s(n-1,n-1) = w[n-1];
+
+ if (s(j,j) == 0.) {
+ *sing = true;
+ }
+ return;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h b/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
new file mode 100644
index 0000000..6ebf856
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h
@@ -0,0 +1,49 @@
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void rwupdt(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const Matrix< Scalar, Dynamic, 1> &w,
+ Matrix< Scalar, Dynamic, 1> &b,
+ Scalar alpha)
+{
+ typedef DenseIndex Index;
+
+ const Index n = r.cols();
+ eigen_assert(r.rows()>=n);
+ std::vector<JacobiRotation<Scalar> > givens(n);
+
+ /* Local variables */
+ Scalar temp, rowj;
+
+ /* Function Body */
+ for (Index j = 0; j < n; ++j) {
+ rowj = w[j];
+
+ /* apply the previous transformations to */
+ /* r(i,j), i=0,1,...,j-1, and to w(j). */
+ for (Index i = 0; i < j; ++i) {
+ temp = givens[i].c() * r(i,j) + givens[i].s() * rowj;
+ rowj = -givens[i].s() * r(i,j) + givens[i].c() * rowj;
+ r(i,j) = temp;
+ }
+
+ /* determine a givens rotation which eliminates w(j). */
+ givens[j].makeGivens(-r(j,j), rowj);
+
+ if (rowj == 0.)
+ continue; // givens[j] is identity
+
+ /* apply the current transformation to r(j,j), b(j), and alpha. */
+ r(j,j) = givens[j].c() * r(j,j) + givens[j].s() * rowj;
+ temp = givens[j].c() * b[j] + givens[j].s() * alpha;
+ alpha = -givens[j].s() * b[j] + givens[j].c() * alpha;
+ b[j] = temp;
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
diff --git a/eigen/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt b/eigen/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt
new file mode 100644
index 0000000..1199aca
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NumericalDiff/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_NumericalDiff_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_NumericalDiff_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/NumericalDiff COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
new file mode 100644
index 0000000..ea5d8bc
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h
@@ -0,0 +1,130 @@
+// -*- coding: utf-8
+// vim: set fileencoding=utf-8
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NUMERICAL_DIFF_H
+#define EIGEN_NUMERICAL_DIFF_H
+
+namespace Eigen {
+
+enum NumericalDiffMode {
+ Forward,
+ Central
+};
+
+
+/**
+ * This class allows you to add a method df() to your functor, which will
+ * use numerical differentiation to compute an approximate of the
+ * derivative for the functor. Of course, if you have an analytical form
+ * for the derivative, you should rather implement df() by yourself.
+ *
+ * More information on
+ * http://en.wikipedia.org/wiki/Numerical_differentiation
+ *
+ * Currently only "Forward" and "Central" scheme are implemented.
+ */
+template<typename _Functor, NumericalDiffMode mode=Forward>
+class NumericalDiff : public _Functor
+{
+public:
+ typedef _Functor Functor;
+ typedef typename Functor::Scalar Scalar;
+ typedef typename Functor::InputType InputType;
+ typedef typename Functor::ValueType ValueType;
+ typedef typename Functor::JacobianType JacobianType;
+
+ NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {}
+ NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {}
+
+ // forward constructors
+ template<typename T0>
+ NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {}
+ template<typename T0, typename T1>
+ NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {}
+ template<typename T0, typename T1, typename T2>
+ NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {}
+
+ enum {
+ InputsAtCompileTime = Functor::InputsAtCompileTime,
+ ValuesAtCompileTime = Functor::ValuesAtCompileTime
+ };
+
+ /**
+ * return the number of evaluation of functor
+ */
+ int df(const InputType& _x, JacobianType &jac) const
+ {
+ using std::sqrt;
+ using std::abs;
+ /* Local variables */
+ Scalar h;
+ int nfev=0;
+ const typename InputType::Index n = _x.size();
+ const Scalar eps = sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() )));
+ ValueType val1, val2;
+ InputType x = _x;
+ // TODO : we should do this only if the size is not already known
+ val1.resize(Functor::values());
+ val2.resize(Functor::values());
+
+ // initialization
+ switch(mode) {
+ case Forward:
+ // compute f(x)
+ Functor::operator()(x, val1); nfev++;
+ break;
+ case Central:
+ // do nothing
+ break;
+ default:
+ eigen_assert(false);
+ };
+
+ // Function Body
+ for (int j = 0; j < n; ++j) {
+ h = eps * abs(x[j]);
+ if (h == 0.) {
+ h = eps;
+ }
+ switch(mode) {
+ case Forward:
+ x[j] += h;
+ Functor::operator()(x, val2);
+ nfev++;
+ x[j] = _x[j];
+ jac.col(j) = (val2-val1)/h;
+ break;
+ case Central:
+ x[j] += h;
+ Functor::operator()(x, val2); nfev++;
+ x[j] -= 2*h;
+ Functor::operator()(x, val1); nfev++;
+ x[j] = _x[j];
+ jac.col(j) = (val2-val1)/(2*h);
+ break;
+ default:
+ eigen_assert(false);
+ };
+ }
+ return nfev;
+ }
+private:
+ Scalar epsfcn;
+
+ NumericalDiff& operator=(const NumericalDiff&);
+};
+
+} // end namespace Eigen
+
+//vim: ai ts=4 sts=4 et sw=4
+#endif // EIGEN_NUMERICAL_DIFF_H
+
diff --git a/eigen/unsupported/Eigen/src/Polynomials/CMakeLists.txt b/eigen/unsupported/Eigen/src/Polynomials/CMakeLists.txt
new file mode 100644
index 0000000..51f13f3
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Polynomials/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_Polynomials_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_Polynomials_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Polynomials COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/Polynomials/Companion.h b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
new file mode 100644
index 0000000..b515c29
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Polynomials/Companion.h
@@ -0,0 +1,276 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPANION_H
+#define EIGEN_COMPANION_H
+
+// This file requires the user to include
+// * Eigen/Core
+// * Eigen/src/PolynomialSolver.h
+
+namespace Eigen {
+
+namespace internal {
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+template <typename T>
+T radix(){ return 2; }
+
+template <typename T>
+T radix2(){ return radix<T>()*radix<T>(); }
+
+template<int Size>
+struct decrement_if_fixed_size
+{
+ enum {
+ ret = (Size == Dynamic) ? Dynamic : Size-1 };
+};
+
+#endif
+
+template< typename _Scalar, int _Deg >
+class companion
+{
+ public:
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
+
+ enum {
+ Deg = _Deg,
+ Deg_1=decrement_if_fixed_size<Deg>::ret
+ };
+
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, Deg, 1> RightColumn;
+ //typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
+ typedef Matrix<Scalar, Deg_1, 1> BottomLeftDiagonal;
+
+ typedef Matrix<Scalar, Deg, Deg> DenseCompanionMatrixType;
+ typedef Matrix< Scalar, _Deg, Deg_1 > LeftBlock;
+ typedef Matrix< Scalar, Deg_1, Deg_1 > BottomLeftBlock;
+ typedef Matrix< Scalar, 1, Deg_1 > LeftBlockFirstRow;
+
+ typedef DenseIndex Index;
+
+ public:
+ EIGEN_STRONG_INLINE const _Scalar operator()(Index row, Index col ) const
+ {
+ if( m_bl_diag.rows() > col )
+ {
+ if( 0 < row ){ return m_bl_diag[col]; }
+ else{ return 0; }
+ }
+ else{ return m_monic[row]; }
+ }
+
+ public:
+ template<typename VectorType>
+ void setPolynomial( const VectorType& poly )
+ {
+ const Index deg = poly.size()-1;
+ m_monic = -1/poly[deg] * poly.head(deg);
+ //m_bl_diag.setIdentity( deg-1 );
+ m_bl_diag.setOnes(deg-1);
+ }
+
+ template<typename VectorType>
+ companion( const VectorType& poly ){
+ setPolynomial( poly ); }
+
+ public:
+ DenseCompanionMatrixType denseMatrix() const
+ {
+ const Index deg = m_monic.size();
+ const Index deg_1 = deg-1;
+ DenseCompanionMatrixType companion(deg,deg);
+ companion <<
+ ( LeftBlock(deg,deg_1)
+ << LeftBlockFirstRow::Zero(1,deg_1),
+ BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
+ , m_monic;
+ return companion;
+ }
+
+
+
+ protected:
+ /** Helper function for the balancing algorithm.
+ * \returns true if the row and the column, having colNorm and rowNorm
+ * as norms, are balanced, false otherwise.
+ * colB and rowB are repectively the multipliers for
+ * the column and the row in order to balance them.
+ * */
+ bool balanced( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB );
+
+ /** Helper function for the balancing algorithm.
+ * \returns true if the row and the column, having colNorm and rowNorm
+ * as norms, are balanced, false otherwise.
+ * colB and rowB are repectively the multipliers for
+ * the column and the row in order to balance them.
+ * */
+ bool balancedR( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB );
+
+ public:
+ /**
+ * Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
+ * "Balancing a matrix for calculation of eigenvalues and eigenvectors"
+ * adapted to the case of companion matrices.
+ * A matrix with non zero row and non zero column is balanced
+ * for a certain norm if the i-th row and the i-th column
+ * have same norm for all i.
+ */
+ void balance();
+
+ protected:
+ RightColumn m_monic;
+ BottomLeftDiagonal m_bl_diag;
+};
+
+
+
+template< typename _Scalar, int _Deg >
+inline
+bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB )
+{
+ if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
+ else
+ {
+ //To find the balancing coefficients, if the radix is 2,
+ //one finds \f$ \sigma \f$ such that
+ // \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
+ // then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
+ // and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
+ rowB = rowNorm / radix<Scalar>();
+ colB = Scalar(1);
+ const Scalar s = colNorm + rowNorm;
+
+ while (colNorm < rowB)
+ {
+ colB *= radix<Scalar>();
+ colNorm *= radix2<Scalar>();
+ }
+
+ rowB = rowNorm * radix<Scalar>();
+
+ while (colNorm >= rowB)
+ {
+ colB /= radix<Scalar>();
+ colNorm /= radix2<Scalar>();
+ }
+
+ //This line is used to avoid insubstantial balancing
+ if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
+ {
+ isBalanced = false;
+ rowB = Scalar(1) / colB;
+ return false;
+ }
+ else{
+ return true; }
+ }
+}
+
+template< typename _Scalar, int _Deg >
+inline
+bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
+ bool& isBalanced, Scalar& colB, Scalar& rowB )
+{
+ if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
+ else
+ {
+ /**
+ * Set the norm of the column and the row to the geometric mean
+ * of the row and column norm
+ */
+ const _Scalar q = colNorm/rowNorm;
+ if( !isApprox( q, _Scalar(1) ) )
+ {
+ rowB = sqrt( colNorm/rowNorm );
+ colB = Scalar(1)/rowB;
+
+ isBalanced = false;
+ return false;
+ }
+ else{
+ return true; }
+ }
+}
+
+
+template< typename _Scalar, int _Deg >
+void companion<_Scalar,_Deg>::balance()
+{
+ using std::abs;
+ EIGEN_STATIC_ASSERT( Deg == Dynamic || 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
+ const Index deg = m_monic.size();
+ const Index deg_1 = deg-1;
+
+ bool hasConverged=false;
+ while( !hasConverged )
+ {
+ hasConverged = true;
+ Scalar colNorm,rowNorm;
+ Scalar colB,rowB;
+
+ //First row, first column excluding the diagonal
+ //==============================================
+ colNorm = abs(m_bl_diag[0]);
+ rowNorm = abs(m_monic[0]);
+
+ //Compute balancing of the row and the column
+ if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
+ {
+ m_bl_diag[0] *= colB;
+ m_monic[0] *= rowB;
+ }
+
+ //Middle rows and columns excluding the diagonal
+ //==============================================
+ for( Index i=1; i<deg_1; ++i )
+ {
+ // column norm, excluding the diagonal
+ colNorm = abs(m_bl_diag[i]);
+
+ // row norm, excluding the diagonal
+ rowNorm = abs(m_bl_diag[i-1]) + abs(m_monic[i]);
+
+ //Compute balancing of the row and the column
+ if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
+ {
+ m_bl_diag[i] *= colB;
+ m_bl_diag[i-1] *= rowB;
+ m_monic[i] *= rowB;
+ }
+ }
+
+ //Last row, last column excluding the diagonal
+ //============================================
+ const Index ebl = m_bl_diag.size()-1;
+ VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
+ colNorm = headMonic.array().abs().sum();
+ rowNorm = abs( m_bl_diag[ebl] );
+
+ //Compute balancing of the row and the column
+ if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
+ {
+ headMonic *= colB;
+ m_bl_diag[ebl] *= rowB;
+ }
+ }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPANION_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
new file mode 100644
index 0000000..cd5c04b
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
@@ -0,0 +1,389 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_POLYNOMIAL_SOLVER_H
+#define EIGEN_POLYNOMIAL_SOLVER_H
+
+namespace Eigen {
+
+/** \ingroup Polynomials_Module
+ * \class PolynomialSolverBase.
+ *
+ * \brief Defined to be inherited by polynomial solvers: it provides
+ * convenient methods such as
+ * - real roots,
+ * - greatest, smallest complex roots,
+ * - real roots with greatest, smallest absolute real value,
+ * - greatest, smallest real roots.
+ *
+ * It stores the set of roots as a vector of complexes.
+ *
+ */
+template< typename _Scalar, int _Deg >
+class PolynomialSolverBase
+{
+ public:
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
+
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef std::complex<RealScalar> RootType;
+ typedef Matrix<RootType,_Deg,1> RootsType;
+
+ typedef DenseIndex Index;
+
+ protected:
+ template< typename OtherPolynomial >
+ inline void setPolynomial( const OtherPolynomial& poly ){
+ m_roots.resize(poly.size()); }
+
+ public:
+ template< typename OtherPolynomial >
+ inline PolynomialSolverBase( const OtherPolynomial& poly ){
+ setPolynomial( poly() ); }
+
+ inline PolynomialSolverBase(){}
+
+ public:
+ /** \returns the complex roots of the polynomial */
+ inline const RootsType& roots() const { return m_roots; }
+
+ public:
+ /** Clear and fills the back insertion sequence with the real roots of the polynomial
+ * i.e. the real part of the complex roots that have an imaginary part which
+ * absolute value is smaller than absImaginaryThreshold.
+ * absImaginaryThreshold takes the dummy_precision associated
+ * with the _Scalar template parameter of the PolynomialSolver class as the default value.
+ *
+ * \param[out] bi_seq : the back insertion sequence (stl concept)
+ * \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
+ * number that is considered as real.
+ * */
+ template<typename Stl_back_insertion_sequence>
+ inline void realRoots( Stl_back_insertion_sequence& bi_seq,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ using std::abs;
+ bi_seq.clear();
+ for(Index i=0; i<m_roots.size(); ++i )
+ {
+ if( abs( m_roots[i].imag() ) < absImaginaryThreshold ){
+ bi_seq.push_back( m_roots[i].real() ); }
+ }
+ }
+
+ protected:
+ template<typename squaredNormBinaryPredicate>
+ inline const RootType& selectComplexRoot_withRespectToNorm( squaredNormBinaryPredicate& pred ) const
+ {
+ Index res=0;
+ RealScalar norm2 = numext::abs2( m_roots[0] );
+ for( Index i=1; i<m_roots.size(); ++i )
+ {
+ const RealScalar currNorm2 = numext::abs2( m_roots[i] );
+ if( pred( currNorm2, norm2 ) ){
+ res=i; norm2=currNorm2; }
+ }
+ return m_roots[res];
+ }
+
+ public:
+ /**
+ * \returns the complex root with greatest norm.
+ */
+ inline const RootType& greatestRoot() const
+ {
+ std::greater<Scalar> greater;
+ return selectComplexRoot_withRespectToNorm( greater );
+ }
+
+ /**
+ * \returns the complex root with smallest norm.
+ */
+ inline const RootType& smallestRoot() const
+ {
+ std::less<Scalar> less;
+ return selectComplexRoot_withRespectToNorm( less );
+ }
+
+ protected:
+ template<typename squaredRealPartBinaryPredicate>
+ inline const RealScalar& selectRealRoot_withRespectToAbsRealPart(
+ squaredRealPartBinaryPredicate& pred,
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ using std::abs;
+ hasArealRoot = false;
+ Index res=0;
+ RealScalar abs2(0);
+
+ for( Index i=0; i<m_roots.size(); ++i )
+ {
+ if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
+ {
+ if( !hasArealRoot )
+ {
+ hasArealRoot = true;
+ res = i;
+ abs2 = m_roots[i].real() * m_roots[i].real();
+ }
+ else
+ {
+ const RealScalar currAbs2 = m_roots[i].real() * m_roots[i].real();
+ if( pred( currAbs2, abs2 ) )
+ {
+ abs2 = currAbs2;
+ res = i;
+ }
+ }
+ }
+ else
+ {
+ if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
+ res = i; }
+ }
+ }
+ return numext::real_ref(m_roots[res]);
+ }
+
+
+ template<typename RealPartBinaryPredicate>
+ inline const RealScalar& selectRealRoot_withRespectToRealPart(
+ RealPartBinaryPredicate& pred,
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ using std::abs;
+ hasArealRoot = false;
+ Index res=0;
+ RealScalar val(0);
+
+ for( Index i=0; i<m_roots.size(); ++i )
+ {
+ if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
+ {
+ if( !hasArealRoot )
+ {
+ hasArealRoot = true;
+ res = i;
+ val = m_roots[i].real();
+ }
+ else
+ {
+ const RealScalar curr = m_roots[i].real();
+ if( pred( curr, val ) )
+ {
+ val = curr;
+ res = i;
+ }
+ }
+ }
+ else
+ {
+ if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
+ res = i; }
+ }
+ }
+ return numext::real_ref(m_roots[res]);
+ }
+
+ public:
+ /**
+ * \returns a real root with greatest absolute magnitude.
+ * A real root is defined as the real part of a complex root with absolute imaginary
+ * part smallest than absImaginaryThreshold.
+ * absImaginaryThreshold takes the dummy_precision associated
+ * with the _Scalar template parameter of the PolynomialSolver class as the default value.
+ * If no real root is found the boolean hasArealRoot is set to false and the real part of
+ * the root with smallest absolute imaginary part is returned instead.
+ *
+ * \param[out] hasArealRoot : boolean true if a real root is found according to the
+ * absImaginaryThreshold criterion, false otherwise.
+ * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
+ * whether or not a root is real.
+ */
+ inline const RealScalar& absGreatestRealRoot(
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ std::greater<Scalar> greater;
+ return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
+ }
+
+
+ /**
+ * \returns a real root with smallest absolute magnitude.
+ * A real root is defined as the real part of a complex root with absolute imaginary
+ * part smallest than absImaginaryThreshold.
+ * absImaginaryThreshold takes the dummy_precision associated
+ * with the _Scalar template parameter of the PolynomialSolver class as the default value.
+ * If no real root is found the boolean hasArealRoot is set to false and the real part of
+ * the root with smallest absolute imaginary part is returned instead.
+ *
+ * \param[out] hasArealRoot : boolean true if a real root is found according to the
+ * absImaginaryThreshold criterion, false otherwise.
+ * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
+ * whether or not a root is real.
+ */
+ inline const RealScalar& absSmallestRealRoot(
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ std::less<Scalar> less;
+ return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
+ }
+
+
+ /**
+ * \returns the real root with greatest value.
+ * A real root is defined as the real part of a complex root with absolute imaginary
+ * part smallest than absImaginaryThreshold.
+ * absImaginaryThreshold takes the dummy_precision associated
+ * with the _Scalar template parameter of the PolynomialSolver class as the default value.
+ * If no real root is found the boolean hasArealRoot is set to false and the real part of
+ * the root with smallest absolute imaginary part is returned instead.
+ *
+ * \param[out] hasArealRoot : boolean true if a real root is found according to the
+ * absImaginaryThreshold criterion, false otherwise.
+ * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
+ * whether or not a root is real.
+ */
+ inline const RealScalar& greatestRealRoot(
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ std::greater<Scalar> greater;
+ return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
+ }
+
+
+ /**
+ * \returns the real root with smallest value.
+ * A real root is defined as the real part of a complex root with absolute imaginary
+ * part smallest than absImaginaryThreshold.
+ * absImaginaryThreshold takes the dummy_precision associated
+ * with the _Scalar template parameter of the PolynomialSolver class as the default value.
+ * If no real root is found the boolean hasArealRoot is set to false and the real part of
+ * the root with smallest absolute imaginary part is returned instead.
+ *
+ * \param[out] hasArealRoot : boolean true if a real root is found according to the
+ * absImaginaryThreshold criterion, false otherwise.
+ * \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
+ * whether or not a root is real.
+ */
+ inline const RealScalar& smallestRealRoot(
+ bool& hasArealRoot,
+ const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
+ {
+ std::less<Scalar> less;
+ return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
+ }
+
+ protected:
+ RootsType m_roots;
+};
+
+#define EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( BASE ) \
+ typedef typename BASE::Scalar Scalar; \
+ typedef typename BASE::RealScalar RealScalar; \
+ typedef typename BASE::RootType RootType; \
+ typedef typename BASE::RootsType RootsType;
+
+
+
+/** \ingroup Polynomials_Module
+ *
+ * \class PolynomialSolver
+ *
+ * \brief A polynomial solver
+ *
+ * Computes the complex roots of a real polynomial.
+ *
+ * \param _Scalar the scalar type, i.e., the type of the polynomial coefficients
+ * \param _Deg the degree of the polynomial, can be a compile time value or Dynamic.
+ * Notice that the number of polynomial coefficients is _Deg+1.
+ *
+ * This class implements a polynomial solver and provides convenient methods such as
+ * - real roots,
+ * - greatest, smallest complex roots,
+ * - real roots with greatest, smallest absolute real value.
+ * - greatest, smallest real roots.
+ *
+ * WARNING: this polynomial solver is experimental, part of the unsuported Eigen modules.
+ *
+ *
+ * Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
+ * the polynomial to compute its roots.
+ * This supposes that the complex moduli of the roots are all distinct: e.g. there should
+ * be no multiple roots or conjugate roots for instance.
+ * With 32bit (float) floating types this problem shows up frequently.
+ * However, almost always, correct accuracy is reached even in these cases for 64bit
+ * (double) floating types and small polynomial degree (<20).
+ */
+template< typename _Scalar, int _Deg >
+class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
+{
+ public:
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
+
+ typedef PolynomialSolverBase<_Scalar,_Deg> PS_Base;
+ EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
+
+ typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
+ typedef EigenSolver<CompanionMatrixType> EigenSolverType;
+
+ public:
+ /** Computes the complex roots of a new polynomial. */
+ template< typename OtherPolynomial >
+ void compute( const OtherPolynomial& poly )
+ {
+ eigen_assert( Scalar(0) != poly[poly.size()-1] );
+ internal::companion<Scalar,_Deg> companion( poly );
+ companion.balance();
+ m_eigenSolver.compute( companion.denseMatrix() );
+ m_roots = m_eigenSolver.eigenvalues();
+ }
+
+ public:
+ template< typename OtherPolynomial >
+ inline PolynomialSolver( const OtherPolynomial& poly ){
+ compute( poly ); }
+
+ inline PolynomialSolver(){}
+
+ protected:
+ using PS_Base::m_roots;
+ EigenSolverType m_eigenSolver;
+};
+
+
+template< typename _Scalar >
+class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
+{
+ public:
+ typedef PolynomialSolverBase<_Scalar,1> PS_Base;
+ EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
+
+ public:
+ /** Computes the complex roots of a new polynomial. */
+ template< typename OtherPolynomial >
+ void compute( const OtherPolynomial& poly )
+ {
+ eigen_assert( Scalar(0) != poly[poly.size()-1] );
+ m_roots[0] = -poly[0]/poly[poly.size()-1];
+ }
+
+ protected:
+ using PS_Base::m_roots;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_POLYNOMIAL_SOLVER_H
diff --git a/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
new file mode 100644
index 0000000..2bb8bc8
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
@@ -0,0 +1,143 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_POLYNOMIAL_UTILS_H
+#define EIGEN_POLYNOMIAL_UTILS_H
+
+namespace Eigen {
+
+/** \ingroup Polynomials_Module
+ * \returns the evaluation of the polynomial at x using Horner algorithm.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ * \param[in] x : the value to evaluate the polynomial at.
+ *
+ * <i><b>Note for stability:</b></i>
+ * <dd> \f$ |x| \le 1 \f$ </dd>
+ */
+template <typename Polynomials, typename T>
+inline
+T poly_eval_horner( const Polynomials& poly, const T& x )
+{
+ T val=poly[poly.size()-1];
+ for(DenseIndex i=poly.size()-2; i>=0; --i ){
+ val = val*x + poly[i]; }
+ return val;
+}
+
+/** \ingroup Polynomials_Module
+ * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ * \param[in] x : the value to evaluate the polynomial at.
+ */
+template <typename Polynomials, typename T>
+inline
+T poly_eval( const Polynomials& poly, const T& x )
+{
+ typedef typename NumTraits<T>::Real Real;
+
+ if( numext::abs2( x ) <= Real(1) ){
+ return poly_eval_horner( poly, x ); }
+ else
+ {
+ T val=poly[0];
+ T inv_x = T(1)/x;
+ for( DenseIndex i=1; i<poly.size(); ++i ){
+ val = val*inv_x + poly[i]; }
+
+ return std::pow(x,(T)(poly.size()-1)) * val;
+ }
+}
+
+/** \ingroup Polynomials_Module
+ * \returns a maximum bound for the absolute value of any root of the polynomial.
+ *
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ *
+ * <i><b>Precondition:</b></i>
+ * <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
+ */
+template <typename Polynomial>
+inline
+typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
+{
+ using std::abs;
+ typedef typename Polynomial::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+ eigen_assert( Scalar(0) != poly[poly.size()-1] );
+ const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
+ Real cb(0);
+
+ for( DenseIndex i=0; i<poly.size()-1; ++i ){
+ cb += abs(poly[i]*inv_leading_coeff); }
+ return cb + Real(1);
+}
+
+/** \ingroup Polynomials_Module
+ * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
+ * \param[in] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
+ */
+template <typename Polynomial>
+inline
+typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
+{
+ using std::abs;
+ typedef typename Polynomial::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real Real;
+
+ DenseIndex i=0;
+ while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
+ if( poly.size()-1 == i ){
+ return Real(1); }
+
+ const Scalar inv_min_coeff = Scalar(1)/poly[i];
+ Real cb(1);
+ for( DenseIndex j=i+1; j<poly.size(); ++j ){
+ cb += abs(poly[j]*inv_min_coeff); }
+ return Real(1)/cb;
+}
+
+/** \ingroup Polynomials_Module
+ * Given the roots of a polynomial compute the coefficients in the
+ * monomial basis of the monic polynomial with same roots and minimal degree.
+ * If RootVector is a vector of complexes, Polynomial should also be a vector
+ * of complexes.
+ * \param[in] rv : a vector containing the roots of a polynomial.
+ * \param[out] poly : the vector of coefficients of the polynomial ordered
+ * by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
+ * e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
+ */
+template <typename RootVector, typename Polynomial>
+void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
+{
+
+ typedef typename Polynomial::Scalar Scalar;
+
+ poly.setZero( rv.size()+1 );
+ poly[0] = -rv[0]; poly[1] = Scalar(1);
+ for( DenseIndex i=1; i< rv.size(); ++i )
+ {
+ for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
+ poly[0] = -rv[i]*poly[0];
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_POLYNOMIAL_UTILS_H
diff --git a/eigen/unsupported/Eigen/src/SVD/BDCSVD.h b/eigen/unsupported/Eigen/src/SVD/BDCSVD.h
new file mode 100644
index 0000000..11d4882
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/BDCSVD.h
@@ -0,0 +1,748 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
+// research report written by Ming Gu and Stanley C.Eisenstat
+// The code variable names correspond to the names they used in their
+// report
+//
+// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
+// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
+// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
+// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
+//
+// Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BDCSVD_H
+#define EIGEN_BDCSVD_H
+
+#define EPSILON 0.0000000000000001
+
+#define ALGOSWAP 32
+
+namespace Eigen {
+/** \ingroup SVD_Module
+ *
+ *
+ * \class BDCSVD
+ *
+ * \brief class Bidiagonal Divide and Conquer SVD
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ * We plan to have a very similar interface to JacobiSVD on this class.
+ * It should be used to speed up the calcul of SVD for big matrices.
+ */
+template<typename _MatrixType>
+class BDCSVD : public SVDBase<_MatrixType>
+{
+ typedef SVDBase<_MatrixType> Base;
+
+public:
+ using Base::rows;
+ using Base::cols;
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
+ MatrixOptions = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
+ MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
+ MatrixUType;
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
+ MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
+ MatrixVType;
+ typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColType;
+ typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
+ typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
+ typedef Matrix<RealScalar, Dynamic, 1> VectorType;
+
+ /** \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via BDCSVD::compute(const MatrixType&).
+ */
+ BDCSVD()
+ : SVDBase<_MatrixType>::SVDBase(),
+ algoswap(ALGOSWAP)
+ {}
+
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem size.
+ * \sa BDCSVD()
+ */
+ BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
+ : SVDBase<_MatrixType>::SVDBase(),
+ algoswap(ALGOSWAP)
+ {
+ allocate(rows, cols, computationOptions);
+ }
+
+ /** \brief Constructor performing the decomposition of given matrix.
+ *
+ * \param matrix the matrix to decompose
+ * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+ * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
+ * #ComputeFullV, #ComputeThinV.
+ *
+ * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+ * available with the (non - default) FullPivHouseholderQR preconditioner.
+ */
+ BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
+ : SVDBase<_MatrixType>::SVDBase(),
+ algoswap(ALGOSWAP)
+ {
+ compute(matrix, computationOptions);
+ }
+
+ ~BDCSVD()
+ {
+ }
+ /** \brief Method performing the decomposition of given matrix using custom options.
+ *
+ * \param matrix the matrix to decompose
+ * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+ * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
+ * #ComputeFullV, #ComputeThinV.
+ *
+ * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+ * available with the (non - default) FullPivHouseholderQR preconditioner.
+ */
+ SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
+
+ /** \brief Method performing the decomposition of given matrix using current options.
+ *
+ * \param matrix the matrix to decompose
+ *
+ * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
+ */
+ SVDBase<MatrixType>& compute(const MatrixType& matrix)
+ {
+ return compute(matrix, this->m_computationOptions);
+ }
+
+ void setSwitchSize(int s)
+ {
+ eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
+ algoswap = s;
+ }
+
+
+ /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
+ *
+ * \param b the right - hand - side of the equation to solve.
+ *
+ * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
+ *
+ * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
+ * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<BDCSVD, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
+ eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
+ "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
+ return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
+ }
+
+
+ const MatrixUType& matrixU() const
+ {
+ eigen_assert(this->m_isInitialized && "SVD is not initialized.");
+ if (isTranspose){
+ eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
+ return this->m_matrixV;
+ }
+ else
+ {
+ eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
+ return this->m_matrixU;
+ }
+
+ }
+
+
+ const MatrixVType& matrixV() const
+ {
+ eigen_assert(this->m_isInitialized && "SVD is not initialized.");
+ if (isTranspose){
+ eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
+ return this->m_matrixU;
+ }
+ else
+ {
+ eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
+ return this->m_matrixV;
+ }
+ }
+
+private:
+ void allocate(Index rows, Index cols, unsigned int computationOptions);
+ void divide (Index firstCol, Index lastCol, Index firstRowW,
+ Index firstColW, Index shift);
+ void deflation43(Index firstCol, Index shift, Index i, Index size);
+ void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
+ void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
+ void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
+
+protected:
+ MatrixXr m_naiveU, m_naiveV;
+ MatrixXr m_computed;
+ Index nRec;
+ int algoswap;
+ bool isTranspose, compU, compV;
+
+}; //end class BDCSVD
+
+
+// Methode to allocate ans initialize matrix and attributs
+template<typename MatrixType>
+void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
+{
+ isTranspose = (cols > rows);
+ if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
+ m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
+ if (isTranspose){
+ compU = this->computeU();
+ compV = this->computeV();
+ }
+ else
+ {
+ compV = this->computeU();
+ compU = this->computeV();
+ }
+ if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
+ else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
+
+ if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
+
+
+ //should be changed for a cleaner implementation
+ if (isTranspose){
+ bool aux;
+ if (this->computeU()||this->computeV()){
+ aux = this->m_computeFullU;
+ this->m_computeFullU = this->m_computeFullV;
+ this->m_computeFullV = aux;
+ aux = this->m_computeThinU;
+ this->m_computeThinU = this->m_computeThinV;
+ this->m_computeThinV = aux;
+ }
+ }
+}// end allocate
+
+// Methode which compute the BDCSVD for the int
+template<>
+SVDBase<Matrix<int, Dynamic, Dynamic> >&
+BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
+ allocate(matrix.rows(), matrix.cols(), computationOptions);
+ this->m_nonzeroSingularValues = 0;
+ m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
+ for (int i=0; i<this->m_diagSize; i++) {
+ this->m_singularValues.coeffRef(i) = 0;
+ }
+ if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
+ if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
+ this->m_isInitialized = true;
+ return *this;
+}
+
+
+// Methode which compute the BDCSVD
+template<typename MatrixType>
+SVDBase<MatrixType>&
+BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
+{
+ allocate(matrix.rows(), matrix.cols(), computationOptions);
+ using std::abs;
+
+ //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
+ MatrixType copy;
+ if (isTranspose) copy = matrix.adjoint();
+ else copy = matrix;
+
+ internal::UpperBidiagonalization<MatrixX > bid(copy);
+
+ //**** step 2 Divide
+ // this is ugly and has to be redone (care of complex cast)
+ MatrixXr temp;
+ temp = bid.bidiagonal().toDenseMatrix().transpose();
+ m_computed.setZero();
+ for (int i=0; i<this->m_diagSize - 1; i++) {
+ m_computed(i, i) = temp(i, i);
+ m_computed(i + 1, i) = temp(i + 1, i);
+ }
+ m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
+ divide(0, this->m_diagSize - 1, 0, 0, 0);
+
+ //**** step 3 copy
+ for (int i=0; i<this->m_diagSize; i++) {
+ RealScalar a = abs(m_computed.coeff(i, i));
+ this->m_singularValues.coeffRef(i) = a;
+ if (a == 0){
+ this->m_nonzeroSingularValues = i;
+ break;
+ }
+ else if (i == this->m_diagSize - 1)
+ {
+ this->m_nonzeroSingularValues = i + 1;
+ break;
+ }
+ }
+ copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
+ this->m_isInitialized = true;
+ return *this;
+}// end compute
+
+
+template<typename MatrixType>
+void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
+ if (this->computeU()){
+ MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
+ temp.real() = naiveU;
+ if (this->m_computeThinU){
+ this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
+ this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
+ temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
+ this->m_matrixU = householderU * this->m_matrixU ;
+ }
+ else
+ {
+ this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
+ this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
+ this->m_matrixU = householderU * this->m_matrixU ;
+ }
+ }
+ if (this->computeV()){
+ MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
+ temp.real() = naiveV;
+ if (this->m_computeThinV){
+ this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
+ this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
+ temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
+ this->m_matrixV = householderV * this->m_matrixV ;
+ }
+ else
+ {
+ this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
+ this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
+ this->m_matrixV = householderV * this->m_matrixV;
+ }
+ }
+}
+
+// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
+// place of the submatrix we are currently working on.
+
+//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
+//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
+// lastCol + 1 - firstCol is the size of the submatrix.
+//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
+//@param firstRowW : Same as firstRowW with the column.
+//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
+// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
+template<typename MatrixType>
+void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
+ Index firstColW, Index shift)
+{
+ // requires nbRows = nbCols + 1;
+ using std::pow;
+ using std::sqrt;
+ using std::abs;
+ const Index n = lastCol - firstCol + 1;
+ const Index k = n/2;
+ RealScalar alphaK;
+ RealScalar betaK;
+ RealScalar r0;
+ RealScalar lambda, phi, c0, s0;
+ MatrixXr l, f;
+ // We use the other algorithm which is more efficient for small
+ // matrices.
+ if (n < algoswap){
+ JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
+ ComputeFullU | (ComputeFullV * compV)) ;
+ if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
+ else
+ {
+ m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
+ m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
+ }
+ if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
+ m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
+ for (int i=0; i<n; i++)
+ {
+ m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
+ }
+ return;
+ }
+ // We use the divide and conquer algorithm
+ alphaK = m_computed(firstCol + k, firstCol + k);
+ betaK = m_computed(firstCol + k + 1, firstCol + k);
+ // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
+ // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
+ // right submatrix before the left one.
+ divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
+ divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
+ if (compU)
+ {
+ lambda = m_naiveU(firstCol + k, firstCol + k);
+ phi = m_naiveU(firstCol + k + 1, lastCol + 1);
+ }
+ else
+ {
+ lambda = m_naiveU(1, firstCol + k);
+ phi = m_naiveU(0, lastCol + 1);
+ }
+ r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
+ + abs(betaK * phi) * abs(betaK * phi));
+ if (compU)
+ {
+ l = m_naiveU.row(firstCol + k).segment(firstCol, k);
+ f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
+ }
+ else
+ {
+ l = m_naiveU.row(1).segment(firstCol, k);
+ f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
+ }
+ if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
+ if (r0 == 0)
+ {
+ c0 = 1;
+ s0 = 0;
+ }
+ else
+ {
+ c0 = alphaK * lambda / r0;
+ s0 = betaK * phi / r0;
+ }
+ if (compU)
+ {
+ MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
+ // we shiftW Q1 to the right
+ for (Index i = firstCol + k - 1; i >= firstCol; i--)
+ {
+ m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
+ }
+ // we shift q1 at the left with a factor c0
+ m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
+ // last column = q1 * - s0
+ m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
+ // first column = q2 * s0
+ m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
+ m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
+ // q2 *= c0
+ m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
+ }
+ else
+ {
+ RealScalar q1 = (m_naiveU(0, firstCol + k));
+ // we shift Q1 to the right
+ for (Index i = firstCol + k - 1; i >= firstCol; i--)
+ {
+ m_naiveU(0, i + 1) = m_naiveU(0, i);
+ }
+ // we shift q1 at the left with a factor c0
+ m_naiveU(0, firstCol) = (q1 * c0);
+ // last column = q1 * - s0
+ m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
+ // first column = q2 * s0
+ m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
+ // q2 *= c0
+ m_naiveU(1, lastCol + 1) *= c0;
+ m_naiveU.row(1).segment(firstCol + 1, k).setZero();
+ m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
+ }
+ m_computed(firstCol + shift, firstCol + shift) = r0;
+ m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
+ m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
+
+
+ // the line below do the deflation of the matrix for the third part of the algorithm
+ // Here the deflation is commented because the third part of the algorithm is not implemented
+ // the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation
+
+ deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
+
+ // Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
+ JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
+ ComputeFullU | (ComputeFullV * compV)) ;
+ if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
+ else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
+
+ if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
+ m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
+ for (int i=0; i<n; i++)
+ m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
+ // end of the third part
+
+
+}// end divide
+
+
+// page 12_13
+// i >= 1, di almost null and zi non null.
+// We use a rotation to zero out zi applied to the left of M
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
+ using std::abs;
+ using std::sqrt;
+ using std::pow;
+ RealScalar c = m_computed(firstCol + shift, firstCol + shift);
+ RealScalar s = m_computed(i, firstCol + shift);
+ RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
+ if (r == 0){
+ m_computed(i, i)=0;
+ return;
+ }
+ c/=r;
+ s/=r;
+ m_computed(firstCol + shift, firstCol + shift) = r;
+ m_computed(i, firstCol + shift) = 0;
+ m_computed(i, i) = 0;
+ if (compU){
+ m_naiveU.col(firstCol).segment(firstCol,size) =
+ c * m_naiveU.col(firstCol).segment(firstCol, size) -
+ s * m_naiveU.col(i).segment(firstCol, size) ;
+
+ m_naiveU.col(i).segment(firstCol, size) =
+ (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
+ (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
+ }
+}// end deflation 43
+
+
+// page 13
+// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
+// We apply two rotations to have zj = 0;
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
+ using std::abs;
+ using std::sqrt;
+ using std::conj;
+ using std::pow;
+ RealScalar c = m_computed(firstColm, firstColm + j - 1);
+ RealScalar s = m_computed(firstColm, firstColm + i - 1);
+ RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
+ if (r==0){
+ m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
+ return;
+ }
+ c/=r;
+ s/=r;
+ m_computed(firstColm + i, firstColm) = r;
+ m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
+ m_computed(firstColm + j, firstColm) = 0;
+ if (compU){
+ m_naiveU.col(firstColu + i).segment(firstColu, size) =
+ c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
+ s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
+
+ m_naiveU.col(firstColu + j).segment(firstColu, size) =
+ (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
+ (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
+ }
+ if (compV){
+ m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
+ c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
+ s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
+
+ m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
+ (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
+ (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
+ }
+}// end deflation 44
+
+
+
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
+ //condition 4.1
+ RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
+ const Index length = lastCol + 1 - firstCol;
+ if (m_computed(firstCol + shift, firstCol + shift) < EPS){
+ m_computed(firstCol + shift, firstCol + shift) = EPS;
+ }
+ //condition 4.2
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
+ if (std::abs(m_computed(i, firstCol + shift)) < EPS){
+ m_computed(i, firstCol + shift) = 0;
+ }
+ }
+
+ //condition 4.3
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
+ if (m_computed(i, i) < EPS){
+ deflation43(firstCol, shift, i, length);
+ }
+ }
+
+ //condition 4.4
+
+ Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
+ //we stock the final place of each line
+ Index *permutation = new Index[length];
+
+ for (Index p =1; p < length; p++) {
+ if (i> firstCol + shift + k){
+ permutation[p] = j;
+ j++;
+ } else if (j> lastCol + shift)
+ {
+ permutation[p] = i;
+ i++;
+ }
+ else
+ {
+ if (m_computed(i, i) < m_computed(j, j)){
+ permutation[p] = j;
+ j++;
+ }
+ else
+ {
+ permutation[p] = i;
+ i++;
+ }
+ }
+ }
+ //we do the permutation
+ RealScalar aux;
+ //we stock the current index of each col
+ //and the column of each index
+ Index *realInd = new Index[length];
+ Index *realCol = new Index[length];
+ for (int pos = 0; pos< length; pos++){
+ realCol[pos] = pos + firstCol + shift;
+ realInd[pos] = pos;
+ }
+ const Index Zero = firstCol + shift;
+ VectorType temp;
+ for (int i = 1; i < length - 1; i++){
+ const Index I = i + Zero;
+ const Index realI = realInd[i];
+ const Index j = permutation[length - i] - Zero;
+ const Index J = realCol[j];
+
+ //diag displace
+ aux = m_computed(I, I);
+ m_computed(I, I) = m_computed(J, J);
+ m_computed(J, J) = aux;
+
+ //firstrow displace
+ aux = m_computed(I, Zero);
+ m_computed(I, Zero) = m_computed(J, Zero);
+ m_computed(J, Zero) = aux;
+
+ // change columns
+ if (compU) {
+ temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
+ m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
+ m_naiveU.col(J - shift).segment(firstCol, length + 1);
+ m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
+ }
+ else
+ {
+ temp = m_naiveU.col(I - shift).segment(0, 2);
+ m_naiveU.col(I - shift).segment(0, 2) <<
+ m_naiveU.col(J - shift).segment(0, 2);
+ m_naiveU.col(J - shift).segment(0, 2) << temp;
+ }
+ if (compV) {
+ const Index CWI = I + firstColW - Zero;
+ const Index CWJ = J + firstColW - Zero;
+ temp = m_naiveV.col(CWI).segment(firstRowW, length);
+ m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
+ m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
+ }
+
+ //update real pos
+ realCol[realI] = J;
+ realCol[j] = I;
+ realInd[J - Zero] = realI;
+ realInd[I - Zero] = j;
+ }
+ for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
+ if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
+ deflation44(firstCol ,
+ firstCol + shift,
+ firstRowW,
+ firstColW,
+ i - Zero,
+ i + 1 - Zero,
+ length);
+ }
+ }
+ delete [] permutation;
+ delete [] realInd;
+ delete [] realCol;
+
+}//end deflation
+
+
+namespace internal{
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<BDCSVD<_MatrixType>, Rhs>
+ : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
+{
+ typedef BDCSVD<_MatrixType> BDCSVDType;
+ EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ eigen_assert(rhs().rows() == dec().rows());
+ // A = U S V^*
+ // So A^{ - 1} = V S^{ - 1} U^*
+ Index diagSize = (std::min)(dec().rows(), dec().cols());
+ typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
+ Index nonzeroSingVals = dec().nonzeroSingularValues();
+ invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
+ invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
+
+ dst = dec().matrixV().leftCols(diagSize)
+ * invertedSingVals.asDiagonal()
+ * dec().matrixU().leftCols(diagSize).adjoint()
+ * rhs();
+ return;
+ }
+};
+
+} //end namespace internal
+
+ /** \svd_module
+ *
+ * \return the singular value decomposition of \c *this computed by
+ * BDC Algorithm
+ *
+ * \sa class BDCSVD
+ */
+/*
+template<typename Derived>
+BDCSVD<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
+{
+ return BDCSVD<PlainObject>(*this, computationOptions);
+}
+*/
+
+} // end namespace Eigen
+
+#endif
diff --git a/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt b/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt
new file mode 100644
index 0000000..b40baf0
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_SVD_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_SVD_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h b/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h
new file mode 100644
index 0000000..02fac40
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h
@@ -0,0 +1,782 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_JACOBISVD_H
+#define EIGEN_JACOBISVD_H
+
+namespace Eigen {
+
+namespace internal {
+// forward declaration (needed by ICC)
+// the empty body is required by MSVC
+template<typename MatrixType, int QRPreconditioner,
+ bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
+struct svd_precondition_2x2_block_to_be_real {};
+
+/*** QR preconditioners (R-SVD)
+ ***
+ *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
+ *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
+ *** JacobiSVD which by itself is only able to work on square matrices.
+ ***/
+
+enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
+
+template<typename MatrixType, int QRPreconditioner, int Case>
+struct qr_preconditioner_should_do_anything
+{
+ enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
+ MatrixType::ColsAtCompileTime != Dynamic &&
+ MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
+ b = MatrixType::RowsAtCompileTime != Dynamic &&
+ MatrixType::ColsAtCompileTime != Dynamic &&
+ MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
+ ret = !( (QRPreconditioner == NoQRPreconditioner) ||
+ (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
+ (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
+ };
+};
+
+template<typename MatrixType, int QRPreconditioner, int Case,
+ bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
+> struct qr_preconditioner_impl {};
+
+template<typename MatrixType, int QRPreconditioner, int Case>
+class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
+{
+public:
+ typedef typename MatrixType::Index Index;
+ void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
+ bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
+ {
+ return false;
+ }
+};
+
+/*** preconditioner using FullPivHouseholderQR ***/
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ enum
+ {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
+ };
+ typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
+
+ void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
+ {
+ if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.rows(), svd.cols());
+ }
+ if (svd.m_computeFullU) m_workspace.resize(svd.rows());
+ }
+
+ bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.rows() > matrix.cols())
+ {
+ m_qr.compute(matrix);
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
+ if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
+ if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
+ return true;
+ }
+ return false;
+ }
+private:
+ typedef FullPivHouseholderQR<MatrixType> QRType;
+ QRType m_qr;
+ WorkspaceType m_workspace;
+};
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ enum
+ {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ Options = MatrixType::Options
+ };
+ typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
+ TransposeTypeWithSameStorageOrder;
+
+ void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
+ {
+ if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.cols(), svd.rows());
+ }
+ m_adjoint.resize(svd.cols(), svd.rows());
+ if (svd.m_computeFullV) m_workspace.resize(svd.cols());
+ }
+
+ bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.cols() > matrix.rows())
+ {
+ m_adjoint = matrix.adjoint();
+ m_qr.compute(m_adjoint);
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
+ if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
+ if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
+ return true;
+ }
+ else return false;
+ }
+private:
+ typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
+ QRType m_qr;
+ TransposeTypeWithSameStorageOrder m_adjoint;
+ typename internal::plain_row_type<MatrixType>::type m_workspace;
+};
+
+/*** preconditioner using ColPivHouseholderQR ***/
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+
+ void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
+ {
+ if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.rows(), svd.cols());
+ }
+ if (svd.m_computeFullU) m_workspace.resize(svd.rows());
+ else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
+ }
+
+ bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.rows() > matrix.cols())
+ {
+ m_qr.compute(matrix);
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
+ if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
+ else if(svd.m_computeThinU)
+ {
+ svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
+ m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
+ }
+ if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
+ return true;
+ }
+ return false;
+ }
+
+private:
+ typedef ColPivHouseholderQR<MatrixType> QRType;
+ QRType m_qr;
+ typename internal::plain_col_type<MatrixType>::type m_workspace;
+};
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ enum
+ {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ Options = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
+ TransposeTypeWithSameStorageOrder;
+
+ void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
+ {
+ if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.cols(), svd.rows());
+ }
+ if (svd.m_computeFullV) m_workspace.resize(svd.cols());
+ else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
+ m_adjoint.resize(svd.cols(), svd.rows());
+ }
+
+ bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.cols() > matrix.rows())
+ {
+ m_adjoint = matrix.adjoint();
+ m_qr.compute(m_adjoint);
+
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
+ if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
+ else if(svd.m_computeThinV)
+ {
+ svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
+ m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
+ }
+ if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
+ return true;
+ }
+ else return false;
+ }
+
+private:
+ typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
+ QRType m_qr;
+ TransposeTypeWithSameStorageOrder m_adjoint;
+ typename internal::plain_row_type<MatrixType>::type m_workspace;
+};
+
+/*** preconditioner using HouseholderQR ***/
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+
+ void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
+ {
+ if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.rows(), svd.cols());
+ }
+ if (svd.m_computeFullU) m_workspace.resize(svd.rows());
+ else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
+ }
+
+ bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.rows() > matrix.cols())
+ {
+ m_qr.compute(matrix);
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
+ if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
+ else if(svd.m_computeThinU)
+ {
+ svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
+ m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
+ }
+ if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
+ return true;
+ }
+ return false;
+ }
+private:
+ typedef HouseholderQR<MatrixType> QRType;
+ QRType m_qr;
+ typename internal::plain_col_type<MatrixType>::type m_workspace;
+};
+
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+{
+public:
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ enum
+ {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ Options = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
+ TransposeTypeWithSameStorageOrder;
+
+ void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
+ {
+ if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
+ {
+ m_qr.~QRType();
+ ::new (&m_qr) QRType(svd.cols(), svd.rows());
+ }
+ if (svd.m_computeFullV) m_workspace.resize(svd.cols());
+ else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
+ m_adjoint.resize(svd.cols(), svd.rows());
+ }
+
+ bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
+ {
+ if(matrix.cols() > matrix.rows())
+ {
+ m_adjoint = matrix.adjoint();
+ m_qr.compute(m_adjoint);
+
+ svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
+ if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
+ else if(svd.m_computeThinV)
+ {
+ svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
+ m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
+ }
+ if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
+ return true;
+ }
+ else return false;
+ }
+
+private:
+ typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
+ QRType m_qr;
+ TransposeTypeWithSameStorageOrder m_adjoint;
+ typename internal::plain_row_type<MatrixType>::type m_workspace;
+};
+
+/*** 2x2 SVD implementation
+ ***
+ *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
+ ***/
+
+template<typename MatrixType, int QRPreconditioner>
+struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
+{
+ typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
+ typedef typename SVD::Index Index;
+ static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
+};
+
+template<typename MatrixType, int QRPreconditioner>
+struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
+{
+ typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename SVD::Index Index;
+ static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
+ {
+ using std::sqrt;
+ Scalar z;
+ JacobiRotation<Scalar> rot;
+ RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
+ if(n==0)
+ {
+ z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
+ work_matrix.row(p) *= z;
+ if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
+ z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
+ work_matrix.row(q) *= z;
+ if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
+ }
+ else
+ {
+ rot.c() = conj(work_matrix.coeff(p,p)) / n;
+ rot.s() = work_matrix.coeff(q,p) / n;
+ work_matrix.applyOnTheLeft(p,q,rot);
+ if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
+ if(work_matrix.coeff(p,q) != Scalar(0))
+ {
+ Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
+ work_matrix.col(q) *= z;
+ if(svd.computeV()) svd.m_matrixV.col(q) *= z;
+ }
+ if(work_matrix.coeff(q,q) != Scalar(0))
+ {
+ z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
+ work_matrix.row(q) *= z;
+ if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
+ }
+ }
+ }
+};
+
+template<typename MatrixType, typename RealScalar, typename Index>
+void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
+ JacobiRotation<RealScalar> *j_left,
+ JacobiRotation<RealScalar> *j_right)
+{
+ using std::sqrt;
+ Matrix<RealScalar,2,2> m;
+ m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
+ numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
+ JacobiRotation<RealScalar> rot1;
+ RealScalar t = m.coeff(0,0) + m.coeff(1,1);
+ RealScalar d = m.coeff(1,0) - m.coeff(0,1);
+ if(t == RealScalar(0))
+ {
+ rot1.c() = RealScalar(0);
+ rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
+ }
+ else
+ {
+ RealScalar u = d / t;
+ rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
+ rot1.s() = rot1.c() * u;
+ }
+ m.applyOnTheLeft(0,1,rot1);
+ j_right->makeJacobi(m,0,1);
+ *j_left = rot1 * j_right->transpose();
+}
+
+} // end namespace internal
+
+/** \ingroup SVD_Module
+ *
+ *
+ * \class JacobiSVD
+ *
+ * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
+ * for the R-SVD step for non-square matrices. See discussion of possible values below.
+ *
+ * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
+ * \f[ A = U S V^* \f]
+ * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
+ * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
+ * and right \em singular \em vectors of \a A respectively.
+ *
+ * Singular values are always sorted in decreasing order.
+ *
+ * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
+ *
+ * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
+ * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
+ * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
+ * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
+ *
+ * Here's an example demonstrating basic usage:
+ * \include JacobiSVD_basic.cpp
+ * Output: \verbinclude JacobiSVD_basic.out
+ *
+ * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
+ * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
+ * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
+ * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
+ *
+ * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
+ * terminate in finite (and reasonable) time.
+ *
+ * The possible values for QRPreconditioner are:
+ * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
+ * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
+ * Contrary to other QRs, it doesn't allow computing thin unitaries.
+ * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
+ * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
+ * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
+ * process is more reliable than the optimized bidiagonal SVD iterations.
+ * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
+ * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
+ * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
+ * if QR preconditioning is needed before applying it anyway.
+ *
+ * \sa MatrixBase::jacobiSvd()
+ */
+template<typename _MatrixType, int QRPreconditioner>
+class JacobiSVD : public SVDBase<_MatrixType>
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
+ MatrixOptions = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
+ MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
+ MatrixUType;
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
+ MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
+ MatrixVType;
+ typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColType;
+ typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
+ MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
+ WorkMatrixType;
+
+ /** \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via JacobiSVD::compute(const MatrixType&).
+ */
+ JacobiSVD()
+ : SVDBase<_MatrixType>::SVDBase()
+ {}
+
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem size.
+ * \sa JacobiSVD()
+ */
+ JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
+ : SVDBase<_MatrixType>::SVDBase()
+ {
+ allocate(rows, cols, computationOptions);
+ }
+
+ /** \brief Constructor performing the decomposition of given matrix.
+ *
+ * \param matrix the matrix to decompose
+ * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+ * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
+ * #ComputeFullV, #ComputeThinV.
+ *
+ * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+ * available with the (non-default) FullPivHouseholderQR preconditioner.
+ */
+ JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
+ : SVDBase<_MatrixType>::SVDBase()
+ {
+ compute(matrix, computationOptions);
+ }
+
+ /** \brief Method performing the decomposition of given matrix using custom options.
+ *
+ * \param matrix the matrix to decompose
+ * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+ * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
+ * #ComputeFullV, #ComputeThinV.
+ *
+ * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+ * available with the (non-default) FullPivHouseholderQR preconditioner.
+ */
+ SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
+
+ /** \brief Method performing the decomposition of given matrix using current options.
+ *
+ * \param matrix the matrix to decompose
+ *
+ * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
+ */
+ SVDBase<MatrixType>& compute(const MatrixType& matrix)
+ {
+ return compute(matrix, this->m_computationOptions);
+ }
+
+ /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
+ *
+ * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
+ * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<JacobiSVD, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
+ eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
+ return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
+ }
+
+
+
+ private:
+ void allocate(Index rows, Index cols, unsigned int computationOptions);
+
+ protected:
+ WorkMatrixType m_workMatrix;
+
+ template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
+ friend struct internal::svd_precondition_2x2_block_to_be_real;
+ template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
+ friend struct internal::qr_preconditioner_impl;
+
+ internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
+ internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
+};
+
+template<typename MatrixType, int QRPreconditioner>
+void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
+{
+ if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
+
+ if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
+ {
+ eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
+ "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
+ "Use the ColPivHouseholderQR preconditioner instead.");
+ }
+
+ m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
+
+ if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
+ if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
+}
+
+template<typename MatrixType, int QRPreconditioner>
+SVDBase<MatrixType>&
+JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
+{
+ using std::abs;
+ allocate(matrix.rows(), matrix.cols(), computationOptions);
+
+ // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
+ // only worsening the precision of U and V as we accumulate more rotations
+ const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
+
+ // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
+ const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
+
+ /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
+
+ if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
+ {
+ m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
+ if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
+ if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
+ if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
+ if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
+ }
+
+ /*** step 2. The main Jacobi SVD iteration. ***/
+
+ bool finished = false;
+ while(!finished)
+ {
+ finished = true;
+
+ // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
+
+ for(Index p = 1; p < this->m_diagSize; ++p)
+ {
+ for(Index q = 0; q < p; ++q)
+ {
+ // if this 2x2 sub-matrix is not diagonal already...
+ // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
+ // keep us iterating forever. Similarly, small denormal numbers are considered zero.
+ using std::max;
+ RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
+ abs(m_workMatrix.coeff(q,q))));
+ if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
+ {
+ finished = false;
+
+ // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
+ internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
+ JacobiRotation<RealScalar> j_left, j_right;
+ internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
+
+ // accumulate resulting Jacobi rotations
+ m_workMatrix.applyOnTheLeft(p,q,j_left);
+ if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
+
+ m_workMatrix.applyOnTheRight(p,q,j_right);
+ if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
+ }
+ }
+ }
+ }
+
+ /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
+
+ for(Index i = 0; i < this->m_diagSize; ++i)
+ {
+ RealScalar a = abs(m_workMatrix.coeff(i,i));
+ this->m_singularValues.coeffRef(i) = a;
+ if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
+ }
+
+ /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
+
+ this->m_nonzeroSingularValues = this->m_diagSize;
+ for(Index i = 0; i < this->m_diagSize; i++)
+ {
+ Index pos;
+ RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
+ if(maxRemainingSingularValue == RealScalar(0))
+ {
+ this->m_nonzeroSingularValues = i;
+ break;
+ }
+ if(pos)
+ {
+ pos += i;
+ std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
+ if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
+ if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
+ }
+ }
+
+ this->m_isInitialized = true;
+ return *this;
+}
+
+namespace internal {
+template<typename _MatrixType, int QRPreconditioner, typename Rhs>
+struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
+ : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
+{
+ typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
+ EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ eigen_assert(rhs().rows() == dec().rows());
+
+ // A = U S V^*
+ // So A^{-1} = V S^{-1} U^*
+
+ Index diagSize = (std::min)(dec().rows(), dec().cols());
+ typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
+
+ Index nonzeroSingVals = dec().nonzeroSingularValues();
+ invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
+ invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
+
+ dst = dec().matrixV().leftCols(diagSize)
+ * invertedSingVals.asDiagonal()
+ * dec().matrixU().leftCols(diagSize).adjoint()
+ * rhs();
+ }
+};
+} // end namespace internal
+
+/** \svd_module
+ *
+ * \return the singular value decomposition of \c *this computed by two-sided
+ * Jacobi transformations.
+ *
+ * \sa class JacobiSVD
+ */
+template<typename Derived>
+JacobiSVD<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
+{
+ return JacobiSVD<PlainObject>(*this, computationOptions);
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_JACOBISVD_H
diff --git a/eigen/unsupported/Eigen/src/SVD/SVDBase.h b/eigen/unsupported/Eigen/src/SVD/SVDBase.h
new file mode 100644
index 0000000..fd8af3b
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/SVDBase.h
@@ -0,0 +1,236 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
+// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
+// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
+// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SVD_H
+#define EIGEN_SVD_H
+
+namespace Eigen {
+/** \ingroup SVD_Module
+ *
+ *
+ * \class SVDBase
+ *
+ * \brief Mother class of SVD classes algorithms
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
+ * \f[ A = U S V^* \f]
+ * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
+ * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
+ * and right \em singular \em vectors of \a A respectively.
+ *
+ * Singular values are always sorted in decreasing order.
+ *
+ *
+ * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
+ * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
+ * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
+ * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
+ *
+ * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
+ * terminate in finite (and reasonable) time.
+ * \sa MatrixBase::genericSvd()
+ */
+template<typename _MatrixType>
+class SVDBase
+{
+
+public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
+ MatrixOptions = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
+ MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
+ MatrixUType;
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
+ MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
+ MatrixVType;
+ typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowType;
+ typedef typename internal::plain_col_type<MatrixType>::type ColType;
+ typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
+ MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
+ WorkMatrixType;
+
+
+
+
+ /** \brief Method performing the decomposition of given matrix using custom options.
+ *
+ * \param matrix the matrix to decompose
+ * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+ * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
+ * #ComputeFullV, #ComputeThinV.
+ *
+ * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+ * available with the (non-default) FullPivHouseholderQR preconditioner.
+ */
+ SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
+
+ /** \brief Method performing the decomposition of given matrix using current options.
+ *
+ * \param matrix the matrix to decompose
+ *
+ * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
+ */
+ //virtual SVDBase& compute(const MatrixType& matrix) = 0;
+ SVDBase& compute(const MatrixType& matrix);
+
+ /** \returns the \a U matrix.
+ *
+ * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
+ * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
+ *
+ * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
+ *
+ * This method asserts that you asked for \a U to be computed.
+ */
+ const MatrixUType& matrixU() const
+ {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
+ return m_matrixU;
+ }
+
+ /** \returns the \a V matrix.
+ *
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
+ * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
+ *
+ * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
+ *
+ * This method asserts that you asked for \a V to be computed.
+ */
+ const MatrixVType& matrixV() const
+ {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
+ return m_matrixV;
+ }
+
+ /** \returns the vector of singular values.
+ *
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
+ * returned vector has size \a m. Singular values are always sorted in decreasing order.
+ */
+ const SingularValuesType& singularValues() const
+ {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ return m_singularValues;
+ }
+
+
+
+ /** \returns the number of singular values that are not exactly 0 */
+ Index nonzeroSingularValues() const
+ {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ return m_nonzeroSingularValues;
+ }
+
+
+ /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
+ inline bool computeU() const { return m_computeFullU || m_computeThinU; }
+ /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
+ inline bool computeV() const { return m_computeFullV || m_computeThinV; }
+
+
+ inline Index rows() const { return m_rows; }
+ inline Index cols() const { return m_cols; }
+
+
+protected:
+ // return true if already allocated
+ bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
+
+ MatrixUType m_matrixU;
+ MatrixVType m_matrixV;
+ SingularValuesType m_singularValues;
+ bool m_isInitialized, m_isAllocated;
+ bool m_computeFullU, m_computeThinU;
+ bool m_computeFullV, m_computeThinV;
+ unsigned int m_computationOptions;
+ Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
+
+
+ /** \brief Default Constructor.
+ *
+ * Default constructor of SVDBase
+ */
+ SVDBase()
+ : m_isInitialized(false),
+ m_isAllocated(false),
+ m_computationOptions(0),
+ m_rows(-1), m_cols(-1)
+ {}
+
+
+};
+
+
+template<typename MatrixType>
+bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
+{
+ eigen_assert(rows >= 0 && cols >= 0);
+
+ if (m_isAllocated &&
+ rows == m_rows &&
+ cols == m_cols &&
+ computationOptions == m_computationOptions)
+ {
+ return true;
+ }
+
+ m_rows = rows;
+ m_cols = cols;
+ m_isInitialized = false;
+ m_isAllocated = true;
+ m_computationOptions = computationOptions;
+ m_computeFullU = (computationOptions & ComputeFullU) != 0;
+ m_computeThinU = (computationOptions & ComputeThinU) != 0;
+ m_computeFullV = (computationOptions & ComputeFullV) != 0;
+ m_computeThinV = (computationOptions & ComputeThinV) != 0;
+ eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
+ eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
+ eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
+ "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
+
+ m_diagSize = (std::min)(m_rows, m_cols);
+ m_singularValues.resize(m_diagSize);
+ if(RowsAtCompileTime==Dynamic)
+ m_matrixU.resize(m_rows, m_computeFullU ? m_rows
+ : m_computeThinU ? m_diagSize
+ : 0);
+ if(ColsAtCompileTime==Dynamic)
+ m_matrixV.resize(m_cols, m_computeFullV ? m_cols
+ : m_computeThinV ? m_diagSize
+ : 0);
+
+ return false;
+}
+
+}// end namespace
+
+#endif // EIGEN_SVD_H
diff --git a/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt b/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt
new file mode 100644
index 0000000..0bc9a46
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt
@@ -0,0 +1,29 @@
+TO DO LIST
+
+
+
+(optional optimization) - do all the allocations in the allocate part
+ - support static matrices
+ - return a error at compilation time when using integer matrices (int, long, std::complex<int>, ...)
+
+to finish the algorithm :
+ -implement the last part of the algorithm as described on the reference paper.
+ You may find more information on that part on this paper
+
+ -to replace the call to JacobiSVD at the end of the divide algorithm, just after the call to
+ deflation.
+
+(suggested step by step resolution)
+ 0) comment the call to Jacobi in the last part of the divide method and everything right after
+ until the end of the method. What is commented can be a guideline to steps 3) 4) and 6)
+ 1) solve the secular equation (Characteristic equation) on the values that are not null (zi!=0 and di!=0), after the deflation
+ wich should be uncommented in the divide method
+ 2) remember the values of the singular values that are already computed (zi=0)
+ 3) assign the singular values found in m_computed at the right places (with the ones found in step 2) )
+ in decreasing order
+ 4) set the firstcol to zero (except the first element) in m_computed
+ 5) compute all the singular vectors when CompV is set to true and only the left vectors when
+ CompV is set to false
+ 6) multiply naiveU and naiveV to the right by the matrices found, only naiveU when CompV is set to
+ false, /!\ if CompU is false NaiveU has only 2 rows
+ 7) delete everything commented in step 0)
diff --git a/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt b/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt
new file mode 100644
index 0000000..8563dda
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt
@@ -0,0 +1,21 @@
+This unsupported package is about a divide and conquer algorithm to compute SVD.
+
+The implementation follows as closely as possible the following reference paper :
+http://www.cs.yale.edu/publications/techreports/tr933.pdf
+
+The code documentation uses the same names for variables as the reference paper. The code, deflation included, is
+working but there are a few things that could be optimised as explained in the TODOBdsvd.
+
+In the code comments were put at the line where would be the third step of the algorithm so one could simply add the call
+of a function doing the last part of the algorithm and that would not require any knowledge of the part we implemented.
+
+In the TODOBdcsvd we explain what is the main difficulty of the last part and suggest a reference paper to help solve it.
+
+The implemented has trouble with fixed size matrices.
+
+In the actual implementation, it returns matrices of zero when ask to do a svd on an int matrix.
+
+
+Paper for the third part:
+http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
+
diff --git a/eigen/unsupported/Eigen/src/Skyline/CMakeLists.txt b/eigen/unsupported/Eigen/src/Skyline/CMakeLists.txt
new file mode 100644
index 0000000..3bf1b0d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_Skyline_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_Skyline_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Skyline COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h b/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
new file mode 100644
index 0000000..a1f54ed
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h
@@ -0,0 +1,352 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINEINPLACELU_H
+#define EIGEN_SKYLINEINPLACELU_H
+
+namespace Eigen {
+
+/** \ingroup Skyline_Module
+ *
+ * \class SkylineInplaceLU
+ *
+ * \brief Inplace LU decomposition of a skyline matrix and associated features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LU factorization
+ *
+ */
+template<typename MatrixType>
+class SkylineInplaceLU {
+protected:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+
+public:
+
+ /** Creates a LU object and compute the respective factorization of \a matrix using
+ * flags \a flags. */
+ SkylineInplaceLU(MatrixType& matrix, int flags = 0)
+ : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0), m_lu(matrix) {
+ m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
+ m_lu.IsRowMajor ? computeRowMajor() : compute();
+ }
+
+ /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
+ *
+ * Setting a value greater than zero speeds up computation, and yields to an imcomplete
+ * factorization with fewer non zero coefficients. Such approximate factors are especially
+ * useful to initialize an iterative solver.
+ *
+ * Note that the exact meaning of this parameter might depends on the actual
+ * backend. Moreover, not all backends support this feature.
+ *
+ * \sa precision() */
+ void setPrecision(RealScalar v) {
+ m_precision = v;
+ }
+
+ /** \returns the current precision.
+ *
+ * \sa setPrecision() */
+ RealScalar precision() const {
+ return m_precision;
+ }
+
+ /** Sets the flags. Possible values are:
+ * - CompleteFactorization
+ * - IncompleteFactorization
+ * - MemoryEfficient
+ * - one of the ordering methods
+ * - etc...
+ *
+ * \sa flags() */
+ void setFlags(int f) {
+ m_flags = f;
+ }
+
+ /** \returns the current flags */
+ int flags() const {
+ return m_flags;
+ }
+
+ void setOrderingMethod(int m) {
+ m_flags = m;
+ }
+
+ int orderingMethod() const {
+ return m_flags;
+ }
+
+ /** Computes/re-computes the LU factorization */
+ void compute();
+ void computeRowMajor();
+
+ /** \returns the lower triangular matrix L */
+ //inline const MatrixType& matrixL() const { return m_matrixL; }
+
+ /** \returns the upper triangular matrix U */
+ //inline const MatrixType& matrixU() const { return m_matrixU; }
+
+ template<typename BDerived, typename XDerived>
+ bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
+ const int transposed = 0) const;
+
+ /** \returns true if the factorization succeeded */
+ inline bool succeeded(void) const {
+ return m_succeeded;
+ }
+
+protected:
+ RealScalar m_precision;
+ int m_flags;
+ mutable int m_status;
+ bool m_succeeded;
+ MatrixType& m_lu;
+};
+
+/** Computes / recomputes the in place LU decomposition of the SkylineInplaceLU.
+ * using the default algorithm.
+ */
+template<typename MatrixType>
+//template<typename _Scalar>
+void SkylineInplaceLU<MatrixType>::compute() {
+ const size_t rows = m_lu.rows();
+ const size_t cols = m_lu.cols();
+
+ eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
+ eigen_assert(!m_lu.IsRowMajor && "LU decomposition does not work with rowMajor Storage");
+
+ for (Index row = 0; row < rows; row++) {
+ const double pivot = m_lu.coeffDiag(row);
+
+ //Lower matrix Columns update
+ const Index& col = row;
+ for (typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
+ lIt.valueRef() /= pivot;
+ }
+
+ //Upper matrix update -> contiguous memory access
+ typename MatrixType::InnerLowerIterator lIt(m_lu, col);
+ for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
+ typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
+ typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
+ const double coef = lIt.value();
+
+ uItPivot += (rrow - row - 1);
+
+ //update upper part -> contiguous memory access
+ for (++uItPivot; uIt && uItPivot;) {
+ uIt.valueRef() -= uItPivot.value() * coef;
+
+ ++uIt;
+ ++uItPivot;
+ }
+ ++lIt;
+ }
+
+ //Upper matrix update -> non contiguous memory access
+ typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
+ for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
+ typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
+ const double coef = lIt3.value();
+
+ //update lower part -> non contiguous memory access
+ for (Index i = 0; i < rrow - row - 1; i++) {
+ m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
+ ++uItPivot;
+ }
+ ++lIt3;
+ }
+ //update diag -> contiguous
+ typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
+ for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
+
+ typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
+ typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
+ const double coef = lIt2.value();
+
+ uItPivot += (rrow - row - 1);
+ m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
+ ++lIt2;
+ }
+ }
+}
+
+template<typename MatrixType>
+void SkylineInplaceLU<MatrixType>::computeRowMajor() {
+ const size_t rows = m_lu.rows();
+ const size_t cols = m_lu.cols();
+
+ eigen_assert(rows == cols && "We do not (yet) support rectangular LU.");
+ eigen_assert(m_lu.IsRowMajor && "You're trying to apply rowMajor decomposition on a ColMajor matrix !");
+
+ for (Index row = 0; row < rows; row++) {
+ typename MatrixType::InnerLowerIterator llIt(m_lu, row);
+
+
+ for (Index col = llIt.col(); col < row; col++) {
+ if (m_lu.coeffExistLower(row, col)) {
+ const double diag = m_lu.coeffDiag(col);
+
+ typename MatrixType::InnerLowerIterator lIt(m_lu, row);
+ typename MatrixType::InnerUpperIterator uIt(m_lu, col);
+
+
+ const Index offset = lIt.col() - uIt.row();
+
+
+ Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();
+
+ //#define VECTORIZE
+#ifdef VECTORIZE
+ Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
+ Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
+
+
+ Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
+#else
+ if (offset > 0) //Skip zero value of lIt
+ uIt += offset;
+ else //Skip zero values of uIt
+ lIt += -offset;
+ Scalar newCoeff = m_lu.coeffLower(row, col);
+
+ for (Index k = 0; k < stop; ++k) {
+ const Scalar tmp = newCoeff;
+ newCoeff = tmp - lIt.value() * uIt.value();
+ ++lIt;
+ ++uIt;
+ }
+#endif
+
+ m_lu.coeffRefLower(row, col) = newCoeff / diag;
+ }
+ }
+
+ //Upper matrix update
+ const Index col = row;
+ typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
+ for (Index rrow = uuIt.row(); rrow < col; rrow++) {
+
+ typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
+ typename MatrixType::InnerUpperIterator uIt(m_lu, col);
+ const Index offset = lIt.col() - uIt.row();
+
+ Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();
+
+#ifdef VECTORIZE
+ Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
+ Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
+
+ Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
+#else
+ if (offset > 0) //Skip zero value of lIt
+ uIt += offset;
+ else //Skip zero values of uIt
+ lIt += -offset;
+ Scalar newCoeff = m_lu.coeffUpper(rrow, col);
+ for (Index k = 0; k < stop; ++k) {
+ const Scalar tmp = newCoeff;
+ newCoeff = tmp - lIt.value() * uIt.value();
+
+ ++lIt;
+ ++uIt;
+ }
+#endif
+ m_lu.coeffRefUpper(rrow, col) = newCoeff;
+ }
+
+
+ //Diag matrix update
+ typename MatrixType::InnerLowerIterator lIt(m_lu, row);
+ typename MatrixType::InnerUpperIterator uIt(m_lu, row);
+
+ const Index offset = lIt.col() - uIt.row();
+
+
+ Index stop = offset > 0 ? lIt.size() : uIt.size();
+#ifdef VECTORIZE
+ Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
+ Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
+ Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
+#else
+ if (offset > 0) //Skip zero value of lIt
+ uIt += offset;
+ else //Skip zero values of uIt
+ lIt += -offset;
+ Scalar newCoeff = m_lu.coeffDiag(row);
+ for (Index k = 0; k < stop; ++k) {
+ const Scalar tmp = newCoeff;
+ newCoeff = tmp - lIt.value() * uIt.value();
+ ++lIt;
+ ++uIt;
+ }
+#endif
+ m_lu.coeffRefDiag(row) = newCoeff;
+ }
+}
+
+/** Computes *x = U^-1 L^-1 b
+ *
+ * If \a transpose is set to SvTranspose or SvAdjoint, the solution
+ * of the transposed/adjoint system is computed instead.
+ *
+ * Not all backends implement the solution of the transposed or
+ * adjoint system.
+ */
+template<typename MatrixType>
+template<typename BDerived, typename XDerived>
+bool SkylineInplaceLU<MatrixType>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const {
+ const size_t rows = m_lu.rows();
+ const size_t cols = m_lu.cols();
+
+
+ for (Index row = 0; row < rows; row++) {
+ x->coeffRef(row) = b.coeff(row);
+ Scalar newVal = x->coeff(row);
+ typename MatrixType::InnerLowerIterator lIt(m_lu, row);
+
+ Index col = lIt.col();
+ while (lIt.col() < row) {
+
+ newVal -= x->coeff(col++) * lIt.value();
+ ++lIt;
+ }
+
+ x->coeffRef(row) = newVal;
+ }
+
+
+ for (Index col = rows - 1; col > 0; col--) {
+ x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);
+
+ const Scalar x_col = x->coeff(col);
+
+ typename MatrixType::InnerUpperIterator uIt(m_lu, col);
+ uIt += uIt.size()-1;
+
+
+ while (uIt) {
+ x->coeffRef(uIt.row()) -= x_col * uIt.value();
+ //TODO : introduce --operator
+ uIt += -1;
+ }
+
+
+ }
+ x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);
+
+ return true;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SKYLINELU_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
new file mode 100644
index 0000000..a2a8933
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h
@@ -0,0 +1,862 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINEMATRIX_H
+#define EIGEN_SKYLINEMATRIX_H
+
+#include "SkylineStorage.h"
+#include "SkylineMatrixBase.h"
+
+namespace Eigen {
+
+/** \ingroup Skyline_Module
+ *
+ * \class SkylineMatrix
+ *
+ * \brief The main skyline matrix class
+ *
+ * This class implements a skyline matrix using the very uncommon storage
+ * scheme.
+ *
+ * \param _Scalar the scalar type, i.e. the type of the coefficients
+ * \param _Options Union of bit flags controlling the storage scheme. Currently the only possibility
+ * is RowMajor. The default is 0 which means column-major.
+ *
+ *
+ */
+namespace internal {
+template<typename _Scalar, int _Options>
+struct traits<SkylineMatrix<_Scalar, _Options> > {
+ typedef _Scalar Scalar;
+ typedef Sparse StorageKind;
+
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = SkylineBit | _Options,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ };
+};
+}
+
+template<typename _Scalar, int _Options>
+class SkylineMatrix
+: public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
+public:
+ EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
+ EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
+ EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)
+
+ using Base::IsRowMajor;
+
+protected:
+
+ typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;
+
+ Index m_outerSize;
+ Index m_innerSize;
+
+public:
+ Index* m_colStartIndex;
+ Index* m_rowStartIndex;
+ SkylineStorage<Scalar> m_data;
+
+public:
+
+ inline Index rows() const {
+ return IsRowMajor ? m_outerSize : m_innerSize;
+ }
+
+ inline Index cols() const {
+ return IsRowMajor ? m_innerSize : m_outerSize;
+ }
+
+ inline Index innerSize() const {
+ return m_innerSize;
+ }
+
+ inline Index outerSize() const {
+ return m_outerSize;
+ }
+
+ inline Index upperNonZeros() const {
+ return m_data.upperSize();
+ }
+
+ inline Index lowerNonZeros() const {
+ return m_data.lowerSize();
+ }
+
+ inline Index upperNonZeros(Index j) const {
+ return m_colStartIndex[j + 1] - m_colStartIndex[j];
+ }
+
+ inline Index lowerNonZeros(Index j) const {
+ return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
+ }
+
+ inline const Scalar* _diagPtr() const {
+ return &m_data.diag(0);
+ }
+
+ inline Scalar* _diagPtr() {
+ return &m_data.diag(0);
+ }
+
+ inline const Scalar* _upperPtr() const {
+ return &m_data.upper(0);
+ }
+
+ inline Scalar* _upperPtr() {
+ return &m_data.upper(0);
+ }
+
+ inline const Scalar* _lowerPtr() const {
+ return &m_data.lower(0);
+ }
+
+ inline Scalar* _lowerPtr() {
+ return &m_data.lower(0);
+ }
+
+ inline const Index* _upperProfilePtr() const {
+ return &m_data.upperProfile(0);
+ }
+
+ inline Index* _upperProfilePtr() {
+ return &m_data.upperProfile(0);
+ }
+
+ inline const Index* _lowerProfilePtr() const {
+ return &m_data.lowerProfile(0);
+ }
+
+ inline Index* _lowerProfilePtr() {
+ return &m_data.lowerProfile(0);
+ }
+
+ inline Scalar coeff(Index row, Index col) const {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+
+ if (outer == inner)
+ return this->m_data.diag(outer);
+
+ if (IsRowMajor) {
+ if (inner > outer) //upper matrix
+ {
+ const Index minOuterIndex = inner - m_data.upperProfile(inner);
+ if (outer >= minOuterIndex)
+ return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
+ else
+ return Scalar(0);
+ }
+ if (inner < outer) //lower matrix
+ {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ if (inner >= minInnerIndex)
+ return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
+ else
+ return Scalar(0);
+ }
+ return m_data.upper(m_colStartIndex[inner] + outer - inner);
+ } else {
+ if (outer > inner) //upper matrix
+ {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ if (outer <= maxOuterIndex)
+ return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
+ else
+ return Scalar(0);
+ }
+ if (outer < inner) //lower matrix
+ {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+
+ if (inner <= maxInnerIndex)
+ return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
+ else
+ return Scalar(0);
+ }
+ }
+ }
+
+ inline Scalar& coeffRef(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+
+ if (outer == inner)
+ return this->m_data.diag(outer);
+
+ if (IsRowMajor) {
+ if (col > row) //upper matrix
+ {
+ const Index minOuterIndex = inner - m_data.upperProfile(inner);
+ eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
+ }
+ if (col < row) //lower matrix
+ {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
+ }
+ } else {
+ if (outer > inner) //upper matrix
+ {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
+ }
+ if (outer < inner) //lower matrix
+ {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+ eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
+ }
+ }
+ }
+
+ inline Scalar coeffDiag(Index idx) const {
+ eigen_assert(idx < outerSize());
+ eigen_assert(idx < innerSize());
+ return this->m_data.diag(idx);
+ }
+
+ inline Scalar coeffLower(Index row, Index col) const {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ if (inner >= minInnerIndex)
+ return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
+ else
+ return Scalar(0);
+
+ } else {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+ if (inner <= maxInnerIndex)
+ return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
+ else
+ return Scalar(0);
+ }
+ }
+
+ inline Scalar coeffUpper(Index row, Index col) const {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minOuterIndex = inner - m_data.upperProfile(inner);
+ if (outer >= minOuterIndex)
+ return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
+ else
+ return Scalar(0);
+ } else {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ if (outer <= maxOuterIndex)
+ return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
+ else
+ return Scalar(0);
+ }
+ }
+
+ inline Scalar& coeffRefDiag(Index idx) {
+ eigen_assert(idx < outerSize());
+ eigen_assert(idx < innerSize());
+ return this->m_data.diag(idx);
+ }
+
+ inline Scalar& coeffRefLower(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
+ } else {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+ eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
+ }
+ }
+
+ inline bool coeffExistLower(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ return inner >= minInnerIndex;
+ } else {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+ return inner <= maxInnerIndex;
+ }
+ }
+
+ inline Scalar& coeffRefUpper(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minOuterIndex = inner - m_data.upperProfile(inner);
+ eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
+ } else {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
+ return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
+ }
+ }
+
+ inline bool coeffExistUpper(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+ eigen_assert(inner != outer);
+
+ if (IsRowMajor) {
+ const Index minOuterIndex = inner - m_data.upperProfile(inner);
+ return outer >= minOuterIndex;
+ } else {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ return outer <= maxOuterIndex;
+ }
+ }
+
+
+protected:
+
+public:
+ class InnerUpperIterator;
+ class InnerLowerIterator;
+
+ class OuterUpperIterator;
+ class OuterLowerIterator;
+
+ /** Removes all non zeros */
+ inline void setZero() {
+ m_data.clear();
+ memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
+ memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
+ }
+
+ /** \returns the number of non zero coefficients */
+ inline Index nonZeros() const {
+ return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
+ }
+
+ /** Preallocates \a reserveSize non zeros */
+ inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
+ m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
+ }
+
+ /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
+
+ *
+ * \warning This function can be extremely slow if the non zero coefficients
+ * are not inserted in a coherent order.
+ *
+ * After an insertion session, you should call the finalize() function.
+ */
+ EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ eigen_assert(outer < outerSize());
+ eigen_assert(inner < innerSize());
+
+ if (outer == inner)
+ return m_data.diag(col);
+
+ if (IsRowMajor) {
+ if (outer < inner) //upper matrix
+ {
+ Index minOuterIndex = 0;
+ minOuterIndex = inner - m_data.upperProfile(inner);
+
+ if (outer < minOuterIndex) //The value does not yet exist
+ {
+ const Index previousProfile = m_data.upperProfile(inner);
+
+ m_data.upperProfile(inner) = inner - outer;
+
+
+ const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
+ //shift data stored after this new one
+ const Index stop = m_colStartIndex[cols()];
+ const Index start = m_colStartIndex[inner];
+
+
+ for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
+ m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
+ }
+
+ for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
+ m_colStartIndex[innerIdx] += bandIncrement;
+ }
+
+ //zeros new data
+ memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
+
+ return m_data.upper(m_colStartIndex[inner]);
+ } else {
+ return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
+ }
+ }
+
+ if (outer > inner) //lower matrix
+ {
+ const Index minInnerIndex = outer - m_data.lowerProfile(outer);
+ if (inner < minInnerIndex) //The value does not yet exist
+ {
+ const Index previousProfile = m_data.lowerProfile(outer);
+ m_data.lowerProfile(outer) = outer - inner;
+
+ const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
+ //shift data stored after this new one
+ const Index stop = m_rowStartIndex[rows()];
+ const Index start = m_rowStartIndex[outer];
+
+
+ for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
+ m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
+ }
+
+ for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
+ m_rowStartIndex[innerIdx] += bandIncrement;
+ }
+
+ //zeros new data
+ memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
+ return m_data.lower(m_rowStartIndex[outer]);
+ } else {
+ return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
+ }
+ }
+ } else {
+ if (outer > inner) //upper matrix
+ {
+ const Index maxOuterIndex = inner + m_data.upperProfile(inner);
+ if (outer > maxOuterIndex) //The value does not yet exist
+ {
+ const Index previousProfile = m_data.upperProfile(inner);
+ m_data.upperProfile(inner) = outer - inner;
+
+ const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
+ //shift data stored after this new one
+ const Index stop = m_rowStartIndex[rows()];
+ const Index start = m_rowStartIndex[inner + 1];
+
+ for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
+ m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
+ }
+
+ for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
+ m_rowStartIndex[innerIdx] += bandIncrement;
+ }
+ memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
+ return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
+ } else {
+ return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
+ }
+ }
+
+ if (outer < inner) //lower matrix
+ {
+ const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
+ if (inner > maxInnerIndex) //The value does not yet exist
+ {
+ const Index previousProfile = m_data.lowerProfile(outer);
+ m_data.lowerProfile(outer) = inner - outer;
+
+ const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
+ //shift data stored after this new one
+ const Index stop = m_colStartIndex[cols()];
+ const Index start = m_colStartIndex[outer + 1];
+
+ for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
+ m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
+ }
+
+ for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
+ m_colStartIndex[innerIdx] += bandIncrement;
+ }
+ memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
+ return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
+ } else {
+ return m_data.lower(m_colStartIndex[outer] + (inner - outer));
+ }
+ }
+ }
+ }
+
+ /** Must be called after inserting a set of non zero entries.
+ */
+ inline void finalize() {
+ if (IsRowMajor) {
+ if (rows() > cols())
+ m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
+ else
+ m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
+
+ // eigen_assert(rows() == cols() && "memory reorganisatrion only works with suare matrix");
+ //
+ // Scalar* newArray = new Scalar[m_colStartIndex[cols()] + 1 + m_rowStartIndex[rows()] + 1];
+ // Index dataIdx = 0;
+ // for (Index row = 0; row < rows(); row++) {
+ //
+ // const Index nbLowerElts = m_rowStartIndex[row + 1] - m_rowStartIndex[row];
+ // // std::cout << "nbLowerElts" << nbLowerElts << std::endl;
+ // memcpy(newArray + dataIdx, m_data.m_lower + m_rowStartIndex[row], nbLowerElts * sizeof (Scalar));
+ // m_rowStartIndex[row] = dataIdx;
+ // dataIdx += nbLowerElts;
+ //
+ // const Index nbUpperElts = m_colStartIndex[row + 1] - m_colStartIndex[row];
+ // memcpy(newArray + dataIdx, m_data.m_upper + m_colStartIndex[row], nbUpperElts * sizeof (Scalar));
+ // m_colStartIndex[row] = dataIdx;
+ // dataIdx += nbUpperElts;
+ //
+ //
+ // }
+ // //todo : don't access m_data profile directly : add an accessor from SkylineMatrix
+ // m_rowStartIndex[rows()] = m_rowStartIndex[rows()-1] + m_data.lowerProfile(rows()-1);
+ // m_colStartIndex[cols()] = m_colStartIndex[cols()-1] + m_data.upperProfile(cols()-1);
+ //
+ // delete[] m_data.m_lower;
+ // delete[] m_data.m_upper;
+ //
+ // m_data.m_lower = newArray;
+ // m_data.m_upper = newArray;
+ } else {
+ if (rows() > cols())
+ m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
+ else
+ m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
+ }
+ }
+
+ inline void squeeze() {
+ finalize();
+ m_data.squeeze();
+ }
+
+ void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
+ //TODO
+ }
+
+ /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
+ * \sa resizeNonZeros(Index), reserve(), setZero()
+ */
+ void resize(size_t rows, size_t cols) {
+ const Index diagSize = rows > cols ? cols : rows;
+ m_innerSize = IsRowMajor ? cols : rows;
+
+ eigen_assert(rows == cols && "Skyline matrix must be square matrix");
+
+ if (diagSize % 2) { // diagSize is odd
+ const Index k = (diagSize - 1) / 2;
+
+ m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
+ 2 * k * k + k + 1,
+ 2 * k * k + k + 1);
+
+ } else // diagSize is even
+ {
+ const Index k = diagSize / 2;
+ m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
+ 2 * k * k - k + 1,
+ 2 * k * k - k + 1);
+ }
+
+ if (m_colStartIndex && m_rowStartIndex) {
+ delete[] m_colStartIndex;
+ delete[] m_rowStartIndex;
+ }
+ m_colStartIndex = new Index [cols + 1];
+ m_rowStartIndex = new Index [rows + 1];
+ m_outerSize = diagSize;
+
+ m_data.reset();
+ m_data.clear();
+
+ m_outerSize = diagSize;
+ memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
+ memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
+ }
+
+ void resizeNonZeros(Index size) {
+ m_data.resize(size);
+ }
+
+ inline SkylineMatrix()
+ : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
+ resize(0, 0);
+ }
+
+ inline SkylineMatrix(size_t rows, size_t cols)
+ : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
+ resize(rows, cols);
+ }
+
+ template<typename OtherDerived>
+ inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
+ : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
+ *this = other.derived();
+ }
+
+ inline SkylineMatrix(const SkylineMatrix & other)
+ : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
+ *this = other.derived();
+ }
+
+ inline void swap(SkylineMatrix & other) {
+ //EIGEN_DBG_SKYLINE(std::cout << "SkylineMatrix:: swap\n");
+ std::swap(m_colStartIndex, other.m_colStartIndex);
+ std::swap(m_rowStartIndex, other.m_rowStartIndex);
+ std::swap(m_innerSize, other.m_innerSize);
+ std::swap(m_outerSize, other.m_outerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline SkylineMatrix & operator=(const SkylineMatrix & other) {
+ std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
+ if (other.isRValue()) {
+ swap(other.const_cast_derived());
+ } else {
+ resize(other.rows(), other.cols());
+ memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
+ memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ template<typename OtherDerived>
+ inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
+ const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
+ if (needToTranspose) {
+ // TODO
+ // return *this;
+ } else {
+ // there is no special optimization
+ return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
+ }
+ }
+
+ friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {
+
+ EIGEN_DBG_SKYLINE(
+ std::cout << "upper elements : " << std::endl;
+ for (Index i = 0; i < m.m_data.upperSize(); i++)
+ std::cout << m.m_data.upper(i) << "\t";
+ std::cout << std::endl;
+ std::cout << "upper profile : " << std::endl;
+ for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
+ std::cout << m.m_data.upperProfile(i) << "\t";
+ std::cout << std::endl;
+ std::cout << "lower startIdx : " << std::endl;
+ for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
+ std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
+ std::cout << std::endl;
+
+
+ std::cout << "lower elements : " << std::endl;
+ for (Index i = 0; i < m.m_data.lowerSize(); i++)
+ std::cout << m.m_data.lower(i) << "\t";
+ std::cout << std::endl;
+ std::cout << "lower profile : " << std::endl;
+ for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
+ std::cout << m.m_data.lowerProfile(i) << "\t";
+ std::cout << std::endl;
+ std::cout << "lower startIdx : " << std::endl;
+ for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
+ std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
+ std::cout << std::endl;
+ );
+ for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
+ for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
+ s << m.coeff(rowIdx, colIdx) << "\t";
+ }
+ s << std::endl;
+ }
+ return s;
+ }
+
+ /** Destructor */
+ inline ~SkylineMatrix() {
+ delete[] m_colStartIndex;
+ delete[] m_rowStartIndex;
+ }
+
+ /** Overloaded for performance */
+ Scalar sum() const;
+};
+
+template<typename Scalar, int _Options>
+class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
+public:
+
+ InnerUpperIterator(const SkylineMatrix& mat, Index outer)
+ : m_matrix(mat), m_outer(outer),
+ m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
+ m_start(m_id),
+ m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
+ }
+
+ inline InnerUpperIterator & operator++() {
+ m_id++;
+ return *this;
+ }
+
+ inline InnerUpperIterator & operator+=(Index shift) {
+ m_id += shift;
+ return *this;
+ }
+
+ inline Scalar value() const {
+ return m_matrix.m_data.upper(m_id);
+ }
+
+ inline Scalar* valuePtr() {
+ return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
+ }
+
+ inline Scalar& valueRef() {
+ return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
+ }
+
+ inline Index index() const {
+ return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
+ m_outer + (m_id - m_start) + 1;
+ }
+
+ inline Index row() const {
+ return IsRowMajor ? index() : m_outer;
+ }
+
+ inline Index col() const {
+ return IsRowMajor ? m_outer : index();
+ }
+
+ inline size_t size() const {
+ return m_matrix.m_data.upperProfile(m_outer);
+ }
+
+ inline operator bool() const {
+ return (m_id < m_end) && (m_id >= m_start);
+ }
+
+protected:
+ const SkylineMatrix& m_matrix;
+ const Index m_outer;
+ Index m_id;
+ const Index m_start;
+ const Index m_end;
+};
+
+template<typename Scalar, int _Options>
+class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
+public:
+
+ InnerLowerIterator(const SkylineMatrix& mat, Index outer)
+ : m_matrix(mat),
+ m_outer(outer),
+ m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
+ m_start(m_id),
+ m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
+ }
+
+ inline InnerLowerIterator & operator++() {
+ m_id++;
+ return *this;
+ }
+
+ inline InnerLowerIterator & operator+=(Index shift) {
+ m_id += shift;
+ return *this;
+ }
+
+ inline Scalar value() const {
+ return m_matrix.m_data.lower(m_id);
+ }
+
+ inline Scalar* valuePtr() {
+ return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
+ }
+
+ inline Scalar& valueRef() {
+ return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
+ }
+
+ inline Index index() const {
+ return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
+ m_outer + (m_id - m_start) + 1;
+ ;
+ }
+
+ inline Index row() const {
+ return IsRowMajor ? m_outer : index();
+ }
+
+ inline Index col() const {
+ return IsRowMajor ? index() : m_outer;
+ }
+
+ inline size_t size() const {
+ return m_matrix.m_data.lowerProfile(m_outer);
+ }
+
+ inline operator bool() const {
+ return (m_id < m_end) && (m_id >= m_start);
+ }
+
+protected:
+ const SkylineMatrix& m_matrix;
+ const Index m_outer;
+ Index m_id;
+ const Index m_start;
+ const Index m_end;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SkylineMatrix_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
new file mode 100644
index 0000000..b3a2372
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h
@@ -0,0 +1,212 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINEMATRIXBASE_H
+#define EIGEN_SKYLINEMATRIXBASE_H
+
+#include "SkylineUtil.h"
+
+namespace Eigen {
+
+/** \ingroup Skyline_Module
+ *
+ * \class SkylineMatrixBase
+ *
+ * \brief Base class of any skyline matrices or skyline expressions
+ *
+ * \param Derived
+ *
+ */
+template<typename Derived> class SkylineMatrixBase : public EigenBase<Derived> {
+public:
+
+ typedef typename internal::traits<Derived>::Scalar Scalar;
+ typedef typename internal::traits<Derived>::StorageKind StorageKind;
+ typedef typename internal::index<StorageKind>::type Index;
+
+ enum {
+ RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
+ /**< The number of rows at compile-time. This is just a copy of the value provided
+ * by the \a Derived type. If a value is not known at compile-time,
+ * it is set to the \a Dynamic constant.
+ * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
+
+ ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
+ /**< The number of columns at compile-time. This is just a copy of the value provided
+ * by the \a Derived type. If a value is not known at compile-time,
+ * it is set to the \a Dynamic constant.
+ * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
+
+
+ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
+ internal::traits<Derived>::ColsAtCompileTime>::ret),
+ /**< This is equal to the number of coefficients, i.e. the number of
+ * rows times the number of columns, or to \a Dynamic if this is not
+ * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
+
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+
+ MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
+ MaxColsAtCompileTime>::ret),
+
+ IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
+ /**< This is set to true if either the number of rows or the number of
+ * columns is known at compile-time to be equal to 1. Indeed, in that case,
+ * we are dealing with a column-vector (if there is only one column) or with
+ * a row-vector (if there is only one row). */
+
+ Flags = internal::traits<Derived>::Flags,
+ /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
+ * constructed from this one. See the \ref flags "list of flags".
+ */
+
+ CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
+ /**< This is a rough measure of how expensive it is to read one coefficient from
+ * this expression.
+ */
+
+ IsRowMajor = Flags & RowMajorBit ? 1 : 0
+ };
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** This is the "real scalar" type; if the \a Scalar type is already real numbers
+ * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
+ * \a Scalar is \a std::complex<T> then RealScalar is \a T.
+ *
+ * \sa class NumTraits
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** type of the equivalent square matrix */
+ typedef Matrix<Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime),
+ EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime) > SquareMatrixType;
+
+ inline const Derived& derived() const {
+ return *static_cast<const Derived*> (this);
+ }
+
+ inline Derived& derived() {
+ return *static_cast<Derived*> (this);
+ }
+
+ inline Derived& const_cast_derived() const {
+ return *static_cast<Derived*> (const_cast<SkylineMatrixBase*> (this));
+ }
+#endif // not EIGEN_PARSED_BY_DOXYGEN
+
+ /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
+ inline Index rows() const {
+ return derived().rows();
+ }
+
+ /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
+ inline Index cols() const {
+ return derived().cols();
+ }
+
+ /** \returns the number of coefficients, which is \a rows()*cols().
+ * \sa rows(), cols(), SizeAtCompileTime. */
+ inline Index size() const {
+ return rows() * cols();
+ }
+
+ /** \returns the number of nonzero coefficients which is in practice the number
+ * of stored coefficients. */
+ inline Index nonZeros() const {
+ return derived().nonZeros();
+ }
+
+ /** \returns the size of the storage major dimension,
+ * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
+ Index outerSize() const {
+ return (int(Flags) & RowMajorBit) ? this->rows() : this->cols();
+ }
+
+ /** \returns the size of the inner dimension according to the storage order,
+ * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
+ Index innerSize() const {
+ return (int(Flags) & RowMajorBit) ? this->cols() : this->rows();
+ }
+
+ bool isRValue() const {
+ return m_isRValue;
+ }
+
+ Derived& markAsRValue() {
+ m_isRValue = true;
+ return derived();
+ }
+
+ SkylineMatrixBase() : m_isRValue(false) {
+ /* TODO check flags */
+ }
+
+ inline Derived & operator=(const Derived& other) {
+ this->operator=<Derived > (other);
+ return derived();
+ }
+
+ template<typename OtherDerived>
+ inline void assignGeneric(const OtherDerived& other) {
+ derived().resize(other.rows(), other.cols());
+ for (Index row = 0; row < rows(); row++)
+ for (Index col = 0; col < cols(); col++) {
+ if (other.coeff(row, col) != Scalar(0))
+ derived().insert(row, col) = other.coeff(row, col);
+ }
+ derived().finalize();
+ }
+
+ template<typename OtherDerived>
+ inline Derived & operator=(const SkylineMatrixBase<OtherDerived>& other) {
+ //TODO
+ }
+
+ template<typename Lhs, typename Rhs>
+ inline Derived & operator=(const SkylineProduct<Lhs, Rhs, SkylineTimeSkylineProduct>& product);
+
+ friend std::ostream & operator <<(std::ostream & s, const SkylineMatrixBase& m) {
+ s << m.derived();
+ return s;
+ }
+
+ template<typename OtherDerived>
+ const typename SkylineProductReturnType<Derived, OtherDerived>::Type
+ operator*(const MatrixBase<OtherDerived> &other) const;
+
+ /** \internal use operator= */
+ template<typename DenseDerived>
+ void evalTo(MatrixBase<DenseDerived>& dst) const {
+ dst.setZero();
+ for (Index i = 0; i < rows(); i++)
+ for (Index j = 0; j < rows(); j++)
+ dst(i, j) = derived().coeff(i, j);
+ }
+
+ Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime> toDense() const {
+ return derived();
+ }
+
+ /** \returns the matrix or vector obtained by evaluating this expression.
+ *
+ * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
+ * a const reference, in order to avoid a useless copy.
+ */
+ EIGEN_STRONG_INLINE const typename internal::eval<Derived, IsSkyline>::type eval() const {
+ return typename internal::eval<Derived>::type(derived());
+ }
+
+protected:
+ bool m_isRValue;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SkylineMatrixBase_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h b/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
new file mode 100644
index 0000000..1ddf455
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h
@@ -0,0 +1,295 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINEPRODUCT_H
+#define EIGEN_SKYLINEPRODUCT_H
+
+namespace Eigen {
+
+template<typename Lhs, typename Rhs, int ProductMode>
+struct SkylineProductReturnType {
+ typedef const typename internal::nested<Lhs, Rhs::RowsAtCompileTime>::type LhsNested;
+ typedef const typename internal::nested<Rhs, Lhs::RowsAtCompileTime>::type RhsNested;
+
+ typedef SkylineProduct<LhsNested, RhsNested, ProductMode> Type;
+};
+
+template<typename LhsNested, typename RhsNested, int ProductMode>
+struct internal::traits<SkylineProduct<LhsNested, RhsNested, ProductMode> > {
+ // clean the nested types:
+ typedef typename internal::remove_all<LhsNested>::type _LhsNested;
+ typedef typename internal::remove_all<RhsNested>::type _RhsNested;
+ typedef typename _LhsNested::Scalar Scalar;
+
+ enum {
+ LhsCoeffReadCost = _LhsNested::CoeffReadCost,
+ RhsCoeffReadCost = _RhsNested::CoeffReadCost,
+ LhsFlags = _LhsNested::Flags,
+ RhsFlags = _RhsNested::Flags,
+
+ RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
+ ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
+ InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
+
+ MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
+
+ EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
+ ResultIsSkyline = ProductMode == SkylineTimeSkylineProduct,
+
+ RemovedBits = ~((EvalToRowMajor ? 0 : RowMajorBit) | (ResultIsSkyline ? 0 : SkylineBit)),
+
+ Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
+ | EvalBeforeAssigningBit
+ | EvalBeforeNestingBit,
+
+ CoeffReadCost = Dynamic
+ };
+
+ typedef typename internal::conditional<ResultIsSkyline,
+ SkylineMatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> >,
+ MatrixBase<SkylineProduct<LhsNested, RhsNested, ProductMode> > >::type Base;
+};
+
+namespace internal {
+template<typename LhsNested, typename RhsNested, int ProductMode>
+class SkylineProduct : no_assignment_operator,
+public traits<SkylineProduct<LhsNested, RhsNested, ProductMode> >::Base {
+public:
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(SkylineProduct)
+
+private:
+
+ typedef typename traits<SkylineProduct>::_LhsNested _LhsNested;
+ typedef typename traits<SkylineProduct>::_RhsNested _RhsNested;
+
+public:
+
+ template<typename Lhs, typename Rhs>
+ EIGEN_STRONG_INLINE SkylineProduct(const Lhs& lhs, const Rhs& rhs)
+ : m_lhs(lhs), m_rhs(rhs) {
+ eigen_assert(lhs.cols() == rhs.rows());
+
+ enum {
+ ProductIsValid = _LhsNested::ColsAtCompileTime == Dynamic
+ || _RhsNested::RowsAtCompileTime == Dynamic
+ || int(_LhsNested::ColsAtCompileTime) == int(_RhsNested::RowsAtCompileTime),
+ AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
+ SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested, _RhsNested)
+ };
+ // note to the lost user:
+ // * for a dot product use: v1.dot(v2)
+ // * for a coeff-wise product use: v1.cwise()*v2
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
+ INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
+ EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
+ INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
+ EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
+ }
+
+ EIGEN_STRONG_INLINE Index rows() const {
+ return m_lhs.rows();
+ }
+
+ EIGEN_STRONG_INLINE Index cols() const {
+ return m_rhs.cols();
+ }
+
+ EIGEN_STRONG_INLINE const _LhsNested& lhs() const {
+ return m_lhs;
+ }
+
+ EIGEN_STRONG_INLINE const _RhsNested& rhs() const {
+ return m_rhs;
+ }
+
+protected:
+ LhsNested m_lhs;
+ RhsNested m_rhs;
+};
+
+// dense = skyline * dense
+// Note that here we force no inlining and separate the setZero() because GCC messes up otherwise
+
+template<typename Lhs, typename Rhs, typename Dest>
+EIGEN_DONT_INLINE void skyline_row_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
+ typedef typename remove_all<Lhs>::type _Lhs;
+ typedef typename remove_all<Rhs>::type _Rhs;
+ typedef typename traits<Lhs>::Scalar Scalar;
+
+ enum {
+ LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
+ LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
+ ProcessFirstHalf = LhsIsSelfAdjoint
+ && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
+ || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
+ || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
+ ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
+ };
+
+ //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
+ for (Index col = 0; col < rhs.cols(); col++) {
+ for (Index row = 0; row < lhs.rows(); row++) {
+ dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
+ }
+ }
+ //Use matrix lower triangular part
+ for (Index row = 0; row < lhs.rows(); row++) {
+ typename _Lhs::InnerLowerIterator lIt(lhs, row);
+ const Index stop = lIt.col() + lIt.size();
+ for (Index col = 0; col < rhs.cols(); col++) {
+
+ Index k = lIt.col();
+ Scalar tmp = 0;
+ while (k < stop) {
+ tmp +=
+ lIt.value() *
+ rhs(k++, col);
+ ++lIt;
+ }
+ dst(row, col) += tmp;
+ lIt += -lIt.size();
+ }
+
+ }
+
+ //Use matrix upper triangular part
+ for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
+ typename _Lhs::InnerUpperIterator uIt(lhs, lhscol);
+ const Index stop = uIt.size() + uIt.row();
+ for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
+
+
+ const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
+ Index k = uIt.row();
+ while (k < stop) {
+ dst(k++, rhscol) +=
+ uIt.value() *
+ rhsCoeff;
+ ++uIt;
+ }
+ uIt += -uIt.size();
+ }
+ }
+
+}
+
+template<typename Lhs, typename Rhs, typename Dest>
+EIGEN_DONT_INLINE void skyline_col_major_time_dense_product(const Lhs& lhs, const Rhs& rhs, Dest& dst) {
+ typedef typename remove_all<Lhs>::type _Lhs;
+ typedef typename remove_all<Rhs>::type _Rhs;
+ typedef typename traits<Lhs>::Scalar Scalar;
+
+ enum {
+ LhsIsRowMajor = (_Lhs::Flags & RowMajorBit) == RowMajorBit,
+ LhsIsSelfAdjoint = (_Lhs::Flags & SelfAdjointBit) == SelfAdjointBit,
+ ProcessFirstHalf = LhsIsSelfAdjoint
+ && (((_Lhs::Flags & (UpperTriangularBit | LowerTriangularBit)) == 0)
+ || ((_Lhs::Flags & UpperTriangularBit) && !LhsIsRowMajor)
+ || ((_Lhs::Flags & LowerTriangularBit) && LhsIsRowMajor)),
+ ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf)
+ };
+
+ //Use matrix diagonal part <- Improvement : use inner iterator on dense matrix.
+ for (Index col = 0; col < rhs.cols(); col++) {
+ for (Index row = 0; row < lhs.rows(); row++) {
+ dst(row, col) = lhs.coeffDiag(row) * rhs(row, col);
+ }
+ }
+
+ //Use matrix upper triangular part
+ for (Index row = 0; row < lhs.rows(); row++) {
+ typename _Lhs::InnerUpperIterator uIt(lhs, row);
+ const Index stop = uIt.col() + uIt.size();
+ for (Index col = 0; col < rhs.cols(); col++) {
+
+ Index k = uIt.col();
+ Scalar tmp = 0;
+ while (k < stop) {
+ tmp +=
+ uIt.value() *
+ rhs(k++, col);
+ ++uIt;
+ }
+
+
+ dst(row, col) += tmp;
+ uIt += -uIt.size();
+ }
+ }
+
+ //Use matrix lower triangular part
+ for (Index lhscol = 0; lhscol < lhs.cols(); lhscol++) {
+ typename _Lhs::InnerLowerIterator lIt(lhs, lhscol);
+ const Index stop = lIt.size() + lIt.row();
+ for (Index rhscol = 0; rhscol < rhs.cols(); rhscol++) {
+
+ const Scalar rhsCoeff = rhs.coeff(lhscol, rhscol);
+ Index k = lIt.row();
+ while (k < stop) {
+ dst(k++, rhscol) +=
+ lIt.value() *
+ rhsCoeff;
+ ++lIt;
+ }
+ lIt += -lIt.size();
+ }
+ }
+
+}
+
+template<typename Lhs, typename Rhs, typename ResultType,
+ int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit>
+ struct skyline_product_selector;
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct skyline_product_selector<Lhs, Rhs, ResultType, RowMajor> {
+ typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
+
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
+ skyline_row_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct skyline_product_selector<Lhs, Rhs, ResultType, ColMajor> {
+ typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
+
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType & res) {
+ skyline_col_major_time_dense_product<Lhs, Rhs, ResultType > (lhs, rhs, res);
+ }
+};
+
+} // end namespace internal
+
+// template<typename Derived>
+// template<typename Lhs, typename Rhs >
+// Derived & MatrixBase<Derived>::lazyAssign(const SkylineProduct<Lhs, Rhs, SkylineTimeDenseProduct>& product) {
+// typedef typename internal::remove_all<Lhs>::type _Lhs;
+// internal::skyline_product_selector<typename internal::remove_all<Lhs>::type,
+// typename internal::remove_all<Rhs>::type,
+// Derived>::run(product.lhs(), product.rhs(), derived());
+//
+// return derived();
+// }
+
+// skyline * dense
+
+template<typename Derived>
+template<typename OtherDerived >
+EIGEN_STRONG_INLINE const typename SkylineProductReturnType<Derived, OtherDerived>::Type
+SkylineMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const {
+
+ return typename SkylineProductReturnType<Derived, OtherDerived>::Type(derived(), other.derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SKYLINEPRODUCT_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h b/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
new file mode 100644
index 0000000..378a8de
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h
@@ -0,0 +1,259 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINE_STORAGE_H
+#define EIGEN_SKYLINE_STORAGE_H
+
+namespace Eigen {
+
+/** Stores a skyline set of values in three structures :
+ * The diagonal elements
+ * The upper elements
+ * The lower elements
+ *
+ */
+template<typename Scalar>
+class SkylineStorage {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef SparseIndex Index;
+public:
+
+ SkylineStorage()
+ : m_diag(0),
+ m_lower(0),
+ m_upper(0),
+ m_lowerProfile(0),
+ m_upperProfile(0),
+ m_diagSize(0),
+ m_upperSize(0),
+ m_lowerSize(0),
+ m_upperProfileSize(0),
+ m_lowerProfileSize(0),
+ m_allocatedSize(0) {
+ }
+
+ SkylineStorage(const SkylineStorage& other)
+ : m_diag(0),
+ m_lower(0),
+ m_upper(0),
+ m_lowerProfile(0),
+ m_upperProfile(0),
+ m_diagSize(0),
+ m_upperSize(0),
+ m_lowerSize(0),
+ m_upperProfileSize(0),
+ m_lowerProfileSize(0),
+ m_allocatedSize(0) {
+ *this = other;
+ }
+
+ SkylineStorage & operator=(const SkylineStorage& other) {
+ resize(other.diagSize(), other.m_upperProfileSize, other.m_lowerProfileSize, other.upperSize(), other.lowerSize());
+ memcpy(m_diag, other.m_diag, m_diagSize * sizeof (Scalar));
+ memcpy(m_upper, other.m_upper, other.upperSize() * sizeof (Scalar));
+ memcpy(m_lower, other.m_lower, other.lowerSize() * sizeof (Scalar));
+ memcpy(m_upperProfile, other.m_upperProfile, m_upperProfileSize * sizeof (Index));
+ memcpy(m_lowerProfile, other.m_lowerProfile, m_lowerProfileSize * sizeof (Index));
+ return *this;
+ }
+
+ void swap(SkylineStorage& other) {
+ std::swap(m_diag, other.m_diag);
+ std::swap(m_upper, other.m_upper);
+ std::swap(m_lower, other.m_lower);
+ std::swap(m_upperProfile, other.m_upperProfile);
+ std::swap(m_lowerProfile, other.m_lowerProfile);
+ std::swap(m_diagSize, other.m_diagSize);
+ std::swap(m_upperSize, other.m_upperSize);
+ std::swap(m_lowerSize, other.m_lowerSize);
+ std::swap(m_allocatedSize, other.m_allocatedSize);
+ }
+
+ ~SkylineStorage() {
+ delete[] m_diag;
+ delete[] m_upper;
+ if (m_upper != m_lower)
+ delete[] m_lower;
+ delete[] m_upperProfile;
+ delete[] m_lowerProfile;
+ }
+
+ void reserve(Index size, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
+ Index newAllocatedSize = size + upperSize + lowerSize;
+ if (newAllocatedSize > m_allocatedSize)
+ reallocate(size, upperProfileSize, lowerProfileSize, upperSize, lowerSize);
+ }
+
+ void squeeze() {
+ if (m_allocatedSize > m_diagSize + m_upperSize + m_lowerSize)
+ reallocate(m_diagSize, m_upperProfileSize, m_lowerProfileSize, m_upperSize, m_lowerSize);
+ }
+
+ void resize(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize, float reserveSizeFactor = 0) {
+ if (m_allocatedSize < diagSize + upperSize + lowerSize)
+ reallocate(diagSize, upperProfileSize, lowerProfileSize, upperSize + Index(reserveSizeFactor * upperSize), lowerSize + Index(reserveSizeFactor * lowerSize));
+ m_diagSize = diagSize;
+ m_upperSize = upperSize;
+ m_lowerSize = lowerSize;
+ m_upperProfileSize = upperProfileSize;
+ m_lowerProfileSize = lowerProfileSize;
+ }
+
+ inline Index diagSize() const {
+ return m_diagSize;
+ }
+
+ inline Index upperSize() const {
+ return m_upperSize;
+ }
+
+ inline Index lowerSize() const {
+ return m_lowerSize;
+ }
+
+ inline Index upperProfileSize() const {
+ return m_upperProfileSize;
+ }
+
+ inline Index lowerProfileSize() const {
+ return m_lowerProfileSize;
+ }
+
+ inline Index allocatedSize() const {
+ return m_allocatedSize;
+ }
+
+ inline void clear() {
+ m_diagSize = 0;
+ }
+
+ inline Scalar& diag(Index i) {
+ return m_diag[i];
+ }
+
+ inline const Scalar& diag(Index i) const {
+ return m_diag[i];
+ }
+
+ inline Scalar& upper(Index i) {
+ return m_upper[i];
+ }
+
+ inline const Scalar& upper(Index i) const {
+ return m_upper[i];
+ }
+
+ inline Scalar& lower(Index i) {
+ return m_lower[i];
+ }
+
+ inline const Scalar& lower(Index i) const {
+ return m_lower[i];
+ }
+
+ inline Index& upperProfile(Index i) {
+ return m_upperProfile[i];
+ }
+
+ inline const Index& upperProfile(Index i) const {
+ return m_upperProfile[i];
+ }
+
+ inline Index& lowerProfile(Index i) {
+ return m_lowerProfile[i];
+ }
+
+ inline const Index& lowerProfile(Index i) const {
+ return m_lowerProfile[i];
+ }
+
+ static SkylineStorage Map(Index* upperProfile, Index* lowerProfile, Scalar* diag, Scalar* upper, Scalar* lower, Index size, Index upperSize, Index lowerSize) {
+ SkylineStorage res;
+ res.m_upperProfile = upperProfile;
+ res.m_lowerProfile = lowerProfile;
+ res.m_diag = diag;
+ res.m_upper = upper;
+ res.m_lower = lower;
+ res.m_allocatedSize = res.m_diagSize = size;
+ res.m_upperSize = upperSize;
+ res.m_lowerSize = lowerSize;
+ return res;
+ }
+
+ inline void reset() {
+ memset(m_diag, 0, m_diagSize * sizeof (Scalar));
+ memset(m_upper, 0, m_upperSize * sizeof (Scalar));
+ memset(m_lower, 0, m_lowerSize * sizeof (Scalar));
+ memset(m_upperProfile, 0, m_diagSize * sizeof (Index));
+ memset(m_lowerProfile, 0, m_diagSize * sizeof (Index));
+ }
+
+ void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>()) {
+ //TODO
+ }
+
+protected:
+
+ inline void reallocate(Index diagSize, Index upperProfileSize, Index lowerProfileSize, Index upperSize, Index lowerSize) {
+
+ Scalar* diag = new Scalar[diagSize];
+ Scalar* upper = new Scalar[upperSize];
+ Scalar* lower = new Scalar[lowerSize];
+ Index* upperProfile = new Index[upperProfileSize];
+ Index* lowerProfile = new Index[lowerProfileSize];
+
+ Index copyDiagSize = (std::min)(diagSize, m_diagSize);
+ Index copyUpperSize = (std::min)(upperSize, m_upperSize);
+ Index copyLowerSize = (std::min)(lowerSize, m_lowerSize);
+ Index copyUpperProfileSize = (std::min)(upperProfileSize, m_upperProfileSize);
+ Index copyLowerProfileSize = (std::min)(lowerProfileSize, m_lowerProfileSize);
+
+ // copy
+ memcpy(diag, m_diag, copyDiagSize * sizeof (Scalar));
+ memcpy(upper, m_upper, copyUpperSize * sizeof (Scalar));
+ memcpy(lower, m_lower, copyLowerSize * sizeof (Scalar));
+ memcpy(upperProfile, m_upperProfile, copyUpperProfileSize * sizeof (Index));
+ memcpy(lowerProfile, m_lowerProfile, copyLowerProfileSize * sizeof (Index));
+
+
+
+ // delete old stuff
+ delete[] m_diag;
+ delete[] m_upper;
+ delete[] m_lower;
+ delete[] m_upperProfile;
+ delete[] m_lowerProfile;
+ m_diag = diag;
+ m_upper = upper;
+ m_lower = lower;
+ m_upperProfile = upperProfile;
+ m_lowerProfile = lowerProfile;
+ m_allocatedSize = diagSize + upperSize + lowerSize;
+ m_upperSize = upperSize;
+ m_lowerSize = lowerSize;
+ }
+
+public:
+ Scalar* m_diag;
+ Scalar* m_upper;
+ Scalar* m_lower;
+ Index* m_upperProfile;
+ Index* m_lowerProfile;
+ Index m_diagSize;
+ Index m_upperSize;
+ Index m_lowerSize;
+ Index m_upperProfileSize;
+ Index m_lowerProfileSize;
+ Index m_allocatedSize;
+
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPRESSED_STORAGE_H
diff --git a/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h b/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
new file mode 100644
index 0000000..75eb612
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h
@@ -0,0 +1,89 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Guillaume Saupin <guillaume.saupin@cea.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SKYLINEUTIL_H
+#define EIGEN_SKYLINEUTIL_H
+
+namespace Eigen {
+
+#ifdef NDEBUG
+#define EIGEN_DBG_SKYLINE(X)
+#else
+#define EIGEN_DBG_SKYLINE(X) X
+#endif
+
+const unsigned int SkylineBit = 0x1200;
+template<typename Lhs, typename Rhs, int ProductMode> class SkylineProduct;
+enum AdditionalProductEvaluationMode {SkylineTimeDenseProduct, SkylineTimeSkylineProduct, DenseTimeSkylineProduct};
+enum {IsSkyline = SkylineBit};
+
+
+#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
+template<typename OtherDerived> \
+EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SkylineMatrixBase<OtherDerived>& other) \
+{ \
+ return Base::operator Op(other.derived()); \
+} \
+EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
+{ \
+ return Base::operator Op(other); \
+}
+
+#define EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
+template<typename Other> \
+EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
+{ \
+ return Base::operator Op(scalar); \
+}
+
+#define EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
+ EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
+ EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
+ EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
+ EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
+ EIGEN_SKYLINE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
+
+#define _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, BaseClass) \
+ typedef BaseClass Base; \
+ typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; \
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; \
+ typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
+ typedef typename Eigen::internal::index<StorageKind>::type Index; \
+ enum { Flags = Eigen::internal::traits<Derived>::Flags, };
+
+#define EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived) \
+ _EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(Derived, Eigen::SkylineMatrixBase<Derived>)
+
+template<typename Derived> class SkylineMatrixBase;
+template<typename _Scalar, int _Flags = 0> class SkylineMatrix;
+template<typename _Scalar, int _Flags = 0> class DynamicSkylineMatrix;
+template<typename _Scalar, int _Flags = 0> class SkylineVector;
+template<typename _Scalar, int _Flags = 0> class MappedSkylineMatrix;
+
+namespace internal {
+
+template<typename Lhs, typename Rhs> struct skyline_product_mode;
+template<typename Lhs, typename Rhs, int ProductMode = skyline_product_mode<Lhs,Rhs>::value> struct SkylineProductReturnType;
+
+template<typename T> class eval<T,IsSkyline>
+{
+ typedef typename traits<T>::Scalar _Scalar;
+ enum {
+ _Flags = traits<T>::Flags
+ };
+
+ public:
+ typedef SkylineMatrix<_Scalar, _Flags> type;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SKYLINEUTIL_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
new file mode 100644
index 0000000..e9ec746
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h
@@ -0,0 +1,122 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
+#define EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
+
+namespace Eigen {
+
+#if 0
+
+// NOTE Have to be reimplemented as a specialization of BlockImpl< DynamicSparseMatrix<_Scalar, _Options, _Index>, ... >
+// See SparseBlock.h for an example
+
+
+/***************************************************************************
+* specialisation for DynamicSparseMatrix
+***************************************************************************/
+
+template<typename _Scalar, int _Options, typename _Index, int Size>
+class SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size>
+ : public SparseMatrixBase<SparseInnerVectorSet<DynamicSparseMatrix<_Scalar, _Options, _Index>, Size> >
+{
+ typedef DynamicSparseMatrix<_Scalar, _Options, _Index> MatrixType;
+ public:
+
+ enum { IsRowMajor = internal::traits<SparseInnerVectorSet>::IsRowMajor };
+
+ EIGEN_SPARSE_PUBLIC_INTERFACE(SparseInnerVectorSet)
+ class InnerIterator: public MatrixType::InnerIterator
+ {
+ public:
+ inline InnerIterator(const SparseInnerVectorSet& xpr, Index outer)
+ : MatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
+ {}
+ inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
+ inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
+ protected:
+ Index m_outer;
+ };
+
+ inline SparseInnerVectorSet(const MatrixType& matrix, Index outerStart, Index outerSize)
+ : m_matrix(matrix), m_outerStart(outerStart), m_outerSize(outerSize)
+ {
+ eigen_assert( (outerStart>=0) && ((outerStart+outerSize)<=matrix.outerSize()) );
+ }
+
+ inline SparseInnerVectorSet(const MatrixType& matrix, Index outer)
+ : m_matrix(matrix), m_outerStart(outer), m_outerSize(Size)
+ {
+ eigen_assert(Size!=Dynamic);
+ eigen_assert( (outer>=0) && (outer<matrix.outerSize()) );
+ }
+
+ template<typename OtherDerived>
+ inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
+ {
+ if (IsRowMajor != ((OtherDerived::Flags&RowMajorBit)==RowMajorBit))
+ {
+ // need to transpose => perform a block evaluation followed by a big swap
+ DynamicSparseMatrix<Scalar,IsRowMajor?RowMajorBit:0> aux(other);
+ *this = aux.markAsRValue();
+ }
+ else
+ {
+ // evaluate/copy vector per vector
+ for (Index j=0; j<m_outerSize.value(); ++j)
+ {
+ SparseVector<Scalar,IsRowMajor ? RowMajorBit : 0> aux(other.innerVector(j));
+ m_matrix.const_cast_derived()._data()[m_outerStart+j].swap(aux._data());
+ }
+ }
+ return *this;
+ }
+
+ inline SparseInnerVectorSet& operator=(const SparseInnerVectorSet& other)
+ {
+ return operator=<SparseInnerVectorSet>(other);
+ }
+
+ Index nonZeros() const
+ {
+ Index count = 0;
+ for (Index j=0; j<m_outerSize.value(); ++j)
+ count += m_matrix._data()[m_outerStart+j].size();
+ return count;
+ }
+
+ const Scalar& lastCoeff() const
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(SparseInnerVectorSet);
+ eigen_assert(m_matrix.data()[m_outerStart].size()>0);
+ return m_matrix.data()[m_outerStart].vale(m_matrix.data()[m_outerStart].size()-1);
+ }
+
+// template<typename Sparse>
+// inline SparseInnerVectorSet& operator=(const SparseMatrixBase<OtherDerived>& other)
+// {
+// return *this;
+// }
+
+ EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ protected:
+
+ const typename MatrixType::Nested m_matrix;
+ Index m_outerStart;
+ const internal::variable_if_dynamic<Index, Size> m_outerSize;
+
+};
+
+#endif
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_BLOCKFORDYNAMICMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/CMakeLists.txt b/eigen/unsupported/Eigen/src/SparseExtra/CMakeLists.txt
new file mode 100644
index 0000000..7ea32ca
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_SparseExtra_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_SparseExtra_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/SparseExtra COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h b/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
new file mode 100644
index 0000000..dec16df
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
@@ -0,0 +1,357 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H
+#define EIGEN_DYNAMIC_SPARSEMATRIX_H
+
+namespace Eigen {
+
+/** \deprecated use a SparseMatrix in an uncompressed mode
+ *
+ * \class DynamicSparseMatrix
+ *
+ * \brief A sparse matrix class designed for matrix assembly purpose
+ *
+ * \param _Scalar the scalar type, i.e. the type of the coefficients
+ *
+ * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows
+ * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is
+ * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows
+ * otherwise.
+ *
+ * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might
+ * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance
+ * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors.
+ *
+ * \see SparseMatrix
+ */
+
+namespace internal {
+template<typename _Scalar, int _Options, typename _Index>
+struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Sparse StorageKind;
+ typedef MatrixXpr XprKind;
+ enum {
+ RowsAtCompileTime = Dynamic,
+ ColsAtCompileTime = Dynamic,
+ MaxRowsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic,
+ Flags = _Options | NestByRefBit | LvalueBit,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ SupportedAccessPatterns = OuterRandomAccessPattern
+ };
+};
+}
+
+template<typename _Scalar, int _Options, typename _Index>
+ class DynamicSparseMatrix
+ : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _Index> >
+{
+ public:
+ EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
+ // FIXME: why are these operator already alvailable ???
+ // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=)
+ // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
+ typedef MappedSparseMatrix<Scalar,Flags> Map;
+ using Base::IsRowMajor;
+ using Base::operator=;
+ enum {
+ Options = _Options
+ };
+
+ protected:
+
+ typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
+
+ Index m_innerSize;
+ std::vector<internal::CompressedStorage<Scalar,Index> > m_data;
+
+ public:
+
+ inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; }
+ inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); }
+ inline Index innerSize() const { return m_innerSize; }
+ inline Index outerSize() const { return static_cast<Index>(m_data.size()); }
+ inline Index innerNonZeros(Index j) const { return m_data[j].size(); }
+
+ std::vector<internal::CompressedStorage<Scalar,Index> >& _data() { return m_data; }
+ const std::vector<internal::CompressedStorage<Scalar,Index> >& _data() const { return m_data; }
+
+ /** \returns the coefficient value at given position \a row, \a col
+ * This operation involes a log(rho*outer_size) binary search.
+ */
+ inline Scalar coeff(Index row, Index col) const
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ return m_data[outer].at(inner);
+ }
+
+ /** \returns a reference to the coefficient value at given position \a row, \a col
+ * This operation involes a log(rho*outer_size) binary search. If the coefficient does not
+ * exist yet, then a sorted insertion into a sequential buffer is performed.
+ */
+ inline Scalar& coeffRef(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ return m_data[outer].atWithInsertion(inner);
+ }
+
+ class InnerIterator;
+ class ReverseInnerIterator;
+
+ void setZero()
+ {
+ for (Index j=0; j<outerSize(); ++j)
+ m_data[j].clear();
+ }
+
+ /** \returns the number of non zero coefficients */
+ Index nonZeros() const
+ {
+ Index res = 0;
+ for (Index j=0; j<outerSize(); ++j)
+ res += static_cast<Index>(m_data[j].size());
+ return res;
+ }
+
+
+
+ void reserve(Index reserveSize = 1000)
+ {
+ if (outerSize()>0)
+ {
+ Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4));
+ for (Index j=0; j<outerSize(); ++j)
+ {
+ m_data[j].reserve(reserveSizePerVector);
+ }
+ }
+ }
+
+ /** Does nothing: provided for compatibility with SparseMatrix */
+ inline void startVec(Index /*outer*/) {}
+
+ /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
+ * - the nonzero does not already exist
+ * - the new coefficient is the last one of the given inner vector.
+ *
+ * \sa insert, insertBackByOuterInner */
+ inline Scalar& insertBack(Index row, Index col)
+ {
+ return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
+ }
+
+ /** \sa insertBack */
+ inline Scalar& insertBackByOuterInner(Index outer, Index inner)
+ {
+ eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range");
+ eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner))
+ && "wrong sorted insertion");
+ m_data[outer].append(0, inner);
+ return m_data[outer].value(m_data[outer].size()-1);
+ }
+
+ inline Scalar& insert(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+
+ Index startId = 0;
+ Index id = static_cast<Index>(m_data[outer].size()) - 1;
+ m_data[outer].resize(id+2,1);
+
+ while ( (id >= startId) && (m_data[outer].index(id) > inner) )
+ {
+ m_data[outer].index(id+1) = m_data[outer].index(id);
+ m_data[outer].value(id+1) = m_data[outer].value(id);
+ --id;
+ }
+ m_data[outer].index(id+1) = inner;
+ m_data[outer].value(id+1) = 0;
+ return m_data[outer].value(id+1);
+ }
+
+ /** Does nothing: provided for compatibility with SparseMatrix */
+ inline void finalize() {}
+
+ /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */
+ void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ for (Index j=0; j<outerSize(); ++j)
+ m_data[j].prune(reference,epsilon);
+ }
+
+ /** Resize the matrix without preserving the data (the matrix is set to zero)
+ */
+ void resize(Index rows, Index cols)
+ {
+ const Index outerSize = IsRowMajor ? rows : cols;
+ m_innerSize = IsRowMajor ? cols : rows;
+ setZero();
+ if (Index(m_data.size()) != outerSize)
+ {
+ m_data.resize(outerSize);
+ }
+ }
+
+ void resizeAndKeepData(Index rows, Index cols)
+ {
+ const Index outerSize = IsRowMajor ? rows : cols;
+ const Index innerSize = IsRowMajor ? cols : rows;
+ if (m_innerSize>innerSize)
+ {
+ // remove all coefficients with innerCoord>=innerSize
+ // TODO
+ //std::cerr << "not implemented yet\n";
+ exit(2);
+ }
+ if (m_data.size() != outerSize)
+ {
+ m_data.resize(outerSize);
+ }
+ }
+
+ /** The class DynamicSparseMatrix is deprectaed */
+ EIGEN_DEPRECATED inline DynamicSparseMatrix()
+ : m_innerSize(0), m_data(0)
+ {
+ eigen_assert(innerSize()==0 && outerSize()==0);
+ }
+
+ /** The class DynamicSparseMatrix is deprectaed */
+ EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols)
+ : m_innerSize(0)
+ {
+ resize(rows, cols);
+ }
+
+ /** The class DynamicSparseMatrix is deprectaed */
+ template<typename OtherDerived>
+ EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other)
+ : m_innerSize(0)
+ {
+ Base::operator=(other.derived());
+ }
+
+ inline DynamicSparseMatrix(const DynamicSparseMatrix& other)
+ : Base(), m_innerSize(0)
+ {
+ *this = other.derived();
+ }
+
+ inline void swap(DynamicSparseMatrix& other)
+ {
+ //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
+ std::swap(m_innerSize, other.m_innerSize);
+ //std::swap(m_outerSize, other.m_outerSize);
+ m_data.swap(other.m_data);
+ }
+
+ inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other)
+ {
+ if (other.isRValue())
+ {
+ swap(other.const_cast_derived());
+ }
+ else
+ {
+ resize(other.rows(), other.cols());
+ m_data = other.m_data;
+ }
+ return *this;
+ }
+
+ /** Destructor */
+ inline ~DynamicSparseMatrix() {}
+
+ public:
+
+ /** \deprecated
+ * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */
+ EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
+ {
+ setZero();
+ reserve(reserveSize);
+ }
+
+ /** \deprecated use insert()
+ * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that:
+ * 1 - the coefficient does not exist yet
+ * 2 - this the coefficient with greater inner coordinate for the given outer coordinate.
+ * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates
+ * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid.
+ *
+ * \see fillrand(), coeffRef()
+ */
+ EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
+ {
+ const Index outer = IsRowMajor ? row : col;
+ const Index inner = IsRowMajor ? col : row;
+ return insertBack(outer,inner);
+ }
+
+ /** \deprecated use insert()
+ * Like fill() but with random inner coordinates.
+ * Compared to the generic coeffRef(), the unique limitation is that we assume
+ * the coefficient does not exist yet.
+ */
+ EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
+ {
+ return insert(row,col);
+ }
+
+ /** \deprecated use finalize()
+ * Does nothing. Provided for compatibility with SparseMatrix. */
+ EIGEN_DEPRECATED void endFill() {}
+
+# ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
+# include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN
+# endif
+ };
+
+template<typename Scalar, int _Options, typename _Index>
+class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public SparseVector<Scalar,_Options,_Index>::InnerIterator
+{
+ typedef typename SparseVector<Scalar,_Options,_Index>::InnerIterator Base;
+ public:
+ InnerIterator(const DynamicSparseMatrix& mat, Index outer)
+ : Base(mat.m_data[outer]), m_outer(outer)
+ {}
+
+ inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
+ inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
+
+ protected:
+ const Index m_outer;
+};
+
+template<typename Scalar, int _Options, typename _Index>
+class DynamicSparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator
+{
+ typedef typename SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator Base;
+ public:
+ ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer)
+ : Base(mat.m_data[outer]), m_outer(outer)
+ {}
+
+ inline Index row() const { return IsRowMajor ? m_outer : Base::index(); }
+ inline Index col() const { return IsRowMajor ? Base::index() : m_outer; }
+
+ protected:
+ const Index m_outer;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
new file mode 100644
index 0000000..7aafce9
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h
@@ -0,0 +1,273 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSE_MARKET_IO_H
+#define EIGEN_SPARSE_MARKET_IO_H
+
+#include <iostream>
+
+namespace Eigen {
+
+namespace internal
+{
+ template <typename Scalar>
+ inline bool GetMarketLine (std::stringstream& line, int& M, int& N, int& i, int& j, Scalar& value)
+ {
+ line >> i >> j >> value;
+ i--;
+ j--;
+ if(i>=0 && j>=0 && i<M && j<N)
+ {
+ return true;
+ }
+ else
+ return false;
+ }
+ template <typename Scalar>
+ inline bool GetMarketLine (std::stringstream& line, int& M, int& N, int& i, int& j, std::complex<Scalar>& value)
+ {
+ Scalar valR, valI;
+ line >> i >> j >> valR >> valI;
+ i--;
+ j--;
+ if(i>=0 && j>=0 && i<M && j<N)
+ {
+ value = std::complex<Scalar>(valR, valI);
+ return true;
+ }
+ else
+ return false;
+ }
+
+ template <typename RealScalar>
+ inline void GetVectorElt (const std::string& line, RealScalar& val)
+ {
+ std::istringstream newline(line);
+ newline >> val;
+ }
+
+ template <typename RealScalar>
+ inline void GetVectorElt (const std::string& line, std::complex<RealScalar>& val)
+ {
+ RealScalar valR, valI;
+ std::istringstream newline(line);
+ newline >> valR >> valI;
+ val = std::complex<RealScalar>(valR, valI);
+ }
+
+ template<typename Scalar>
+ inline void putMarketHeader(std::string& header,int sym)
+ {
+ header= "%%MatrixMarket matrix coordinate ";
+ if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
+ {
+ header += " complex";
+ if(sym == Symmetric) header += " symmetric";
+ else if (sym == SelfAdjoint) header += " Hermitian";
+ else header += " general";
+ }
+ else
+ {
+ header += " real";
+ if(sym == Symmetric) header += " symmetric";
+ else header += " general";
+ }
+ }
+
+ template<typename Scalar>
+ inline void PutMatrixElt(Scalar value, int row, int col, std::ofstream& out)
+ {
+ out << row << " "<< col << " " << value << "\n";
+ }
+ template<typename Scalar>
+ inline void PutMatrixElt(std::complex<Scalar> value, int row, int col, std::ofstream& out)
+ {
+ out << row << " " << col << " " << value.real() << " " << value.imag() << "\n";
+ }
+
+
+ template<typename Scalar>
+ inline void putVectorElt(Scalar value, std::ofstream& out)
+ {
+ out << value << "\n";
+ }
+ template<typename Scalar>
+ inline void putVectorElt(std::complex<Scalar> value, std::ofstream& out)
+ {
+ out << value.real << " " << value.imag()<< "\n";
+ }
+
+} // end namepsace internal
+
+inline bool getMarketHeader(const std::string& filename, int& sym, bool& iscomplex, bool& isvector)
+{
+ sym = 0;
+ isvector = false;
+ std::ifstream in(filename.c_str(),std::ios::in);
+ if(!in)
+ return false;
+
+ std::string line;
+ // The matrix header is always the first line in the file
+ std::getline(in, line); eigen_assert(in.good());
+
+ std::stringstream fmtline(line);
+ std::string substr[5];
+ fmtline>> substr[0] >> substr[1] >> substr[2] >> substr[3] >> substr[4];
+ if(substr[2].compare("array") == 0) isvector = true;
+ if(substr[3].compare("complex") == 0) iscomplex = true;
+ if(substr[4].compare("symmetric") == 0) sym = Symmetric;
+ else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
+
+ return true;
+}
+
+template<typename SparseMatrixType>
+bool loadMarket(SparseMatrixType& mat, const std::string& filename)
+{
+ typedef typename SparseMatrixType::Scalar Scalar;
+ std::ifstream input(filename.c_str(),std::ios::in);
+ if(!input)
+ return false;
+
+ const int maxBuffersize = 2048;
+ char buffer[maxBuffersize];
+
+ bool readsizes = false;
+
+ typedef Triplet<Scalar,int> T;
+ std::vector<T> elements;
+
+ int M(-1), N(-1), NNZ(-1);
+ int count = 0;
+ while(input.getline(buffer, maxBuffersize))
+ {
+ // skip comments
+ //NOTE An appropriate test should be done on the header to get the symmetry
+ if(buffer[0]=='%')
+ continue;
+
+ std::stringstream line(buffer);
+
+ if(!readsizes)
+ {
+ line >> M >> N >> NNZ;
+ if(M > 0 && N > 0 && NNZ > 0)
+ {
+ readsizes = true;
+ std::cout << "sizes: " << M << "," << N << "," << NNZ << "\n";
+ mat.resize(M,N);
+ mat.reserve(NNZ);
+ }
+ }
+ else
+ {
+ int i(-1), j(-1);
+ Scalar value;
+ if( internal::GetMarketLine(line, M, N, i, j, value) )
+ {
+ ++ count;
+ elements.push_back(T(i,j,value));
+ }
+ else
+ std::cerr << "Invalid read: " << i << "," << j << "\n";
+ }
+ }
+ mat.setFromTriplets(elements.begin(), elements.end());
+ if(count!=NNZ)
+ std::cerr << count << "!=" << NNZ << "\n";
+
+ input.close();
+ return true;
+}
+
+template<typename VectorType>
+bool loadMarketVector(VectorType& vec, const std::string& filename)
+{
+ typedef typename VectorType::Scalar Scalar;
+ std::ifstream in(filename.c_str(), std::ios::in);
+ if(!in)
+ return false;
+
+ std::string line;
+ int n(0), col(0);
+ do
+ { // Skip comments
+ std::getline(in, line); eigen_assert(in.good());
+ } while (line[0] == '%');
+ std::istringstream newline(line);
+ newline >> n >> col;
+ eigen_assert(n>0 && col>0);
+ vec.resize(n);
+ int i = 0;
+ Scalar value;
+ while ( std::getline(in, line) && (i < n) ){
+ internal::GetVectorElt(line, value);
+ vec(i++) = value;
+ }
+ in.close();
+ if (i!=n){
+ std::cerr<< "Unable to read all elements from file " << filename << "\n";
+ return false;
+ }
+ return true;
+}
+
+template<typename SparseMatrixType>
+bool saveMarket(const SparseMatrixType& mat, const std::string& filename, int sym = 0)
+{
+ typedef typename SparseMatrixType::Scalar Scalar;
+ std::ofstream out(filename.c_str(),std::ios::out);
+ if(!out)
+ return false;
+
+ out.flags(std::ios_base::scientific);
+ out.precision(64);
+ std::string header;
+ internal::putMarketHeader<Scalar>(header, sym);
+ out << header << std::endl;
+ out << mat.rows() << " " << mat.cols() << " " << mat.nonZeros() << "\n";
+ int count = 0;
+ for(int j=0; j<mat.outerSize(); ++j)
+ for(typename SparseMatrixType::InnerIterator it(mat,j); it; ++it)
+ {
+ ++ count;
+ internal::PutMatrixElt(it.value(), it.row()+1, it.col()+1, out);
+ // out << it.row()+1 << " " << it.col()+1 << " " << it.value() << "\n";
+ }
+ out.close();
+ return true;
+}
+
+template<typename VectorType>
+bool saveMarketVector (const VectorType& vec, const std::string& filename)
+{
+ typedef typename VectorType::Scalar Scalar;
+ std::ofstream out(filename.c_str(),std::ios::out);
+ if(!out)
+ return false;
+
+ out.flags(std::ios_base::scientific);
+ out.precision(64);
+ if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
+ out << "%%MatrixMarket matrix array complex general\n";
+ else
+ out << "%%MatrixMarket matrix array real general\n";
+ out << vec.size() << " "<< 1 << "\n";
+ for (int i=0; i < vec.size(); i++){
+ internal::putVectorElt(vec(i), out);
+ }
+ out.close();
+ return true;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSE_MARKET_IO_H
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h b/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
new file mode 100644
index 0000000..bf13cf2
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h
@@ -0,0 +1,232 @@
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BROWSE_MATRICES_H
+#define EIGEN_BROWSE_MATRICES_H
+
+namespace Eigen {
+
+enum {
+ SPD = 0x100,
+ NonSymmetric = 0x0
+};
+
+/**
+ * @brief Iterator to browse matrices from a specified folder
+ *
+ * This is used to load all the matrices from a folder.
+ * The matrices should be in Matrix Market format
+ * It is assumed that the matrices are named as matname.mtx
+ * and matname_SPD.mtx if the matrix is Symmetric and positive definite (or Hermitian)
+ * The right hand side vectors are loaded as well, if they exist.
+ * They should be named as matname_b.mtx.
+ * Note that the right hand side for a SPD matrix is named as matname_SPD_b.mtx
+ *
+ * Sometimes a reference solution is available. In this case, it should be named as matname_x.mtx
+ *
+ * Sample code
+ * \code
+ *
+ * \endcode
+ *
+ * \tparam Scalar The scalar type
+ */
+template <typename Scalar>
+class MatrixMarketIterator
+{
+ public:
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+ typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+
+ public:
+ MatrixMarketIterator(const std::string folder):m_sym(0),m_isvalid(false),m_matIsLoaded(false),m_hasRhs(false),m_hasrefX(false),m_folder(folder)
+ {
+ m_folder_id = opendir(folder.c_str());
+ if (!m_folder_id){
+ m_isvalid = false;
+ std::cerr << "The provided Matrix folder could not be opened \n\n";
+ abort();
+ }
+ Getnextvalidmatrix();
+ }
+
+ ~MatrixMarketIterator()
+ {
+ if (m_folder_id) closedir(m_folder_id);
+ }
+
+ inline MatrixMarketIterator& operator++()
+ {
+ m_matIsLoaded = false;
+ m_hasrefX = false;
+ m_hasRhs = false;
+ Getnextvalidmatrix();
+ return *this;
+ }
+ inline operator bool() const { return m_isvalid;}
+
+ /** Return the sparse matrix corresponding to the current file */
+ inline MatrixType& matrix()
+ {
+ // Read the matrix
+ if (m_matIsLoaded) return m_mat;
+
+ std::string matrix_file = m_folder + "/" + m_matname + ".mtx";
+ if ( !loadMarket(m_mat, matrix_file))
+ {
+ m_matIsLoaded = false;
+ return m_mat;
+ }
+ m_matIsLoaded = true;
+
+ if (m_sym != NonSymmetric)
+ { // Store the upper part of the matrix. It is needed by the solvers dealing with nonsymmetric matrices ??
+ MatrixType B;
+ B = m_mat;
+ m_mat = B.template selfadjointView<Lower>();
+ }
+ return m_mat;
+ }
+
+ /** Return the right hand side corresponding to the current matrix.
+ * If the rhs file is not provided, a random rhs is generated
+ */
+ inline VectorType& rhs()
+ {
+ // Get the right hand side
+ if (m_hasRhs) return m_rhs;
+
+ std::string rhs_file;
+ rhs_file = m_folder + "/" + m_matname + "_b.mtx"; // The pattern is matname_b.mtx
+ m_hasRhs = Fileexists(rhs_file);
+ if (m_hasRhs)
+ {
+ m_rhs.resize(m_mat.cols());
+ m_hasRhs = loadMarketVector(m_rhs, rhs_file);
+ }
+ if (!m_hasRhs)
+ {
+ // Generate a random right hand side
+ if (!m_matIsLoaded) this->matrix();
+ m_refX.resize(m_mat.cols());
+ m_refX.setRandom();
+ m_rhs = m_mat * m_refX;
+ m_hasrefX = true;
+ m_hasRhs = true;
+ }
+ return m_rhs;
+ }
+
+ /** Return a reference solution
+ * If it is not provided and if the right hand side is not available
+ * then refX is randomly generated such that A*refX = b
+ * where A and b are the matrix and the rhs.
+ * Note that when a rhs is provided, refX is not available
+ */
+ inline VectorType& refX()
+ {
+ // Check if a reference solution is provided
+ if (m_hasrefX) return m_refX;
+
+ std::string lhs_file;
+ lhs_file = m_folder + "/" + m_matname + "_x.mtx";
+ m_hasrefX = Fileexists(lhs_file);
+ if (m_hasrefX)
+ {
+ m_refX.resize(m_mat.cols());
+ m_hasrefX = loadMarketVector(m_refX, lhs_file);
+ }
+ return m_refX;
+ }
+
+ inline std::string& matname() { return m_matname; }
+
+ inline int sym() { return m_sym; }
+
+ inline bool hasRhs() {return m_hasRhs; }
+ inline bool hasrefX() {return m_hasrefX; }
+
+ protected:
+
+ inline bool Fileexists(std::string file)
+ {
+ std::ifstream file_id(file.c_str());
+ if (!file_id.good() )
+ {
+ return false;
+ }
+ else
+ {
+ file_id.close();
+ return true;
+ }
+ }
+
+ void Getnextvalidmatrix( )
+ {
+ m_isvalid = false;
+ // Here, we return with the next valid matrix in the folder
+ while ( (m_curs_id = readdir(m_folder_id)) != NULL) {
+ m_isvalid = false;
+ std::string curfile;
+ curfile = m_folder + "/" + m_curs_id->d_name;
+ // Discard if it is a folder
+ if (m_curs_id->d_type == DT_DIR) continue; //FIXME This may not be available on non BSD systems
+// struct stat st_buf;
+// stat (curfile.c_str(), &st_buf);
+// if (S_ISDIR(st_buf.st_mode)) continue;
+
+ // Determine from the header if it is a matrix or a right hand side
+ bool isvector,iscomplex=false;
+ if(!getMarketHeader(curfile,m_sym,iscomplex,isvector)) continue;
+ if(isvector) continue;
+ if (!iscomplex)
+ {
+ if(internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value)
+ continue;
+ }
+ if (iscomplex)
+ {
+ if(internal::is_same<Scalar, float>::value || internal::is_same<Scalar, double>::value)
+ continue;
+ }
+
+
+ // Get the matrix name
+ std::string filename = m_curs_id->d_name;
+ m_matname = filename.substr(0, filename.length()-4);
+
+ // Find if the matrix is SPD
+ size_t found = m_matname.find("SPD");
+ if( (found!=std::string::npos) && (m_sym != NonSymmetric) )
+ m_sym = SPD;
+
+ m_isvalid = true;
+ break;
+ }
+ }
+ int m_sym; // Symmetry of the matrix
+ MatrixType m_mat; // Current matrix
+ VectorType m_rhs; // Current vector
+ VectorType m_refX; // The reference solution, if exists
+ std::string m_matname; // Matrix Name
+ bool m_isvalid;
+ bool m_matIsLoaded; // Determine if the matrix has already been loaded from the file
+ bool m_hasRhs; // The right hand side exists
+ bool m_hasrefX; // A reference solution is provided
+ std::string m_folder;
+ DIR * m_folder_id;
+ struct dirent *m_curs_id;
+
+};
+
+} // end namespace Eigen
+
+#endif
diff --git a/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h b/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
new file mode 100644
index 0000000..dee1708
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h
@@ -0,0 +1,327 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_RANDOMSETTER_H
+#define EIGEN_RANDOMSETTER_H
+
+namespace Eigen {
+
+/** Represents a std::map
+ *
+ * \see RandomSetter
+ */
+template<typename Scalar> struct StdMapTraits
+{
+ typedef int KeyType;
+ typedef std::map<KeyType,Scalar> Type;
+ enum {
+ IsSorted = 1
+ };
+
+ static void setInvalidKey(Type&, const KeyType&) {}
+};
+
+#ifdef EIGEN_UNORDERED_MAP_SUPPORT
+/** Represents a std::unordered_map
+ *
+ * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
+ * yourself making sure that unordered_map is defined in the std namespace.
+ *
+ * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
+ * \code
+ * #include <tr1/unordered_map>
+ * #define EIGEN_UNORDERED_MAP_SUPPORT
+ * namespace std {
+ * using std::tr1::unordered_map;
+ * }
+ * \endcode
+ *
+ * \see RandomSetter
+ */
+template<typename Scalar> struct StdUnorderedMapTraits
+{
+ typedef int KeyType;
+ typedef std::unordered_map<KeyType,Scalar> Type;
+ enum {
+ IsSorted = 0
+ };
+
+ static void setInvalidKey(Type&, const KeyType&) {}
+};
+#endif // EIGEN_UNORDERED_MAP_SUPPORT
+
+#ifdef _DENSE_HASH_MAP_H_
+/** Represents a google::dense_hash_map
+ *
+ * \see RandomSetter
+ */
+template<typename Scalar> struct GoogleDenseHashMapTraits
+{
+ typedef int KeyType;
+ typedef google::dense_hash_map<KeyType,Scalar> Type;
+ enum {
+ IsSorted = 0
+ };
+
+ static void setInvalidKey(Type& map, const KeyType& k)
+ { map.set_empty_key(k); }
+};
+#endif
+
+#ifdef _SPARSE_HASH_MAP_H_
+/** Represents a google::sparse_hash_map
+ *
+ * \see RandomSetter
+ */
+template<typename Scalar> struct GoogleSparseHashMapTraits
+{
+ typedef int KeyType;
+ typedef google::sparse_hash_map<KeyType,Scalar> Type;
+ enum {
+ IsSorted = 0
+ };
+
+ static void setInvalidKey(Type&, const KeyType&) {}
+};
+#endif
+
+/** \class RandomSetter
+ *
+ * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
+ *
+ * \param SparseMatrixType the type of the sparse matrix we are updating
+ * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
+ * Its default value depends on the system.
+ * \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
+ * as a power of two exponent.
+ *
+ * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
+ * efficient random access. The conversion from the compressed representation to a hash_map object is performed
+ * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
+ * suggest the use of nested blocks as in this example:
+ *
+ * \code
+ * SparseMatrix<double> m(rows,cols);
+ * {
+ * RandomSetter<SparseMatrix<double> > w(m);
+ * // don't use m but w instead with read/write random access to the coefficients:
+ * for(;;)
+ * w(rand(),rand()) = rand;
+ * }
+ * // when w is deleted, the data are copied back to m
+ * // and m is ready to use.
+ * \endcode
+ *
+ * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
+ * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
+ * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
+ * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
+ * per rows/columns.
+ *
+ * The possible values for the template parameter MapTraits are:
+ * - \b StdMapTraits: corresponds to std::map. (does not perform very well)
+ * - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
+ * - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
+ * - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
+ *
+ * The default map implementation depends on the availability, and the preferred order is:
+ * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
+ *
+ * For performance and memory consumption reasons it is highly recommended to use one of
+ * the Google's hash_map implementation. To enable the support for them, you have two options:
+ * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
+ * - define EIGEN_GOOGLEHASH_SUPPORT
+ * In the later case the inclusion of <google/dense_hash_map> is made for you.
+ *
+ * \see http://code.google.com/p/google-sparsehash/
+ */
+template<typename SparseMatrixType,
+ template <typename T> class MapTraits =
+#if defined _DENSE_HASH_MAP_H_
+ GoogleDenseHashMapTraits
+#elif defined _HASH_MAP
+ GnuHashMapTraits
+#else
+ StdMapTraits
+#endif
+ ,int OuterPacketBits = 6>
+class RandomSetter
+{
+ typedef typename SparseMatrixType::Scalar Scalar;
+ typedef typename SparseMatrixType::Index Index;
+
+ struct ScalarWrapper
+ {
+ ScalarWrapper() : value(0) {}
+ Scalar value;
+ };
+ typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
+ typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
+ static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
+ enum {
+ SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
+ TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
+ SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
+ };
+
+ public:
+
+ /** Constructs a random setter object from the sparse matrix \a target
+ *
+ * Note that the initial value of \a target are imported. If you want to re-set
+ * a sparse matrix from scratch, then you must set it to zero first using the
+ * setZero() function.
+ */
+ inline RandomSetter(SparseMatrixType& target)
+ : mp_target(&target)
+ {
+ const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
+ const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
+ m_outerPackets = outerSize >> OuterPacketBits;
+ if (outerSize&OuterPacketMask)
+ m_outerPackets += 1;
+ m_hashmaps = new HashMapType[m_outerPackets];
+ // compute number of bits needed to store inner indices
+ Index aux = innerSize - 1;
+ m_keyBitsOffset = 0;
+ while (aux)
+ {
+ ++m_keyBitsOffset;
+ aux = aux >> 1;
+ }
+ KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
+ for (Index k=0; k<m_outerPackets; ++k)
+ MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
+
+ // insert current coeffs
+ for (Index j=0; j<mp_target->outerSize(); ++j)
+ for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
+ (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
+ }
+
+ /** Destructor updating back the sparse matrix target */
+ ~RandomSetter()
+ {
+ KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
+ if (!SwapStorage) // also means the map is sorted
+ {
+ mp_target->setZero();
+ mp_target->makeCompressed();
+ mp_target->reserve(nonZeros());
+ Index prevOuter = -1;
+ for (Index k=0; k<m_outerPackets; ++k)
+ {
+ const Index outerOffset = (1<<OuterPacketBits) * k;
+ typename HashMapType::iterator end = m_hashmaps[k].end();
+ for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
+ {
+ const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
+ const Index inner = it->first & keyBitsMask;
+ if (prevOuter!=outer)
+ {
+ for (Index j=prevOuter+1;j<=outer;++j)
+ mp_target->startVec(j);
+ prevOuter = outer;
+ }
+ mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
+ }
+ }
+ mp_target->finalize();
+ }
+ else
+ {
+ VectorXi positions(mp_target->outerSize());
+ positions.setZero();
+ // pass 1
+ for (Index k=0; k<m_outerPackets; ++k)
+ {
+ typename HashMapType::iterator end = m_hashmaps[k].end();
+ for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
+ {
+ const Index outer = it->first & keyBitsMask;
+ ++positions[outer];
+ }
+ }
+ // prefix sum
+ Index count = 0;
+ for (Index j=0; j<mp_target->outerSize(); ++j)
+ {
+ Index tmp = positions[j];
+ mp_target->outerIndexPtr()[j] = count;
+ positions[j] = count;
+ count += tmp;
+ }
+ mp_target->makeCompressed();
+ mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
+ mp_target->resizeNonZeros(count);
+ // pass 2
+ for (Index k=0; k<m_outerPackets; ++k)
+ {
+ const Index outerOffset = (1<<OuterPacketBits) * k;
+ typename HashMapType::iterator end = m_hashmaps[k].end();
+ for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
+ {
+ const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
+ const Index outer = it->first & keyBitsMask;
+ // sorted insertion
+ // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
+ // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
+ // small fraction of them have to be sorted, whence the following simple procedure:
+ Index posStart = mp_target->outerIndexPtr()[outer];
+ Index i = (positions[outer]++) - 1;
+ while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
+ {
+ mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
+ mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
+ --i;
+ }
+ mp_target->innerIndexPtr()[i+1] = inner;
+ mp_target->valuePtr()[i+1] = it->second.value;
+ }
+ }
+ }
+ delete[] m_hashmaps;
+ }
+
+ /** \returns a reference to the coefficient at given coordinates \a row, \a col */
+ Scalar& operator() (Index row, Index col)
+ {
+ const Index outer = SetterRowMajor ? row : col;
+ const Index inner = SetterRowMajor ? col : row;
+ const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
+ const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
+ const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
+ return m_hashmaps[outerMajor][key].value;
+ }
+
+ /** \returns the number of non zero coefficients
+ *
+ * \note According to the underlying map/hash_map implementation,
+ * this function might be quite expensive.
+ */
+ Index nonZeros() const
+ {
+ Index nz = 0;
+ for (Index k=0; k<m_outerPackets; ++k)
+ nz += static_cast<Index>(m_hashmaps[k].size());
+ return nz;
+ }
+
+
+ protected:
+
+ HashMapType* m_hashmaps;
+ SparseMatrixType* mp_target;
+ Index m_outerPackets;
+ unsigned char m_keyBitsOffset;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_RANDOMSETTER_H
diff --git a/eigen/unsupported/Eigen/src/Splines/CMakeLists.txt b/eigen/unsupported/Eigen/src/Splines/CMakeLists.txt
new file mode 100644
index 0000000..55c6271
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Splines/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_Splines_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_Splines_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/Splines COMPONENT Devel
+ )
diff --git a/eigen/unsupported/Eigen/src/Splines/Spline.h b/eigen/unsupported/Eigen/src/Splines/Spline.h
new file mode 100644
index 0000000..771f104
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Splines/Spline.h
@@ -0,0 +1,474 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPLINE_H
+#define EIGEN_SPLINE_H
+
+#include "SplineFwd.h"
+
+namespace Eigen
+{
+ /**
+ * \ingroup Splines_Module
+ * \class Spline
+ * \brief A class representing multi-dimensional spline curves.
+ *
+ * The class represents B-splines with non-uniform knot vectors. Each control
+ * point of the B-spline is associated with a basis function
+ * \f{align*}
+ * C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
+ * \f}
+ *
+ * \tparam _Scalar The underlying data type (typically float or double)
+ * \tparam _Dim The curve dimension (e.g. 2 or 3)
+ * \tparam _Degree Per default set to Dynamic; could be set to the actual desired
+ * degree for optimization purposes (would result in stack allocation
+ * of several temporary variables).
+ **/
+ template <typename _Scalar, int _Dim, int _Degree>
+ class Spline
+ {
+ public:
+ typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
+ enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
+ enum { Degree = _Degree /*!< The spline curve's degree. */ };
+
+ /** \brief The point type the spline is representing. */
+ typedef typename SplineTraits<Spline>::PointType PointType;
+
+ /** \brief The data type used to store knot vectors. */
+ typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
+
+ /** \brief The data type used to store non-zero basis functions. */
+ typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
+
+ /** \brief The data type representing the spline's control points. */
+ typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
+
+ /**
+ * \brief Creates a (constant) zero spline.
+ * For Splines with dynamic degree, the resulting degree will be 0.
+ **/
+ Spline()
+ : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
+ , m_ctrls(ControlPointVectorType::Zero(2,(Degree==Dynamic ? 1 : Degree+1)))
+ {
+ // in theory this code can go to the initializer list but it will get pretty
+ // much unreadable ...
+ enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
+ m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
+ m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
+ }
+
+ /**
+ * \brief Creates a spline from a knot vector and control points.
+ * \param knots The spline's knot vector.
+ * \param ctrls The spline's control point vector.
+ **/
+ template <typename OtherVectorType, typename OtherArrayType>
+ Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
+
+ /**
+ * \brief Copy constructor for splines.
+ * \param spline The input spline.
+ **/
+ template <int OtherDegree>
+ Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
+ m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
+
+ /**
+ * \brief Returns the knots of the underlying spline.
+ **/
+ const KnotVectorType& knots() const { return m_knots; }
+
+ /**
+ * \brief Returns the knots of the underlying spline.
+ **/
+ const ControlPointVectorType& ctrls() const { return m_ctrls; }
+
+ /**
+ * \brief Returns the spline value at a given site \f$u\f$.
+ *
+ * The function returns
+ * \f{align*}
+ * C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
+ * \f}
+ *
+ * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
+ * \return The spline value at the given location \f$u\f$.
+ **/
+ PointType operator()(Scalar u) const;
+
+ /**
+ * \brief Evaluation of spline derivatives of up-to given order.
+ *
+ * The function returns
+ * \f{align*}
+ * \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
+ * \f}
+ * for i ranging between 0 and order.
+ *
+ * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
+ * \param order The order up to which the derivatives are computed.
+ **/
+ typename SplineTraits<Spline>::DerivativeType
+ derivatives(Scalar u, DenseIndex order) const;
+
+ /**
+ * \copydoc Spline::derivatives
+ * Using the template version of this function is more efficieent since
+ * temporary objects are allocated on the stack whenever this is possible.
+ **/
+ template <int DerivativeOrder>
+ typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
+ derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
+
+ /**
+ * \brief Computes the non-zero basis functions at the given site.
+ *
+ * Splines have local support and a point from their image is defined
+ * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
+ * spline degree.
+ *
+ * This function computes the \f$p+1\f$ non-zero basis function values
+ * for a given parameter value \f$u\f$. It returns
+ * \f{align*}{
+ * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
+ * \f}
+ *
+ * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
+ * are computed.
+ **/
+ typename SplineTraits<Spline>::BasisVectorType
+ basisFunctions(Scalar u) const;
+
+ /**
+ * \brief Computes the non-zero spline basis function derivatives up to given order.
+ *
+ * The function computes
+ * \f{align*}{
+ * \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
+ * \f}
+ * with i ranging from 0 up to the specified order.
+ *
+ * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
+ * derivatives are computed.
+ * \param order The order up to which the basis function derivatives are computes.
+ **/
+ typename SplineTraits<Spline>::BasisDerivativeType
+ basisFunctionDerivatives(Scalar u, DenseIndex order) const;
+
+ /**
+ * \copydoc Spline::basisFunctionDerivatives
+ * Using the template version of this function is more efficieent since
+ * temporary objects are allocated on the stack whenever this is possible.
+ **/
+ template <int DerivativeOrder>
+ typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
+ basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
+
+ /**
+ * \brief Returns the spline degree.
+ **/
+ DenseIndex degree() const;
+
+ /**
+ * \brief Returns the span within the knot vector in which u is falling.
+ * \param u The site for which the span is determined.
+ **/
+ DenseIndex span(Scalar u) const;
+
+ /**
+ * \brief Computes the spang within the provided knot vector in which u is falling.
+ **/
+ static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
+
+ /**
+ * \brief Returns the spline's non-zero basis functions.
+ *
+ * The function computes and returns
+ * \f{align*}{
+ * N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
+ * \f}
+ *
+ * \param u The site at which the basis functions are computed.
+ * \param degree The degree of the underlying spline.
+ * \param knots The underlying spline's knot vector.
+ **/
+ static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
+
+
+ private:
+ KnotVectorType m_knots; /*!< Knot vector. */
+ ControlPointVectorType m_ctrls; /*!< Control points. */
+ };
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
+ DenseIndex degree,
+ const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
+ {
+ // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
+ if (u <= knots(0)) return degree;
+ const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
+ return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
+ Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
+ typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
+ DenseIndex degree,
+ const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
+ {
+ typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType;
+
+ const DenseIndex p = degree;
+ const DenseIndex i = Spline::Span(u, degree, knots);
+
+ const KnotVectorType& U = knots;
+
+ BasisVectorType left(p+1); left(0) = Scalar(0);
+ BasisVectorType right(p+1); right(0) = Scalar(0);
+
+ VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
+ VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
+
+ BasisVectorType N(1,p+1);
+ N(0) = Scalar(1);
+ for (DenseIndex j=1; j<=p; ++j)
+ {
+ Scalar saved = Scalar(0);
+ for (DenseIndex r=0; r<j; r++)
+ {
+ const Scalar tmp = N(r)/(right(r+1)+left(j-r));
+ N[r] = saved + right(r+1)*tmp;
+ saved = left(j-r)*tmp;
+ }
+ N(j) = saved;
+ }
+ return N;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
+ {
+ if (_Degree == Dynamic)
+ return m_knots.size() - m_ctrls.cols() - 1;
+ else
+ return _Degree;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
+ {
+ return Spline::Span(u, degree(), knots());
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
+ {
+ enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
+
+ const DenseIndex span = this->span(u);
+ const DenseIndex p = degree();
+ const BasisVectorType basis_funcs = basisFunctions(u);
+
+ const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
+ const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
+ return (ctrl_weights * ctrl_pts).rowwise().sum();
+ }
+
+ /* --------------------------------------------------------------------------------------------- */
+
+ template <typename SplineType, typename DerivativeType>
+ void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
+ {
+ enum { Dimension = SplineTraits<SplineType>::Dimension };
+ enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
+ enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
+
+ typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
+ typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
+ typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
+
+ const DenseIndex p = spline.degree();
+ const DenseIndex span = spline.span(u);
+
+ const DenseIndex n = (std::min)(p, order);
+
+ der.resize(Dimension,n+1);
+
+ // Retrieve the basis function derivatives up to the desired order...
+ const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
+
+ // ... and perform the linear combinations of the control points.
+ for (DenseIndex der_order=0; der_order<n+1; ++der_order)
+ {
+ const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
+ const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
+ der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
+ }
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
+ Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
+ {
+ typename SplineTraits< Spline >::DerivativeType res;
+ derivativesImpl(*this, u, order, res);
+ return res;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ template <int DerivativeOrder>
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
+ Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
+ {
+ typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
+ derivativesImpl(*this, u, order, res);
+ return res;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
+ Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
+ {
+ return Spline::BasisFunctions(u, degree(), knots());
+ }
+
+ /* --------------------------------------------------------------------------------------------- */
+
+ template <typename SplineType, typename DerivativeType>
+ void basisFunctionDerivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& N_)
+ {
+ enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
+
+ typedef typename SplineTraits<SplineType>::Scalar Scalar;
+ typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
+ typedef typename SplineTraits<SplineType>::KnotVectorType KnotVectorType;
+
+ const KnotVectorType& U = spline.knots();
+
+ const DenseIndex p = spline.degree();
+ const DenseIndex span = spline.span(u);
+
+ const DenseIndex n = (std::min)(p, order);
+
+ N_.resize(n+1, p+1);
+
+ BasisVectorType left = BasisVectorType::Zero(p+1);
+ BasisVectorType right = BasisVectorType::Zero(p+1);
+
+ Matrix<Scalar,Order,Order> ndu(p+1,p+1);
+
+ double saved, temp;
+
+ ndu(0,0) = 1.0;
+
+ DenseIndex j;
+ for (j=1; j<=p; ++j)
+ {
+ left[j] = u-U[span+1-j];
+ right[j] = U[span+j]-u;
+ saved = 0.0;
+
+ for (DenseIndex r=0; r<j; ++r)
+ {
+ /* Lower triangle */
+ ndu(j,r) = right[r+1]+left[j-r];
+ temp = ndu(r,j-1)/ndu(j,r);
+ /* Upper triangle */
+ ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
+ saved = left[j-r] * temp;
+ }
+
+ ndu(j,j) = static_cast<Scalar>(saved);
+ }
+
+ for (j = p; j>=0; --j)
+ N_(0,j) = ndu(j,p);
+
+ // Compute the derivatives
+ DerivativeType a(n+1,p+1);
+ DenseIndex r=0;
+ for (; r<=p; ++r)
+ {
+ DenseIndex s1,s2;
+ s1 = 0; s2 = 1; // alternate rows in array a
+ a(0,0) = 1.0;
+
+ // Compute the k-th derivative
+ for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
+ {
+ double d = 0.0;
+ DenseIndex rk,pk,j1,j2;
+ rk = r-k; pk = p-k;
+
+ if (r>=k)
+ {
+ a(s2,0) = a(s1,0)/ndu(pk+1,rk);
+ d = a(s2,0)*ndu(rk,pk);
+ }
+
+ if (rk>=-1) j1 = 1;
+ else j1 = -rk;
+
+ if (r-1 <= pk) j2 = k-1;
+ else j2 = p-r;
+
+ for (j=j1; j<=j2; ++j)
+ {
+ a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
+ d += a(s2,j)*ndu(rk+j,pk);
+ }
+
+ if (r<=pk)
+ {
+ a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
+ d += a(s2,k)*ndu(r,pk);
+ }
+
+ N_(k,r) = static_cast<Scalar>(d);
+ j = s1; s1 = s2; s2 = j; // Switch rows
+ }
+ }
+
+ /* Multiply through by the correct factors */
+ /* (Eq. [2.9]) */
+ r = p;
+ for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
+ {
+ for (DenseIndex j=p; j>=0; --j) N_(k,j) *= r;
+ r *= p-k;
+ }
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
+ Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
+ {
+ typename SplineTraits< Spline >::BasisDerivativeType der;
+ basisFunctionDerivativesImpl(*this, u, order, der);
+ return der;
+ }
+
+ template <typename _Scalar, int _Dim, int _Degree>
+ template <int DerivativeOrder>
+ typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
+ Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
+ {
+ typename SplineTraits< Spline, DerivativeOrder >::BasisDerivativeType der;
+ basisFunctionDerivativesImpl(*this, u, order, der);
+ return der;
+ }
+}
+
+#endif // EIGEN_SPLINE_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFitting.h b/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
new file mode 100644
index 0000000..0265d53
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Splines/SplineFitting.h
@@ -0,0 +1,156 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPLINE_FITTING_H
+#define EIGEN_SPLINE_FITTING_H
+
+#include <numeric>
+
+#include "SplineFwd.h"
+
+#include <Eigen/QR>
+
+namespace Eigen
+{
+ /**
+ * \brief Computes knot averages.
+ * \ingroup Splines_Module
+ *
+ * The knots are computed as
+ * \f{align*}
+ * u_0 & = \hdots = u_p = 0 \\
+ * u_{m-p} & = \hdots = u_{m} = 1 \\
+ * u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
+ * \f}
+ * where \f$p\f$ is the degree and \f$m+1\f$ the number knots
+ * of the desired interpolating spline.
+ *
+ * \param[in] parameters The input parameters. During interpolation one for each data point.
+ * \param[in] degree The spline degree which is used during the interpolation.
+ * \param[out] knots The output knot vector.
+ *
+ * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
+ **/
+ template <typename KnotVectorType>
+ void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
+ {
+ knots.resize(parameters.size()+degree+1);
+
+ for (DenseIndex j=1; j<parameters.size()-degree; ++j)
+ knots(j+degree) = parameters.segment(j,degree).mean();
+
+ knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
+ knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
+ }
+
+ /**
+ * \brief Computes chord length parameters which are required for spline interpolation.
+ * \ingroup Splines_Module
+ *
+ * \param[in] pts The data points to which a spline should be fit.
+ * \param[out] chord_lengths The resulting chord lenggth vector.
+ *
+ * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
+ **/
+ template <typename PointArrayType, typename KnotVectorType>
+ void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
+ {
+ typedef typename KnotVectorType::Scalar Scalar;
+
+ const DenseIndex n = pts.cols();
+
+ // 1. compute the column-wise norms
+ chord_lengths.resize(pts.cols());
+ chord_lengths[0] = 0;
+ chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
+
+ // 2. compute the partial sums
+ std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());
+
+ // 3. normalize the data
+ chord_lengths /= chord_lengths(n-1);
+ chord_lengths(n-1) = Scalar(1);
+ }
+
+ /**
+ * \brief Spline fitting methods.
+ * \ingroup Splines_Module
+ **/
+ template <typename SplineType>
+ struct SplineFitting
+ {
+ typedef typename SplineType::KnotVectorType KnotVectorType;
+
+ /**
+ * \brief Fits an interpolating Spline to the given data points.
+ *
+ * \param pts The points for which an interpolating spline will be computed.
+ * \param degree The degree of the interpolating spline.
+ *
+ * \returns A spline interpolating the initially provided points.
+ **/
+ template <typename PointArrayType>
+ static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
+
+ /**
+ * \brief Fits an interpolating Spline to the given data points.
+ *
+ * \param pts The points for which an interpolating spline will be computed.
+ * \param degree The degree of the interpolating spline.
+ * \param knot_parameters The knot parameters for the interpolation.
+ *
+ * \returns A spline interpolating the initially provided points.
+ **/
+ template <typename PointArrayType>
+ static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
+ };
+
+ template <typename SplineType>
+ template <typename PointArrayType>
+ SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters)
+ {
+ typedef typename SplineType::KnotVectorType::Scalar Scalar;
+ typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
+
+ typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+ KnotVectorType knots;
+ KnotAveraging(knot_parameters, degree, knots);
+
+ DenseIndex n = pts.cols();
+ MatrixType A = MatrixType::Zero(n,n);
+ for (DenseIndex i=1; i<n-1; ++i)
+ {
+ const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots);
+
+ // The segment call should somehow be told the spline order at compile time.
+ A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots);
+ }
+ A(0,0) = 1.0;
+ A(n-1,n-1) = 1.0;
+
+ HouseholderQR<MatrixType> qr(A);
+
+ // Here, we are creating a temporary due to an Eigen issue.
+ ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();
+
+ return SplineType(knots, ctrls);
+ }
+
+ template <typename SplineType>
+ template <typename PointArrayType>
+ SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
+ {
+ KnotVectorType chord_lengths; // knot parameters
+ ChordLengths(pts, chord_lengths);
+ return Interpolate(pts, degree, chord_lengths);
+ }
+}
+
+#endif // EIGEN_SPLINE_FITTING_H
diff --git a/eigen/unsupported/Eigen/src/Splines/SplineFwd.h b/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
new file mode 100644
index 0000000..9ea23a9
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/Splines/SplineFwd.h
@@ -0,0 +1,90 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPLINES_FWD_H
+#define EIGEN_SPLINES_FWD_H
+
+#include <Eigen/Core>
+
+namespace Eigen
+{
+ template <typename Scalar, int Dim, int Degree = Dynamic> class Spline;
+
+ template < typename SplineType, int DerivativeOrder = Dynamic > struct SplineTraits {};
+
+ /**
+ * \ingroup Splines_Module
+ * \brief Compile-time attributes of the Spline class for Dynamic degree.
+ **/
+ template <typename _Scalar, int _Dim, int _Degree>
+ struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, Dynamic >
+ {
+ typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
+ enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
+ enum { Degree = _Degree /*!< The spline curve's degree. */ };
+
+ enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
+ enum { NumOfDerivativesAtCompileTime = OrderAtCompileTime /*!< The number of derivatives defined for the current spline. */ };
+
+ enum { DerivativeMemoryLayout = Dimension==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
+
+ /** \brief The data type used to store non-zero basis functions. */
+ typedef Array<Scalar,1,OrderAtCompileTime> BasisVectorType;
+
+ /** \brief The data type used to store the values of the basis function derivatives. */
+ typedef Array<Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
+
+ /** \brief The data type used to store the spline's derivative values. */
+ typedef Array<Scalar,Dimension,Dynamic,DerivativeMemoryLayout,Dimension,NumOfDerivativesAtCompileTime> DerivativeType;
+
+ /** \brief The point type the spline is representing. */
+ typedef Array<Scalar,Dimension,1> PointType;
+
+ /** \brief The data type used to store knot vectors. */
+ typedef Array<Scalar,1,Dynamic> KnotVectorType;
+
+ /** \brief The data type representing the spline's control points. */
+ typedef Array<Scalar,Dimension,Dynamic> ControlPointVectorType;
+ };
+
+ /**
+ * \ingroup Splines_Module
+ * \brief Compile-time attributes of the Spline class for fixed degree.
+ *
+ * The traits class inherits all attributes from the SplineTraits of Dynamic degree.
+ **/
+ template < typename _Scalar, int _Dim, int _Degree, int _DerivativeOrder >
+ struct SplineTraits< Spline<_Scalar, _Dim, _Degree>, _DerivativeOrder > : public SplineTraits< Spline<_Scalar, _Dim, _Degree> >
+ {
+ enum { OrderAtCompileTime = _Degree==Dynamic ? Dynamic : _Degree+1 /*!< The spline curve's order at compile-time. */ };
+ enum { NumOfDerivativesAtCompileTime = _DerivativeOrder==Dynamic ? Dynamic : _DerivativeOrder+1 /*!< The number of derivatives defined for the current spline. */ };
+
+ enum { DerivativeMemoryLayout = _Dim==1 ? RowMajor : ColMajor /*!< The derivative type's memory layout. */ };
+
+ /** \brief The data type used to store the values of the basis function derivatives. */
+ typedef Array<_Scalar,Dynamic,Dynamic,RowMajor,NumOfDerivativesAtCompileTime,OrderAtCompileTime> BasisDerivativeType;
+
+ /** \brief The data type used to store the spline's derivative values. */
+ typedef Array<_Scalar,_Dim,Dynamic,DerivativeMemoryLayout,_Dim,NumOfDerivativesAtCompileTime> DerivativeType;
+ };
+
+ /** \brief 2D float B-spline with dynamic degree. */
+ typedef Spline<float,2> Spline2f;
+
+ /** \brief 3D float B-spline with dynamic degree. */
+ typedef Spline<float,3> Spline3f;
+
+ /** \brief 2D double B-spline with dynamic degree. */
+ typedef Spline<double,2> Spline2d;
+
+ /** \brief 3D double B-spline with dynamic degree. */
+ typedef Spline<double,3> Spline3d;
+}
+
+#endif // EIGEN_SPLINES_FWD_H